Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.189
      1 /*	$NetBSD: lfs_vnops.c,v 1.189 2006/09/15 18:50:49 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.189 2006/09/15 18:50:49 perseant Exp $");
     71 
     72 #ifdef _KERNEL_OPT
     73 #include "opt_compat_netbsd.h"
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/namei.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/kernel.h>
     81 #include <sys/file.h>
     82 #include <sys/stat.h>
     83 #include <sys/buf.h>
     84 #include <sys/proc.h>
     85 #include <sys/mount.h>
     86 #include <sys/vnode.h>
     87 #include <sys/pool.h>
     88 #include <sys/signalvar.h>
     89 #include <sys/kauth.h>
     90 #include <sys/syslog.h>
     91 
     92 #include <miscfs/fifofs/fifo.h>
     93 #include <miscfs/genfs/genfs.h>
     94 #include <miscfs/specfs/specdev.h>
     95 
     96 #include <ufs/ufs/inode.h>
     97 #include <ufs/ufs/dir.h>
     98 #include <ufs/ufs/ufsmount.h>
     99 #include <ufs/ufs/ufs_extern.h>
    100 
    101 #include <uvm/uvm.h>
    102 #include <uvm/uvm_pmap.h>
    103 #include <uvm/uvm_stat.h>
    104 #include <uvm/uvm_pager.h>
    105 
    106 #include <ufs/lfs/lfs.h>
    107 #include <ufs/lfs/lfs_extern.h>
    108 
    109 extern pid_t lfs_writer_daemon;
    110 
    111 /* Global vfs data structures for lfs. */
    112 int (**lfs_vnodeop_p)(void *);
    113 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    114 	{ &vop_default_desc, vn_default_error },
    115 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    116 	{ &vop_create_desc, lfs_create },		/* create */
    117 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    118 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    119 	{ &vop_open_desc, ufs_open },			/* open */
    120 	{ &vop_close_desc, lfs_close },			/* close */
    121 	{ &vop_access_desc, ufs_access },		/* access */
    122 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    123 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    124 	{ &vop_read_desc, lfs_read },			/* read */
    125 	{ &vop_write_desc, lfs_write },			/* write */
    126 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    127 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    128 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    129 	{ &vop_poll_desc, ufs_poll },			/* poll */
    130 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    131 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    132 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    133 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    134 	{ &vop_seek_desc, ufs_seek },			/* seek */
    135 	{ &vop_remove_desc, lfs_remove },		/* remove */
    136 	{ &vop_link_desc, lfs_link },			/* link */
    137 	{ &vop_rename_desc, lfs_rename },		/* rename */
    138 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    139 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    140 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    141 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    142 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    143 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    144 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    145 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    146 	{ &vop_lock_desc, ufs_lock },			/* lock */
    147 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    148 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    149 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    150 	{ &vop_print_desc, ufs_print },			/* print */
    151 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    152 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    153 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    154 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    155 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    156 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    157 	{ NULL, NULL }
    158 };
    159 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    160 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    161 
    162 int (**lfs_specop_p)(void *);
    163 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    164 	{ &vop_default_desc, vn_default_error },
    165 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    166 	{ &vop_create_desc, spec_create },		/* create */
    167 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    168 	{ &vop_open_desc, spec_open },			/* open */
    169 	{ &vop_close_desc, lfsspec_close },		/* close */
    170 	{ &vop_access_desc, ufs_access },		/* access */
    171 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    172 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    173 	{ &vop_read_desc, ufsspec_read },		/* read */
    174 	{ &vop_write_desc, ufsspec_write },		/* write */
    175 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    176 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    177 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    178 	{ &vop_poll_desc, spec_poll },			/* poll */
    179 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    180 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    181 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    182 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    183 	{ &vop_seek_desc, spec_seek },			/* seek */
    184 	{ &vop_remove_desc, spec_remove },		/* remove */
    185 	{ &vop_link_desc, spec_link },			/* link */
    186 	{ &vop_rename_desc, spec_rename },		/* rename */
    187 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    188 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    189 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    190 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    191 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    192 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    193 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    194 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    195 	{ &vop_lock_desc, ufs_lock },			/* lock */
    196 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    197 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    198 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    199 	{ &vop_print_desc, ufs_print },			/* print */
    200 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    201 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    202 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    203 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    204 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    205 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    206 	{ NULL, NULL }
    207 };
    208 const struct vnodeopv_desc lfs_specop_opv_desc =
    209 	{ &lfs_specop_p, lfs_specop_entries };
    210 
    211 int (**lfs_fifoop_p)(void *);
    212 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    213 	{ &vop_default_desc, vn_default_error },
    214 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    215 	{ &vop_create_desc, fifo_create },		/* create */
    216 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    217 	{ &vop_open_desc, fifo_open },			/* open */
    218 	{ &vop_close_desc, lfsfifo_close },		/* close */
    219 	{ &vop_access_desc, ufs_access },		/* access */
    220 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    221 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    222 	{ &vop_read_desc, ufsfifo_read },		/* read */
    223 	{ &vop_write_desc, ufsfifo_write },		/* write */
    224 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    225 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    226 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    227 	{ &vop_poll_desc, fifo_poll },			/* poll */
    228 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    229 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    230 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    231 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    232 	{ &vop_seek_desc, fifo_seek },			/* seek */
    233 	{ &vop_remove_desc, fifo_remove },		/* remove */
    234 	{ &vop_link_desc, fifo_link },			/* link */
    235 	{ &vop_rename_desc, fifo_rename },		/* rename */
    236 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    237 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    238 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    239 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    240 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    241 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    242 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    243 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    244 	{ &vop_lock_desc, ufs_lock },			/* lock */
    245 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    246 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    247 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    248 	{ &vop_print_desc, ufs_print },			/* print */
    249 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    250 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    251 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    252 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    253 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    254 	{ NULL, NULL }
    255 };
    256 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    257 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    258 
    259 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    260 
    261 #define	LFS_READWRITE
    262 #include <ufs/ufs/ufs_readwrite.c>
    263 #undef	LFS_READWRITE
    264 
    265 /*
    266  * Synch an open file.
    267  */
    268 /* ARGSUSED */
    269 int
    270 lfs_fsync(void *v)
    271 {
    272 	struct vop_fsync_args /* {
    273 		struct vnode *a_vp;
    274 		kauth_cred_t a_cred;
    275 		int a_flags;
    276 		off_t offlo;
    277 		off_t offhi;
    278 		struct lwp *a_l;
    279 	} */ *ap = v;
    280 	struct vnode *vp = ap->a_vp;
    281 	int error, wait;
    282 
    283 	/* If we're mounted read-only, don't try to sync. */
    284 	if (VTOI(vp)->i_lfs->lfs_ronly)
    285 		return 0;
    286 
    287 	/*
    288 	 * Trickle sync checks for need to do a checkpoint after possible
    289 	 * activity from the pagedaemon.
    290 	 */
    291 	if (ap->a_flags & FSYNC_LAZY) {
    292 		simple_lock(&lfs_subsys_lock);
    293 		wakeup(&lfs_writer_daemon);
    294 		simple_unlock(&lfs_subsys_lock);
    295 		return 0;
    296 	}
    297 
    298 	/*
    299 	 * If a vnode is bring cleaned, flush it out before we try to
    300 	 * reuse it.  This prevents the cleaner from writing files twice
    301 	 * in the same partial segment, causing an accounting underflow.
    302 	 */
    303 	if (ap->a_flags & FSYNC_RECLAIM && VTOI(vp)->i_flags & IN_CLEANING) {
    304 		/* printf("avoiding VONWORKLIST panic\n"); */
    305 		lfs_vflush(vp);
    306 	}
    307 
    308 	wait = (ap->a_flags & FSYNC_WAIT);
    309 	simple_lock(&vp->v_interlock);
    310 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    311 			round_page(ap->a_offhi),
    312 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    313 	if (error)
    314 		return error;
    315 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    316 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    317 		int l = 0;
    318 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    319 				  ap->a_l->l_cred, ap->a_l);
    320 	}
    321 	if (wait && !VPISEMPTY(vp))
    322 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    323 
    324 	return error;
    325 }
    326 
    327 /*
    328  * Take IN_ADIROP off, then call ufs_inactive.
    329  */
    330 int
    331 lfs_inactive(void *v)
    332 {
    333 	struct vop_inactive_args /* {
    334 		struct vnode *a_vp;
    335 		struct lwp *a_l;
    336 	} */ *ap = v;
    337 
    338 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    339 
    340 	lfs_unmark_vnode(ap->a_vp);
    341 
    342 	/*
    343 	 * The Ifile is only ever inactivated on unmount.
    344 	 * Streamline this process by not giving it more dirty blocks.
    345 	 */
    346 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    347 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    348 		VOP_UNLOCK(ap->a_vp, 0);
    349 		return 0;
    350 	}
    351 
    352 	return ufs_inactive(v);
    353 }
    354 
    355 /*
    356  * These macros are used to bracket UFS directory ops, so that we can
    357  * identify all the pages touched during directory ops which need to
    358  * be ordered and flushed atomically, so that they may be recovered.
    359  *
    360  * Because we have to mark nodes VDIROP in order to prevent
    361  * the cache from reclaiming them while a dirop is in progress, we must
    362  * also manage the number of nodes so marked (otherwise we can run out).
    363  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    364  * is decremented during segment write, when VDIROP is taken off.
    365  */
    366 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    367 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    368 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    369 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    370 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    371 static int lfs_set_dirop(struct vnode *, struct vnode *);
    372 
    373 static int
    374 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    375 {
    376 	struct lfs *fs;
    377 	int error;
    378 
    379 	KASSERT(VOP_ISLOCKED(dvp));
    380 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    381 
    382 	fs = VTOI(dvp)->i_lfs;
    383 
    384 	ASSERT_NO_SEGLOCK(fs);
    385 	/*
    386 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    387 	 * as an inode block; an overestimate in most cases.
    388 	 */
    389 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    390 		return (error);
    391 
    392     restart:
    393 	simple_lock(&fs->lfs_interlock);
    394 	if (fs->lfs_dirops == 0) {
    395 		simple_unlock(&fs->lfs_interlock);
    396 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    397 		simple_lock(&fs->lfs_interlock);
    398 	}
    399 	while (fs->lfs_writer)
    400 		ltsleep(&fs->lfs_dirops, (PRIBIO + 1), "lfs_sdirop", 0,
    401 			&fs->lfs_interlock);
    402 	simple_lock(&lfs_subsys_lock);
    403 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    404 		wakeup(&lfs_writer_daemon);
    405 		simple_unlock(&lfs_subsys_lock);
    406 		simple_unlock(&fs->lfs_interlock);
    407 		preempt(1);
    408 		goto restart;
    409 	}
    410 
    411 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    412 		simple_unlock(&fs->lfs_interlock);
    413 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    414 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    415 		if ((error = ltsleep(&lfs_dirvcount,
    416 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    417 		    &lfs_subsys_lock)) != 0) {
    418 			goto unreserve;
    419 		}
    420 		goto restart;
    421 	}
    422 	simple_unlock(&lfs_subsys_lock);
    423 
    424 	++fs->lfs_dirops;
    425 	fs->lfs_doifile = 1;
    426 	simple_unlock(&fs->lfs_interlock);
    427 
    428 	/* Hold a reference so SET_ENDOP will be happy */
    429 	vref(dvp);
    430 	if (vp) {
    431 		vref(vp);
    432 		MARK_VNODE(vp);
    433 	}
    434 
    435 	MARK_VNODE(dvp);
    436 	return 0;
    437 
    438 unreserve:
    439 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    440 	return error;
    441 }
    442 
    443 /*
    444  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    445  * in getnewvnode(), if we have a stacked filesystem mounted on top
    446  * of us.
    447  *
    448  * NB: this means we have to clear the new vnodes on error.  Fortunately
    449  * SET_ENDOP is there to do that for us.
    450  */
    451 static int
    452 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    453 {
    454 	int error;
    455 	struct lfs *fs;
    456 
    457 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    458 	ASSERT_NO_SEGLOCK(fs);
    459 	if (fs->lfs_ronly)
    460 		return EROFS;
    461 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    462 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    463 		      dvp, error));
    464 		return error;
    465 	}
    466 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    467 		if (vpp) {
    468 			ungetnewvnode(*vpp);
    469 			*vpp = NULL;
    470 		}
    471 		return error;
    472 	}
    473 	return 0;
    474 }
    475 
    476 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    477 	do {								\
    478 		simple_lock(&(fs)->lfs_interlock);			\
    479 		--(fs)->lfs_dirops;					\
    480 		if (!(fs)->lfs_dirops) {				\
    481 			if ((fs)->lfs_nadirop) {			\
    482 				panic("SET_ENDOP: %s: no dirops but "	\
    483 					" nadirop=%d", (str),		\
    484 					(fs)->lfs_nadirop);		\
    485 			}						\
    486 			wakeup(&(fs)->lfs_writer);			\
    487 			simple_unlock(&(fs)->lfs_interlock);		\
    488 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    489 		} else							\
    490 			simple_unlock(&(fs)->lfs_interlock);		\
    491 	} while(0)
    492 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    493 	do {								\
    494 		UNMARK_VNODE(dvp);					\
    495 		if (nvpp && *nvpp)					\
    496 			UNMARK_VNODE(*nvpp);				\
    497 		/* Check for error return to stem vnode leakage */	\
    498 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    499 			ungetnewvnode(*(nvpp));				\
    500 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    501 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    502 		vrele(dvp);						\
    503 	} while(0)
    504 #define SET_ENDOP_CREATE_AP(ap, str)					\
    505 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    506 			 (ap)->a_vpp, (str))
    507 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    508 	do {								\
    509 		UNMARK_VNODE(dvp);					\
    510 		if (ovp)						\
    511 			UNMARK_VNODE(ovp);				\
    512 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    513 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    514 		vrele(dvp);						\
    515 		if (ovp)						\
    516 			vrele(ovp);					\
    517 	} while(0)
    518 
    519 void
    520 lfs_mark_vnode(struct vnode *vp)
    521 {
    522 	struct inode *ip = VTOI(vp);
    523 	struct lfs *fs = ip->i_lfs;
    524 
    525 	simple_lock(&fs->lfs_interlock);
    526 	if (!(ip->i_flag & IN_ADIROP)) {
    527 		if (!(vp->v_flag & VDIROP)) {
    528 			(void)lfs_vref(vp);
    529 			simple_lock(&lfs_subsys_lock);
    530 			++lfs_dirvcount;
    531 			++fs->lfs_dirvcount;
    532 			simple_unlock(&lfs_subsys_lock);
    533 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    534 			vp->v_flag |= VDIROP;
    535 		}
    536 		++fs->lfs_nadirop;
    537 		ip->i_flag |= IN_ADIROP;
    538 	} else
    539 		KASSERT(vp->v_flag & VDIROP);
    540 	simple_unlock(&fs->lfs_interlock);
    541 }
    542 
    543 void
    544 lfs_unmark_vnode(struct vnode *vp)
    545 {
    546 	struct inode *ip = VTOI(vp);
    547 
    548 	if (ip && (ip->i_flag & IN_ADIROP)) {
    549 		KASSERT(vp->v_flag & VDIROP);
    550 		simple_lock(&ip->i_lfs->lfs_interlock);
    551 		--ip->i_lfs->lfs_nadirop;
    552 		simple_unlock(&ip->i_lfs->lfs_interlock);
    553 		ip->i_flag &= ~IN_ADIROP;
    554 	}
    555 }
    556 
    557 int
    558 lfs_symlink(void *v)
    559 {
    560 	struct vop_symlink_args /* {
    561 		struct vnode *a_dvp;
    562 		struct vnode **a_vpp;
    563 		struct componentname *a_cnp;
    564 		struct vattr *a_vap;
    565 		char *a_target;
    566 	} */ *ap = v;
    567 	int error;
    568 
    569 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    570 		vput(ap->a_dvp);
    571 		return error;
    572 	}
    573 	error = ufs_symlink(ap);
    574 	SET_ENDOP_CREATE_AP(ap, "symlink");
    575 	return (error);
    576 }
    577 
    578 int
    579 lfs_mknod(void *v)
    580 {
    581 	struct vop_mknod_args	/* {
    582 		struct vnode *a_dvp;
    583 		struct vnode **a_vpp;
    584 		struct componentname *a_cnp;
    585 		struct vattr *a_vap;
    586 		} */ *ap = v;
    587 	struct vattr *vap = ap->a_vap;
    588 	struct vnode **vpp = ap->a_vpp;
    589 	struct inode *ip;
    590 	int error;
    591 	struct mount	*mp;
    592 	ino_t		ino;
    593 
    594 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    595 		vput(ap->a_dvp);
    596 		return error;
    597 	}
    598 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    599 	    ap->a_dvp, vpp, ap->a_cnp);
    600 
    601 	/* Either way we're done with the dirop at this point */
    602 	SET_ENDOP_CREATE_AP(ap, "mknod");
    603 
    604 	if (error)
    605 		return (error);
    606 
    607 	ip = VTOI(*vpp);
    608 	mp  = (*vpp)->v_mount;
    609 	ino = ip->i_number;
    610 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    611 	if (vap->va_rdev != VNOVAL) {
    612 		/*
    613 		 * Want to be able to use this to make badblock
    614 		 * inodes, so don't truncate the dev number.
    615 		 */
    616 #if 0
    617 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    618 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    619 #else
    620 		ip->i_ffs1_rdev = vap->va_rdev;
    621 #endif
    622 	}
    623 
    624 	/*
    625 	 * Call fsync to write the vnode so that we don't have to deal with
    626 	 * flushing it when it's marked VDIROP|VXLOCK.
    627 	 *
    628 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    629 	 * return.  But, that leaves this vnode in limbo, also not good.
    630 	 * Can this ever happen (barring hardware failure)?
    631 	 */
    632 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    633 	    curlwp)) != 0) {
    634 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    635 		    (unsigned long long)ino);
    636 		/* return (error); */
    637 	}
    638 	/*
    639 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    640 	 * checked to see if it is an alias of an existing entry in
    641 	 * the inode cache.
    642 	 */
    643 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    644 
    645 	VOP_UNLOCK(*vpp, 0);
    646 	lfs_vunref(*vpp);
    647 	(*vpp)->v_type = VNON;
    648 	vgone(*vpp);
    649 	error = VFS_VGET(mp, ino, vpp);
    650 
    651 	if (error != 0) {
    652 		*vpp = NULL;
    653 		return (error);
    654 	}
    655 	return (0);
    656 }
    657 
    658 int
    659 lfs_create(void *v)
    660 {
    661 	struct vop_create_args	/* {
    662 		struct vnode *a_dvp;
    663 		struct vnode **a_vpp;
    664 		struct componentname *a_cnp;
    665 		struct vattr *a_vap;
    666 	} */ *ap = v;
    667 	int error;
    668 
    669 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    670 		vput(ap->a_dvp);
    671 		return error;
    672 	}
    673 	error = ufs_create(ap);
    674 	SET_ENDOP_CREATE_AP(ap, "create");
    675 	return (error);
    676 }
    677 
    678 int
    679 lfs_mkdir(void *v)
    680 {
    681 	struct vop_mkdir_args	/* {
    682 		struct vnode *a_dvp;
    683 		struct vnode **a_vpp;
    684 		struct componentname *a_cnp;
    685 		struct vattr *a_vap;
    686 	} */ *ap = v;
    687 	int error;
    688 
    689 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    690 		vput(ap->a_dvp);
    691 		return error;
    692 	}
    693 	error = ufs_mkdir(ap);
    694 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    695 	return (error);
    696 }
    697 
    698 int
    699 lfs_remove(void *v)
    700 {
    701 	struct vop_remove_args	/* {
    702 		struct vnode *a_dvp;
    703 		struct vnode *a_vp;
    704 		struct componentname *a_cnp;
    705 	} */ *ap = v;
    706 	struct vnode *dvp, *vp;
    707 	struct inode *ip;
    708 	int error;
    709 
    710 	dvp = ap->a_dvp;
    711 	vp = ap->a_vp;
    712 	ip = VTOI(vp);
    713 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    714 		if (dvp == vp)
    715 			vrele(vp);
    716 		else
    717 			vput(vp);
    718 		vput(dvp);
    719 		return error;
    720 	}
    721 	error = ufs_remove(ap);
    722 	if (ip->i_nlink == 0)
    723 		lfs_orphan(ip->i_lfs, ip->i_number);
    724 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    725 	return (error);
    726 }
    727 
    728 int
    729 lfs_rmdir(void *v)
    730 {
    731 	struct vop_rmdir_args	/* {
    732 		struct vnodeop_desc *a_desc;
    733 		struct vnode *a_dvp;
    734 		struct vnode *a_vp;
    735 		struct componentname *a_cnp;
    736 	} */ *ap = v;
    737 	struct vnode *vp;
    738 	struct inode *ip;
    739 	int error;
    740 
    741 	vp = ap->a_vp;
    742 	ip = VTOI(vp);
    743 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    744 		vrele(ap->a_dvp);
    745 		if (ap->a_vp != ap->a_dvp)
    746 			VOP_UNLOCK(ap->a_dvp, 0);
    747 		vput(vp);
    748 		return error;
    749 	}
    750 	error = ufs_rmdir(ap);
    751 	if (ip->i_nlink == 0)
    752 		lfs_orphan(ip->i_lfs, ip->i_number);
    753 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    754 	return (error);
    755 }
    756 
    757 int
    758 lfs_link(void *v)
    759 {
    760 	struct vop_link_args	/* {
    761 		struct vnode *a_dvp;
    762 		struct vnode *a_vp;
    763 		struct componentname *a_cnp;
    764 	} */ *ap = v;
    765 	int error;
    766 	struct vnode **vpp = NULL;
    767 
    768 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    769 		vput(ap->a_dvp);
    770 		return error;
    771 	}
    772 	error = ufs_link(ap);
    773 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    774 	return (error);
    775 }
    776 
    777 int
    778 lfs_rename(void *v)
    779 {
    780 	struct vop_rename_args	/* {
    781 		struct vnode *a_fdvp;
    782 		struct vnode *a_fvp;
    783 		struct componentname *a_fcnp;
    784 		struct vnode *a_tdvp;
    785 		struct vnode *a_tvp;
    786 		struct componentname *a_tcnp;
    787 	} */ *ap = v;
    788 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    789 	struct componentname *tcnp, *fcnp;
    790 	int error;
    791 	struct lfs *fs;
    792 
    793 	fs = VTOI(ap->a_fdvp)->i_lfs;
    794 	tvp = ap->a_tvp;
    795 	tdvp = ap->a_tdvp;
    796 	tcnp = ap->a_tcnp;
    797 	fvp = ap->a_fvp;
    798 	fdvp = ap->a_fdvp;
    799 	fcnp = ap->a_fcnp;
    800 
    801 	/*
    802 	 * Check for cross-device rename.
    803 	 * If it is, we don't want to set dirops, just error out.
    804 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    805 	 * a cross-device rename.)
    806 	 *
    807 	 * Copied from ufs_rename.
    808 	 */
    809 	if ((fvp->v_mount != tdvp->v_mount) ||
    810 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    811 		error = EXDEV;
    812 		goto errout;
    813 	}
    814 
    815 	/*
    816 	 * Check to make sure we're not renaming a vnode onto itself
    817 	 * (deleting a hard link by renaming one name onto another);
    818 	 * if we are we can't recursively call VOP_REMOVE since that
    819 	 * would leave us with an unaccounted-for number of live dirops.
    820 	 *
    821 	 * Inline the relevant section of ufs_rename here, *before*
    822 	 * calling SET_DIROP_REMOVE.
    823 	 */
    824 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    825 	    (VTOI(tdvp)->i_flags & APPEND))) {
    826 		error = EPERM;
    827 		goto errout;
    828 	}
    829 	if (fvp == tvp) {
    830 		if (fvp->v_type == VDIR) {
    831 			error = EINVAL;
    832 			goto errout;
    833 		}
    834 
    835 		/* Release destination completely. */
    836 		VOP_ABORTOP(tdvp, tcnp);
    837 		vput(tdvp);
    838 		vput(tvp);
    839 
    840 		/* Delete source. */
    841 		vrele(fvp);
    842 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    843 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    844 		fcnp->cn_nameiop = DELETE;
    845 		if ((error = relookup(fdvp, &fvp, fcnp))){
    846 			/* relookup blew away fdvp */
    847 			return (error);
    848 		}
    849 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    850 	}
    851 
    852 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    853 		goto errout;
    854 	MARK_VNODE(fdvp);
    855 	MARK_VNODE(fvp);
    856 
    857 	error = ufs_rename(ap);
    858 	UNMARK_VNODE(fdvp);
    859 	UNMARK_VNODE(fvp);
    860 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    861 	return (error);
    862 
    863     errout:
    864 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    865 	if (tdvp == tvp)
    866 		vrele(tdvp);
    867 	else
    868 		vput(tdvp);
    869 	if (tvp)
    870 		vput(tvp);
    871 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    872 	vrele(fdvp);
    873 	vrele(fvp);
    874 	return (error);
    875 }
    876 
    877 /* XXX hack to avoid calling ITIMES in getattr */
    878 int
    879 lfs_getattr(void *v)
    880 {
    881 	struct vop_getattr_args /* {
    882 		struct vnode *a_vp;
    883 		struct vattr *a_vap;
    884 		kauth_cred_t a_cred;
    885 		struct lwp *a_l;
    886 	} */ *ap = v;
    887 	struct vnode *vp = ap->a_vp;
    888 	struct inode *ip = VTOI(vp);
    889 	struct vattr *vap = ap->a_vap;
    890 	struct lfs *fs = ip->i_lfs;
    891 	/*
    892 	 * Copy from inode table
    893 	 */
    894 	vap->va_fsid = ip->i_dev;
    895 	vap->va_fileid = ip->i_number;
    896 	vap->va_mode = ip->i_mode & ~IFMT;
    897 	vap->va_nlink = ip->i_nlink;
    898 	vap->va_uid = ip->i_uid;
    899 	vap->va_gid = ip->i_gid;
    900 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    901 	vap->va_size = vp->v_size;
    902 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    903 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    904 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    905 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    906 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    907 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    908 	vap->va_flags = ip->i_flags;
    909 	vap->va_gen = ip->i_gen;
    910 	/* this doesn't belong here */
    911 	if (vp->v_type == VBLK)
    912 		vap->va_blocksize = BLKDEV_IOSIZE;
    913 	else if (vp->v_type == VCHR)
    914 		vap->va_blocksize = MAXBSIZE;
    915 	else
    916 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    917 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    918 	vap->va_type = vp->v_type;
    919 	vap->va_filerev = ip->i_modrev;
    920 	return (0);
    921 }
    922 
    923 /*
    924  * Check to make sure the inode blocks won't choke the buffer
    925  * cache, then call ufs_setattr as usual.
    926  */
    927 int
    928 lfs_setattr(void *v)
    929 {
    930 	struct vop_setattr_args /* {
    931 		struct vnode *a_vp;
    932 		struct vattr *a_vap;
    933 		kauth_cred_t a_cred;
    934 		struct lwp *a_l;
    935 	} */ *ap = v;
    936 	struct vnode *vp = ap->a_vp;
    937 
    938 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    939 	return ufs_setattr(v);
    940 }
    941 
    942 /*
    943  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    944  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
    945  */
    946 static int
    947 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    948 {
    949 	if ((ip->i_lfs_iflags & LFSI_WRAPBLOCK) == 0)
    950 		return EBUSY;
    951 
    952 	ip->i_lfs_iflags &= ~LFSI_WRAPBLOCK;
    953 
    954 	KASSERT(fs->lfs_nowrap > 0);
    955 	if (fs->lfs_nowrap <= 0) {
    956 		return 0;
    957 	}
    958 
    959 	if (--fs->lfs_nowrap == 0) {
    960 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    961 		wakeup(&fs->lfs_wrappass);
    962 		lfs_wakeup_cleaner(fs);
    963 	}
    964 	if (waitfor) {
    965 		ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
    966 			"segment", 0, &fs->lfs_interlock);
    967 	}
    968 
    969 	return 0;
    970 }
    971 
    972 /*
    973  * Close called
    974  */
    975 /* ARGSUSED */
    976 int
    977 lfs_close(void *v)
    978 {
    979 	struct vop_close_args /* {
    980 		struct vnode *a_vp;
    981 		int  a_fflag;
    982 		kauth_cred_t a_cred;
    983 		struct lwp *a_l;
    984 	} */ *ap = v;
    985 	struct vnode *vp = ap->a_vp;
    986 	struct inode *ip = VTOI(vp);
    987 #if 0
    988         /* XXX fix this */
    989 	struct lfs *fs = ip->i_lfs;
    990 
    991 	if ((ip->i_lfs_iflags & (LFSI_WRAPBLOCK | LFSI_WRAPWAIT)) ==
    992 	    LFSI_WRAPBLOCK) {
    993 		simple_lock(&fs->lfs_interlock);
    994 		printf("lfs_close with flags 0x%x\n", (unsigned)ap->a_fflag);
    995 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
    996 		lfs_wrapgo(fs, ip, 0);
    997 		simple_unlock(&fs->lfs_interlock);
    998 	}
    999 #endif
   1000 
   1001 	if (vp == ip->i_lfs->lfs_ivnode &&
   1002 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1003 		return 0;
   1004 
   1005 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1006 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1007 	}
   1008 	return (0);
   1009 }
   1010 
   1011 /*
   1012  * Close wrapper for special devices.
   1013  *
   1014  * Update the times on the inode then do device close.
   1015  */
   1016 int
   1017 lfsspec_close(void *v)
   1018 {
   1019 	struct vop_close_args /* {
   1020 		struct vnode	*a_vp;
   1021 		int		a_fflag;
   1022 		kauth_cred_t	a_cred;
   1023 		struct lwp	*a_l;
   1024 	} */ *ap = v;
   1025 	struct vnode	*vp;
   1026 	struct inode	*ip;
   1027 
   1028 	vp = ap->a_vp;
   1029 	ip = VTOI(vp);
   1030 	if (vp->v_usecount > 1) {
   1031 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1032 	}
   1033 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1034 }
   1035 
   1036 /*
   1037  * Close wrapper for fifo's.
   1038  *
   1039  * Update the times on the inode then do device close.
   1040  */
   1041 int
   1042 lfsfifo_close(void *v)
   1043 {
   1044 	struct vop_close_args /* {
   1045 		struct vnode	*a_vp;
   1046 		int		a_fflag;
   1047 		kauth_cred_	a_cred;
   1048 		struct lwp	*a_l;
   1049 	} */ *ap = v;
   1050 	struct vnode	*vp;
   1051 	struct inode	*ip;
   1052 
   1053 	vp = ap->a_vp;
   1054 	ip = VTOI(vp);
   1055 	if (ap->a_vp->v_usecount > 1) {
   1056 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1057 	}
   1058 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1059 }
   1060 
   1061 /*
   1062  * Reclaim an inode so that it can be used for other purposes.
   1063  */
   1064 
   1065 int
   1066 lfs_reclaim(void *v)
   1067 {
   1068 	struct vop_reclaim_args /* {
   1069 		struct vnode *a_vp;
   1070 		struct lwp *a_l;
   1071 	} */ *ap = v;
   1072 	struct vnode *vp = ap->a_vp;
   1073 	struct inode *ip = VTOI(vp);
   1074 	int error;
   1075 
   1076 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1077 
   1078 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1079 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1080 		return (error);
   1081 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1082 	lfs_deregister_all(vp);
   1083 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1084 	ip->inode_ext.lfs = NULL;
   1085 	pool_put(&lfs_inode_pool, vp->v_data);
   1086 	vp->v_data = NULL;
   1087 	return (0);
   1088 }
   1089 
   1090 /*
   1091  * Read a block from a storage device.
   1092  * In order to avoid reading blocks that are in the process of being
   1093  * written by the cleaner---and hence are not mutexed by the normal
   1094  * buffer cache / page cache mechanisms---check for collisions before
   1095  * reading.
   1096  *
   1097  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1098  * the active cleaner test.
   1099  *
   1100  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1101  */
   1102 int
   1103 lfs_strategy(void *v)
   1104 {
   1105 	struct vop_strategy_args /* {
   1106 		struct vnode *a_vp;
   1107 		struct buf *a_bp;
   1108 	} */ *ap = v;
   1109 	struct buf	*bp;
   1110 	struct lfs	*fs;
   1111 	struct vnode	*vp;
   1112 	struct inode	*ip;
   1113 	daddr_t		tbn;
   1114 	int		i, sn, error, slept;
   1115 
   1116 	bp = ap->a_bp;
   1117 	vp = ap->a_vp;
   1118 	ip = VTOI(vp);
   1119 	fs = ip->i_lfs;
   1120 
   1121 	/* lfs uses its strategy routine only for read */
   1122 	KASSERT(bp->b_flags & B_READ);
   1123 
   1124 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1125 		panic("lfs_strategy: spec");
   1126 	KASSERT(bp->b_bcount != 0);
   1127 	if (bp->b_blkno == bp->b_lblkno) {
   1128 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1129 				 NULL);
   1130 		if (error) {
   1131 			bp->b_error = error;
   1132 			bp->b_flags |= B_ERROR;
   1133 			biodone(bp);
   1134 			return (error);
   1135 		}
   1136 		if ((long)bp->b_blkno == -1) /* no valid data */
   1137 			clrbuf(bp);
   1138 	}
   1139 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1140 		biodone(bp);
   1141 		return (0);
   1142 	}
   1143 
   1144 	slept = 1;
   1145 	simple_lock(&fs->lfs_interlock);
   1146 	while (slept && fs->lfs_seglock) {
   1147 		simple_unlock(&fs->lfs_interlock);
   1148 		/*
   1149 		 * Look through list of intervals.
   1150 		 * There will only be intervals to look through
   1151 		 * if the cleaner holds the seglock.
   1152 		 * Since the cleaner is synchronous, we can trust
   1153 		 * the list of intervals to be current.
   1154 		 */
   1155 		tbn = dbtofsb(fs, bp->b_blkno);
   1156 		sn = dtosn(fs, tbn);
   1157 		slept = 0;
   1158 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1159 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1160 			    tbn >= fs->lfs_cleanint[i]) {
   1161 				DLOG((DLOG_CLEAN,
   1162 				      "lfs_strategy: ino %d lbn %" PRId64
   1163 				       " ind %d sn %d fsb %" PRIx32
   1164 				       " given sn %d fsb %" PRIx64 "\n",
   1165 					ip->i_number, bp->b_lblkno, i,
   1166 					dtosn(fs, fs->lfs_cleanint[i]),
   1167 					fs->lfs_cleanint[i], sn, tbn));
   1168 				DLOG((DLOG_CLEAN,
   1169 				      "lfs_strategy: sleeping on ino %d lbn %"
   1170 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1171 				simple_lock(&fs->lfs_interlock);
   1172 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1173 					/* Cleaner can't wait for itself */
   1174 					ltsleep(&fs->lfs_iocount,
   1175 						(PRIBIO + 1) | PNORELOCK,
   1176 						"clean2", 0,
   1177 						&fs->lfs_interlock);
   1178 					slept = 1;
   1179 					break;
   1180 				} else if (fs->lfs_seglock) {
   1181 					ltsleep(&fs->lfs_seglock,
   1182 						(PRIBIO + 1) | PNORELOCK,
   1183 						"clean1", 0,
   1184 						&fs->lfs_interlock);
   1185 					slept = 1;
   1186 					break;
   1187 				}
   1188 				simple_unlock(&fs->lfs_interlock);
   1189 			}
   1190 		}
   1191 		simple_lock(&fs->lfs_interlock);
   1192 	}
   1193 	simple_unlock(&fs->lfs_interlock);
   1194 
   1195 	vp = ip->i_devvp;
   1196 	VOP_STRATEGY(vp, bp);
   1197 	return (0);
   1198 }
   1199 
   1200 void
   1201 lfs_flush_dirops(struct lfs *fs)
   1202 {
   1203 	struct inode *ip, *nip;
   1204 	struct vnode *vp;
   1205 	extern int lfs_dostats;
   1206 	struct segment *sp;
   1207 	int waslocked;
   1208 
   1209 	ASSERT_MAYBE_SEGLOCK(fs);
   1210 	KASSERT(fs->lfs_nadirop == 0);
   1211 
   1212 	if (fs->lfs_ronly)
   1213 		return;
   1214 
   1215 	simple_lock(&fs->lfs_interlock);
   1216 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1217 		simple_unlock(&fs->lfs_interlock);
   1218 		return;
   1219 	} else
   1220 		simple_unlock(&fs->lfs_interlock);
   1221 
   1222 	if (lfs_dostats)
   1223 		++lfs_stats.flush_invoked;
   1224 
   1225 	/*
   1226 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1227 	 * Technically this is a checkpoint (the on-disk state is valid)
   1228 	 * even though we are leaving out all the file data.
   1229 	 */
   1230 	lfs_imtime(fs);
   1231 	lfs_seglock(fs, SEGM_CKP);
   1232 	sp = fs->lfs_sp;
   1233 
   1234 	/*
   1235 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1236 	 * Only write dirops, and don't flush files' pages, only
   1237 	 * blocks from the directories.
   1238 	 *
   1239 	 * We don't need to vref these files because they are
   1240 	 * dirops and so hold an extra reference until the
   1241 	 * segunlock clears them of that status.
   1242 	 *
   1243 	 * We don't need to check for IN_ADIROP because we know that
   1244 	 * no dirops are active.
   1245 	 *
   1246 	 */
   1247 	simple_lock(&fs->lfs_interlock);
   1248 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1249 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1250 		simple_unlock(&fs->lfs_interlock);
   1251 		vp = ITOV(ip);
   1252 
   1253 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1254 
   1255 		/*
   1256 		 * All writes to directories come from dirops; all
   1257 		 * writes to files' direct blocks go through the page
   1258 		 * cache, which we're not touching.  Reads to files
   1259 		 * and/or directories will not be affected by writing
   1260 		 * directory blocks inodes and file inodes.  So we don't
   1261 		 * really need to lock.  If we don't lock, though,
   1262 		 * make sure that we don't clear IN_MODIFIED
   1263 		 * unnecessarily.
   1264 		 */
   1265 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1266 			simple_lock(&fs->lfs_interlock);
   1267 			continue;
   1268 		}
   1269 		waslocked = VOP_ISLOCKED(vp);
   1270 		if (vp->v_type != VREG &&
   1271 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1272 			lfs_writefile(fs, sp, vp);
   1273 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1274 			    !(ip->i_flag & IN_ALLMOD)) {
   1275 				LFS_SET_UINO(ip, IN_MODIFIED);
   1276 			}
   1277 		}
   1278 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1279 		(void) lfs_writeinode(fs, sp, ip);
   1280 		if (waslocked == LK_EXCLOTHER)
   1281 			LFS_SET_UINO(ip, IN_MODIFIED);
   1282 		simple_lock(&fs->lfs_interlock);
   1283 	}
   1284 	simple_unlock(&fs->lfs_interlock);
   1285 	/* We've written all the dirops there are */
   1286 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1287 	lfs_finalize_fs_seguse(fs);
   1288 	(void) lfs_writeseg(fs, sp);
   1289 	lfs_segunlock(fs);
   1290 }
   1291 
   1292 /*
   1293  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1294  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1295  * has just run, this would be an error).  If we have to skip a vnode
   1296  * for any reason, just skip it; if we have to wait for the cleaner,
   1297  * abort.  The writer daemon will call us again later.
   1298  */
   1299 void
   1300 lfs_flush_pchain(struct lfs *fs)
   1301 {
   1302 	struct inode *ip, *nip;
   1303 	struct vnode *vp;
   1304 	extern int lfs_dostats;
   1305 	struct segment *sp;
   1306 	int error;
   1307 
   1308 	ASSERT_NO_SEGLOCK(fs);
   1309 
   1310 	if (fs->lfs_ronly)
   1311 		return;
   1312 
   1313 	simple_lock(&fs->lfs_interlock);
   1314 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1315 		simple_unlock(&fs->lfs_interlock);
   1316 		return;
   1317 	} else
   1318 		simple_unlock(&fs->lfs_interlock);
   1319 
   1320 	/* Get dirops out of the way */
   1321 	lfs_flush_dirops(fs);
   1322 
   1323 	if (lfs_dostats)
   1324 		++lfs_stats.flush_invoked;
   1325 
   1326 	/*
   1327 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1328 	 */
   1329 	lfs_imtime(fs);
   1330 	lfs_seglock(fs, 0);
   1331 	sp = fs->lfs_sp;
   1332 
   1333 	/*
   1334 	 * lfs_writevnodes, optimized to clear pageout requests.
   1335 	 * Only write non-dirop files that are in the pageout queue.
   1336 	 * We're very conservative about what we write; we want to be
   1337 	 * fast and async.
   1338 	 */
   1339 	simple_lock(&fs->lfs_interlock);
   1340     top:
   1341 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1342 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1343 		vp = ITOV(ip);
   1344 
   1345 		if (!(ip->i_flags & IN_PAGING))
   1346 			goto top;
   1347 
   1348 		if (vp->v_flag & (VXLOCK|VDIROP))
   1349 			continue;
   1350 		if (vp->v_type != VREG)
   1351 			continue;
   1352 		if (lfs_vref(vp))
   1353 			continue;
   1354 		simple_unlock(&fs->lfs_interlock);
   1355 
   1356 		if (VOP_ISLOCKED(vp)) {
   1357 			lfs_vunref(vp);
   1358 			simple_lock(&fs->lfs_interlock);
   1359 			continue;
   1360 		}
   1361 
   1362 		error = lfs_writefile(fs, sp, vp);
   1363 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1364 		    !(ip->i_flag & IN_ALLMOD)) {
   1365 			LFS_SET_UINO(ip, IN_MODIFIED);
   1366 		}
   1367 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1368 		(void) lfs_writeinode(fs, sp, ip);
   1369 
   1370 		lfs_vunref(vp);
   1371 
   1372 		if (error == EAGAIN) {
   1373 			lfs_writeseg(fs, sp);
   1374 			simple_lock(&fs->lfs_interlock);
   1375 			break;
   1376 		}
   1377 		simple_lock(&fs->lfs_interlock);
   1378 	}
   1379 	simple_unlock(&fs->lfs_interlock);
   1380 	(void) lfs_writeseg(fs, sp);
   1381 	lfs_segunlock(fs);
   1382 }
   1383 
   1384 /*
   1385  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1386  */
   1387 int
   1388 lfs_fcntl(void *v)
   1389 {
   1390 	struct vop_fcntl_args /* {
   1391 		struct vnode *a_vp;
   1392 		u_long a_command;
   1393 		caddr_t  a_data;
   1394 		int  a_fflag;
   1395 		kauth_cred_t a_cred;
   1396 		struct lwp *a_l;
   1397 	} */ *ap = v;
   1398 	struct timeval *tvp;
   1399 	BLOCK_INFO *blkiov;
   1400 	CLEANERINFO *cip;
   1401 	SEGUSE *sup;
   1402 	int blkcnt, error, oclean;
   1403 	size_t fh_size;
   1404 	struct lfs_fcntl_markv blkvp;
   1405 	struct lwp *l;
   1406 	fsid_t *fsidp;
   1407 	struct lfs *fs;
   1408 	struct buf *bp;
   1409 	fhandle_t *fhp;
   1410 	daddr_t off;
   1411 
   1412 	/* Only respect LFS fcntls on fs root or Ifile */
   1413 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1414 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1415 		return ufs_fcntl(v);
   1416 	}
   1417 
   1418 	/* Avoid locking a draining lock */
   1419 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1420 		return ESHUTDOWN;
   1421 	}
   1422 
   1423 	/* LFS control and monitoring fcntls are available only to root */
   1424 	l = ap->a_l;
   1425 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1426 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   1427 	    &l->l_acflag)) != 0)
   1428 		return (error);
   1429 
   1430 	fs = VTOI(ap->a_vp)->i_lfs;
   1431 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1432 
   1433 	error = 0;
   1434 	switch (ap->a_command) {
   1435 	    case LFCNSEGWAITALL:
   1436 	    case LFCNSEGWAITALL_COMPAT:
   1437 		fsidp = NULL;
   1438 		/* FALLSTHROUGH */
   1439 	    case LFCNSEGWAIT:
   1440 	    case LFCNSEGWAIT_COMPAT:
   1441 		tvp = (struct timeval *)ap->a_data;
   1442 		simple_lock(&fs->lfs_interlock);
   1443 		++fs->lfs_sleepers;
   1444 		simple_unlock(&fs->lfs_interlock);
   1445 
   1446 		error = lfs_segwait(fsidp, tvp);
   1447 
   1448 		simple_lock(&fs->lfs_interlock);
   1449 		if (--fs->lfs_sleepers == 0)
   1450 			wakeup(&fs->lfs_sleepers);
   1451 		simple_unlock(&fs->lfs_interlock);
   1452 		return error;
   1453 
   1454 	    case LFCNBMAPV:
   1455 	    case LFCNMARKV:
   1456 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1457 
   1458 		blkcnt = blkvp.blkcnt;
   1459 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1460 			return (EINVAL);
   1461 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1462 		if ((error = copyin(blkvp.blkiov, blkiov,
   1463 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1464 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1465 			return error;
   1466 		}
   1467 
   1468 		simple_lock(&fs->lfs_interlock);
   1469 		++fs->lfs_sleepers;
   1470 		simple_unlock(&fs->lfs_interlock);
   1471 		if (ap->a_command == LFCNBMAPV)
   1472 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1473 		else /* LFCNMARKV */
   1474 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1475 		if (error == 0)
   1476 			error = copyout(blkiov, blkvp.blkiov,
   1477 					blkcnt * sizeof(BLOCK_INFO));
   1478 		simple_lock(&fs->lfs_interlock);
   1479 		if (--fs->lfs_sleepers == 0)
   1480 			wakeup(&fs->lfs_sleepers);
   1481 		simple_unlock(&fs->lfs_interlock);
   1482 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1483 		return error;
   1484 
   1485 	    case LFCNRECLAIM:
   1486 		/*
   1487 		 * Flush dirops and write Ifile, allowing empty segments
   1488 		 * to be immediately reclaimed.
   1489 		 */
   1490 		lfs_writer_enter(fs, "pndirop");
   1491 		off = fs->lfs_offset;
   1492 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1493 		lfs_flush_dirops(fs);
   1494 		LFS_CLEANERINFO(cip, fs, bp);
   1495 		oclean = cip->clean;
   1496 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1497 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1498 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1499 		lfs_segunlock(fs);
   1500 		lfs_writer_leave(fs);
   1501 
   1502 #ifdef DEBUG
   1503 		LFS_CLEANERINFO(cip, fs, bp);
   1504 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1505 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1506 		      fs->lfs_offset - off, cip->clean - oclean,
   1507 		      fs->lfs_activesb));
   1508 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1509 #endif
   1510 
   1511 		return 0;
   1512 
   1513 #ifdef COMPAT_30
   1514 	    case LFCNIFILEFH_COMPAT:
   1515 		/* Return the filehandle of the Ifile */
   1516 		if ((error = kauth_authorize_generic(l->l_cred,
   1517 		    KAUTH_GENERIC_ISSUSER, &l->l_acflag)) != 0)
   1518 			return (error);
   1519 		fhp = (struct fhandle *)ap->a_data;
   1520 		fhp->fh_fsid = *fsidp;
   1521 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1522 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1523 #endif
   1524 
   1525 	    case LFCNIFILEFH_COMPAT2:
   1526 	    case LFCNIFILEFH:
   1527 		/* Return the filehandle of the Ifile */
   1528 		fhp = (struct fhandle *)ap->a_data;
   1529 		fhp->fh_fsid = *fsidp;
   1530 		fh_size = sizeof(struct lfs_fhandle) -
   1531 		    offsetof(fhandle_t, fh_fid);
   1532 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1533 
   1534 	    case LFCNREWIND:
   1535 		/* Move lfs_offset to the lowest-numbered segment */
   1536 		return lfs_rewind(fs, *(int *)ap->a_data);
   1537 
   1538 	    case LFCNINVAL:
   1539 		/* Mark a segment SEGUSE_INVAL */
   1540 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1541 		if (sup->su_nbytes > 0) {
   1542 			brelse(bp);
   1543 			lfs_unset_inval_all(fs);
   1544 			return EBUSY;
   1545 		}
   1546 		sup->su_flags |= SEGUSE_INVAL;
   1547 		VOP_BWRITE(bp);
   1548 		return 0;
   1549 
   1550 	    case LFCNRESIZE:
   1551 		/* Resize the filesystem */
   1552 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1553 
   1554 	    case LFCNWRAPSTOP:
   1555 	    case LFCNWRAPSTOP_COMPAT:
   1556 		/*
   1557 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1558 		 * the filesystem wraps around.  To support external agents
   1559 		 * (dump, fsck-based regression test) that need to look at
   1560 		 * a snapshot of the filesystem, without necessarily
   1561 		 * requiring that all fs activity stops.
   1562 		 */
   1563 		if (VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPBLOCK)
   1564 			return EALREADY;
   1565 
   1566 		simple_lock(&fs->lfs_interlock);
   1567 		VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPBLOCK;
   1568 		if (fs->lfs_nowrap == 0)
   1569 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1570 		++fs->lfs_nowrap;
   1571 		if (*(int *)ap->a_data == 1 ||
   1572 		    ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1573 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1574 			error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1575 				"segwrap", 0, &fs->lfs_interlock);
   1576 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1577 			if (error) {
   1578 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1579 			}
   1580 		}
   1581 		simple_unlock(&fs->lfs_interlock);
   1582 		return 0;
   1583 
   1584 	    case LFCNWRAPGO:
   1585 	    case LFCNWRAPGO_COMPAT:
   1586 		/*
   1587 		 * Having done its work, the agent wakes up the writer.
   1588 		 * If the argument is 1, it sleeps until a new segment
   1589 		 * is selected.
   1590 		 */
   1591 		simple_lock(&fs->lfs_interlock);
   1592 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1593 				   (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1594 				    *((int *)ap->a_data)));
   1595 		simple_unlock(&fs->lfs_interlock);
   1596 		return error;
   1597 
   1598 	    case LFCNWRAPPASS:
   1599 		if (!(VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPBLOCK))
   1600 			return EALREADY;
   1601 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1602 			return EALREADY;
   1603 		simple_lock(&fs->lfs_interlock);
   1604 		if (fs->lfs_nowrap == 0) {
   1605 			simple_unlock(&fs->lfs_interlock);
   1606 			return EBUSY;
   1607 		}
   1608 		fs->lfs_wrappass = 1;
   1609 		wakeup(&fs->lfs_wrappass);
   1610 		/* Wait for the log to wrap, if asked */
   1611 		if (*(int *)ap->a_data) {
   1612 			lfs_vref(ap->a_vp);
   1613 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1614 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1615 			error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1616 				"segwrap", 0, &fs->lfs_interlock);
   1617 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1618 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1619 			lfs_vunref(ap->a_vp);
   1620 		}
   1621 		simple_unlock(&fs->lfs_interlock);
   1622 		return error;
   1623 
   1624 	    case LFCNWRAPSTATUS:
   1625 		simple_lock(&fs->lfs_interlock);
   1626 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1627 		simple_unlock(&fs->lfs_interlock);
   1628 		return 0;
   1629 
   1630 	    default:
   1631 		return ufs_fcntl(v);
   1632 	}
   1633 	return 0;
   1634 }
   1635 
   1636 int
   1637 lfs_getpages(void *v)
   1638 {
   1639 	struct vop_getpages_args /* {
   1640 		struct vnode *a_vp;
   1641 		voff_t a_offset;
   1642 		struct vm_page **a_m;
   1643 		int *a_count;
   1644 		int a_centeridx;
   1645 		vm_prot_t a_access_type;
   1646 		int a_advice;
   1647 		int a_flags;
   1648 	} */ *ap = v;
   1649 
   1650 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1651 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1652 		return EPERM;
   1653 	}
   1654 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1655 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1656 	}
   1657 
   1658 	/*
   1659 	 * we're relying on the fact that genfs_getpages() always read in
   1660 	 * entire filesystem blocks.
   1661 	 */
   1662 	return genfs_getpages(v);
   1663 }
   1664 
   1665 /*
   1666  * Make sure that for all pages in every block in the given range,
   1667  * either all are dirty or all are clean.  If any of the pages
   1668  * we've seen so far are dirty, put the vnode on the paging chain,
   1669  * and mark it IN_PAGING.
   1670  *
   1671  * If checkfirst != 0, don't check all the pages but return at the
   1672  * first dirty page.
   1673  */
   1674 static int
   1675 check_dirty(struct lfs *fs, struct vnode *vp,
   1676 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1677 	    int flags, int checkfirst)
   1678 {
   1679 	int by_list;
   1680 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1681 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1682 	off_t soff = 0; /* XXX: gcc */
   1683 	voff_t off;
   1684 	int i;
   1685 	int nonexistent;
   1686 	int any_dirty;	/* number of dirty pages */
   1687 	int dirty;	/* number of dirty pages in a block */
   1688 	int tdirty;
   1689 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1690 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1691 
   1692 	ASSERT_MAYBE_SEGLOCK(fs);
   1693   top:
   1694 	by_list = (vp->v_uobj.uo_npages <=
   1695 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1696 		   UVM_PAGE_HASH_PENALTY);
   1697 	any_dirty = 0;
   1698 
   1699 	if (by_list) {
   1700 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1701 	} else {
   1702 		soff = startoffset;
   1703 	}
   1704 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1705 		if (by_list) {
   1706 			/*
   1707 			 * Find the first page in a block.  Skip
   1708 			 * blocks outside our area of interest or beyond
   1709 			 * the end of file.
   1710 			 */
   1711 			if (pages_per_block > 1) {
   1712 				while (curpg &&
   1713 				       ((curpg->offset & fs->lfs_bmask) ||
   1714 					curpg->offset >= vp->v_size ||
   1715 					curpg->offset >= endoffset))
   1716 					curpg = TAILQ_NEXT(curpg, listq);
   1717 			}
   1718 			if (curpg == NULL)
   1719 				break;
   1720 			soff = curpg->offset;
   1721 		}
   1722 
   1723 		/*
   1724 		 * Mark all pages in extended range busy; find out if any
   1725 		 * of them are dirty.
   1726 		 */
   1727 		nonexistent = dirty = 0;
   1728 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1729 			if (by_list && pages_per_block <= 1) {
   1730 				pgs[i] = pg = curpg;
   1731 			} else {
   1732 				off = soff + (i << PAGE_SHIFT);
   1733 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1734 				if (pg == NULL) {
   1735 					++nonexistent;
   1736 					continue;
   1737 				}
   1738 			}
   1739 			KASSERT(pg != NULL);
   1740 
   1741 			/*
   1742 			 * If we're holding the segment lock, we can deadlock
   1743 			 * against a process that has our page and is waiting
   1744 			 * for the cleaner, while the cleaner waits for the
   1745 			 * segment lock.  Just bail in that case.
   1746 			 */
   1747 			if ((pg->flags & PG_BUSY) &&
   1748 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1749 				if (by_list && i > 0)
   1750 					uvm_page_unbusy(pgs, i);
   1751 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1752 				return -1;
   1753 			}
   1754 
   1755 			while (pg->flags & PG_BUSY) {
   1756 				pg->flags |= PG_WANTED;
   1757 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1758 						    "lfsput", 0);
   1759 				simple_lock(&vp->v_interlock);
   1760 				if (by_list) {
   1761 					if (i > 0)
   1762 						uvm_page_unbusy(pgs, i);
   1763 					goto top;
   1764 				}
   1765 			}
   1766 			pg->flags |= PG_BUSY;
   1767 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1768 
   1769 			pmap_page_protect(pg, VM_PROT_NONE);
   1770 			tdirty = (pmap_clear_modify(pg) ||
   1771 				  (pg->flags & PG_CLEAN) == 0);
   1772 			dirty += tdirty;
   1773 		}
   1774 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1775 			if (by_list) {
   1776 				curpg = TAILQ_NEXT(curpg, listq);
   1777 			} else {
   1778 				soff += fs->lfs_bsize;
   1779 			}
   1780 			continue;
   1781 		}
   1782 
   1783 		any_dirty += dirty;
   1784 		KASSERT(nonexistent == 0);
   1785 
   1786 		/*
   1787 		 * If any are dirty make all dirty; unbusy them,
   1788 		 * but if we were asked to clean, wire them so that
   1789 		 * the pagedaemon doesn't bother us about them while
   1790 		 * they're on their way to disk.
   1791 		 */
   1792 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1793 			pg = pgs[i];
   1794 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1795 			if (dirty) {
   1796 				pg->flags &= ~PG_CLEAN;
   1797 				if (flags & PGO_FREE) {
   1798 					/*
   1799 					 * Wire the page so that
   1800 					 * pdaemon doesn't see it again.
   1801 					 */
   1802 					uvm_lock_pageq();
   1803 					uvm_pagewire(pg);
   1804 					uvm_unlock_pageq();
   1805 
   1806 					/* Suspended write flag */
   1807 					pg->flags |= PG_DELWRI;
   1808 				}
   1809 			}
   1810 			if (pg->flags & PG_WANTED)
   1811 				wakeup(pg);
   1812 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1813 			UVM_PAGE_OWN(pg, NULL);
   1814 		}
   1815 
   1816 		if (checkfirst && any_dirty)
   1817 			break;
   1818 
   1819 		if (by_list) {
   1820 			curpg = TAILQ_NEXT(curpg, listq);
   1821 		} else {
   1822 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1823 		}
   1824 	}
   1825 
   1826 	return any_dirty;
   1827 }
   1828 
   1829 /*
   1830  * lfs_putpages functions like genfs_putpages except that
   1831  *
   1832  * (1) It needs to bounds-check the incoming requests to ensure that
   1833  *     they are block-aligned; if they are not, expand the range and
   1834  *     do the right thing in case, e.g., the requested range is clean
   1835  *     but the expanded range is dirty.
   1836  *
   1837  * (2) It needs to explicitly send blocks to be written when it is done.
   1838  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1839  *     we simply take the seglock and let lfs_segunlock wait for us.
   1840  *     XXX Actually we can be called with the seglock held, if we have
   1841  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1842  *     XXX writing we panic in this case.
   1843  *
   1844  * Assumptions:
   1845  *
   1846  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1847  *     there is a danger that when we expand the page range and busy the
   1848  *     pages we will deadlock.
   1849  *
   1850  * (2) We are called with vp->v_interlock held; we must return with it
   1851  *     released.
   1852  *
   1853  * (3) We don't absolutely have to free pages right away, provided that
   1854  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1855  *     us a request with PGO_FREE, we take the pages out of the paging
   1856  *     queue and wake up the writer, which will handle freeing them for us.
   1857  *
   1858  *     We ensure that for any filesystem block, all pages for that
   1859  *     block are either resident or not, even if those pages are higher
   1860  *     than EOF; that means that we will be getting requests to free
   1861  *     "unused" pages above EOF all the time, and should ignore them.
   1862  *
   1863  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   1864  *     into has been set up for us by lfs_writefile.  If not, we will
   1865  *     have to handle allocating and/or freeing an finfo entry.
   1866  *
   1867  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1868  */
   1869 
   1870 int
   1871 lfs_putpages(void *v)
   1872 {
   1873 	int error;
   1874 	struct vop_putpages_args /* {
   1875 		struct vnode *a_vp;
   1876 		voff_t a_offlo;
   1877 		voff_t a_offhi;
   1878 		int a_flags;
   1879 	} */ *ap = v;
   1880 	struct vnode *vp;
   1881 	struct inode *ip;
   1882 	struct lfs *fs;
   1883 	struct segment *sp;
   1884 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1885 	off_t off, max_endoffset;
   1886 	int s;
   1887 	boolean_t seglocked, sync, pagedaemon;
   1888 	struct vm_page *pg;
   1889 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1890 
   1891 	vp = ap->a_vp;
   1892 	ip = VTOI(vp);
   1893 	fs = ip->i_lfs;
   1894 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1895 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1896 
   1897 	/* Putpages does nothing for metadata. */
   1898 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1899 		simple_unlock(&vp->v_interlock);
   1900 		return 0;
   1901 	}
   1902 
   1903 	/*
   1904 	 * If there are no pages, don't do anything.
   1905 	 */
   1906 	if (vp->v_uobj.uo_npages == 0) {
   1907 		s = splbio();
   1908 		if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
   1909 		    (vp->v_flag & VONWORKLST)) {
   1910 			vp->v_flag &= ~VONWORKLST;
   1911 			LIST_REMOVE(vp, v_synclist);
   1912 		}
   1913 		splx(s);
   1914 		simple_unlock(&vp->v_interlock);
   1915 
   1916 		/* Remove us from paging queue, if we were on it */
   1917 		simple_lock(&fs->lfs_interlock);
   1918 		if (ip->i_flags & IN_PAGING) {
   1919 			ip->i_flags &= ~IN_PAGING;
   1920 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1921 		}
   1922 		simple_unlock(&fs->lfs_interlock);
   1923 		return 0;
   1924 	}
   1925 
   1926 	blkeof = blkroundup(fs, ip->i_size);
   1927 
   1928 	/*
   1929 	 * Ignore requests to free pages past EOF but in the same block
   1930 	 * as EOF, unless the request is synchronous.  (If the request is
   1931 	 * sync, it comes from lfs_truncate.)
   1932 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1933 	 * XXXUBC bother us with them again.
   1934 	 */
   1935 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1936 		origoffset = ap->a_offlo;
   1937 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1938 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1939 			KASSERT(pg != NULL);
   1940 			while (pg->flags & PG_BUSY) {
   1941 				pg->flags |= PG_WANTED;
   1942 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1943 						    "lfsput2", 0);
   1944 				simple_lock(&vp->v_interlock);
   1945 			}
   1946 			uvm_lock_pageq();
   1947 			uvm_pageactivate(pg);
   1948 			uvm_unlock_pageq();
   1949 		}
   1950 		ap->a_offlo = blkeof;
   1951 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1952 			simple_unlock(&vp->v_interlock);
   1953 			return 0;
   1954 		}
   1955 	}
   1956 
   1957 	/*
   1958 	 * Extend page range to start and end at block boundaries.
   1959 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1960 	 */
   1961 	origoffset = ap->a_offlo;
   1962 	origendoffset = ap->a_offhi;
   1963 	startoffset = origoffset & ~(fs->lfs_bmask);
   1964 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1965 					       << fs->lfs_bshift;
   1966 
   1967 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1968 		endoffset = max_endoffset;
   1969 		origendoffset = endoffset;
   1970 	} else {
   1971 		origendoffset = round_page(ap->a_offhi);
   1972 		endoffset = round_page(blkroundup(fs, origendoffset));
   1973 	}
   1974 
   1975 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   1976 	if (startoffset == endoffset) {
   1977 		/* Nothing to do, why were we called? */
   1978 		simple_unlock(&vp->v_interlock);
   1979 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   1980 		      PRId64 "\n", startoffset));
   1981 		return 0;
   1982 	}
   1983 
   1984 	ap->a_offlo = startoffset;
   1985 	ap->a_offhi = endoffset;
   1986 
   1987 	if (!(ap->a_flags & PGO_CLEANIT))
   1988 		return genfs_putpages(v);
   1989 
   1990 	/*
   1991 	 * If there are more than one page per block, we don't want
   1992 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   1993 	 * to avoid deadlocks.
   1994 	 */
   1995 	ap->a_flags |= PGO_BUSYFAIL;
   1996 
   1997 	do {
   1998 		int r;
   1999 
   2000 		/* If no pages are dirty, we can just use genfs_putpages. */
   2001 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2002 				ap->a_flags, 1);
   2003 		if (r < 0) {
   2004 			simple_unlock(&vp->v_interlock);
   2005 			return EDEADLK;
   2006 		}
   2007 		if (r > 0)
   2008 			break;
   2009 
   2010 		/*
   2011 		 * Sometimes pages are dirtied between the time that
   2012 		 * we check and the time we try to clean them.
   2013 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2014 		 * so we can write them properly.
   2015 		 */
   2016 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2017 		r = genfs_putpages(v);
   2018 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2019 		if (r != EDEADLK)
   2020 			return r;
   2021 
   2022 		/* Start over. */
   2023 		preempt(1);
   2024 		simple_lock(&vp->v_interlock);
   2025 	} while(1);
   2026 
   2027 	/*
   2028 	 * Dirty and asked to clean.
   2029 	 *
   2030 	 * Pagedaemon can't actually write LFS pages; wake up
   2031 	 * the writer to take care of that.  The writer will
   2032 	 * notice the pager inode queue and act on that.
   2033 	 */
   2034 	if (pagedaemon) {
   2035 		simple_lock(&fs->lfs_interlock);
   2036 		if (!(ip->i_flags & IN_PAGING)) {
   2037 			ip->i_flags |= IN_PAGING;
   2038 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2039 		}
   2040 		simple_lock(&lfs_subsys_lock);
   2041 		wakeup(&lfs_writer_daemon);
   2042 		simple_unlock(&lfs_subsys_lock);
   2043 		simple_unlock(&fs->lfs_interlock);
   2044 		simple_unlock(&vp->v_interlock);
   2045 		preempt(1);
   2046 		return EWOULDBLOCK;
   2047 	}
   2048 
   2049 	/*
   2050 	 * If this is a file created in a recent dirop, we can't flush its
   2051 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2052 	 * filesystem (taking care of any other pending dirops while we're
   2053 	 * at it).
   2054 	 */
   2055 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2056 	    (vp->v_flag & VDIROP)) {
   2057 		int locked;
   2058 
   2059 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   2060 		locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   2061 		simple_unlock(&vp->v_interlock);
   2062 		lfs_writer_enter(fs, "ppdirop");
   2063 		if (locked)
   2064 			VOP_UNLOCK(vp, 0);
   2065 
   2066 		simple_lock(&fs->lfs_interlock);
   2067 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2068 		simple_unlock(&fs->lfs_interlock);
   2069 
   2070 		simple_lock(&vp->v_interlock);
   2071 		if (locked) {
   2072 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   2073 			simple_lock(&vp->v_interlock);
   2074 		}
   2075 		lfs_writer_leave(fs);
   2076 
   2077 		/* XXX the flush should have taken care of this one too! */
   2078 	}
   2079 
   2080 	/*
   2081 	 * This is it.	We are going to write some pages.  From here on
   2082 	 * down it's all just mechanics.
   2083 	 *
   2084 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2085 	 */
   2086 	ap->a_flags &= ~PGO_SYNCIO;
   2087 
   2088 	/*
   2089 	 * If we've already got the seglock, flush the node and return.
   2090 	 * The FIP has already been set up for us by lfs_writefile,
   2091 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2092 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2093 	 * what we have, and correct FIP and segment header accounting.
   2094 	 */
   2095     get_seglock:
   2096 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2097 	if (!seglocked) {
   2098 		simple_unlock(&vp->v_interlock);
   2099 		/*
   2100 		 * Take the seglock, because we are going to be writing pages.
   2101 		 */
   2102 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2103 		if (error != 0)
   2104 			return error;
   2105 		simple_lock(&vp->v_interlock);
   2106 	}
   2107 
   2108 	/*
   2109 	 * VOP_PUTPAGES should not be called while holding the seglock.
   2110 	 * XXXUBC fix lfs_markv, or do this properly.
   2111 	 */
   2112 #ifdef notyet
   2113 	KASSERT(fs->lfs_seglock == 1);
   2114 #endif /* notyet */
   2115 
   2116 	/*
   2117 	 * We assume we're being called with sp->fip pointing at blank space.
   2118 	 * Account for a new FIP in the segment header, and set sp->vp.
   2119 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2120 	 */
   2121 	sp = fs->lfs_sp;
   2122 	if (!seglocked)
   2123 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2124 	KASSERT(sp->vp == NULL);
   2125 	sp->vp = vp;
   2126 
   2127 	if (!seglocked) {
   2128 		if (vp->v_flag & VDIROP)
   2129 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2130 	}
   2131 
   2132 	/*
   2133 	 * Loop through genfs_putpages until all pages are gathered.
   2134 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2135 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2136 	 * well.
   2137 	 */
   2138 again:
   2139 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2140 	    ap->a_flags, 0) < 0) {
   2141 		simple_unlock(&vp->v_interlock);
   2142 		sp->vp = NULL;
   2143 		if (!seglocked) {
   2144 			lfs_release_finfo(fs);
   2145 			lfs_segunlock(fs);
   2146 		}
   2147 		if (pagedaemon)
   2148 			return EDEADLK;
   2149 		/* else seglocked == 0 */
   2150 		preempt(1);
   2151 		simple_lock(&vp->v_interlock);
   2152 		goto get_seglock;
   2153 	}
   2154 
   2155 	error = genfs_putpages(v);
   2156 	if (error == EDEADLK || error == EAGAIN) {
   2157 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2158 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2159 		      ip->i_number, fs->lfs_offset,
   2160 		      dtosn(fs, fs->lfs_offset)));
   2161 		/* If nothing to write, short-circuit */
   2162 		if (sp->cbpp - sp->bpp > 1) {
   2163 			/* Write gathered pages */
   2164 			lfs_updatemeta(sp);
   2165 			lfs_release_finfo(fs);
   2166 			(void) lfs_writeseg(fs, sp);
   2167 
   2168 			/*
   2169 			 * Reinitialize brand new FIP and add us to it.
   2170 			 */
   2171 			KASSERT(sp->vp == vp);
   2172 			lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2173 		}
   2174 
   2175 		/* Give the write a chance to complete */
   2176 		preempt(1);
   2177 
   2178 		/* We've lost the interlock.  Start over. */
   2179 		if (error == EDEADLK) {
   2180 			simple_lock(&vp->v_interlock);
   2181 			goto again;
   2182 		}
   2183 	}
   2184 
   2185 	KASSERT(sp->vp == vp);
   2186 	if (!seglocked) {
   2187 		sp->vp = NULL;
   2188 
   2189 		/* Write indirect blocks as well */
   2190 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2191 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2192 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2193 
   2194 		KASSERT(sp->vp == NULL);
   2195 		sp->vp = vp;
   2196 	}
   2197 
   2198 	/*
   2199 	 * Blocks are now gathered into a segment waiting to be written.
   2200 	 * All that's left to do is update metadata, and write them.
   2201 	 */
   2202 	lfs_updatemeta(sp);
   2203 	KASSERT(sp->vp == vp);
   2204 	sp->vp = NULL;
   2205 
   2206 	if (seglocked) {
   2207 		/* we're called by lfs_writefile. */
   2208 		return error;
   2209 	}
   2210 
   2211 	/* Clean up FIP and send it to disk. */
   2212 	lfs_release_finfo(fs);
   2213 	lfs_writeseg(fs, fs->lfs_sp);
   2214 
   2215 	/*
   2216 	 * Remove us from paging queue, since we've now written all our
   2217 	 * pages.
   2218 	 */
   2219 	simple_lock(&fs->lfs_interlock);
   2220 	if (ip->i_flags & IN_PAGING) {
   2221 		ip->i_flags &= ~IN_PAGING;
   2222 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2223 	}
   2224 	simple_unlock(&fs->lfs_interlock);
   2225 
   2226 	/*
   2227 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2228 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2229 	 * will not be true if we stop using malloc/copy.
   2230 	 */
   2231 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2232 	lfs_segunlock(fs);
   2233 
   2234 	/*
   2235 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2236 	 * take care of this, but there is a slight possibility that
   2237 	 * aiodoned might not have got around to our buffers yet.
   2238 	 */
   2239 	if (sync) {
   2240 		s = splbio();
   2241 		simple_lock(&global_v_numoutput_slock);
   2242 		while (vp->v_numoutput > 0) {
   2243 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2244 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2245 			vp->v_flag |= VBWAIT;
   2246 			ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
   2247 			    &global_v_numoutput_slock);
   2248 		}
   2249 		simple_unlock(&global_v_numoutput_slock);
   2250 		splx(s);
   2251 	}
   2252 	return error;
   2253 }
   2254 
   2255 /*
   2256  * Return the last logical file offset that should be written for this file
   2257  * if we're doing a write that ends at "size".	If writing, we need to know
   2258  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2259  * to know about entire blocks.
   2260  */
   2261 void
   2262 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2263 {
   2264 	struct inode *ip = VTOI(vp);
   2265 	struct lfs *fs = ip->i_lfs;
   2266 	daddr_t olbn, nlbn;
   2267 
   2268 	olbn = lblkno(fs, ip->i_size);
   2269 	nlbn = lblkno(fs, size);
   2270 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2271 		*eobp = fragroundup(fs, size);
   2272 	} else {
   2273 		*eobp = blkroundup(fs, size);
   2274 	}
   2275 }
   2276 
   2277 #ifdef DEBUG
   2278 void lfs_dump_vop(void *);
   2279 
   2280 void
   2281 lfs_dump_vop(void *v)
   2282 {
   2283 	struct vop_putpages_args /* {
   2284 		struct vnode *a_vp;
   2285 		voff_t a_offlo;
   2286 		voff_t a_offhi;
   2287 		int a_flags;
   2288 	} */ *ap = v;
   2289 
   2290 #ifdef DDB
   2291 	vfs_vnode_print(ap->a_vp, 0, printf);
   2292 #endif
   2293 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2294 }
   2295 #endif
   2296 
   2297 int
   2298 lfs_mmap(void *v)
   2299 {
   2300 	struct vop_mmap_args /* {
   2301 		const struct vnodeop_desc *a_desc;
   2302 		struct vnode *a_vp;
   2303 		int a_fflags;
   2304 		kauth_cred_t a_cred;
   2305 		struct lwp *a_l;
   2306 	} */ *ap = v;
   2307 
   2308 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2309 		return EOPNOTSUPP;
   2310 	return ufs_mmap(v);
   2311 }
   2312