lfs_vnops.c revision 1.197 1 /* $NetBSD: lfs_vnops.c,v 1.197 2007/01/19 14:49:12 hannken Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.197 2007/01/19 14:49:12 hannken Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111
112 /* Global vfs data structures for lfs. */
113 int (**lfs_vnodeop_p)(void *);
114 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
115 { &vop_default_desc, vn_default_error },
116 { &vop_lookup_desc, ufs_lookup }, /* lookup */
117 { &vop_create_desc, lfs_create }, /* create */
118 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
119 { &vop_mknod_desc, lfs_mknod }, /* mknod */
120 { &vop_open_desc, ufs_open }, /* open */
121 { &vop_close_desc, lfs_close }, /* close */
122 { &vop_access_desc, ufs_access }, /* access */
123 { &vop_getattr_desc, lfs_getattr }, /* getattr */
124 { &vop_setattr_desc, lfs_setattr }, /* setattr */
125 { &vop_read_desc, lfs_read }, /* read */
126 { &vop_write_desc, lfs_write }, /* write */
127 { &vop_lease_desc, ufs_lease_check }, /* lease */
128 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
129 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
130 { &vop_poll_desc, ufs_poll }, /* poll */
131 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
132 { &vop_revoke_desc, ufs_revoke }, /* revoke */
133 { &vop_mmap_desc, lfs_mmap }, /* mmap */
134 { &vop_fsync_desc, lfs_fsync }, /* fsync */
135 { &vop_seek_desc, ufs_seek }, /* seek */
136 { &vop_remove_desc, lfs_remove }, /* remove */
137 { &vop_link_desc, lfs_link }, /* link */
138 { &vop_rename_desc, lfs_rename }, /* rename */
139 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
140 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
141 { &vop_symlink_desc, lfs_symlink }, /* symlink */
142 { &vop_readdir_desc, ufs_readdir }, /* readdir */
143 { &vop_readlink_desc, ufs_readlink }, /* readlink */
144 { &vop_abortop_desc, ufs_abortop }, /* abortop */
145 { &vop_inactive_desc, lfs_inactive }, /* inactive */
146 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
147 { &vop_lock_desc, ufs_lock }, /* lock */
148 { &vop_unlock_desc, ufs_unlock }, /* unlock */
149 { &vop_bmap_desc, ufs_bmap }, /* bmap */
150 { &vop_strategy_desc, lfs_strategy }, /* strategy */
151 { &vop_print_desc, ufs_print }, /* print */
152 { &vop_islocked_desc, ufs_islocked }, /* islocked */
153 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
154 { &vop_advlock_desc, ufs_advlock }, /* advlock */
155 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
156 { &vop_getpages_desc, lfs_getpages }, /* getpages */
157 { &vop_putpages_desc, lfs_putpages }, /* putpages */
158 { NULL, NULL }
159 };
160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
161 { &lfs_vnodeop_p, lfs_vnodeop_entries };
162
163 int (**lfs_specop_p)(void *);
164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
165 { &vop_default_desc, vn_default_error },
166 { &vop_lookup_desc, spec_lookup }, /* lookup */
167 { &vop_create_desc, spec_create }, /* create */
168 { &vop_mknod_desc, spec_mknod }, /* mknod */
169 { &vop_open_desc, spec_open }, /* open */
170 { &vop_close_desc, lfsspec_close }, /* close */
171 { &vop_access_desc, ufs_access }, /* access */
172 { &vop_getattr_desc, lfs_getattr }, /* getattr */
173 { &vop_setattr_desc, lfs_setattr }, /* setattr */
174 { &vop_read_desc, ufsspec_read }, /* read */
175 { &vop_write_desc, ufsspec_write }, /* write */
176 { &vop_lease_desc, spec_lease_check }, /* lease */
177 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
178 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
179 { &vop_poll_desc, spec_poll }, /* poll */
180 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
181 { &vop_revoke_desc, spec_revoke }, /* revoke */
182 { &vop_mmap_desc, spec_mmap }, /* mmap */
183 { &vop_fsync_desc, spec_fsync }, /* fsync */
184 { &vop_seek_desc, spec_seek }, /* seek */
185 { &vop_remove_desc, spec_remove }, /* remove */
186 { &vop_link_desc, spec_link }, /* link */
187 { &vop_rename_desc, spec_rename }, /* rename */
188 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
189 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
190 { &vop_symlink_desc, spec_symlink }, /* symlink */
191 { &vop_readdir_desc, spec_readdir }, /* readdir */
192 { &vop_readlink_desc, spec_readlink }, /* readlink */
193 { &vop_abortop_desc, spec_abortop }, /* abortop */
194 { &vop_inactive_desc, lfs_inactive }, /* inactive */
195 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
196 { &vop_lock_desc, ufs_lock }, /* lock */
197 { &vop_unlock_desc, ufs_unlock }, /* unlock */
198 { &vop_bmap_desc, spec_bmap }, /* bmap */
199 { &vop_strategy_desc, spec_strategy }, /* strategy */
200 { &vop_print_desc, ufs_print }, /* print */
201 { &vop_islocked_desc, ufs_islocked }, /* islocked */
202 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
203 { &vop_advlock_desc, spec_advlock }, /* advlock */
204 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
205 { &vop_getpages_desc, spec_getpages }, /* getpages */
206 { &vop_putpages_desc, spec_putpages }, /* putpages */
207 { NULL, NULL }
208 };
209 const struct vnodeopv_desc lfs_specop_opv_desc =
210 { &lfs_specop_p, lfs_specop_entries };
211
212 int (**lfs_fifoop_p)(void *);
213 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
214 { &vop_default_desc, vn_default_error },
215 { &vop_lookup_desc, fifo_lookup }, /* lookup */
216 { &vop_create_desc, fifo_create }, /* create */
217 { &vop_mknod_desc, fifo_mknod }, /* mknod */
218 { &vop_open_desc, fifo_open }, /* open */
219 { &vop_close_desc, lfsfifo_close }, /* close */
220 { &vop_access_desc, ufs_access }, /* access */
221 { &vop_getattr_desc, lfs_getattr }, /* getattr */
222 { &vop_setattr_desc, lfs_setattr }, /* setattr */
223 { &vop_read_desc, ufsfifo_read }, /* read */
224 { &vop_write_desc, ufsfifo_write }, /* write */
225 { &vop_lease_desc, fifo_lease_check }, /* lease */
226 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
227 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
228 { &vop_poll_desc, fifo_poll }, /* poll */
229 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
230 { &vop_revoke_desc, fifo_revoke }, /* revoke */
231 { &vop_mmap_desc, fifo_mmap }, /* mmap */
232 { &vop_fsync_desc, fifo_fsync }, /* fsync */
233 { &vop_seek_desc, fifo_seek }, /* seek */
234 { &vop_remove_desc, fifo_remove }, /* remove */
235 { &vop_link_desc, fifo_link }, /* link */
236 { &vop_rename_desc, fifo_rename }, /* rename */
237 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
238 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
239 { &vop_symlink_desc, fifo_symlink }, /* symlink */
240 { &vop_readdir_desc, fifo_readdir }, /* readdir */
241 { &vop_readlink_desc, fifo_readlink }, /* readlink */
242 { &vop_abortop_desc, fifo_abortop }, /* abortop */
243 { &vop_inactive_desc, lfs_inactive }, /* inactive */
244 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
245 { &vop_lock_desc, ufs_lock }, /* lock */
246 { &vop_unlock_desc, ufs_unlock }, /* unlock */
247 { &vop_bmap_desc, fifo_bmap }, /* bmap */
248 { &vop_strategy_desc, fifo_strategy }, /* strategy */
249 { &vop_print_desc, ufs_print }, /* print */
250 { &vop_islocked_desc, ufs_islocked }, /* islocked */
251 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
252 { &vop_advlock_desc, fifo_advlock }, /* advlock */
253 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
254 { &vop_putpages_desc, fifo_putpages }, /* putpages */
255 { NULL, NULL }
256 };
257 const struct vnodeopv_desc lfs_fifoop_opv_desc =
258 { &lfs_fifoop_p, lfs_fifoop_entries };
259
260 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
261
262 #define LFS_READWRITE
263 #include <ufs/ufs/ufs_readwrite.c>
264 #undef LFS_READWRITE
265
266 /*
267 * Synch an open file.
268 */
269 /* ARGSUSED */
270 int
271 lfs_fsync(void *v)
272 {
273 struct vop_fsync_args /* {
274 struct vnode *a_vp;
275 kauth_cred_t a_cred;
276 int a_flags;
277 off_t offlo;
278 off_t offhi;
279 struct lwp *a_l;
280 } */ *ap = v;
281 struct vnode *vp = ap->a_vp;
282 int error, wait;
283
284 /* If we're mounted read-only, don't try to sync. */
285 if (VTOI(vp)->i_lfs->lfs_ronly)
286 return 0;
287
288 /*
289 * Trickle sync checks for need to do a checkpoint after possible
290 * activity from the pagedaemon.
291 */
292 if (ap->a_flags & FSYNC_LAZY) {
293 simple_lock(&lfs_subsys_lock);
294 wakeup(&lfs_writer_daemon);
295 simple_unlock(&lfs_subsys_lock);
296 return 0;
297 }
298
299 /*
300 * If a vnode is bring cleaned, flush it out before we try to
301 * reuse it. This prevents the cleaner from writing files twice
302 * in the same partial segment, causing an accounting underflow.
303 */
304 if (ap->a_flags & FSYNC_RECLAIM && VTOI(vp)->i_flags & IN_CLEANING) {
305 /* printf("avoiding VONWORKLIST panic\n"); */
306 lfs_vflush(vp);
307 }
308
309 wait = (ap->a_flags & FSYNC_WAIT);
310 simple_lock(&vp->v_interlock);
311 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
312 round_page(ap->a_offhi),
313 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
314 if (error)
315 return error;
316 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
317 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
318 int l = 0;
319 error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
320 ap->a_l->l_cred, ap->a_l);
321 }
322 if (wait && !VPISEMPTY(vp))
323 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
324
325 return error;
326 }
327
328 /*
329 * Take IN_ADIROP off, then call ufs_inactive.
330 */
331 int
332 lfs_inactive(void *v)
333 {
334 struct vop_inactive_args /* {
335 struct vnode *a_vp;
336 struct lwp *a_l;
337 } */ *ap = v;
338
339 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
340
341 lfs_unmark_vnode(ap->a_vp);
342
343 /*
344 * The Ifile is only ever inactivated on unmount.
345 * Streamline this process by not giving it more dirty blocks.
346 */
347 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
348 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
349 VOP_UNLOCK(ap->a_vp, 0);
350 return 0;
351 }
352
353 return ufs_inactive(v);
354 }
355
356 /*
357 * These macros are used to bracket UFS directory ops, so that we can
358 * identify all the pages touched during directory ops which need to
359 * be ordered and flushed atomically, so that they may be recovered.
360 *
361 * Because we have to mark nodes VDIROP in order to prevent
362 * the cache from reclaiming them while a dirop is in progress, we must
363 * also manage the number of nodes so marked (otherwise we can run out).
364 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
365 * is decremented during segment write, when VDIROP is taken off.
366 */
367 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
368 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
369 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
370 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
371 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
372 static int lfs_set_dirop(struct vnode *, struct vnode *);
373
374 static int
375 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
376 {
377 struct lfs *fs;
378 int error;
379
380 KASSERT(VOP_ISLOCKED(dvp));
381 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
382
383 fs = VTOI(dvp)->i_lfs;
384
385 ASSERT_NO_SEGLOCK(fs);
386 /*
387 * LFS_NRESERVE calculates direct and indirect blocks as well
388 * as an inode block; an overestimate in most cases.
389 */
390 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
391 return (error);
392
393 restart:
394 simple_lock(&fs->lfs_interlock);
395 if (fs->lfs_dirops == 0) {
396 simple_unlock(&fs->lfs_interlock);
397 lfs_check(dvp, LFS_UNUSED_LBN, 0);
398 simple_lock(&fs->lfs_interlock);
399 }
400 while (fs->lfs_writer) {
401 error = ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
402 "lfs_sdirop", 0, &fs->lfs_interlock);
403 if (error == EINTR) {
404 simple_unlock(&fs->lfs_interlock);
405 goto unreserve;
406 }
407 }
408 simple_lock(&lfs_subsys_lock);
409 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
410 wakeup(&lfs_writer_daemon);
411 simple_unlock(&lfs_subsys_lock);
412 simple_unlock(&fs->lfs_interlock);
413 preempt(1);
414 goto restart;
415 }
416
417 if (lfs_dirvcount > LFS_MAX_DIROP) {
418 simple_unlock(&fs->lfs_interlock);
419 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
420 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
421 if ((error = ltsleep(&lfs_dirvcount,
422 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
423 &lfs_subsys_lock)) != 0) {
424 goto unreserve;
425 }
426 goto restart;
427 }
428 simple_unlock(&lfs_subsys_lock);
429
430 ++fs->lfs_dirops;
431 fs->lfs_doifile = 1;
432 simple_unlock(&fs->lfs_interlock);
433
434 /* Hold a reference so SET_ENDOP will be happy */
435 vref(dvp);
436 if (vp) {
437 vref(vp);
438 MARK_VNODE(vp);
439 }
440
441 MARK_VNODE(dvp);
442 return 0;
443
444 unreserve:
445 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
446 return error;
447 }
448
449 /*
450 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
451 * in getnewvnode(), if we have a stacked filesystem mounted on top
452 * of us.
453 *
454 * NB: this means we have to clear the new vnodes on error. Fortunately
455 * SET_ENDOP is there to do that for us.
456 */
457 static int
458 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
459 {
460 int error;
461 struct lfs *fs;
462
463 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
464 ASSERT_NO_SEGLOCK(fs);
465 if (fs->lfs_ronly)
466 return EROFS;
467 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
468 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
469 dvp, error));
470 return error;
471 }
472 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
473 if (vpp) {
474 ungetnewvnode(*vpp);
475 *vpp = NULL;
476 }
477 return error;
478 }
479 return 0;
480 }
481
482 #define SET_ENDOP_BASE(fs, dvp, str) \
483 do { \
484 simple_lock(&(fs)->lfs_interlock); \
485 --(fs)->lfs_dirops; \
486 if (!(fs)->lfs_dirops) { \
487 if ((fs)->lfs_nadirop) { \
488 panic("SET_ENDOP: %s: no dirops but " \
489 " nadirop=%d", (str), \
490 (fs)->lfs_nadirop); \
491 } \
492 wakeup(&(fs)->lfs_writer); \
493 simple_unlock(&(fs)->lfs_interlock); \
494 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
495 } else \
496 simple_unlock(&(fs)->lfs_interlock); \
497 } while(0)
498 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
499 do { \
500 UNMARK_VNODE(dvp); \
501 if (nvpp && *nvpp) \
502 UNMARK_VNODE(*nvpp); \
503 /* Check for error return to stem vnode leakage */ \
504 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
505 ungetnewvnode(*(nvpp)); \
506 SET_ENDOP_BASE((fs), (dvp), (str)); \
507 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
508 vrele(dvp); \
509 } while(0)
510 #define SET_ENDOP_CREATE_AP(ap, str) \
511 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
512 (ap)->a_vpp, (str))
513 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
514 do { \
515 UNMARK_VNODE(dvp); \
516 if (ovp) \
517 UNMARK_VNODE(ovp); \
518 SET_ENDOP_BASE((fs), (dvp), (str)); \
519 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
520 vrele(dvp); \
521 if (ovp) \
522 vrele(ovp); \
523 } while(0)
524
525 void
526 lfs_mark_vnode(struct vnode *vp)
527 {
528 struct inode *ip = VTOI(vp);
529 struct lfs *fs = ip->i_lfs;
530
531 simple_lock(&fs->lfs_interlock);
532 if (!(ip->i_flag & IN_ADIROP)) {
533 if (!(vp->v_flag & VDIROP)) {
534 (void)lfs_vref(vp);
535 simple_lock(&lfs_subsys_lock);
536 ++lfs_dirvcount;
537 ++fs->lfs_dirvcount;
538 simple_unlock(&lfs_subsys_lock);
539 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
540 vp->v_flag |= VDIROP;
541 }
542 ++fs->lfs_nadirop;
543 ip->i_flag |= IN_ADIROP;
544 } else
545 KASSERT(vp->v_flag & VDIROP);
546 simple_unlock(&fs->lfs_interlock);
547 }
548
549 void
550 lfs_unmark_vnode(struct vnode *vp)
551 {
552 struct inode *ip = VTOI(vp);
553
554 if (ip && (ip->i_flag & IN_ADIROP)) {
555 KASSERT(vp->v_flag & VDIROP);
556 simple_lock(&ip->i_lfs->lfs_interlock);
557 --ip->i_lfs->lfs_nadirop;
558 simple_unlock(&ip->i_lfs->lfs_interlock);
559 ip->i_flag &= ~IN_ADIROP;
560 }
561 }
562
563 int
564 lfs_symlink(void *v)
565 {
566 struct vop_symlink_args /* {
567 struct vnode *a_dvp;
568 struct vnode **a_vpp;
569 struct componentname *a_cnp;
570 struct vattr *a_vap;
571 char *a_target;
572 } */ *ap = v;
573 int error;
574
575 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
576 vput(ap->a_dvp);
577 return error;
578 }
579 error = ufs_symlink(ap);
580 SET_ENDOP_CREATE_AP(ap, "symlink");
581 return (error);
582 }
583
584 int
585 lfs_mknod(void *v)
586 {
587 struct vop_mknod_args /* {
588 struct vnode *a_dvp;
589 struct vnode **a_vpp;
590 struct componentname *a_cnp;
591 struct vattr *a_vap;
592 } */ *ap = v;
593 struct vattr *vap = ap->a_vap;
594 struct vnode **vpp = ap->a_vpp;
595 struct inode *ip;
596 int error;
597 struct mount *mp;
598 ino_t ino;
599
600 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
601 vput(ap->a_dvp);
602 return error;
603 }
604 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
605 ap->a_dvp, vpp, ap->a_cnp);
606
607 /* Either way we're done with the dirop at this point */
608 SET_ENDOP_CREATE_AP(ap, "mknod");
609
610 if (error)
611 return (error);
612
613 ip = VTOI(*vpp);
614 mp = (*vpp)->v_mount;
615 ino = ip->i_number;
616 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
617 if (vap->va_rdev != VNOVAL) {
618 /*
619 * Want to be able to use this to make badblock
620 * inodes, so don't truncate the dev number.
621 */
622 #if 0
623 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
624 UFS_MPNEEDSWAP((*vpp)->v_mount));
625 #else
626 ip->i_ffs1_rdev = vap->va_rdev;
627 #endif
628 }
629
630 /*
631 * Call fsync to write the vnode so that we don't have to deal with
632 * flushing it when it's marked VDIROP|VXLOCK.
633 *
634 * XXX KS - If we can't flush we also can't call vgone(), so must
635 * return. But, that leaves this vnode in limbo, also not good.
636 * Can this ever happen (barring hardware failure)?
637 */
638 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
639 curlwp)) != 0) {
640 panic("lfs_mknod: couldn't fsync (ino %llu)",
641 (unsigned long long)ino);
642 /* return (error); */
643 }
644 /*
645 * Remove vnode so that it will be reloaded by VFS_VGET and
646 * checked to see if it is an alias of an existing entry in
647 * the inode cache.
648 */
649 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
650
651 VOP_UNLOCK(*vpp, 0);
652 lfs_vunref(*vpp);
653 (*vpp)->v_type = VNON;
654 vgone(*vpp);
655 error = VFS_VGET(mp, ino, vpp);
656
657 if (error != 0) {
658 *vpp = NULL;
659 return (error);
660 }
661 return (0);
662 }
663
664 int
665 lfs_create(void *v)
666 {
667 struct vop_create_args /* {
668 struct vnode *a_dvp;
669 struct vnode **a_vpp;
670 struct componentname *a_cnp;
671 struct vattr *a_vap;
672 } */ *ap = v;
673 int error;
674
675 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
676 vput(ap->a_dvp);
677 return error;
678 }
679 error = ufs_create(ap);
680 SET_ENDOP_CREATE_AP(ap, "create");
681 return (error);
682 }
683
684 int
685 lfs_mkdir(void *v)
686 {
687 struct vop_mkdir_args /* {
688 struct vnode *a_dvp;
689 struct vnode **a_vpp;
690 struct componentname *a_cnp;
691 struct vattr *a_vap;
692 } */ *ap = v;
693 int error;
694
695 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
696 vput(ap->a_dvp);
697 return error;
698 }
699 error = ufs_mkdir(ap);
700 SET_ENDOP_CREATE_AP(ap, "mkdir");
701 return (error);
702 }
703
704 int
705 lfs_remove(void *v)
706 {
707 struct vop_remove_args /* {
708 struct vnode *a_dvp;
709 struct vnode *a_vp;
710 struct componentname *a_cnp;
711 } */ *ap = v;
712 struct vnode *dvp, *vp;
713 struct inode *ip;
714 int error;
715
716 dvp = ap->a_dvp;
717 vp = ap->a_vp;
718 ip = VTOI(vp);
719 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
720 if (dvp == vp)
721 vrele(vp);
722 else
723 vput(vp);
724 vput(dvp);
725 return error;
726 }
727 error = ufs_remove(ap);
728 if (ip->i_nlink == 0)
729 lfs_orphan(ip->i_lfs, ip->i_number);
730 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
731 return (error);
732 }
733
734 int
735 lfs_rmdir(void *v)
736 {
737 struct vop_rmdir_args /* {
738 struct vnodeop_desc *a_desc;
739 struct vnode *a_dvp;
740 struct vnode *a_vp;
741 struct componentname *a_cnp;
742 } */ *ap = v;
743 struct vnode *vp;
744 struct inode *ip;
745 int error;
746
747 vp = ap->a_vp;
748 ip = VTOI(vp);
749 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
750 if (ap->a_dvp == vp)
751 vrele(ap->a_dvp);
752 else
753 vput(ap->a_dvp);
754 vput(vp);
755 return error;
756 }
757 error = ufs_rmdir(ap);
758 if (ip->i_nlink == 0)
759 lfs_orphan(ip->i_lfs, ip->i_number);
760 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
761 return (error);
762 }
763
764 int
765 lfs_link(void *v)
766 {
767 struct vop_link_args /* {
768 struct vnode *a_dvp;
769 struct vnode *a_vp;
770 struct componentname *a_cnp;
771 } */ *ap = v;
772 int error;
773 struct vnode **vpp = NULL;
774
775 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
776 vput(ap->a_dvp);
777 return error;
778 }
779 error = ufs_link(ap);
780 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
781 return (error);
782 }
783
784 int
785 lfs_rename(void *v)
786 {
787 struct vop_rename_args /* {
788 struct vnode *a_fdvp;
789 struct vnode *a_fvp;
790 struct componentname *a_fcnp;
791 struct vnode *a_tdvp;
792 struct vnode *a_tvp;
793 struct componentname *a_tcnp;
794 } */ *ap = v;
795 struct vnode *tvp, *fvp, *tdvp, *fdvp;
796 struct componentname *tcnp, *fcnp;
797 int error;
798 struct lfs *fs;
799
800 fs = VTOI(ap->a_fdvp)->i_lfs;
801 tvp = ap->a_tvp;
802 tdvp = ap->a_tdvp;
803 tcnp = ap->a_tcnp;
804 fvp = ap->a_fvp;
805 fdvp = ap->a_fdvp;
806 fcnp = ap->a_fcnp;
807
808 /*
809 * Check for cross-device rename.
810 * If it is, we don't want to set dirops, just error out.
811 * (In particular note that MARK_VNODE(tdvp) will DTWT on
812 * a cross-device rename.)
813 *
814 * Copied from ufs_rename.
815 */
816 if ((fvp->v_mount != tdvp->v_mount) ||
817 (tvp && (fvp->v_mount != tvp->v_mount))) {
818 error = EXDEV;
819 goto errout;
820 }
821
822 /*
823 * Check to make sure we're not renaming a vnode onto itself
824 * (deleting a hard link by renaming one name onto another);
825 * if we are we can't recursively call VOP_REMOVE since that
826 * would leave us with an unaccounted-for number of live dirops.
827 *
828 * Inline the relevant section of ufs_rename here, *before*
829 * calling SET_DIROP_REMOVE.
830 */
831 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
832 (VTOI(tdvp)->i_flags & APPEND))) {
833 error = EPERM;
834 goto errout;
835 }
836 if (fvp == tvp) {
837 if (fvp->v_type == VDIR) {
838 error = EINVAL;
839 goto errout;
840 }
841
842 /* Release destination completely. */
843 VOP_ABORTOP(tdvp, tcnp);
844 vput(tdvp);
845 vput(tvp);
846
847 /* Delete source. */
848 vrele(fvp);
849 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
850 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
851 fcnp->cn_nameiop = DELETE;
852 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
853 if ((error = relookup(fdvp, &fvp, fcnp))) {
854 vput(fdvp);
855 return (error);
856 }
857 return (VOP_REMOVE(fdvp, fvp, fcnp));
858 }
859
860 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
861 goto errout;
862 MARK_VNODE(fdvp);
863 MARK_VNODE(fvp);
864
865 error = ufs_rename(ap);
866 UNMARK_VNODE(fdvp);
867 UNMARK_VNODE(fvp);
868 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
869 return (error);
870
871 errout:
872 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
873 if (tdvp == tvp)
874 vrele(tdvp);
875 else
876 vput(tdvp);
877 if (tvp)
878 vput(tvp);
879 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
880 vrele(fdvp);
881 vrele(fvp);
882 return (error);
883 }
884
885 /* XXX hack to avoid calling ITIMES in getattr */
886 int
887 lfs_getattr(void *v)
888 {
889 struct vop_getattr_args /* {
890 struct vnode *a_vp;
891 struct vattr *a_vap;
892 kauth_cred_t a_cred;
893 struct lwp *a_l;
894 } */ *ap = v;
895 struct vnode *vp = ap->a_vp;
896 struct inode *ip = VTOI(vp);
897 struct vattr *vap = ap->a_vap;
898 struct lfs *fs = ip->i_lfs;
899 /*
900 * Copy from inode table
901 */
902 vap->va_fsid = ip->i_dev;
903 vap->va_fileid = ip->i_number;
904 vap->va_mode = ip->i_mode & ~IFMT;
905 vap->va_nlink = ip->i_nlink;
906 vap->va_uid = ip->i_uid;
907 vap->va_gid = ip->i_gid;
908 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
909 vap->va_size = vp->v_size;
910 vap->va_atime.tv_sec = ip->i_ffs1_atime;
911 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
912 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
913 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
914 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
915 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
916 vap->va_flags = ip->i_flags;
917 vap->va_gen = ip->i_gen;
918 /* this doesn't belong here */
919 if (vp->v_type == VBLK)
920 vap->va_blocksize = BLKDEV_IOSIZE;
921 else if (vp->v_type == VCHR)
922 vap->va_blocksize = MAXBSIZE;
923 else
924 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
925 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
926 vap->va_type = vp->v_type;
927 vap->va_filerev = ip->i_modrev;
928 return (0);
929 }
930
931 /*
932 * Check to make sure the inode blocks won't choke the buffer
933 * cache, then call ufs_setattr as usual.
934 */
935 int
936 lfs_setattr(void *v)
937 {
938 struct vop_setattr_args /* {
939 struct vnode *a_vp;
940 struct vattr *a_vap;
941 kauth_cred_t a_cred;
942 struct lwp *a_l;
943 } */ *ap = v;
944 struct vnode *vp = ap->a_vp;
945
946 lfs_check(vp, LFS_UNUSED_LBN, 0);
947 return ufs_setattr(v);
948 }
949
950 /*
951 * Release the block we hold on lfs_newseg wrapping. Called on file close,
952 * or explicitly from LFCNWRAPGO. Called with the interlock held.
953 */
954 static int
955 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
956 {
957 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
958 return EBUSY;
959
960 lockmgr(&fs->lfs_stoplock, LK_RELEASE, &fs->lfs_interlock);
961
962 KASSERT(fs->lfs_nowrap > 0);
963 if (fs->lfs_nowrap <= 0) {
964 return 0;
965 }
966
967 if (--fs->lfs_nowrap == 0) {
968 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
969 wakeup(&fs->lfs_wrappass);
970 lfs_wakeup_cleaner(fs);
971 }
972 if (waitfor) {
973 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
974 "segment", 0, &fs->lfs_interlock);
975 }
976
977 return 0;
978 }
979
980 /*
981 * Close called
982 */
983 /* ARGSUSED */
984 int
985 lfs_close(void *v)
986 {
987 struct vop_close_args /* {
988 struct vnode *a_vp;
989 int a_fflag;
990 kauth_cred_t a_cred;
991 struct lwp *a_l;
992 } */ *ap = v;
993 struct vnode *vp = ap->a_vp;
994 struct inode *ip = VTOI(vp);
995 struct lfs *fs = ip->i_lfs;
996
997 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
998 lockstatus(&fs->lfs_stoplock) == LK_EXCLUSIVE) {
999 simple_lock(&fs->lfs_interlock);
1000 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1001 lfs_wrapgo(fs, ip, 0);
1002 simple_unlock(&fs->lfs_interlock);
1003 }
1004
1005 if (vp == ip->i_lfs->lfs_ivnode &&
1006 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1007 return 0;
1008
1009 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1010 LFS_ITIMES(ip, NULL, NULL, NULL);
1011 }
1012 return (0);
1013 }
1014
1015 /*
1016 * Close wrapper for special devices.
1017 *
1018 * Update the times on the inode then do device close.
1019 */
1020 int
1021 lfsspec_close(void *v)
1022 {
1023 struct vop_close_args /* {
1024 struct vnode *a_vp;
1025 int a_fflag;
1026 kauth_cred_t a_cred;
1027 struct lwp *a_l;
1028 } */ *ap = v;
1029 struct vnode *vp;
1030 struct inode *ip;
1031
1032 vp = ap->a_vp;
1033 ip = VTOI(vp);
1034 if (vp->v_usecount > 1) {
1035 LFS_ITIMES(ip, NULL, NULL, NULL);
1036 }
1037 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1038 }
1039
1040 /*
1041 * Close wrapper for fifo's.
1042 *
1043 * Update the times on the inode then do device close.
1044 */
1045 int
1046 lfsfifo_close(void *v)
1047 {
1048 struct vop_close_args /* {
1049 struct vnode *a_vp;
1050 int a_fflag;
1051 kauth_cred_ a_cred;
1052 struct lwp *a_l;
1053 } */ *ap = v;
1054 struct vnode *vp;
1055 struct inode *ip;
1056
1057 vp = ap->a_vp;
1058 ip = VTOI(vp);
1059 if (ap->a_vp->v_usecount > 1) {
1060 LFS_ITIMES(ip, NULL, NULL, NULL);
1061 }
1062 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1063 }
1064
1065 /*
1066 * Reclaim an inode so that it can be used for other purposes.
1067 */
1068
1069 int
1070 lfs_reclaim(void *v)
1071 {
1072 struct vop_reclaim_args /* {
1073 struct vnode *a_vp;
1074 struct lwp *a_l;
1075 } */ *ap = v;
1076 struct vnode *vp = ap->a_vp;
1077 struct inode *ip = VTOI(vp);
1078 int error;
1079
1080 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1081
1082 LFS_CLR_UINO(ip, IN_ALLMOD);
1083 if ((error = ufs_reclaim(vp, ap->a_l)))
1084 return (error);
1085 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1086 lfs_deregister_all(vp);
1087 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1088 ip->inode_ext.lfs = NULL;
1089 pool_put(&lfs_inode_pool, vp->v_data);
1090 vp->v_data = NULL;
1091 return (0);
1092 }
1093
1094 /*
1095 * Read a block from a storage device.
1096 * In order to avoid reading blocks that are in the process of being
1097 * written by the cleaner---and hence are not mutexed by the normal
1098 * buffer cache / page cache mechanisms---check for collisions before
1099 * reading.
1100 *
1101 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1102 * the active cleaner test.
1103 *
1104 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1105 */
1106 int
1107 lfs_strategy(void *v)
1108 {
1109 struct vop_strategy_args /* {
1110 struct vnode *a_vp;
1111 struct buf *a_bp;
1112 } */ *ap = v;
1113 struct buf *bp;
1114 struct lfs *fs;
1115 struct vnode *vp;
1116 struct inode *ip;
1117 daddr_t tbn;
1118 int i, sn, error, slept;
1119
1120 bp = ap->a_bp;
1121 vp = ap->a_vp;
1122 ip = VTOI(vp);
1123 fs = ip->i_lfs;
1124
1125 /* lfs uses its strategy routine only for read */
1126 KASSERT(bp->b_flags & B_READ);
1127
1128 if (vp->v_type == VBLK || vp->v_type == VCHR)
1129 panic("lfs_strategy: spec");
1130 KASSERT(bp->b_bcount != 0);
1131 if (bp->b_blkno == bp->b_lblkno) {
1132 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1133 NULL);
1134 if (error) {
1135 bp->b_error = error;
1136 bp->b_flags |= B_ERROR;
1137 biodone(bp);
1138 return (error);
1139 }
1140 if ((long)bp->b_blkno == -1) /* no valid data */
1141 clrbuf(bp);
1142 }
1143 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1144 biodone(bp);
1145 return (0);
1146 }
1147
1148 slept = 1;
1149 simple_lock(&fs->lfs_interlock);
1150 while (slept && fs->lfs_seglock) {
1151 simple_unlock(&fs->lfs_interlock);
1152 /*
1153 * Look through list of intervals.
1154 * There will only be intervals to look through
1155 * if the cleaner holds the seglock.
1156 * Since the cleaner is synchronous, we can trust
1157 * the list of intervals to be current.
1158 */
1159 tbn = dbtofsb(fs, bp->b_blkno);
1160 sn = dtosn(fs, tbn);
1161 slept = 0;
1162 for (i = 0; i < fs->lfs_cleanind; i++) {
1163 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1164 tbn >= fs->lfs_cleanint[i]) {
1165 DLOG((DLOG_CLEAN,
1166 "lfs_strategy: ino %d lbn %" PRId64
1167 " ind %d sn %d fsb %" PRIx32
1168 " given sn %d fsb %" PRIx64 "\n",
1169 ip->i_number, bp->b_lblkno, i,
1170 dtosn(fs, fs->lfs_cleanint[i]),
1171 fs->lfs_cleanint[i], sn, tbn));
1172 DLOG((DLOG_CLEAN,
1173 "lfs_strategy: sleeping on ino %d lbn %"
1174 PRId64 "\n", ip->i_number, bp->b_lblkno));
1175 simple_lock(&fs->lfs_interlock);
1176 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1177 /* Cleaner can't wait for itself */
1178 ltsleep(&fs->lfs_iocount,
1179 (PRIBIO + 1) | PNORELOCK,
1180 "clean2", 0,
1181 &fs->lfs_interlock);
1182 slept = 1;
1183 break;
1184 } else if (fs->lfs_seglock) {
1185 ltsleep(&fs->lfs_seglock,
1186 (PRIBIO + 1) | PNORELOCK,
1187 "clean1", 0,
1188 &fs->lfs_interlock);
1189 slept = 1;
1190 break;
1191 }
1192 simple_unlock(&fs->lfs_interlock);
1193 }
1194 }
1195 simple_lock(&fs->lfs_interlock);
1196 }
1197 simple_unlock(&fs->lfs_interlock);
1198
1199 vp = ip->i_devvp;
1200 VOP_STRATEGY(vp, bp);
1201 return (0);
1202 }
1203
1204 void
1205 lfs_flush_dirops(struct lfs *fs)
1206 {
1207 struct inode *ip, *nip;
1208 struct vnode *vp;
1209 extern int lfs_dostats;
1210 struct segment *sp;
1211 int waslocked;
1212
1213 ASSERT_MAYBE_SEGLOCK(fs);
1214 KASSERT(fs->lfs_nadirop == 0);
1215
1216 if (fs->lfs_ronly)
1217 return;
1218
1219 simple_lock(&fs->lfs_interlock);
1220 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1221 simple_unlock(&fs->lfs_interlock);
1222 return;
1223 } else
1224 simple_unlock(&fs->lfs_interlock);
1225
1226 if (lfs_dostats)
1227 ++lfs_stats.flush_invoked;
1228
1229 /*
1230 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1231 * Technically this is a checkpoint (the on-disk state is valid)
1232 * even though we are leaving out all the file data.
1233 */
1234 lfs_imtime(fs);
1235 lfs_seglock(fs, SEGM_CKP);
1236 sp = fs->lfs_sp;
1237
1238 /*
1239 * lfs_writevnodes, optimized to get dirops out of the way.
1240 * Only write dirops, and don't flush files' pages, only
1241 * blocks from the directories.
1242 *
1243 * We don't need to vref these files because they are
1244 * dirops and so hold an extra reference until the
1245 * segunlock clears them of that status.
1246 *
1247 * We don't need to check for IN_ADIROP because we know that
1248 * no dirops are active.
1249 *
1250 */
1251 simple_lock(&fs->lfs_interlock);
1252 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1253 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1254 simple_unlock(&fs->lfs_interlock);
1255 vp = ITOV(ip);
1256
1257 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1258
1259 /*
1260 * All writes to directories come from dirops; all
1261 * writes to files' direct blocks go through the page
1262 * cache, which we're not touching. Reads to files
1263 * and/or directories will not be affected by writing
1264 * directory blocks inodes and file inodes. So we don't
1265 * really need to lock. If we don't lock, though,
1266 * make sure that we don't clear IN_MODIFIED
1267 * unnecessarily.
1268 */
1269 if (vp->v_flag & (VXLOCK | VFREEING)) {
1270 simple_lock(&fs->lfs_interlock);
1271 continue;
1272 }
1273 waslocked = VOP_ISLOCKED(vp);
1274 if (vp->v_type != VREG &&
1275 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1276 lfs_writefile(fs, sp, vp);
1277 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1278 !(ip->i_flag & IN_ALLMOD)) {
1279 LFS_SET_UINO(ip, IN_MODIFIED);
1280 }
1281 }
1282 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1283 (void) lfs_writeinode(fs, sp, ip);
1284 if (waslocked == LK_EXCLOTHER)
1285 LFS_SET_UINO(ip, IN_MODIFIED);
1286 simple_lock(&fs->lfs_interlock);
1287 }
1288 simple_unlock(&fs->lfs_interlock);
1289 /* We've written all the dirops there are */
1290 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1291 lfs_finalize_fs_seguse(fs);
1292 (void) lfs_writeseg(fs, sp);
1293 lfs_segunlock(fs);
1294 }
1295
1296 /*
1297 * Flush all vnodes for which the pagedaemon has requested pageouts.
1298 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1299 * has just run, this would be an error). If we have to skip a vnode
1300 * for any reason, just skip it; if we have to wait for the cleaner,
1301 * abort. The writer daemon will call us again later.
1302 */
1303 void
1304 lfs_flush_pchain(struct lfs *fs)
1305 {
1306 struct inode *ip, *nip;
1307 struct vnode *vp;
1308 extern int lfs_dostats;
1309 struct segment *sp;
1310 int error;
1311
1312 ASSERT_NO_SEGLOCK(fs);
1313
1314 if (fs->lfs_ronly)
1315 return;
1316
1317 simple_lock(&fs->lfs_interlock);
1318 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1319 simple_unlock(&fs->lfs_interlock);
1320 return;
1321 } else
1322 simple_unlock(&fs->lfs_interlock);
1323
1324 /* Get dirops out of the way */
1325 lfs_flush_dirops(fs);
1326
1327 if (lfs_dostats)
1328 ++lfs_stats.flush_invoked;
1329
1330 /*
1331 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1332 */
1333 lfs_imtime(fs);
1334 lfs_seglock(fs, 0);
1335 sp = fs->lfs_sp;
1336
1337 /*
1338 * lfs_writevnodes, optimized to clear pageout requests.
1339 * Only write non-dirop files that are in the pageout queue.
1340 * We're very conservative about what we write; we want to be
1341 * fast and async.
1342 */
1343 simple_lock(&fs->lfs_interlock);
1344 top:
1345 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1346 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1347 vp = ITOV(ip);
1348
1349 if (!(ip->i_flags & IN_PAGING))
1350 goto top;
1351
1352 if (vp->v_flag & (VXLOCK|VDIROP))
1353 continue;
1354 if (vp->v_type != VREG)
1355 continue;
1356 if (lfs_vref(vp))
1357 continue;
1358 simple_unlock(&fs->lfs_interlock);
1359
1360 if (VOP_ISLOCKED(vp)) {
1361 lfs_vunref(vp);
1362 simple_lock(&fs->lfs_interlock);
1363 continue;
1364 }
1365
1366 error = lfs_writefile(fs, sp, vp);
1367 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1368 !(ip->i_flag & IN_ALLMOD)) {
1369 LFS_SET_UINO(ip, IN_MODIFIED);
1370 }
1371 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1372 (void) lfs_writeinode(fs, sp, ip);
1373
1374 lfs_vunref(vp);
1375
1376 if (error == EAGAIN) {
1377 lfs_writeseg(fs, sp);
1378 simple_lock(&fs->lfs_interlock);
1379 break;
1380 }
1381 simple_lock(&fs->lfs_interlock);
1382 }
1383 simple_unlock(&fs->lfs_interlock);
1384 (void) lfs_writeseg(fs, sp);
1385 lfs_segunlock(fs);
1386 }
1387
1388 /*
1389 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1390 */
1391 int
1392 lfs_fcntl(void *v)
1393 {
1394 struct vop_fcntl_args /* {
1395 struct vnode *a_vp;
1396 u_long a_command;
1397 caddr_t a_data;
1398 int a_fflag;
1399 kauth_cred_t a_cred;
1400 struct lwp *a_l;
1401 } */ *ap = v;
1402 struct timeval *tvp;
1403 BLOCK_INFO *blkiov;
1404 CLEANERINFO *cip;
1405 SEGUSE *sup;
1406 int blkcnt, error, oclean;
1407 size_t fh_size;
1408 struct lfs_fcntl_markv blkvp;
1409 struct lwp *l;
1410 fsid_t *fsidp;
1411 struct lfs *fs;
1412 struct buf *bp;
1413 fhandle_t *fhp;
1414 daddr_t off;
1415
1416 /* Only respect LFS fcntls on fs root or Ifile */
1417 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1418 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1419 return ufs_fcntl(v);
1420 }
1421
1422 /* Avoid locking a draining lock */
1423 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1424 return ESHUTDOWN;
1425 }
1426
1427 /* LFS control and monitoring fcntls are available only to root */
1428 l = ap->a_l;
1429 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1430 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1431 NULL)) != 0)
1432 return (error);
1433
1434 fs = VTOI(ap->a_vp)->i_lfs;
1435 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1436
1437 error = 0;
1438 switch (ap->a_command) {
1439 case LFCNSEGWAITALL:
1440 case LFCNSEGWAITALL_COMPAT:
1441 fsidp = NULL;
1442 /* FALLSTHROUGH */
1443 case LFCNSEGWAIT:
1444 case LFCNSEGWAIT_COMPAT:
1445 tvp = (struct timeval *)ap->a_data;
1446 simple_lock(&fs->lfs_interlock);
1447 ++fs->lfs_sleepers;
1448 simple_unlock(&fs->lfs_interlock);
1449
1450 error = lfs_segwait(fsidp, tvp);
1451
1452 simple_lock(&fs->lfs_interlock);
1453 if (--fs->lfs_sleepers == 0)
1454 wakeup(&fs->lfs_sleepers);
1455 simple_unlock(&fs->lfs_interlock);
1456 return error;
1457
1458 case LFCNBMAPV:
1459 case LFCNMARKV:
1460 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1461
1462 blkcnt = blkvp.blkcnt;
1463 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1464 return (EINVAL);
1465 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1466 if ((error = copyin(blkvp.blkiov, blkiov,
1467 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1468 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1469 return error;
1470 }
1471
1472 simple_lock(&fs->lfs_interlock);
1473 ++fs->lfs_sleepers;
1474 simple_unlock(&fs->lfs_interlock);
1475 if (ap->a_command == LFCNBMAPV)
1476 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1477 else /* LFCNMARKV */
1478 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1479 if (error == 0)
1480 error = copyout(blkiov, blkvp.blkiov,
1481 blkcnt * sizeof(BLOCK_INFO));
1482 simple_lock(&fs->lfs_interlock);
1483 if (--fs->lfs_sleepers == 0)
1484 wakeup(&fs->lfs_sleepers);
1485 simple_unlock(&fs->lfs_interlock);
1486 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1487 return error;
1488
1489 case LFCNRECLAIM:
1490 /*
1491 * Flush dirops and write Ifile, allowing empty segments
1492 * to be immediately reclaimed.
1493 */
1494 lfs_writer_enter(fs, "pndirop");
1495 off = fs->lfs_offset;
1496 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1497 lfs_flush_dirops(fs);
1498 LFS_CLEANERINFO(cip, fs, bp);
1499 oclean = cip->clean;
1500 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1501 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1502 fs->lfs_sp->seg_flags |= SEGM_PROT;
1503 lfs_segunlock(fs);
1504 lfs_writer_leave(fs);
1505
1506 #ifdef DEBUG
1507 LFS_CLEANERINFO(cip, fs, bp);
1508 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1509 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1510 fs->lfs_offset - off, cip->clean - oclean,
1511 fs->lfs_activesb));
1512 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1513 #endif
1514
1515 return 0;
1516
1517 #ifdef COMPAT_30
1518 case LFCNIFILEFH_COMPAT:
1519 /* Return the filehandle of the Ifile */
1520 if ((error = kauth_authorize_generic(l->l_cred,
1521 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1522 return (error);
1523 fhp = (struct fhandle *)ap->a_data;
1524 fhp->fh_fsid = *fsidp;
1525 fh_size = 16; /* former VFS_MAXFIDSIZ */
1526 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1527 #endif
1528
1529 case LFCNIFILEFH_COMPAT2:
1530 case LFCNIFILEFH:
1531 /* Return the filehandle of the Ifile */
1532 fhp = (struct fhandle *)ap->a_data;
1533 fhp->fh_fsid = *fsidp;
1534 fh_size = sizeof(struct lfs_fhandle) -
1535 offsetof(fhandle_t, fh_fid);
1536 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1537
1538 case LFCNREWIND:
1539 /* Move lfs_offset to the lowest-numbered segment */
1540 return lfs_rewind(fs, *(int *)ap->a_data);
1541
1542 case LFCNINVAL:
1543 /* Mark a segment SEGUSE_INVAL */
1544 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1545 if (sup->su_nbytes > 0) {
1546 brelse(bp);
1547 lfs_unset_inval_all(fs);
1548 return EBUSY;
1549 }
1550 sup->su_flags |= SEGUSE_INVAL;
1551 VOP_BWRITE(bp);
1552 return 0;
1553
1554 case LFCNRESIZE:
1555 /* Resize the filesystem */
1556 return lfs_resize_fs(fs, *(int *)ap->a_data);
1557
1558 case LFCNWRAPSTOP:
1559 case LFCNWRAPSTOP_COMPAT:
1560 /*
1561 * Hold lfs_newseg at segment 0; if requested, sleep until
1562 * the filesystem wraps around. To support external agents
1563 * (dump, fsck-based regression test) that need to look at
1564 * a snapshot of the filesystem, without necessarily
1565 * requiring that all fs activity stops.
1566 */
1567 if (lockstatus(&fs->lfs_stoplock))
1568 return EALREADY;
1569
1570 simple_lock(&fs->lfs_interlock);
1571 lockmgr(&fs->lfs_stoplock, LK_EXCLUSIVE, &fs->lfs_interlock);
1572 if (fs->lfs_nowrap == 0)
1573 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1574 ++fs->lfs_nowrap;
1575 if (*(int *)ap->a_data == 1 ||
1576 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1577 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1578 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1579 "segwrap", 0, &fs->lfs_interlock);
1580 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1581 if (error) {
1582 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1583 }
1584 }
1585 simple_unlock(&fs->lfs_interlock);
1586 return 0;
1587
1588 case LFCNWRAPGO:
1589 case LFCNWRAPGO_COMPAT:
1590 /*
1591 * Having done its work, the agent wakes up the writer.
1592 * If the argument is 1, it sleeps until a new segment
1593 * is selected.
1594 */
1595 simple_lock(&fs->lfs_interlock);
1596 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1597 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1598 *((int *)ap->a_data)));
1599 simple_unlock(&fs->lfs_interlock);
1600 return error;
1601
1602 case LFCNWRAPPASS:
1603 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
1604 return EALREADY;
1605 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1606 return EALREADY;
1607 simple_lock(&fs->lfs_interlock);
1608 if (fs->lfs_nowrap == 0) {
1609 simple_unlock(&fs->lfs_interlock);
1610 return EBUSY;
1611 }
1612 fs->lfs_wrappass = 1;
1613 wakeup(&fs->lfs_wrappass);
1614 /* Wait for the log to wrap, if asked */
1615 if (*(int *)ap->a_data) {
1616 lfs_vref(ap->a_vp);
1617 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1618 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1619 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1620 "segwrap", 0, &fs->lfs_interlock);
1621 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1622 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1623 lfs_vunref(ap->a_vp);
1624 }
1625 simple_unlock(&fs->lfs_interlock);
1626 return error;
1627
1628 case LFCNWRAPSTATUS:
1629 simple_lock(&fs->lfs_interlock);
1630 *(int *)ap->a_data = fs->lfs_wrapstatus;
1631 simple_unlock(&fs->lfs_interlock);
1632 return 0;
1633
1634 default:
1635 return ufs_fcntl(v);
1636 }
1637 return 0;
1638 }
1639
1640 int
1641 lfs_getpages(void *v)
1642 {
1643 struct vop_getpages_args /* {
1644 struct vnode *a_vp;
1645 voff_t a_offset;
1646 struct vm_page **a_m;
1647 int *a_count;
1648 int a_centeridx;
1649 vm_prot_t a_access_type;
1650 int a_advice;
1651 int a_flags;
1652 } */ *ap = v;
1653
1654 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1655 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1656 return EPERM;
1657 }
1658 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1659 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1660 }
1661
1662 /*
1663 * we're relying on the fact that genfs_getpages() always read in
1664 * entire filesystem blocks.
1665 */
1666 return genfs_getpages(v);
1667 }
1668
1669 /*
1670 * Make sure that for all pages in every block in the given range,
1671 * either all are dirty or all are clean. If any of the pages
1672 * we've seen so far are dirty, put the vnode on the paging chain,
1673 * and mark it IN_PAGING.
1674 *
1675 * If checkfirst != 0, don't check all the pages but return at the
1676 * first dirty page.
1677 */
1678 static int
1679 check_dirty(struct lfs *fs, struct vnode *vp,
1680 off_t startoffset, off_t endoffset, off_t blkeof,
1681 int flags, int checkfirst)
1682 {
1683 int by_list;
1684 struct vm_page *curpg = NULL; /* XXX: gcc */
1685 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1686 off_t soff = 0; /* XXX: gcc */
1687 voff_t off;
1688 int i;
1689 int nonexistent;
1690 int any_dirty; /* number of dirty pages */
1691 int dirty; /* number of dirty pages in a block */
1692 int tdirty;
1693 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1694 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1695
1696 ASSERT_MAYBE_SEGLOCK(fs);
1697 top:
1698 by_list = (vp->v_uobj.uo_npages <=
1699 ((endoffset - startoffset) >> PAGE_SHIFT) *
1700 UVM_PAGE_HASH_PENALTY);
1701 any_dirty = 0;
1702
1703 if (by_list) {
1704 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1705 } else {
1706 soff = startoffset;
1707 }
1708 while (by_list || soff < MIN(blkeof, endoffset)) {
1709 if (by_list) {
1710 /*
1711 * Find the first page in a block. Skip
1712 * blocks outside our area of interest or beyond
1713 * the end of file.
1714 */
1715 if (pages_per_block > 1) {
1716 while (curpg &&
1717 ((curpg->offset & fs->lfs_bmask) ||
1718 curpg->offset >= vp->v_size ||
1719 curpg->offset >= endoffset))
1720 curpg = TAILQ_NEXT(curpg, listq);
1721 }
1722 if (curpg == NULL)
1723 break;
1724 soff = curpg->offset;
1725 }
1726
1727 /*
1728 * Mark all pages in extended range busy; find out if any
1729 * of them are dirty.
1730 */
1731 nonexistent = dirty = 0;
1732 for (i = 0; i == 0 || i < pages_per_block; i++) {
1733 if (by_list && pages_per_block <= 1) {
1734 pgs[i] = pg = curpg;
1735 } else {
1736 off = soff + (i << PAGE_SHIFT);
1737 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1738 if (pg == NULL) {
1739 ++nonexistent;
1740 continue;
1741 }
1742 }
1743 KASSERT(pg != NULL);
1744
1745 /*
1746 * If we're holding the segment lock, we can deadlock
1747 * against a process that has our page and is waiting
1748 * for the cleaner, while the cleaner waits for the
1749 * segment lock. Just bail in that case.
1750 */
1751 if ((pg->flags & PG_BUSY) &&
1752 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1753 if (by_list && i > 0)
1754 uvm_page_unbusy(pgs, i);
1755 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1756 return -1;
1757 }
1758
1759 while (pg->flags & PG_BUSY) {
1760 pg->flags |= PG_WANTED;
1761 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1762 "lfsput", 0);
1763 simple_lock(&vp->v_interlock);
1764 if (by_list) {
1765 if (i > 0)
1766 uvm_page_unbusy(pgs, i);
1767 goto top;
1768 }
1769 }
1770 pg->flags |= PG_BUSY;
1771 UVM_PAGE_OWN(pg, "lfs_putpages");
1772
1773 pmap_page_protect(pg, VM_PROT_NONE);
1774 tdirty = (pmap_clear_modify(pg) ||
1775 (pg->flags & PG_CLEAN) == 0);
1776 dirty += tdirty;
1777 }
1778 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1779 if (by_list) {
1780 curpg = TAILQ_NEXT(curpg, listq);
1781 } else {
1782 soff += fs->lfs_bsize;
1783 }
1784 continue;
1785 }
1786
1787 any_dirty += dirty;
1788 KASSERT(nonexistent == 0);
1789
1790 /*
1791 * If any are dirty make all dirty; unbusy them,
1792 * but if we were asked to clean, wire them so that
1793 * the pagedaemon doesn't bother us about them while
1794 * they're on their way to disk.
1795 */
1796 for (i = 0; i == 0 || i < pages_per_block; i++) {
1797 pg = pgs[i];
1798 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1799 if (dirty) {
1800 pg->flags &= ~PG_CLEAN;
1801 if (flags & PGO_FREE) {
1802 /*
1803 * Wire the page so that
1804 * pdaemon doesn't see it again.
1805 */
1806 uvm_lock_pageq();
1807 uvm_pagewire(pg);
1808 uvm_unlock_pageq();
1809
1810 /* Suspended write flag */
1811 pg->flags |= PG_DELWRI;
1812 }
1813 }
1814 if (pg->flags & PG_WANTED)
1815 wakeup(pg);
1816 pg->flags &= ~(PG_WANTED|PG_BUSY);
1817 UVM_PAGE_OWN(pg, NULL);
1818 }
1819
1820 if (checkfirst && any_dirty)
1821 break;
1822
1823 if (by_list) {
1824 curpg = TAILQ_NEXT(curpg, listq);
1825 } else {
1826 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1827 }
1828 }
1829
1830 return any_dirty;
1831 }
1832
1833 /*
1834 * lfs_putpages functions like genfs_putpages except that
1835 *
1836 * (1) It needs to bounds-check the incoming requests to ensure that
1837 * they are block-aligned; if they are not, expand the range and
1838 * do the right thing in case, e.g., the requested range is clean
1839 * but the expanded range is dirty.
1840 *
1841 * (2) It needs to explicitly send blocks to be written when it is done.
1842 * VOP_PUTPAGES is not ever called with the seglock held, so
1843 * we simply take the seglock and let lfs_segunlock wait for us.
1844 * XXX Actually we can be called with the seglock held, if we have
1845 * XXX to flush a vnode while lfs_markv is in operation. As of this
1846 * XXX writing we panic in this case.
1847 *
1848 * Assumptions:
1849 *
1850 * (1) The caller does not hold any pages in this vnode busy. If it does,
1851 * there is a danger that when we expand the page range and busy the
1852 * pages we will deadlock.
1853 *
1854 * (2) We are called with vp->v_interlock held; we must return with it
1855 * released.
1856 *
1857 * (3) We don't absolutely have to free pages right away, provided that
1858 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1859 * us a request with PGO_FREE, we take the pages out of the paging
1860 * queue and wake up the writer, which will handle freeing them for us.
1861 *
1862 * We ensure that for any filesystem block, all pages for that
1863 * block are either resident or not, even if those pages are higher
1864 * than EOF; that means that we will be getting requests to free
1865 * "unused" pages above EOF all the time, and should ignore them.
1866 *
1867 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1868 * into has been set up for us by lfs_writefile. If not, we will
1869 * have to handle allocating and/or freeing an finfo entry.
1870 *
1871 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1872 */
1873
1874 int
1875 lfs_putpages(void *v)
1876 {
1877 int error;
1878 struct vop_putpages_args /* {
1879 struct vnode *a_vp;
1880 voff_t a_offlo;
1881 voff_t a_offhi;
1882 int a_flags;
1883 } */ *ap = v;
1884 struct vnode *vp;
1885 struct inode *ip;
1886 struct lfs *fs;
1887 struct segment *sp;
1888 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1889 off_t off, max_endoffset;
1890 int s;
1891 boolean_t seglocked, sync, pagedaemon;
1892 struct vm_page *pg;
1893 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1894
1895 vp = ap->a_vp;
1896 ip = VTOI(vp);
1897 fs = ip->i_lfs;
1898 sync = (ap->a_flags & PGO_SYNCIO) != 0;
1899 pagedaemon = (curproc == uvm.pagedaemon_proc);
1900
1901 /* Putpages does nothing for metadata. */
1902 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1903 simple_unlock(&vp->v_interlock);
1904 return 0;
1905 }
1906
1907 /*
1908 * If there are no pages, don't do anything.
1909 */
1910 if (vp->v_uobj.uo_npages == 0) {
1911 s = splbio();
1912 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
1913 (vp->v_flag & VONWORKLST) &&
1914 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
1915 vp->v_flag &= ~VWRITEMAPDIRTY;
1916 vn_syncer_remove_from_worklist(vp);
1917 }
1918 splx(s);
1919 simple_unlock(&vp->v_interlock);
1920
1921 /* Remove us from paging queue, if we were on it */
1922 simple_lock(&fs->lfs_interlock);
1923 if (ip->i_flags & IN_PAGING) {
1924 ip->i_flags &= ~IN_PAGING;
1925 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1926 }
1927 simple_unlock(&fs->lfs_interlock);
1928 return 0;
1929 }
1930
1931 blkeof = blkroundup(fs, ip->i_size);
1932
1933 /*
1934 * Ignore requests to free pages past EOF but in the same block
1935 * as EOF, unless the request is synchronous. (If the request is
1936 * sync, it comes from lfs_truncate.)
1937 * XXXUBC Make these pages look "active" so the pagedaemon won't
1938 * XXXUBC bother us with them again.
1939 */
1940 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
1941 origoffset = ap->a_offlo;
1942 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1943 pg = uvm_pagelookup(&vp->v_uobj, off);
1944 KASSERT(pg != NULL);
1945 while (pg->flags & PG_BUSY) {
1946 pg->flags |= PG_WANTED;
1947 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1948 "lfsput2", 0);
1949 simple_lock(&vp->v_interlock);
1950 }
1951 uvm_lock_pageq();
1952 uvm_pageactivate(pg);
1953 uvm_unlock_pageq();
1954 }
1955 ap->a_offlo = blkeof;
1956 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1957 simple_unlock(&vp->v_interlock);
1958 return 0;
1959 }
1960 }
1961
1962 /*
1963 * Extend page range to start and end at block boundaries.
1964 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1965 */
1966 origoffset = ap->a_offlo;
1967 origendoffset = ap->a_offhi;
1968 startoffset = origoffset & ~(fs->lfs_bmask);
1969 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1970 << fs->lfs_bshift;
1971
1972 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1973 endoffset = max_endoffset;
1974 origendoffset = endoffset;
1975 } else {
1976 origendoffset = round_page(ap->a_offhi);
1977 endoffset = round_page(blkroundup(fs, origendoffset));
1978 }
1979
1980 KASSERT(startoffset > 0 || endoffset >= startoffset);
1981 if (startoffset == endoffset) {
1982 /* Nothing to do, why were we called? */
1983 simple_unlock(&vp->v_interlock);
1984 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
1985 PRId64 "\n", startoffset));
1986 return 0;
1987 }
1988
1989 ap->a_offlo = startoffset;
1990 ap->a_offhi = endoffset;
1991
1992 if (!(ap->a_flags & PGO_CLEANIT))
1993 return genfs_putpages(v);
1994
1995 /*
1996 * If there are more than one page per block, we don't want
1997 * to get caught locking them backwards; so set PGO_BUSYFAIL
1998 * to avoid deadlocks.
1999 */
2000 ap->a_flags |= PGO_BUSYFAIL;
2001
2002 do {
2003 int r;
2004
2005 /* If no pages are dirty, we can just use genfs_putpages. */
2006 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2007 ap->a_flags, 1);
2008 if (r < 0) {
2009 simple_unlock(&vp->v_interlock);
2010 return EDEADLK;
2011 }
2012 if (r > 0)
2013 break;
2014
2015 /*
2016 * Sometimes pages are dirtied between the time that
2017 * we check and the time we try to clean them.
2018 * Instruct lfs_gop_write to return EDEADLK in this case
2019 * so we can write them properly.
2020 */
2021 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2022 r = genfs_putpages(v);
2023 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2024 if (r != EDEADLK)
2025 return r;
2026
2027 /* Start over. */
2028 preempt(1);
2029 simple_lock(&vp->v_interlock);
2030 } while(1);
2031
2032 /*
2033 * Dirty and asked to clean.
2034 *
2035 * Pagedaemon can't actually write LFS pages; wake up
2036 * the writer to take care of that. The writer will
2037 * notice the pager inode queue and act on that.
2038 */
2039 if (pagedaemon) {
2040 simple_lock(&fs->lfs_interlock);
2041 if (!(ip->i_flags & IN_PAGING)) {
2042 ip->i_flags |= IN_PAGING;
2043 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2044 }
2045 simple_lock(&lfs_subsys_lock);
2046 wakeup(&lfs_writer_daemon);
2047 simple_unlock(&lfs_subsys_lock);
2048 simple_unlock(&fs->lfs_interlock);
2049 simple_unlock(&vp->v_interlock);
2050 preempt(1);
2051 return EWOULDBLOCK;
2052 }
2053
2054 /*
2055 * If this is a file created in a recent dirop, we can't flush its
2056 * inode until the dirop is complete. Drain dirops, then flush the
2057 * filesystem (taking care of any other pending dirops while we're
2058 * at it).
2059 */
2060 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2061 (vp->v_flag & VDIROP)) {
2062 int locked;
2063
2064 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
2065 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2066 simple_unlock(&vp->v_interlock);
2067 lfs_writer_enter(fs, "ppdirop");
2068 if (locked)
2069 VOP_UNLOCK(vp, 0);
2070
2071 simple_lock(&fs->lfs_interlock);
2072 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2073 simple_unlock(&fs->lfs_interlock);
2074
2075 simple_lock(&vp->v_interlock);
2076 if (locked) {
2077 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2078 simple_lock(&vp->v_interlock);
2079 }
2080 lfs_writer_leave(fs);
2081
2082 /* XXX the flush should have taken care of this one too! */
2083 }
2084
2085 /*
2086 * This is it. We are going to write some pages. From here on
2087 * down it's all just mechanics.
2088 *
2089 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2090 */
2091 ap->a_flags &= ~PGO_SYNCIO;
2092
2093 /*
2094 * If we've already got the seglock, flush the node and return.
2095 * The FIP has already been set up for us by lfs_writefile,
2096 * and FIP cleanup and lfs_updatemeta will also be done there,
2097 * unless genfs_putpages returns EDEADLK; then we must flush
2098 * what we have, and correct FIP and segment header accounting.
2099 */
2100 get_seglock:
2101 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2102 if (!seglocked) {
2103 simple_unlock(&vp->v_interlock);
2104 /*
2105 * Take the seglock, because we are going to be writing pages.
2106 */
2107 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2108 if (error != 0)
2109 return error;
2110 simple_lock(&vp->v_interlock);
2111 }
2112
2113 /*
2114 * VOP_PUTPAGES should not be called while holding the seglock.
2115 * XXXUBC fix lfs_markv, or do this properly.
2116 */
2117 #ifdef notyet
2118 KASSERT(fs->lfs_seglock == 1);
2119 #endif /* notyet */
2120
2121 /*
2122 * We assume we're being called with sp->fip pointing at blank space.
2123 * Account for a new FIP in the segment header, and set sp->vp.
2124 * (This should duplicate the setup at the top of lfs_writefile().)
2125 */
2126 sp = fs->lfs_sp;
2127 if (!seglocked)
2128 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2129 KASSERT(sp->vp == NULL);
2130 sp->vp = vp;
2131
2132 if (!seglocked) {
2133 if (vp->v_flag & VDIROP)
2134 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2135 }
2136
2137 /*
2138 * Loop through genfs_putpages until all pages are gathered.
2139 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2140 * Whenever we lose the interlock we have to rerun check_dirty, as
2141 * well.
2142 */
2143 again:
2144 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2145 ap->a_flags, 0) < 0) {
2146 simple_unlock(&vp->v_interlock);
2147 sp->vp = NULL;
2148 if (!seglocked) {
2149 lfs_release_finfo(fs);
2150 lfs_segunlock(fs);
2151 }
2152 if (pagedaemon)
2153 return EDEADLK;
2154 /* else seglocked == 0 */
2155 preempt(1);
2156 simple_lock(&vp->v_interlock);
2157 goto get_seglock;
2158 }
2159
2160 error = genfs_putpages(v);
2161 if (error == EDEADLK || error == EAGAIN) {
2162 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2163 " EDEADLK [2] ino %d off %x (seg %d)\n",
2164 ip->i_number, fs->lfs_offset,
2165 dtosn(fs, fs->lfs_offset)));
2166 /* If nothing to write, short-circuit */
2167 if (sp->cbpp - sp->bpp > 1) {
2168 /* Write gathered pages */
2169 lfs_updatemeta(sp);
2170 lfs_release_finfo(fs);
2171 (void) lfs_writeseg(fs, sp);
2172
2173 /*
2174 * Reinitialize brand new FIP and add us to it.
2175 */
2176 KASSERT(sp->vp == vp);
2177 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2178 }
2179
2180 /* Give the write a chance to complete */
2181 preempt(1);
2182
2183 /* We've lost the interlock. Start over. */
2184 if (error == EDEADLK) {
2185 simple_lock(&vp->v_interlock);
2186 goto again;
2187 }
2188 }
2189
2190 KASSERT(sp->vp == vp);
2191 if (!seglocked) {
2192 sp->vp = NULL;
2193
2194 /* Write indirect blocks as well */
2195 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2196 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2197 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2198
2199 KASSERT(sp->vp == NULL);
2200 sp->vp = vp;
2201 }
2202
2203 /*
2204 * Blocks are now gathered into a segment waiting to be written.
2205 * All that's left to do is update metadata, and write them.
2206 */
2207 lfs_updatemeta(sp);
2208 KASSERT(sp->vp == vp);
2209 sp->vp = NULL;
2210
2211 if (seglocked) {
2212 /* we're called by lfs_writefile. */
2213 return error;
2214 }
2215
2216 /* Clean up FIP and send it to disk. */
2217 lfs_release_finfo(fs);
2218 lfs_writeseg(fs, fs->lfs_sp);
2219
2220 /*
2221 * Remove us from paging queue, since we've now written all our
2222 * pages.
2223 */
2224 simple_lock(&fs->lfs_interlock);
2225 if (ip->i_flags & IN_PAGING) {
2226 ip->i_flags &= ~IN_PAGING;
2227 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2228 }
2229 simple_unlock(&fs->lfs_interlock);
2230
2231 /*
2232 * XXX - with the malloc/copy writeseg, the pages are freed by now
2233 * even if we don't wait (e.g. if we hold a nested lock). This
2234 * will not be true if we stop using malloc/copy.
2235 */
2236 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2237 lfs_segunlock(fs);
2238
2239 /*
2240 * Wait for v_numoutput to drop to zero. The seglock should
2241 * take care of this, but there is a slight possibility that
2242 * aiodoned might not have got around to our buffers yet.
2243 */
2244 if (sync) {
2245 s = splbio();
2246 simple_lock(&global_v_numoutput_slock);
2247 while (vp->v_numoutput > 0) {
2248 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2249 " num %d\n", ip->i_number, vp->v_numoutput));
2250 vp->v_flag |= VBWAIT;
2251 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2252 &global_v_numoutput_slock);
2253 }
2254 simple_unlock(&global_v_numoutput_slock);
2255 splx(s);
2256 }
2257 return error;
2258 }
2259
2260 /*
2261 * Return the last logical file offset that should be written for this file
2262 * if we're doing a write that ends at "size". If writing, we need to know
2263 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2264 * to know about entire blocks.
2265 */
2266 void
2267 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2268 {
2269 struct inode *ip = VTOI(vp);
2270 struct lfs *fs = ip->i_lfs;
2271 daddr_t olbn, nlbn;
2272
2273 olbn = lblkno(fs, ip->i_size);
2274 nlbn = lblkno(fs, size);
2275 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2276 *eobp = fragroundup(fs, size);
2277 } else {
2278 *eobp = blkroundup(fs, size);
2279 }
2280 }
2281
2282 #ifdef DEBUG
2283 void lfs_dump_vop(void *);
2284
2285 void
2286 lfs_dump_vop(void *v)
2287 {
2288 struct vop_putpages_args /* {
2289 struct vnode *a_vp;
2290 voff_t a_offlo;
2291 voff_t a_offhi;
2292 int a_flags;
2293 } */ *ap = v;
2294
2295 #ifdef DDB
2296 vfs_vnode_print(ap->a_vp, 0, printf);
2297 #endif
2298 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2299 }
2300 #endif
2301
2302 int
2303 lfs_mmap(void *v)
2304 {
2305 struct vop_mmap_args /* {
2306 const struct vnodeop_desc *a_desc;
2307 struct vnode *a_vp;
2308 int a_fflags;
2309 kauth_cred_t a_cred;
2310 struct lwp *a_l;
2311 } */ *ap = v;
2312
2313 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2314 return EOPNOTSUPP;
2315 return ufs_mmap(v);
2316 }
2317