Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.201.2.2
      1 /*	$NetBSD: lfs_vnops.c,v 1.201.2.2 2007/03/21 20:11:59 ad Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  * 3. All advertising materials mentioning features or use of this software
     19  *    must display the following acknowledgement:
     20  *	This product includes software developed by the NetBSD
     21  *	Foundation, Inc. and its contributors.
     22  * 4. Neither the name of The NetBSD Foundation nor the names of its
     23  *    contributors may be used to endorse or promote products derived
     24  *    from this software without specific prior written permission.
     25  *
     26  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     27  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     28  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     29  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     30  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     31  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     32  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     33  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     34  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     35  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     36  * POSSIBILITY OF SUCH DAMAGE.
     37  */
     38 /*
     39  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     40  *	The Regents of the University of California.  All rights reserved.
     41  *
     42  * Redistribution and use in source and binary forms, with or without
     43  * modification, are permitted provided that the following conditions
     44  * are met:
     45  * 1. Redistributions of source code must retain the above copyright
     46  *    notice, this list of conditions and the following disclaimer.
     47  * 2. Redistributions in binary form must reproduce the above copyright
     48  *    notice, this list of conditions and the following disclaimer in the
     49  *    documentation and/or other materials provided with the distribution.
     50  * 3. Neither the name of the University nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     55  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  *
     66  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     67  */
     68 
     69 #include <sys/cdefs.h>
     70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.201.2.2 2007/03/21 20:11:59 ad Exp $");
     71 
     72 #ifdef _KERNEL_OPT
     73 #include "opt_compat_netbsd.h"
     74 #endif
     75 
     76 #include <sys/param.h>
     77 #include <sys/systm.h>
     78 #include <sys/namei.h>
     79 #include <sys/resourcevar.h>
     80 #include <sys/kernel.h>
     81 #include <sys/file.h>
     82 #include <sys/stat.h>
     83 #include <sys/buf.h>
     84 #include <sys/proc.h>
     85 #include <sys/mount.h>
     86 #include <sys/vnode.h>
     87 #include <sys/pool.h>
     88 #include <sys/signalvar.h>
     89 #include <sys/kauth.h>
     90 #include <sys/syslog.h>
     91 #include <sys/fstrans.h>
     92 
     93 #include <miscfs/fifofs/fifo.h>
     94 #include <miscfs/genfs/genfs.h>
     95 #include <miscfs/specfs/specdev.h>
     96 
     97 #include <ufs/ufs/inode.h>
     98 #include <ufs/ufs/dir.h>
     99 #include <ufs/ufs/ufsmount.h>
    100 #include <ufs/ufs/ufs_extern.h>
    101 
    102 #include <uvm/uvm.h>
    103 #include <uvm/uvm_pmap.h>
    104 #include <uvm/uvm_stat.h>
    105 #include <uvm/uvm_pager.h>
    106 
    107 #include <ufs/lfs/lfs.h>
    108 #include <ufs/lfs/lfs_extern.h>
    109 
    110 extern pid_t lfs_writer_daemon;
    111 
    112 /* Global vfs data structures for lfs. */
    113 int (**lfs_vnodeop_p)(void *);
    114 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    115 	{ &vop_default_desc, vn_default_error },
    116 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    117 	{ &vop_create_desc, lfs_create },		/* create */
    118 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    119 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    120 	{ &vop_open_desc, ufs_open },			/* open */
    121 	{ &vop_close_desc, lfs_close },			/* close */
    122 	{ &vop_access_desc, ufs_access },		/* access */
    123 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    124 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    125 	{ &vop_read_desc, lfs_read },			/* read */
    126 	{ &vop_write_desc, lfs_write },			/* write */
    127 	{ &vop_lease_desc, ufs_lease_check },		/* lease */
    128 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    129 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    130 	{ &vop_poll_desc, ufs_poll },			/* poll */
    131 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    132 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    133 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    134 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    135 	{ &vop_seek_desc, ufs_seek },			/* seek */
    136 	{ &vop_remove_desc, lfs_remove },		/* remove */
    137 	{ &vop_link_desc, lfs_link },			/* link */
    138 	{ &vop_rename_desc, lfs_rename },		/* rename */
    139 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    140 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    141 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    142 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    143 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    144 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    145 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    146 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    147 	{ &vop_lock_desc, ufs_lock },			/* lock */
    148 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    149 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    150 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    151 	{ &vop_print_desc, ufs_print },			/* print */
    152 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    153 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    154 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    155 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    156 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    157 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    158 	{ NULL, NULL }
    159 };
    160 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    161 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    162 
    163 int (**lfs_specop_p)(void *);
    164 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    165 	{ &vop_default_desc, vn_default_error },
    166 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    167 	{ &vop_create_desc, spec_create },		/* create */
    168 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    169 	{ &vop_open_desc, spec_open },			/* open */
    170 	{ &vop_close_desc, lfsspec_close },		/* close */
    171 	{ &vop_access_desc, ufs_access },		/* access */
    172 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    173 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    174 	{ &vop_read_desc, ufsspec_read },		/* read */
    175 	{ &vop_write_desc, ufsspec_write },		/* write */
    176 	{ &vop_lease_desc, spec_lease_check },		/* lease */
    177 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    178 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    179 	{ &vop_poll_desc, spec_poll },			/* poll */
    180 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    181 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    182 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    183 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    184 	{ &vop_seek_desc, spec_seek },			/* seek */
    185 	{ &vop_remove_desc, spec_remove },		/* remove */
    186 	{ &vop_link_desc, spec_link },			/* link */
    187 	{ &vop_rename_desc, spec_rename },		/* rename */
    188 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    189 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    190 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    191 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    192 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    193 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    194 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    195 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    196 	{ &vop_lock_desc, ufs_lock },			/* lock */
    197 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    198 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    199 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    200 	{ &vop_print_desc, ufs_print },			/* print */
    201 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    202 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    203 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    204 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    205 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    206 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    207 	{ NULL, NULL }
    208 };
    209 const struct vnodeopv_desc lfs_specop_opv_desc =
    210 	{ &lfs_specop_p, lfs_specop_entries };
    211 
    212 int (**lfs_fifoop_p)(void *);
    213 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    214 	{ &vop_default_desc, vn_default_error },
    215 	{ &vop_lookup_desc, fifo_lookup },		/* lookup */
    216 	{ &vop_create_desc, fifo_create },		/* create */
    217 	{ &vop_mknod_desc, fifo_mknod },		/* mknod */
    218 	{ &vop_open_desc, fifo_open },			/* open */
    219 	{ &vop_close_desc, lfsfifo_close },		/* close */
    220 	{ &vop_access_desc, ufs_access },		/* access */
    221 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    222 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    223 	{ &vop_read_desc, ufsfifo_read },		/* read */
    224 	{ &vop_write_desc, ufsfifo_write },		/* write */
    225 	{ &vop_lease_desc, fifo_lease_check },		/* lease */
    226 	{ &vop_ioctl_desc, fifo_ioctl },		/* ioctl */
    227 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    228 	{ &vop_poll_desc, fifo_poll },			/* poll */
    229 	{ &vop_kqfilter_desc, fifo_kqfilter },		/* kqfilter */
    230 	{ &vop_revoke_desc, fifo_revoke },		/* revoke */
    231 	{ &vop_mmap_desc, fifo_mmap },			/* mmap */
    232 	{ &vop_fsync_desc, fifo_fsync },		/* fsync */
    233 	{ &vop_seek_desc, fifo_seek },			/* seek */
    234 	{ &vop_remove_desc, fifo_remove },		/* remove */
    235 	{ &vop_link_desc, fifo_link },			/* link */
    236 	{ &vop_rename_desc, fifo_rename },		/* rename */
    237 	{ &vop_mkdir_desc, fifo_mkdir },		/* mkdir */
    238 	{ &vop_rmdir_desc, fifo_rmdir },		/* rmdir */
    239 	{ &vop_symlink_desc, fifo_symlink },		/* symlink */
    240 	{ &vop_readdir_desc, fifo_readdir },		/* readdir */
    241 	{ &vop_readlink_desc, fifo_readlink },		/* readlink */
    242 	{ &vop_abortop_desc, fifo_abortop },		/* abortop */
    243 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    244 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    245 	{ &vop_lock_desc, ufs_lock },			/* lock */
    246 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    247 	{ &vop_bmap_desc, fifo_bmap },			/* bmap */
    248 	{ &vop_strategy_desc, fifo_strategy },		/* strategy */
    249 	{ &vop_print_desc, ufs_print },			/* print */
    250 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    251 	{ &vop_pathconf_desc, fifo_pathconf },		/* pathconf */
    252 	{ &vop_advlock_desc, fifo_advlock },		/* advlock */
    253 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    254 	{ &vop_putpages_desc, fifo_putpages },		/* putpages */
    255 	{ NULL, NULL }
    256 };
    257 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    258 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    259 
    260 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int);
    261 
    262 #define	LFS_READWRITE
    263 #include <ufs/ufs/ufs_readwrite.c>
    264 #undef	LFS_READWRITE
    265 
    266 /*
    267  * Synch an open file.
    268  */
    269 /* ARGSUSED */
    270 int
    271 lfs_fsync(void *v)
    272 {
    273 	struct vop_fsync_args /* {
    274 		struct vnode *a_vp;
    275 		kauth_cred_t a_cred;
    276 		int a_flags;
    277 		off_t offlo;
    278 		off_t offhi;
    279 		struct lwp *a_l;
    280 	} */ *ap = v;
    281 	struct vnode *vp = ap->a_vp;
    282 	int error, wait;
    283 
    284 	/* If we're mounted read-only, don't try to sync. */
    285 	if (VTOI(vp)->i_lfs->lfs_ronly)
    286 		return 0;
    287 
    288 	/*
    289 	 * Trickle sync checks for need to do a checkpoint after possible
    290 	 * activity from the pagedaemon.
    291 	 */
    292 	if (ap->a_flags & FSYNC_LAZY) {
    293 		mutex_enter(&lfs_subsys_lock);
    294 		wakeup(&lfs_writer_daemon);
    295 		mutex_exit(&lfs_subsys_lock);
    296 		return 0;
    297 	}
    298 
    299 	/*
    300 	 * If a vnode is bring cleaned, flush it out before we try to
    301 	 * reuse it.  This prevents the cleaner from writing files twice
    302 	 * in the same partial segment, causing an accounting underflow.
    303 	 */
    304 	if (ap->a_flags & FSYNC_RECLAIM && VTOI(vp)->i_flags & IN_CLEANING) {
    305 		/* printf("avoiding VONWORKLIST panic\n"); */
    306 		lfs_vflush(vp);
    307 	}
    308 
    309 	wait = (ap->a_flags & FSYNC_WAIT);
    310 	mutex_enter(&vp->v_interlock);
    311 	error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    312 			round_page(ap->a_offhi),
    313 			PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    314 	if (error)
    315 		return error;
    316 	error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    317 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    318 		int l = 0;
    319 		error = VOP_IOCTL(VTOI(vp)->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    320 				  ap->a_l->l_cred, ap->a_l);
    321 	}
    322 	if (wait && !VPISEMPTY(vp)) {
    323 		mutex_enter(&VTOI(vp)->i_lfs->lfs_interlock);
    324 		LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
    325 		mutex_exit(&VTOI(vp)->i_lfs->lfs_interlock);
    326 	}
    327 
    328 	return error;
    329 }
    330 
    331 /*
    332  * Take IN_ADIROP off, then call ufs_inactive.
    333  */
    334 int
    335 lfs_inactive(void *v)
    336 {
    337 	struct vop_inactive_args /* {
    338 		struct vnode *a_vp;
    339 		struct lwp *a_l;
    340 	} */ *ap = v;
    341 
    342 	KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
    343 
    344 	lfs_unmark_vnode(ap->a_vp);
    345 
    346 	/*
    347 	 * The Ifile is only ever inactivated on unmount.
    348 	 * Streamline this process by not giving it more dirty blocks.
    349 	 */
    350 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    351 		mutex_enter(&VTOI(ap->a_vp)->i_lfs->lfs_interlock);
    352 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    353 		mutex_exit(&VTOI(ap->a_vp)->i_lfs->lfs_interlock);
    354 		VOP_UNLOCK(ap->a_vp, 0);
    355 		return 0;
    356 	}
    357 
    358 	return ufs_inactive(v);
    359 }
    360 
    361 /*
    362  * These macros are used to bracket UFS directory ops, so that we can
    363  * identify all the pages touched during directory ops which need to
    364  * be ordered and flushed atomically, so that they may be recovered.
    365  *
    366  * Because we have to mark nodes VDIROP in order to prevent
    367  * the cache from reclaiming them while a dirop is in progress, we must
    368  * also manage the number of nodes so marked (otherwise we can run out).
    369  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    370  * is decremented during segment write, when VDIROP is taken off.
    371  */
    372 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    373 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    374 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    375 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    376 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    377 static int lfs_set_dirop(struct vnode *, struct vnode *);
    378 
    379 static int
    380 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    381 {
    382 	struct lfs *fs;
    383 	int error;
    384 
    385 	KASSERT(VOP_ISLOCKED(dvp));
    386 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    387 
    388 	fs = VTOI(dvp)->i_lfs;
    389 
    390 	ASSERT_NO_SEGLOCK(fs);
    391 	/*
    392 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    393 	 * as an inode block; an overestimate in most cases.
    394 	 */
    395 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    396 		return (error);
    397 
    398     restart:
    399 	mutex_enter(&fs->lfs_interlock);
    400 	if (fs->lfs_dirops == 0) {
    401 		mutex_exit(&fs->lfs_interlock);
    402 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    403 		mutex_enter(&fs->lfs_interlock);
    404 	}
    405 	while (fs->lfs_writer) {
    406 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    407 				"lfs_sdirop", 0, &fs->lfs_interlock);
    408 		if (error == EINTR) {
    409 			mutex_exit(&fs->lfs_interlock);
    410 			goto unreserve;
    411 		}
    412 	}
    413 	mutex_enter(&lfs_subsys_lock);
    414 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    415 		wakeup(&lfs_writer_daemon);
    416 		mutex_exit(&lfs_subsys_lock);
    417 		mutex_exit(&fs->lfs_interlock);
    418 		preempt();
    419 		goto restart;
    420 	}
    421 
    422 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    423 		mutex_exit(&fs->lfs_interlock);
    424 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    425 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    426 		if ((error = mtsleep(&lfs_dirvcount,
    427 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    428 		    &lfs_subsys_lock)) != 0) {
    429 			goto unreserve;
    430 		}
    431 		goto restart;
    432 	}
    433 	mutex_exit(&lfs_subsys_lock);
    434 
    435 	++fs->lfs_dirops;
    436 	fs->lfs_doifile = 1;
    437 	mutex_exit(&fs->lfs_interlock);
    438 
    439 	/* Hold a reference so SET_ENDOP will be happy */
    440 	vref(dvp);
    441 	if (vp) {
    442 		vref(vp);
    443 		MARK_VNODE(vp);
    444 	}
    445 
    446 	MARK_VNODE(dvp);
    447 	return 0;
    448 
    449 unreserve:
    450 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    451 	return error;
    452 }
    453 
    454 /*
    455  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    456  * in getnewvnode(), if we have a stacked filesystem mounted on top
    457  * of us.
    458  *
    459  * NB: this means we have to clear the new vnodes on error.  Fortunately
    460  * SET_ENDOP is there to do that for us.
    461  */
    462 static int
    463 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    464 {
    465 	int error;
    466 	struct lfs *fs;
    467 
    468 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    469 	ASSERT_NO_SEGLOCK(fs);
    470 	if (fs->lfs_ronly)
    471 		return EROFS;
    472 	if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
    473 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    474 		      dvp, error));
    475 		return error;
    476 	}
    477 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    478 		if (vpp) {
    479 			ungetnewvnode(*vpp);
    480 			*vpp = NULL;
    481 		}
    482 		return error;
    483 	}
    484 	return 0;
    485 }
    486 
    487 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    488 	do {								\
    489 		mutex_enter(&(fs)->lfs_interlock);			\
    490 		--(fs)->lfs_dirops;					\
    491 		if (!(fs)->lfs_dirops) {				\
    492 			if ((fs)->lfs_nadirop) {			\
    493 				panic("SET_ENDOP: %s: no dirops but "	\
    494 					" nadirop=%d", (str),		\
    495 					(fs)->lfs_nadirop);		\
    496 			}						\
    497 			wakeup(&(fs)->lfs_writer);			\
    498 			mutex_exit(&(fs)->lfs_interlock);		\
    499 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    500 		} else							\
    501 			mutex_exit(&(fs)->lfs_interlock);		\
    502 	} while(0)
    503 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    504 	do {								\
    505 		UNMARK_VNODE(dvp);					\
    506 		if (nvpp && *nvpp)					\
    507 			UNMARK_VNODE(*nvpp);				\
    508 		/* Check for error return to stem vnode leakage */	\
    509 		if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP))	\
    510 			ungetnewvnode(*(nvpp));				\
    511 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    512 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    513 		vrele(dvp);						\
    514 	} while(0)
    515 #define SET_ENDOP_CREATE_AP(ap, str)					\
    516 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    517 			 (ap)->a_vpp, (str))
    518 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    519 	do {								\
    520 		UNMARK_VNODE(dvp);					\
    521 		if (ovp)						\
    522 			UNMARK_VNODE(ovp);				\
    523 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    524 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    525 		vrele(dvp);						\
    526 		if (ovp)						\
    527 			vrele(ovp);					\
    528 	} while(0)
    529 
    530 void
    531 lfs_mark_vnode(struct vnode *vp)
    532 {
    533 	struct inode *ip = VTOI(vp);
    534 	struct lfs *fs = ip->i_lfs;
    535 
    536 	mutex_enter(&fs->lfs_interlock);
    537 	if (!(ip->i_flag & IN_ADIROP)) {
    538 		if (!(vp->v_flag & VDIROP)) {
    539 			(void)lfs_vref(vp);
    540 			mutex_enter(&lfs_subsys_lock);
    541 			++lfs_dirvcount;
    542 			++fs->lfs_dirvcount;
    543 			mutex_exit(&lfs_subsys_lock);
    544 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    545 			vp->v_flag |= VDIROP;
    546 		}
    547 		++fs->lfs_nadirop;
    548 		ip->i_flag |= IN_ADIROP;
    549 	} else
    550 		KASSERT(vp->v_flag & VDIROP);
    551 	mutex_exit(&fs->lfs_interlock);
    552 }
    553 
    554 void
    555 lfs_unmark_vnode(struct vnode *vp)
    556 {
    557 	struct inode *ip = VTOI(vp);
    558 
    559 	if (ip && (ip->i_flag & IN_ADIROP)) {
    560 		KASSERT(vp->v_flag & VDIROP);
    561 		mutex_enter(&ip->i_lfs->lfs_interlock);
    562 		--ip->i_lfs->lfs_nadirop;
    563 		mutex_exit(&ip->i_lfs->lfs_interlock);
    564 		ip->i_flag &= ~IN_ADIROP;
    565 	}
    566 }
    567 
    568 int
    569 lfs_symlink(void *v)
    570 {
    571 	struct vop_symlink_args /* {
    572 		struct vnode *a_dvp;
    573 		struct vnode **a_vpp;
    574 		struct componentname *a_cnp;
    575 		struct vattr *a_vap;
    576 		char *a_target;
    577 	} */ *ap = v;
    578 	int error;
    579 
    580 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    581 		vput(ap->a_dvp);
    582 		return error;
    583 	}
    584 	error = ufs_symlink(ap);
    585 	SET_ENDOP_CREATE_AP(ap, "symlink");
    586 	return (error);
    587 }
    588 
    589 int
    590 lfs_mknod(void *v)
    591 {
    592 	struct vop_mknod_args	/* {
    593 		struct vnode *a_dvp;
    594 		struct vnode **a_vpp;
    595 		struct componentname *a_cnp;
    596 		struct vattr *a_vap;
    597 		} */ *ap = v;
    598 	struct vattr *vap = ap->a_vap;
    599 	struct vnode **vpp = ap->a_vpp;
    600 	struct inode *ip;
    601 	int error;
    602 	struct mount	*mp;
    603 	ino_t		ino;
    604 
    605 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    606 		vput(ap->a_dvp);
    607 		return error;
    608 	}
    609 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    610 	    ap->a_dvp, vpp, ap->a_cnp);
    611 
    612 	/* Either way we're done with the dirop at this point */
    613 	SET_ENDOP_CREATE_AP(ap, "mknod");
    614 
    615 	if (error)
    616 		return (error);
    617 
    618 	ip = VTOI(*vpp);
    619 	mp  = (*vpp)->v_mount;
    620 	ino = ip->i_number;
    621 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    622 	if (vap->va_rdev != VNOVAL) {
    623 		/*
    624 		 * Want to be able to use this to make badblock
    625 		 * inodes, so don't truncate the dev number.
    626 		 */
    627 #if 0
    628 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    629 		    UFS_MPNEEDSWAP((*vpp)->v_mount));
    630 #else
    631 		ip->i_ffs1_rdev = vap->va_rdev;
    632 #endif
    633 	}
    634 
    635 	/*
    636 	 * Call fsync to write the vnode so that we don't have to deal with
    637 	 * flushing it when it's marked VDIROP|VXLOCK.
    638 	 *
    639 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    640 	 * return.  But, that leaves this vnode in limbo, also not good.
    641 	 * Can this ever happen (barring hardware failure)?
    642 	 */
    643 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
    644 	    curlwp)) != 0) {
    645 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    646 		    (unsigned long long)ino);
    647 		/* return (error); */
    648 	}
    649 	/*
    650 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    651 	 * checked to see if it is an alias of an existing entry in
    652 	 * the inode cache.
    653 	 */
    654 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    655 
    656 	VOP_UNLOCK(*vpp, 0);
    657 	lfs_vunref(*vpp);
    658 	(*vpp)->v_type = VNON;
    659 	vgone(*vpp);
    660 	error = VFS_VGET(mp, ino, vpp);
    661 
    662 	if (error != 0) {
    663 		*vpp = NULL;
    664 		return (error);
    665 	}
    666 	return (0);
    667 }
    668 
    669 int
    670 lfs_create(void *v)
    671 {
    672 	struct vop_create_args	/* {
    673 		struct vnode *a_dvp;
    674 		struct vnode **a_vpp;
    675 		struct componentname *a_cnp;
    676 		struct vattr *a_vap;
    677 	} */ *ap = v;
    678 	int error;
    679 
    680 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    681 		vput(ap->a_dvp);
    682 		return error;
    683 	}
    684 	error = ufs_create(ap);
    685 	SET_ENDOP_CREATE_AP(ap, "create");
    686 	return (error);
    687 }
    688 
    689 int
    690 lfs_mkdir(void *v)
    691 {
    692 	struct vop_mkdir_args	/* {
    693 		struct vnode *a_dvp;
    694 		struct vnode **a_vpp;
    695 		struct componentname *a_cnp;
    696 		struct vattr *a_vap;
    697 	} */ *ap = v;
    698 	int error;
    699 
    700 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    701 		vput(ap->a_dvp);
    702 		return error;
    703 	}
    704 	error = ufs_mkdir(ap);
    705 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    706 	return (error);
    707 }
    708 
    709 int
    710 lfs_remove(void *v)
    711 {
    712 	struct vop_remove_args	/* {
    713 		struct vnode *a_dvp;
    714 		struct vnode *a_vp;
    715 		struct componentname *a_cnp;
    716 	} */ *ap = v;
    717 	struct vnode *dvp, *vp;
    718 	struct inode *ip;
    719 	int error;
    720 
    721 	dvp = ap->a_dvp;
    722 	vp = ap->a_vp;
    723 	ip = VTOI(vp);
    724 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    725 		if (dvp == vp)
    726 			vrele(vp);
    727 		else
    728 			vput(vp);
    729 		vput(dvp);
    730 		return error;
    731 	}
    732 	error = ufs_remove(ap);
    733 	if (ip->i_nlink == 0)
    734 		lfs_orphan(ip->i_lfs, ip->i_number);
    735 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    736 	return (error);
    737 }
    738 
    739 int
    740 lfs_rmdir(void *v)
    741 {
    742 	struct vop_rmdir_args	/* {
    743 		struct vnodeop_desc *a_desc;
    744 		struct vnode *a_dvp;
    745 		struct vnode *a_vp;
    746 		struct componentname *a_cnp;
    747 	} */ *ap = v;
    748 	struct vnode *vp;
    749 	struct inode *ip;
    750 	int error;
    751 
    752 	vp = ap->a_vp;
    753 	ip = VTOI(vp);
    754 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    755 		if (ap->a_dvp == vp)
    756 			vrele(ap->a_dvp);
    757 		else
    758 			vput(ap->a_dvp);
    759 		vput(vp);
    760 		return error;
    761 	}
    762 	error = ufs_rmdir(ap);
    763 	if (ip->i_nlink == 0)
    764 		lfs_orphan(ip->i_lfs, ip->i_number);
    765 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    766 	return (error);
    767 }
    768 
    769 int
    770 lfs_link(void *v)
    771 {
    772 	struct vop_link_args	/* {
    773 		struct vnode *a_dvp;
    774 		struct vnode *a_vp;
    775 		struct componentname *a_cnp;
    776 	} */ *ap = v;
    777 	int error;
    778 	struct vnode **vpp = NULL;
    779 
    780 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    781 		vput(ap->a_dvp);
    782 		return error;
    783 	}
    784 	error = ufs_link(ap);
    785 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    786 	return (error);
    787 }
    788 
    789 int
    790 lfs_rename(void *v)
    791 {
    792 	struct vop_rename_args	/* {
    793 		struct vnode *a_fdvp;
    794 		struct vnode *a_fvp;
    795 		struct componentname *a_fcnp;
    796 		struct vnode *a_tdvp;
    797 		struct vnode *a_tvp;
    798 		struct componentname *a_tcnp;
    799 	} */ *ap = v;
    800 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    801 	struct componentname *tcnp, *fcnp;
    802 	int error;
    803 	struct lfs *fs;
    804 
    805 	fs = VTOI(ap->a_fdvp)->i_lfs;
    806 	tvp = ap->a_tvp;
    807 	tdvp = ap->a_tdvp;
    808 	tcnp = ap->a_tcnp;
    809 	fvp = ap->a_fvp;
    810 	fdvp = ap->a_fdvp;
    811 	fcnp = ap->a_fcnp;
    812 
    813 	/*
    814 	 * Check for cross-device rename.
    815 	 * If it is, we don't want to set dirops, just error out.
    816 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    817 	 * a cross-device rename.)
    818 	 *
    819 	 * Copied from ufs_rename.
    820 	 */
    821 	if ((fvp->v_mount != tdvp->v_mount) ||
    822 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    823 		error = EXDEV;
    824 		goto errout;
    825 	}
    826 
    827 	/*
    828 	 * Check to make sure we're not renaming a vnode onto itself
    829 	 * (deleting a hard link by renaming one name onto another);
    830 	 * if we are we can't recursively call VOP_REMOVE since that
    831 	 * would leave us with an unaccounted-for number of live dirops.
    832 	 *
    833 	 * Inline the relevant section of ufs_rename here, *before*
    834 	 * calling SET_DIROP_REMOVE.
    835 	 */
    836 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    837 	    (VTOI(tdvp)->i_flags & APPEND))) {
    838 		error = EPERM;
    839 		goto errout;
    840 	}
    841 	if (fvp == tvp) {
    842 		if (fvp->v_type == VDIR) {
    843 			error = EINVAL;
    844 			goto errout;
    845 		}
    846 
    847 		/* Release destination completely. */
    848 		VOP_ABORTOP(tdvp, tcnp);
    849 		vput(tdvp);
    850 		vput(tvp);
    851 
    852 		/* Delete source. */
    853 		vrele(fvp);
    854 		fcnp->cn_flags &= ~(MODMASK | SAVESTART);
    855 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    856 		fcnp->cn_nameiop = DELETE;
    857 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
    858 		if ((error = relookup(fdvp, &fvp, fcnp))) {
    859 			vput(fdvp);
    860 			return (error);
    861 		}
    862 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    863 	}
    864 
    865 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    866 		goto errout;
    867 	MARK_VNODE(fdvp);
    868 	MARK_VNODE(fvp);
    869 
    870 	error = ufs_rename(ap);
    871 	UNMARK_VNODE(fdvp);
    872 	UNMARK_VNODE(fvp);
    873 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    874 	return (error);
    875 
    876     errout:
    877 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    878 	if (tdvp == tvp)
    879 		vrele(tdvp);
    880 	else
    881 		vput(tdvp);
    882 	if (tvp)
    883 		vput(tvp);
    884 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    885 	vrele(fdvp);
    886 	vrele(fvp);
    887 	return (error);
    888 }
    889 
    890 /* XXX hack to avoid calling ITIMES in getattr */
    891 int
    892 lfs_getattr(void *v)
    893 {
    894 	struct vop_getattr_args /* {
    895 		struct vnode *a_vp;
    896 		struct vattr *a_vap;
    897 		kauth_cred_t a_cred;
    898 		struct lwp *a_l;
    899 	} */ *ap = v;
    900 	struct vnode *vp = ap->a_vp;
    901 	struct inode *ip = VTOI(vp);
    902 	struct vattr *vap = ap->a_vap;
    903 	struct lfs *fs = ip->i_lfs;
    904 	/*
    905 	 * Copy from inode table
    906 	 */
    907 	vap->va_fsid = ip->i_dev;
    908 	vap->va_fileid = ip->i_number;
    909 	vap->va_mode = ip->i_mode & ~IFMT;
    910 	vap->va_nlink = ip->i_nlink;
    911 	vap->va_uid = ip->i_uid;
    912 	vap->va_gid = ip->i_gid;
    913 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    914 	vap->va_size = vp->v_size;
    915 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    916 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    917 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    918 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    919 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    920 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    921 	vap->va_flags = ip->i_flags;
    922 	vap->va_gen = ip->i_gen;
    923 	/* this doesn't belong here */
    924 	if (vp->v_type == VBLK)
    925 		vap->va_blocksize = BLKDEV_IOSIZE;
    926 	else if (vp->v_type == VCHR)
    927 		vap->va_blocksize = MAXBSIZE;
    928 	else
    929 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    930 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    931 	vap->va_type = vp->v_type;
    932 	vap->va_filerev = ip->i_modrev;
    933 	return (0);
    934 }
    935 
    936 /*
    937  * Check to make sure the inode blocks won't choke the buffer
    938  * cache, then call ufs_setattr as usual.
    939  */
    940 int
    941 lfs_setattr(void *v)
    942 {
    943 	struct vop_setattr_args /* {
    944 		struct vnode *a_vp;
    945 		struct vattr *a_vap;
    946 		kauth_cred_t a_cred;
    947 		struct lwp *a_l;
    948 	} */ *ap = v;
    949 	struct vnode *vp = ap->a_vp;
    950 
    951 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    952 	return ufs_setattr(v);
    953 }
    954 
    955 /*
    956  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    957  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
    958  */
    959 static int
    960 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    961 {
    962 	if (fs->lfs_stoplwp != curlwp)
    963 		return EBUSY;
    964 
    965 	fs->lfs_stoplwp = NULL;
    966 	cv_signal(&fs->lfs_stopcv);
    967 
    968 	KASSERT(fs->lfs_nowrap > 0);
    969 	if (fs->lfs_nowrap <= 0) {
    970 		return 0;
    971 	}
    972 
    973 	if (--fs->lfs_nowrap == 0) {
    974 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    975 		wakeup(&fs->lfs_wrappass);
    976 		lfs_wakeup_cleaner(fs);
    977 	}
    978 	if (waitfor) {
    979 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER,
    980 			"segment", 0, &fs->lfs_interlock);
    981 	}
    982 
    983 	return 0;
    984 }
    985 
    986 /*
    987  * Close called
    988  */
    989 /* ARGSUSED */
    990 int
    991 lfs_close(void *v)
    992 {
    993 	struct vop_close_args /* {
    994 		struct vnode *a_vp;
    995 		int  a_fflag;
    996 		kauth_cred_t a_cred;
    997 		struct lwp *a_l;
    998 	} */ *ap = v;
    999 	struct vnode *vp = ap->a_vp;
   1000 	struct inode *ip = VTOI(vp);
   1001 	struct lfs *fs = ip->i_lfs;
   1002 
   1003 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1004 	    fs->lfs_stoplwp == curlwp) {
   1005 		mutex_enter(&fs->lfs_interlock);
   1006 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1007 		lfs_wrapgo(fs, ip, 0);
   1008 		mutex_exit(&fs->lfs_interlock);
   1009 	}
   1010 
   1011 	if (vp == ip->i_lfs->lfs_ivnode &&
   1012 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1013 		return 0;
   1014 
   1015 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1016 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1017 	}
   1018 	return (0);
   1019 }
   1020 
   1021 /*
   1022  * Close wrapper for special devices.
   1023  *
   1024  * Update the times on the inode then do device close.
   1025  */
   1026 int
   1027 lfsspec_close(void *v)
   1028 {
   1029 	struct vop_close_args /* {
   1030 		struct vnode	*a_vp;
   1031 		int		a_fflag;
   1032 		kauth_cred_t	a_cred;
   1033 		struct lwp	*a_l;
   1034 	} */ *ap = v;
   1035 	struct vnode	*vp;
   1036 	struct inode	*ip;
   1037 
   1038 	vp = ap->a_vp;
   1039 	ip = VTOI(vp);
   1040 	if (vp->v_usecount > 1) {
   1041 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1042 	}
   1043 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1044 }
   1045 
   1046 /*
   1047  * Close wrapper for fifo's.
   1048  *
   1049  * Update the times on the inode then do device close.
   1050  */
   1051 int
   1052 lfsfifo_close(void *v)
   1053 {
   1054 	struct vop_close_args /* {
   1055 		struct vnode	*a_vp;
   1056 		int		a_fflag;
   1057 		kauth_cred_	a_cred;
   1058 		struct lwp	*a_l;
   1059 	} */ *ap = v;
   1060 	struct vnode	*vp;
   1061 	struct inode	*ip;
   1062 
   1063 	vp = ap->a_vp;
   1064 	ip = VTOI(vp);
   1065 	if (ap->a_vp->v_usecount > 1) {
   1066 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1067 	}
   1068 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1069 }
   1070 
   1071 /*
   1072  * Reclaim an inode so that it can be used for other purposes.
   1073  */
   1074 
   1075 int
   1076 lfs_reclaim(void *v)
   1077 {
   1078 	struct vop_reclaim_args /* {
   1079 		struct vnode *a_vp;
   1080 		struct lwp *a_l;
   1081 	} */ *ap = v;
   1082 	struct vnode *vp = ap->a_vp;
   1083 	struct inode *ip = VTOI(vp);
   1084 	int error;
   1085 
   1086 	KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
   1087 
   1088 	mutex_enter(&ip->i_lfs->lfs_interlock);
   1089 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1090 	mutex_exit(&ip->i_lfs->lfs_interlock);
   1091 	if ((error = ufs_reclaim(vp, ap->a_l)))
   1092 		return (error);
   1093 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1094 	lfs_deregister_all(vp);
   1095 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1096 	ip->inode_ext.lfs = NULL;
   1097 	genfs_node_destroy(vp);
   1098 	pool_put(&lfs_inode_pool, vp->v_data);
   1099 	vp->v_data = NULL;
   1100 	return (0);
   1101 }
   1102 
   1103 /*
   1104  * Read a block from a storage device.
   1105  * In order to avoid reading blocks that are in the process of being
   1106  * written by the cleaner---and hence are not mutexed by the normal
   1107  * buffer cache / page cache mechanisms---check for collisions before
   1108  * reading.
   1109  *
   1110  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1111  * the active cleaner test.
   1112  *
   1113  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1114  */
   1115 int
   1116 lfs_strategy(void *v)
   1117 {
   1118 	struct vop_strategy_args /* {
   1119 		struct vnode *a_vp;
   1120 		struct buf *a_bp;
   1121 	} */ *ap = v;
   1122 	struct buf	*bp;
   1123 	struct lfs	*fs;
   1124 	struct vnode	*vp;
   1125 	struct inode	*ip;
   1126 	daddr_t		tbn;
   1127 	int		i, sn, error, slept;
   1128 
   1129 	bp = ap->a_bp;
   1130 	vp = ap->a_vp;
   1131 	ip = VTOI(vp);
   1132 	fs = ip->i_lfs;
   1133 
   1134 	/* lfs uses its strategy routine only for read */
   1135 	KASSERT(bp->b_flags & B_READ);
   1136 
   1137 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1138 		panic("lfs_strategy: spec");
   1139 	KASSERT(bp->b_bcount != 0);
   1140 	if (bp->b_blkno == bp->b_lblkno) {
   1141 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1142 				 NULL);
   1143 		if (error) {
   1144 			bp->b_error = error;
   1145 			bp->b_flags |= B_ERROR;
   1146 			biodone(bp);
   1147 			return (error);
   1148 		}
   1149 		if ((long)bp->b_blkno == -1) /* no valid data */
   1150 			clrbuf(bp);
   1151 	}
   1152 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1153 		biodone(bp);
   1154 		return (0);
   1155 	}
   1156 
   1157 	slept = 1;
   1158 	mutex_enter(&fs->lfs_interlock);
   1159 	while (slept && fs->lfs_seglock) {
   1160 		mutex_exit(&fs->lfs_interlock);
   1161 		/*
   1162 		 * Look through list of intervals.
   1163 		 * There will only be intervals to look through
   1164 		 * if the cleaner holds the seglock.
   1165 		 * Since the cleaner is synchronous, we can trust
   1166 		 * the list of intervals to be current.
   1167 		 */
   1168 		tbn = dbtofsb(fs, bp->b_blkno);
   1169 		sn = dtosn(fs, tbn);
   1170 		slept = 0;
   1171 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1172 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1173 			    tbn >= fs->lfs_cleanint[i]) {
   1174 				DLOG((DLOG_CLEAN,
   1175 				      "lfs_strategy: ino %d lbn %" PRId64
   1176 				       " ind %d sn %d fsb %" PRIx32
   1177 				       " given sn %d fsb %" PRIx64 "\n",
   1178 					ip->i_number, bp->b_lblkno, i,
   1179 					dtosn(fs, fs->lfs_cleanint[i]),
   1180 					fs->lfs_cleanint[i], sn, tbn));
   1181 				DLOG((DLOG_CLEAN,
   1182 				      "lfs_strategy: sleeping on ino %d lbn %"
   1183 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1184 				mutex_enter(&fs->lfs_interlock);
   1185 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1186 					/* Cleaner can't wait for itself */
   1187 					mtsleep(&fs->lfs_iocount,
   1188 						(PRIBIO + 1) | PNORELOCK,
   1189 						"clean2", 0,
   1190 						&fs->lfs_interlock);
   1191 					slept = 1;
   1192 					break;
   1193 				} else if (fs->lfs_seglock) {
   1194 					mtsleep(&fs->lfs_seglock,
   1195 						(PRIBIO + 1) | PNORELOCK,
   1196 						"clean1", 0,
   1197 						&fs->lfs_interlock);
   1198 					slept = 1;
   1199 					break;
   1200 				}
   1201 				mutex_exit(&fs->lfs_interlock);
   1202 			}
   1203 		}
   1204 		mutex_enter(&fs->lfs_interlock);
   1205 	}
   1206 	mutex_exit(&fs->lfs_interlock);
   1207 
   1208 	vp = ip->i_devvp;
   1209 	VOP_STRATEGY(vp, bp);
   1210 	return (0);
   1211 }
   1212 
   1213 void
   1214 lfs_flush_dirops(struct lfs *fs)
   1215 {
   1216 	struct inode *ip, *nip;
   1217 	struct vnode *vp;
   1218 	extern int lfs_dostats;
   1219 	struct segment *sp;
   1220 	int waslocked;
   1221 
   1222 	ASSERT_MAYBE_SEGLOCK(fs);
   1223 	KASSERT(fs->lfs_nadirop == 0);
   1224 
   1225 	if (fs->lfs_ronly)
   1226 		return;
   1227 
   1228 	mutex_enter(&fs->lfs_interlock);
   1229 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1230 		mutex_exit(&fs->lfs_interlock);
   1231 		return;
   1232 	} else
   1233 		mutex_exit(&fs->lfs_interlock);
   1234 
   1235 	if (lfs_dostats)
   1236 		++lfs_stats.flush_invoked;
   1237 
   1238 	/*
   1239 	 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1240 	 * Technically this is a checkpoint (the on-disk state is valid)
   1241 	 * even though we are leaving out all the file data.
   1242 	 */
   1243 	lfs_imtime(fs);
   1244 	lfs_seglock(fs, SEGM_CKP);
   1245 	sp = fs->lfs_sp;
   1246 
   1247 	/*
   1248 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1249 	 * Only write dirops, and don't flush files' pages, only
   1250 	 * blocks from the directories.
   1251 	 *
   1252 	 * We don't need to vref these files because they are
   1253 	 * dirops and so hold an extra reference until the
   1254 	 * segunlock clears them of that status.
   1255 	 *
   1256 	 * We don't need to check for IN_ADIROP because we know that
   1257 	 * no dirops are active.
   1258 	 *
   1259 	 */
   1260 	mutex_enter(&fs->lfs_interlock);
   1261 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1262 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1263 		mutex_exit(&fs->lfs_interlock);
   1264 		vp = ITOV(ip);
   1265 
   1266 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1267 
   1268 		/*
   1269 		 * All writes to directories come from dirops; all
   1270 		 * writes to files' direct blocks go through the page
   1271 		 * cache, which we're not touching.  Reads to files
   1272 		 * and/or directories will not be affected by writing
   1273 		 * directory blocks inodes and file inodes.  So we don't
   1274 		 * really need to lock.  If we don't lock, though,
   1275 		 * make sure that we don't clear IN_MODIFIED
   1276 		 * unnecessarily.
   1277 		 */
   1278 		if (vp->v_flag & (VXLOCK | VFREEING)) {
   1279 			mutex_enter(&fs->lfs_interlock);
   1280 			continue;
   1281 		}
   1282 		waslocked = VOP_ISLOCKED(vp);
   1283 		if (vp->v_type != VREG &&
   1284 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1285 			lfs_writefile(fs, sp, vp);
   1286 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1287 			    !(ip->i_flag & IN_ALLMOD)) {
   1288 			    	mutex_enter(&fs->lfs_interlock);
   1289 				LFS_SET_UINO(ip, IN_MODIFIED);
   1290 			    	mutex_exit(&fs->lfs_interlock);
   1291 			}
   1292 		}
   1293 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1294 		(void) lfs_writeinode(fs, sp, ip);
   1295 		mutex_enter(&fs->lfs_interlock);
   1296 		if (waslocked == LK_EXCLOTHER)
   1297 			LFS_SET_UINO(ip, IN_MODIFIED);
   1298 	}
   1299 	mutex_exit(&fs->lfs_interlock);
   1300 	/* We've written all the dirops there are */
   1301 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1302 	lfs_finalize_fs_seguse(fs);
   1303 	(void) lfs_writeseg(fs, sp);
   1304 	lfs_segunlock(fs);
   1305 }
   1306 
   1307 /*
   1308  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1309  * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
   1310  * has just run, this would be an error).  If we have to skip a vnode
   1311  * for any reason, just skip it; if we have to wait for the cleaner,
   1312  * abort.  The writer daemon will call us again later.
   1313  */
   1314 void
   1315 lfs_flush_pchain(struct lfs *fs)
   1316 {
   1317 	struct inode *ip, *nip;
   1318 	struct vnode *vp;
   1319 	extern int lfs_dostats;
   1320 	struct segment *sp;
   1321 	int error;
   1322 
   1323 	ASSERT_NO_SEGLOCK(fs);
   1324 
   1325 	if (fs->lfs_ronly)
   1326 		return;
   1327 
   1328 	mutex_enter(&fs->lfs_interlock);
   1329 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1330 		mutex_exit(&fs->lfs_interlock);
   1331 		return;
   1332 	} else
   1333 		mutex_exit(&fs->lfs_interlock);
   1334 
   1335 	/* Get dirops out of the way */
   1336 	lfs_flush_dirops(fs);
   1337 
   1338 	if (lfs_dostats)
   1339 		++lfs_stats.flush_invoked;
   1340 
   1341 	/*
   1342 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1343 	 */
   1344 	lfs_imtime(fs);
   1345 	lfs_seglock(fs, 0);
   1346 	sp = fs->lfs_sp;
   1347 
   1348 	/*
   1349 	 * lfs_writevnodes, optimized to clear pageout requests.
   1350 	 * Only write non-dirop files that are in the pageout queue.
   1351 	 * We're very conservative about what we write; we want to be
   1352 	 * fast and async.
   1353 	 */
   1354 	mutex_enter(&fs->lfs_interlock);
   1355     top:
   1356 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1357 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1358 		vp = ITOV(ip);
   1359 
   1360 		if (!(ip->i_flags & IN_PAGING))
   1361 			goto top;
   1362 
   1363 		if (vp->v_flag & (VXLOCK|VDIROP))
   1364 			continue;
   1365 		if (vp->v_type != VREG)
   1366 			continue;
   1367 		if (lfs_vref(vp))
   1368 			continue;
   1369 		mutex_exit(&fs->lfs_interlock);
   1370 
   1371 		if (VOP_ISLOCKED(vp)) {
   1372 			lfs_vunref(vp);
   1373 			mutex_enter(&fs->lfs_interlock);
   1374 			continue;
   1375 		}
   1376 
   1377 		error = lfs_writefile(fs, sp, vp);
   1378 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1379 		    !(ip->i_flag & IN_ALLMOD)) {
   1380 		    	mutex_enter(&fs->lfs_interlock);
   1381 			LFS_SET_UINO(ip, IN_MODIFIED);
   1382 		    	mutex_exit(&fs->lfs_interlock);
   1383 		}
   1384 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1385 		(void) lfs_writeinode(fs, sp, ip);
   1386 
   1387 		lfs_vunref(vp);
   1388 
   1389 		if (error == EAGAIN) {
   1390 			lfs_writeseg(fs, sp);
   1391 			mutex_enter(&fs->lfs_interlock);
   1392 			break;
   1393 		}
   1394 		mutex_enter(&fs->lfs_interlock);
   1395 	}
   1396 	mutex_exit(&fs->lfs_interlock);
   1397 	(void) lfs_writeseg(fs, sp);
   1398 	lfs_segunlock(fs);
   1399 }
   1400 
   1401 /*
   1402  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1403  */
   1404 int
   1405 lfs_fcntl(void *v)
   1406 {
   1407 	struct vop_fcntl_args /* {
   1408 		struct vnode *a_vp;
   1409 		u_long a_command;
   1410 		void * a_data;
   1411 		int  a_fflag;
   1412 		kauth_cred_t a_cred;
   1413 		struct lwp *a_l;
   1414 	} */ *ap = v;
   1415 	struct timeval *tvp;
   1416 	BLOCK_INFO *blkiov;
   1417 	CLEANERINFO *cip;
   1418 	SEGUSE *sup;
   1419 	int blkcnt, error, oclean;
   1420 	size_t fh_size;
   1421 	struct lfs_fcntl_markv blkvp;
   1422 	struct lwp *l;
   1423 	fsid_t *fsidp;
   1424 	struct lfs *fs;
   1425 	struct buf *bp;
   1426 	fhandle_t *fhp;
   1427 	daddr_t off;
   1428 
   1429 	/* Only respect LFS fcntls on fs root or Ifile */
   1430 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1431 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1432 		return ufs_fcntl(v);
   1433 	}
   1434 
   1435 	/* Avoid locking a draining lock */
   1436 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1437 		return ESHUTDOWN;
   1438 	}
   1439 
   1440 	/* LFS control and monitoring fcntls are available only to root */
   1441 	l = ap->a_l;
   1442 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1443 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   1444 	    NULL)) != 0)
   1445 		return (error);
   1446 
   1447 	fs = VTOI(ap->a_vp)->i_lfs;
   1448 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1449 
   1450 	error = 0;
   1451 	switch (ap->a_command) {
   1452 	    case LFCNSEGWAITALL:
   1453 	    case LFCNSEGWAITALL_COMPAT:
   1454 		fsidp = NULL;
   1455 		/* FALLSTHROUGH */
   1456 	    case LFCNSEGWAIT:
   1457 	    case LFCNSEGWAIT_COMPAT:
   1458 		tvp = (struct timeval *)ap->a_data;
   1459 		mutex_enter(&fs->lfs_interlock);
   1460 		++fs->lfs_sleepers;
   1461 		mutex_exit(&fs->lfs_interlock);
   1462 
   1463 		error = lfs_segwait(fsidp, tvp);
   1464 
   1465 		mutex_enter(&fs->lfs_interlock);
   1466 		if (--fs->lfs_sleepers == 0)
   1467 			wakeup(&fs->lfs_sleepers);
   1468 		mutex_exit(&fs->lfs_interlock);
   1469 		return error;
   1470 
   1471 	    case LFCNBMAPV:
   1472 	    case LFCNMARKV:
   1473 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1474 
   1475 		blkcnt = blkvp.blkcnt;
   1476 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1477 			return (EINVAL);
   1478 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1479 		if ((error = copyin(blkvp.blkiov, blkiov,
   1480 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1481 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1482 			return error;
   1483 		}
   1484 
   1485 		mutex_enter(&fs->lfs_interlock);
   1486 		++fs->lfs_sleepers;
   1487 		mutex_exit(&fs->lfs_interlock);
   1488 		if (ap->a_command == LFCNBMAPV)
   1489 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1490 		else /* LFCNMARKV */
   1491 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1492 		if (error == 0)
   1493 			error = copyout(blkiov, blkvp.blkiov,
   1494 					blkcnt * sizeof(BLOCK_INFO));
   1495 		mutex_enter(&fs->lfs_interlock);
   1496 		if (--fs->lfs_sleepers == 0)
   1497 			wakeup(&fs->lfs_sleepers);
   1498 		mutex_exit(&fs->lfs_interlock);
   1499 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1500 		return error;
   1501 
   1502 	    case LFCNRECLAIM:
   1503 		/*
   1504 		 * Flush dirops and write Ifile, allowing empty segments
   1505 		 * to be immediately reclaimed.
   1506 		 */
   1507 		lfs_writer_enter(fs, "pndirop");
   1508 		off = fs->lfs_offset;
   1509 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1510 		lfs_flush_dirops(fs);
   1511 		LFS_CLEANERINFO(cip, fs, bp);
   1512 		oclean = cip->clean;
   1513 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1514 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1515 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1516 		lfs_segunlock(fs);
   1517 		lfs_writer_leave(fs);
   1518 
   1519 #ifdef DEBUG
   1520 		LFS_CLEANERINFO(cip, fs, bp);
   1521 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1522 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1523 		      fs->lfs_offset - off, cip->clean - oclean,
   1524 		      fs->lfs_activesb));
   1525 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1526 #endif
   1527 
   1528 		return 0;
   1529 
   1530 #ifdef COMPAT_30
   1531 	    case LFCNIFILEFH_COMPAT:
   1532 		/* Return the filehandle of the Ifile */
   1533 		if ((error = kauth_authorize_generic(l->l_cred,
   1534 		    KAUTH_GENERIC_ISSUSER, NULL)) != 0)
   1535 			return (error);
   1536 		fhp = (struct fhandle *)ap->a_data;
   1537 		fhp->fh_fsid = *fsidp;
   1538 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1539 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1540 #endif
   1541 
   1542 	    case LFCNIFILEFH_COMPAT2:
   1543 	    case LFCNIFILEFH:
   1544 		/* Return the filehandle of the Ifile */
   1545 		fhp = (struct fhandle *)ap->a_data;
   1546 		fhp->fh_fsid = *fsidp;
   1547 		fh_size = sizeof(struct lfs_fhandle) -
   1548 		    offsetof(fhandle_t, fh_fid);
   1549 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1550 
   1551 	    case LFCNREWIND:
   1552 		/* Move lfs_offset to the lowest-numbered segment */
   1553 		return lfs_rewind(fs, *(int *)ap->a_data);
   1554 
   1555 	    case LFCNINVAL:
   1556 		/* Mark a segment SEGUSE_INVAL */
   1557 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1558 		if (sup->su_nbytes > 0) {
   1559 			brelse(bp);
   1560 			lfs_unset_inval_all(fs);
   1561 			return EBUSY;
   1562 		}
   1563 		sup->su_flags |= SEGUSE_INVAL;
   1564 		VOP_BWRITE(bp);
   1565 		return 0;
   1566 
   1567 	    case LFCNRESIZE:
   1568 		/* Resize the filesystem */
   1569 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1570 
   1571 	    case LFCNWRAPSTOP:
   1572 	    case LFCNWRAPSTOP_COMPAT:
   1573 		/*
   1574 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1575 		 * the filesystem wraps around.  To support external agents
   1576 		 * (dump, fsck-based regression test) that need to look at
   1577 		 * a snapshot of the filesystem, without necessarily
   1578 		 * requiring that all fs activity stops.
   1579 		 */
   1580 		if (fs->lfs_stoplwp == curlwp)
   1581 			return EALREADY;
   1582 
   1583 		mutex_enter(&fs->lfs_interlock);
   1584 		while (fs->lfs_stoplwp != NULL)
   1585 			cv_wait(&fs->lfs_stopcv, &fs->lfs_interlock);
   1586 		fs->lfs_stoplwp = curlwp;
   1587 		if (fs->lfs_nowrap == 0)
   1588 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1589 		++fs->lfs_nowrap;
   1590 		if (*(int *)ap->a_data == 1 ||
   1591 		    ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1592 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1593 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1594 				"segwrap", 0, &fs->lfs_interlock);
   1595 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1596 			if (error) {
   1597 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1598 			}
   1599 		}
   1600 		mutex_exit(&fs->lfs_interlock);
   1601 		return 0;
   1602 
   1603 	    case LFCNWRAPGO:
   1604 	    case LFCNWRAPGO_COMPAT:
   1605 		/*
   1606 		 * Having done its work, the agent wakes up the writer.
   1607 		 * If the argument is 1, it sleeps until a new segment
   1608 		 * is selected.
   1609 		 */
   1610 		mutex_enter(&fs->lfs_interlock);
   1611 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1612 				   (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1613 				    *((int *)ap->a_data)));
   1614 		mutex_exit(&fs->lfs_interlock);
   1615 		return error;
   1616 
   1617 	    case LFCNWRAPPASS:
   1618 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1619 			return EALREADY;
   1620 		mutex_enter(&fs->lfs_interlock);
   1621 		if (fs->lfs_stoplwp != curlwp) {
   1622 			mutex_exit(&fs->lfs_interlock);
   1623 			return EALREADY;
   1624 		}
   1625 		if (fs->lfs_nowrap == 0) {
   1626 			mutex_exit(&fs->lfs_interlock);
   1627 			return EBUSY;
   1628 		}
   1629 		fs->lfs_wrappass = 1;
   1630 		wakeup(&fs->lfs_wrappass);
   1631 		/* Wait for the log to wrap, if asked */
   1632 		if (*(int *)ap->a_data) {
   1633 			lfs_vref(ap->a_vp);
   1634 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1635 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1636 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1637 				"segwrap", 0, &fs->lfs_interlock);
   1638 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1639 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1640 			lfs_vunref(ap->a_vp);
   1641 		}
   1642 		mutex_exit(&fs->lfs_interlock);
   1643 		return error;
   1644 
   1645 	    case LFCNWRAPSTATUS:
   1646 		mutex_enter(&fs->lfs_interlock);
   1647 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1648 		mutex_exit(&fs->lfs_interlock);
   1649 		return 0;
   1650 
   1651 	    default:
   1652 		return ufs_fcntl(v);
   1653 	}
   1654 	return 0;
   1655 }
   1656 
   1657 int
   1658 lfs_getpages(void *v)
   1659 {
   1660 	struct vop_getpages_args /* {
   1661 		struct vnode *a_vp;
   1662 		voff_t a_offset;
   1663 		struct vm_page **a_m;
   1664 		int *a_count;
   1665 		int a_centeridx;
   1666 		vm_prot_t a_access_type;
   1667 		int a_advice;
   1668 		int a_flags;
   1669 	} */ *ap = v;
   1670 
   1671 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1672 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1673 		return EPERM;
   1674 	}
   1675 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1676 		mutex_enter(&VTOI(ap->a_vp)->i_lfs->lfs_interlock);
   1677 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1678 		mutex_exit(&VTOI(ap->a_vp)->i_lfs->lfs_interlock);
   1679 	}
   1680 
   1681 	/*
   1682 	 * we're relying on the fact that genfs_getpages() always read in
   1683 	 * entire filesystem blocks.
   1684 	 */
   1685 	return genfs_getpages(v);
   1686 }
   1687 
   1688 /*
   1689  * Make sure that for all pages in every block in the given range,
   1690  * either all are dirty or all are clean.  If any of the pages
   1691  * we've seen so far are dirty, put the vnode on the paging chain,
   1692  * and mark it IN_PAGING.
   1693  *
   1694  * If checkfirst != 0, don't check all the pages but return at the
   1695  * first dirty page.
   1696  */
   1697 static int
   1698 check_dirty(struct lfs *fs, struct vnode *vp,
   1699 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1700 	    int flags, int checkfirst)
   1701 {
   1702 	int by_list;
   1703 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1704 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1705 	off_t soff = 0; /* XXX: gcc */
   1706 	voff_t off;
   1707 	int i;
   1708 	int nonexistent;
   1709 	int any_dirty;	/* number of dirty pages */
   1710 	int dirty;	/* number of dirty pages in a block */
   1711 	int tdirty;
   1712 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1713 	int pagedaemon = (curproc == uvm.pagedaemon_proc);
   1714 
   1715 	ASSERT_MAYBE_SEGLOCK(fs);
   1716   top:
   1717 	by_list = (vp->v_uobj.uo_npages <=
   1718 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1719 		   UVM_PAGE_HASH_PENALTY);
   1720 	any_dirty = 0;
   1721 
   1722 	if (by_list) {
   1723 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1724 	} else {
   1725 		soff = startoffset;
   1726 	}
   1727 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1728 		if (by_list) {
   1729 			/*
   1730 			 * Find the first page in a block.  Skip
   1731 			 * blocks outside our area of interest or beyond
   1732 			 * the end of file.
   1733 			 */
   1734 			if (pages_per_block > 1) {
   1735 				while (curpg &&
   1736 				       ((curpg->offset & fs->lfs_bmask) ||
   1737 					curpg->offset >= vp->v_size ||
   1738 					curpg->offset >= endoffset))
   1739 					curpg = TAILQ_NEXT(curpg, listq);
   1740 			}
   1741 			if (curpg == NULL)
   1742 				break;
   1743 			soff = curpg->offset;
   1744 		}
   1745 
   1746 		/*
   1747 		 * Mark all pages in extended range busy; find out if any
   1748 		 * of them are dirty.
   1749 		 */
   1750 		nonexistent = dirty = 0;
   1751 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1752 			if (by_list && pages_per_block <= 1) {
   1753 				pgs[i] = pg = curpg;
   1754 			} else {
   1755 				off = soff + (i << PAGE_SHIFT);
   1756 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1757 				if (pg == NULL) {
   1758 					++nonexistent;
   1759 					continue;
   1760 				}
   1761 			}
   1762 			KASSERT(pg != NULL);
   1763 
   1764 			/*
   1765 			 * If we're holding the segment lock, we can deadlock
   1766 			 * against a process that has our page and is waiting
   1767 			 * for the cleaner, while the cleaner waits for the
   1768 			 * segment lock.  Just bail in that case.
   1769 			 */
   1770 			if ((pg->flags & PG_BUSY) &&
   1771 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1772 				if (by_list && i > 0)
   1773 					uvm_page_unbusy(pgs, i);
   1774 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1775 				return -1;
   1776 			}
   1777 
   1778 			while (pg->flags & PG_BUSY) {
   1779 				pg->flags |= PG_WANTED;
   1780 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1781 						    "lfsput", 0);
   1782 				mutex_enter(&vp->v_interlock);
   1783 				if (by_list) {
   1784 					if (i > 0)
   1785 						uvm_page_unbusy(pgs, i);
   1786 					goto top;
   1787 				}
   1788 			}
   1789 			pg->flags |= PG_BUSY;
   1790 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1791 
   1792 			pmap_page_protect(pg, VM_PROT_NONE);
   1793 			tdirty = (pmap_clear_modify(pg) ||
   1794 				  (pg->flags & PG_CLEAN) == 0);
   1795 			dirty += tdirty;
   1796 		}
   1797 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1798 			if (by_list) {
   1799 				curpg = TAILQ_NEXT(curpg, listq);
   1800 			} else {
   1801 				soff += fs->lfs_bsize;
   1802 			}
   1803 			continue;
   1804 		}
   1805 
   1806 		any_dirty += dirty;
   1807 		KASSERT(nonexistent == 0);
   1808 
   1809 		/*
   1810 		 * If any are dirty make all dirty; unbusy them,
   1811 		 * but if we were asked to clean, wire them so that
   1812 		 * the pagedaemon doesn't bother us about them while
   1813 		 * they're on their way to disk.
   1814 		 */
   1815 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1816 			pg = pgs[i];
   1817 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   1818 			if (dirty) {
   1819 				pg->flags &= ~PG_CLEAN;
   1820 				if (flags & PGO_FREE) {
   1821 					/*
   1822 					 * Wire the page so that
   1823 					 * pdaemon doesn't see it again.
   1824 					 */
   1825 					mutex_enter(&uvm_pageqlock);
   1826 					uvm_pagewire(pg);
   1827 					mutex_exit(&uvm_pageqlock);
   1828 
   1829 					/* Suspended write flag */
   1830 					pg->flags |= PG_DELWRI;
   1831 				}
   1832 			}
   1833 			if (pg->flags & PG_WANTED)
   1834 				wakeup(pg);
   1835 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   1836 			UVM_PAGE_OWN(pg, NULL);
   1837 		}
   1838 
   1839 		if (checkfirst && any_dirty)
   1840 			break;
   1841 
   1842 		if (by_list) {
   1843 			curpg = TAILQ_NEXT(curpg, listq);
   1844 		} else {
   1845 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   1846 		}
   1847 	}
   1848 
   1849 	return any_dirty;
   1850 }
   1851 
   1852 /*
   1853  * lfs_putpages functions like genfs_putpages except that
   1854  *
   1855  * (1) It needs to bounds-check the incoming requests to ensure that
   1856  *     they are block-aligned; if they are not, expand the range and
   1857  *     do the right thing in case, e.g., the requested range is clean
   1858  *     but the expanded range is dirty.
   1859  *
   1860  * (2) It needs to explicitly send blocks to be written when it is done.
   1861  *     VOP_PUTPAGES is not ever called with the seglock held, so
   1862  *     we simply take the seglock and let lfs_segunlock wait for us.
   1863  *     XXX Actually we can be called with the seglock held, if we have
   1864  *     XXX to flush a vnode while lfs_markv is in operation.  As of this
   1865  *     XXX writing we panic in this case.
   1866  *
   1867  * Assumptions:
   1868  *
   1869  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   1870  *     there is a danger that when we expand the page range and busy the
   1871  *     pages we will deadlock.
   1872  *
   1873  * (2) We are called with vp->v_interlock held; we must return with it
   1874  *     released.
   1875  *
   1876  * (3) We don't absolutely have to free pages right away, provided that
   1877  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   1878  *     us a request with PGO_FREE, we take the pages out of the paging
   1879  *     queue and wake up the writer, which will handle freeing them for us.
   1880  *
   1881  *     We ensure that for any filesystem block, all pages for that
   1882  *     block are either resident or not, even if those pages are higher
   1883  *     than EOF; that means that we will be getting requests to free
   1884  *     "unused" pages above EOF all the time, and should ignore them.
   1885  *
   1886  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   1887  *     into has been set up for us by lfs_writefile.  If not, we will
   1888  *     have to handle allocating and/or freeing an finfo entry.
   1889  *
   1890  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   1891  */
   1892 
   1893 int
   1894 lfs_putpages(void *v)
   1895 {
   1896 	int error;
   1897 	struct vop_putpages_args /* {
   1898 		struct vnode *a_vp;
   1899 		voff_t a_offlo;
   1900 		voff_t a_offhi;
   1901 		int a_flags;
   1902 	} */ *ap = v;
   1903 	struct vnode *vp;
   1904 	struct inode *ip;
   1905 	struct lfs *fs;
   1906 	struct segment *sp;
   1907 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   1908 	off_t off, max_endoffset;
   1909 	int s;
   1910 	bool seglocked, sync, pagedaemon;
   1911 	struct vm_page *pg;
   1912 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   1913 
   1914 	vp = ap->a_vp;
   1915 	ip = VTOI(vp);
   1916 	fs = ip->i_lfs;
   1917 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   1918 	pagedaemon = (curproc == uvm.pagedaemon_proc);
   1919 
   1920 	/* Putpages does nothing for metadata. */
   1921 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   1922 		mutex_exit(&vp->v_interlock);
   1923 		return 0;
   1924 	}
   1925 
   1926 	/*
   1927 	 * If there are no pages, don't do anything.
   1928 	 */
   1929 	if (vp->v_uobj.uo_npages == 0) {
   1930 		s = splbio();
   1931 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   1932 		    (vp->v_flag & VONWORKLST) &&
   1933 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   1934 			vp->v_flag &= ~VWRITEMAPDIRTY;
   1935 			vn_syncer_remove_from_worklist(vp);
   1936 		}
   1937 		splx(s);
   1938 		mutex_exit(&vp->v_interlock);
   1939 
   1940 		/* Remove us from paging queue, if we were on it */
   1941 		mutex_enter(&fs->lfs_interlock);
   1942 		if (ip->i_flags & IN_PAGING) {
   1943 			ip->i_flags &= ~IN_PAGING;
   1944 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1945 		}
   1946 		mutex_exit(&fs->lfs_interlock);
   1947 		return 0;
   1948 	}
   1949 
   1950 	blkeof = blkroundup(fs, ip->i_size);
   1951 
   1952 	/*
   1953 	 * Ignore requests to free pages past EOF but in the same block
   1954 	 * as EOF, unless the request is synchronous.  (If the request is
   1955 	 * sync, it comes from lfs_truncate.)
   1956 	 * XXXUBC Make these pages look "active" so the pagedaemon won't
   1957 	 * XXXUBC bother us with them again.
   1958 	 */
   1959 	if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   1960 		origoffset = ap->a_offlo;
   1961 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   1962 			pg = uvm_pagelookup(&vp->v_uobj, off);
   1963 			KASSERT(pg != NULL);
   1964 			while (pg->flags & PG_BUSY) {
   1965 				pg->flags |= PG_WANTED;
   1966 				UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
   1967 						    "lfsput2", 0);
   1968 				mutex_enter(&vp->v_interlock);
   1969 			}
   1970 			mutex_enter(&uvm_pageqlock);
   1971 			uvm_pageactivate(pg);
   1972 			mutex_exit(&uvm_pageqlock);
   1973 		}
   1974 		ap->a_offlo = blkeof;
   1975 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   1976 			mutex_exit(&vp->v_interlock);
   1977 			return 0;
   1978 		}
   1979 	}
   1980 
   1981 	/*
   1982 	 * Extend page range to start and end at block boundaries.
   1983 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   1984 	 */
   1985 	origoffset = ap->a_offlo;
   1986 	origendoffset = ap->a_offhi;
   1987 	startoffset = origoffset & ~(fs->lfs_bmask);
   1988 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   1989 					       << fs->lfs_bshift;
   1990 
   1991 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   1992 		endoffset = max_endoffset;
   1993 		origendoffset = endoffset;
   1994 	} else {
   1995 		origendoffset = round_page(ap->a_offhi);
   1996 		endoffset = round_page(blkroundup(fs, origendoffset));
   1997 	}
   1998 
   1999 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2000 	if (startoffset == endoffset) {
   2001 		/* Nothing to do, why were we called? */
   2002 		mutex_exit(&vp->v_interlock);
   2003 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2004 		      PRId64 "\n", startoffset));
   2005 		return 0;
   2006 	}
   2007 
   2008 	ap->a_offlo = startoffset;
   2009 	ap->a_offhi = endoffset;
   2010 
   2011 	if (!(ap->a_flags & PGO_CLEANIT))
   2012 		return genfs_putpages(v);
   2013 
   2014 	/*
   2015 	 * If there are more than one page per block, we don't want
   2016 	 * to get caught locking them backwards; so set PGO_BUSYFAIL
   2017 	 * to avoid deadlocks.
   2018 	 */
   2019 	ap->a_flags |= PGO_BUSYFAIL;
   2020 
   2021 	do {
   2022 		int r;
   2023 
   2024 		/* If no pages are dirty, we can just use genfs_putpages. */
   2025 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2026 				ap->a_flags, 1);
   2027 		if (r < 0) {
   2028 			mutex_exit(&vp->v_interlock);
   2029 			return EDEADLK;
   2030 		}
   2031 		if (r > 0)
   2032 			break;
   2033 
   2034 		/*
   2035 		 * Sometimes pages are dirtied between the time that
   2036 		 * we check and the time we try to clean them.
   2037 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2038 		 * so we can write them properly.
   2039 		 */
   2040 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2041 		r = genfs_putpages(v);
   2042 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2043 		if (r != EDEADLK)
   2044 			return r;
   2045 
   2046 		/* Start over. */
   2047 		preempt();
   2048 		mutex_enter(&vp->v_interlock);
   2049 	} while(1);
   2050 
   2051 	/*
   2052 	 * Dirty and asked to clean.
   2053 	 *
   2054 	 * Pagedaemon can't actually write LFS pages; wake up
   2055 	 * the writer to take care of that.  The writer will
   2056 	 * notice the pager inode queue and act on that.
   2057 	 */
   2058 	if (pagedaemon) {
   2059 		mutex_enter(&fs->lfs_interlock);
   2060 		if (!(ip->i_flags & IN_PAGING)) {
   2061 			ip->i_flags |= IN_PAGING;
   2062 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2063 		}
   2064 		mutex_enter(&lfs_subsys_lock);
   2065 		wakeup(&lfs_writer_daemon);
   2066 		mutex_exit(&lfs_subsys_lock);
   2067 		mutex_exit(&fs->lfs_interlock);
   2068 		mutex_exit(&vp->v_interlock);
   2069 		preempt();
   2070 		return EWOULDBLOCK;
   2071 	}
   2072 
   2073 	/*
   2074 	 * If this is a file created in a recent dirop, we can't flush its
   2075 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2076 	 * filesystem (taking care of any other pending dirops while we're
   2077 	 * at it).
   2078 	 */
   2079 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2080 	    (vp->v_flag & VDIROP)) {
   2081 		int locked;
   2082 
   2083 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
   2084 		locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
   2085 		mutex_exit(&vp->v_interlock);
   2086 		lfs_writer_enter(fs, "ppdirop");
   2087 		if (locked)
   2088 			VOP_UNLOCK(vp, 0);
   2089 
   2090 		mutex_enter(&fs->lfs_interlock);
   2091 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2092 		mutex_exit(&fs->lfs_interlock);
   2093 
   2094 		mutex_enter(&vp->v_interlock);
   2095 		if (locked) {
   2096 			VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
   2097 			mutex_enter(&vp->v_interlock);
   2098 		}
   2099 		lfs_writer_leave(fs);
   2100 
   2101 		/* XXX the flush should have taken care of this one too! */
   2102 	}
   2103 
   2104 	/*
   2105 	 * This is it.	We are going to write some pages.  From here on
   2106 	 * down it's all just mechanics.
   2107 	 *
   2108 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2109 	 */
   2110 	ap->a_flags &= ~PGO_SYNCIO;
   2111 
   2112 	/*
   2113 	 * If we've already got the seglock, flush the node and return.
   2114 	 * The FIP has already been set up for us by lfs_writefile,
   2115 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2116 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2117 	 * what we have, and correct FIP and segment header accounting.
   2118 	 */
   2119     get_seglock:
   2120 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2121 	if (!seglocked) {
   2122 		mutex_exit(&vp->v_interlock);
   2123 		/*
   2124 		 * Take the seglock, because we are going to be writing pages.
   2125 		 */
   2126 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2127 		if (error != 0)
   2128 			return error;
   2129 		mutex_enter(&vp->v_interlock);
   2130 	}
   2131 
   2132 	/*
   2133 	 * VOP_PUTPAGES should not be called while holding the seglock.
   2134 	 * XXXUBC fix lfs_markv, or do this properly.
   2135 	 */
   2136 #ifdef notyet
   2137 	KASSERT(fs->lfs_seglock == 1);
   2138 #endif /* notyet */
   2139 
   2140 	/*
   2141 	 * We assume we're being called with sp->fip pointing at blank space.
   2142 	 * Account for a new FIP in the segment header, and set sp->vp.
   2143 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2144 	 */
   2145 	sp = fs->lfs_sp;
   2146 	if (!seglocked)
   2147 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2148 	KASSERT(sp->vp == NULL);
   2149 	sp->vp = vp;
   2150 
   2151 	if (!seglocked) {
   2152 		if (vp->v_flag & VDIROP)
   2153 			((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2154 	}
   2155 
   2156 	/*
   2157 	 * Loop through genfs_putpages until all pages are gathered.
   2158 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2159 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2160 	 * well.
   2161 	 */
   2162 again:
   2163 	if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2164 	    ap->a_flags, 0) < 0) {
   2165 		mutex_exit(&vp->v_interlock);
   2166 		sp->vp = NULL;
   2167 		if (!seglocked) {
   2168 			lfs_release_finfo(fs);
   2169 			lfs_segunlock(fs);
   2170 		}
   2171 		if (pagedaemon)
   2172 			return EDEADLK;
   2173 		/* else seglocked == 0 */
   2174 		preempt();
   2175 		mutex_enter(&vp->v_interlock);
   2176 		goto get_seglock;
   2177 	}
   2178 
   2179 	error = genfs_putpages(v);
   2180 	if (error == EDEADLK || error == EAGAIN) {
   2181 		DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2182 		      " EDEADLK [2] ino %d off %x (seg %d)\n",
   2183 		      ip->i_number, fs->lfs_offset,
   2184 		      dtosn(fs, fs->lfs_offset)));
   2185 		/* If nothing to write, short-circuit */
   2186 		if (sp->cbpp - sp->bpp > 1) {
   2187 			/* Write gathered pages */
   2188 			lfs_updatemeta(sp);
   2189 			lfs_release_finfo(fs);
   2190 			(void) lfs_writeseg(fs, sp);
   2191 
   2192 			/*
   2193 			 * Reinitialize brand new FIP and add us to it.
   2194 			 */
   2195 			KASSERT(sp->vp == vp);
   2196 			lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2197 		}
   2198 
   2199 		/* Give the write a chance to complete */
   2200 		preempt();
   2201 
   2202 		/* We've lost the interlock.  Start over. */
   2203 		if (error == EDEADLK) {
   2204 			mutex_enter(&vp->v_interlock);
   2205 			goto again;
   2206 		}
   2207 	}
   2208 
   2209 	KASSERT(sp->vp == vp);
   2210 	if (!seglocked) {
   2211 		sp->vp = NULL;
   2212 
   2213 		/* Write indirect blocks as well */
   2214 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2215 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2216 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2217 
   2218 		KASSERT(sp->vp == NULL);
   2219 		sp->vp = vp;
   2220 	}
   2221 
   2222 	/*
   2223 	 * Blocks are now gathered into a segment waiting to be written.
   2224 	 * All that's left to do is update metadata, and write them.
   2225 	 */
   2226 	lfs_updatemeta(sp);
   2227 	KASSERT(sp->vp == vp);
   2228 	sp->vp = NULL;
   2229 
   2230 	if (seglocked) {
   2231 		/* we're called by lfs_writefile. */
   2232 		return error;
   2233 	}
   2234 
   2235 	/* Clean up FIP and send it to disk. */
   2236 	lfs_release_finfo(fs);
   2237 	lfs_writeseg(fs, fs->lfs_sp);
   2238 
   2239 	/*
   2240 	 * Remove us from paging queue, since we've now written all our
   2241 	 * pages.
   2242 	 */
   2243 	mutex_enter(&fs->lfs_interlock);
   2244 	if (ip->i_flags & IN_PAGING) {
   2245 		ip->i_flags &= ~IN_PAGING;
   2246 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2247 	}
   2248 	mutex_exit(&fs->lfs_interlock);
   2249 
   2250 	/*
   2251 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2252 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2253 	 * will not be true if we stop using malloc/copy.
   2254 	 */
   2255 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2256 	lfs_segunlock(fs);
   2257 
   2258 	/*
   2259 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2260 	 * take care of this, but there is a slight possibility that
   2261 	 * aiodoned might not have got around to our buffers yet.
   2262 	 */
   2263 	if (sync) {
   2264 		mutex_enter(&global_v_numoutput_lock);
   2265 		while (vp->v_numoutput > 0) {
   2266 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2267 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2268 			cv_wait(&vp->v_outputcv, &global_v_numoutput_lock);
   2269 		}
   2270 		mutex_exit(&global_v_numoutput_lock);
   2271 	}
   2272 	return error;
   2273 }
   2274 
   2275 /*
   2276  * Return the last logical file offset that should be written for this file
   2277  * if we're doing a write that ends at "size".	If writing, we need to know
   2278  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2279  * to know about entire blocks.
   2280  */
   2281 void
   2282 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2283 {
   2284 	struct inode *ip = VTOI(vp);
   2285 	struct lfs *fs = ip->i_lfs;
   2286 	daddr_t olbn, nlbn;
   2287 
   2288 	olbn = lblkno(fs, ip->i_size);
   2289 	nlbn = lblkno(fs, size);
   2290 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2291 		*eobp = fragroundup(fs, size);
   2292 	} else {
   2293 		*eobp = blkroundup(fs, size);
   2294 	}
   2295 }
   2296 
   2297 #ifdef DEBUG
   2298 void lfs_dump_vop(void *);
   2299 
   2300 void
   2301 lfs_dump_vop(void *v)
   2302 {
   2303 	struct vop_putpages_args /* {
   2304 		struct vnode *a_vp;
   2305 		voff_t a_offlo;
   2306 		voff_t a_offhi;
   2307 		int a_flags;
   2308 	} */ *ap = v;
   2309 
   2310 #ifdef DDB
   2311 	vfs_vnode_print(ap->a_vp, 0, printf);
   2312 #endif
   2313 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2314 }
   2315 #endif
   2316 
   2317 int
   2318 lfs_mmap(void *v)
   2319 {
   2320 	struct vop_mmap_args /* {
   2321 		const struct vnodeop_desc *a_desc;
   2322 		struct vnode *a_vp;
   2323 		int a_fflags;
   2324 		kauth_cred_t a_cred;
   2325 		struct lwp *a_l;
   2326 	} */ *ap = v;
   2327 
   2328 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2329 		return EOPNOTSUPP;
   2330 	return ufs_mmap(v);
   2331 }
   2332