lfs_vnops.c revision 1.203 1 /* $NetBSD: lfs_vnops.c,v 1.203 2007/04/17 01:16:47 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.203 2007/04/17 01:16:47 perseant Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Forward declaration for hackish genfs_putpages */
114 static int
115 lfs_genfs_putpages(struct vnode *, off_t, off_t, int, struct vm_page **);
116
117 /* Global vfs data structures for lfs. */
118 int (**lfs_vnodeop_p)(void *);
119 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
120 { &vop_default_desc, vn_default_error },
121 { &vop_lookup_desc, ufs_lookup }, /* lookup */
122 { &vop_create_desc, lfs_create }, /* create */
123 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
124 { &vop_mknod_desc, lfs_mknod }, /* mknod */
125 { &vop_open_desc, ufs_open }, /* open */
126 { &vop_close_desc, lfs_close }, /* close */
127 { &vop_access_desc, ufs_access }, /* access */
128 { &vop_getattr_desc, lfs_getattr }, /* getattr */
129 { &vop_setattr_desc, lfs_setattr }, /* setattr */
130 { &vop_read_desc, lfs_read }, /* read */
131 { &vop_write_desc, lfs_write }, /* write */
132 { &vop_lease_desc, ufs_lease_check }, /* lease */
133 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
134 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
135 { &vop_poll_desc, ufs_poll }, /* poll */
136 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
137 { &vop_revoke_desc, ufs_revoke }, /* revoke */
138 { &vop_mmap_desc, lfs_mmap }, /* mmap */
139 { &vop_fsync_desc, lfs_fsync }, /* fsync */
140 { &vop_seek_desc, ufs_seek }, /* seek */
141 { &vop_remove_desc, lfs_remove }, /* remove */
142 { &vop_link_desc, lfs_link }, /* link */
143 { &vop_rename_desc, lfs_rename }, /* rename */
144 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
145 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
146 { &vop_symlink_desc, lfs_symlink }, /* symlink */
147 { &vop_readdir_desc, ufs_readdir }, /* readdir */
148 { &vop_readlink_desc, ufs_readlink }, /* readlink */
149 { &vop_abortop_desc, ufs_abortop }, /* abortop */
150 { &vop_inactive_desc, lfs_inactive }, /* inactive */
151 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
152 { &vop_lock_desc, ufs_lock }, /* lock */
153 { &vop_unlock_desc, ufs_unlock }, /* unlock */
154 { &vop_bmap_desc, ufs_bmap }, /* bmap */
155 { &vop_strategy_desc, lfs_strategy }, /* strategy */
156 { &vop_print_desc, ufs_print }, /* print */
157 { &vop_islocked_desc, ufs_islocked }, /* islocked */
158 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
159 { &vop_advlock_desc, ufs_advlock }, /* advlock */
160 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
161 { &vop_getpages_desc, lfs_getpages }, /* getpages */
162 { &vop_putpages_desc, lfs_putpages }, /* putpages */
163 { NULL, NULL }
164 };
165 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
166 { &lfs_vnodeop_p, lfs_vnodeop_entries };
167
168 int (**lfs_specop_p)(void *);
169 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
170 { &vop_default_desc, vn_default_error },
171 { &vop_lookup_desc, spec_lookup }, /* lookup */
172 { &vop_create_desc, spec_create }, /* create */
173 { &vop_mknod_desc, spec_mknod }, /* mknod */
174 { &vop_open_desc, spec_open }, /* open */
175 { &vop_close_desc, lfsspec_close }, /* close */
176 { &vop_access_desc, ufs_access }, /* access */
177 { &vop_getattr_desc, lfs_getattr }, /* getattr */
178 { &vop_setattr_desc, lfs_setattr }, /* setattr */
179 { &vop_read_desc, ufsspec_read }, /* read */
180 { &vop_write_desc, ufsspec_write }, /* write */
181 { &vop_lease_desc, spec_lease_check }, /* lease */
182 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
183 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
184 { &vop_poll_desc, spec_poll }, /* poll */
185 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
186 { &vop_revoke_desc, spec_revoke }, /* revoke */
187 { &vop_mmap_desc, spec_mmap }, /* mmap */
188 { &vop_fsync_desc, spec_fsync }, /* fsync */
189 { &vop_seek_desc, spec_seek }, /* seek */
190 { &vop_remove_desc, spec_remove }, /* remove */
191 { &vop_link_desc, spec_link }, /* link */
192 { &vop_rename_desc, spec_rename }, /* rename */
193 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
194 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
195 { &vop_symlink_desc, spec_symlink }, /* symlink */
196 { &vop_readdir_desc, spec_readdir }, /* readdir */
197 { &vop_readlink_desc, spec_readlink }, /* readlink */
198 { &vop_abortop_desc, spec_abortop }, /* abortop */
199 { &vop_inactive_desc, lfs_inactive }, /* inactive */
200 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
201 { &vop_lock_desc, ufs_lock }, /* lock */
202 { &vop_unlock_desc, ufs_unlock }, /* unlock */
203 { &vop_bmap_desc, spec_bmap }, /* bmap */
204 { &vop_strategy_desc, spec_strategy }, /* strategy */
205 { &vop_print_desc, ufs_print }, /* print */
206 { &vop_islocked_desc, ufs_islocked }, /* islocked */
207 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
208 { &vop_advlock_desc, spec_advlock }, /* advlock */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, fifo_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc lfs_fifoop_opv_desc =
263 { &lfs_fifoop_p, lfs_fifoop_entries };
264
265 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
266
267 #define LFS_READWRITE
268 #include <ufs/ufs/ufs_readwrite.c>
269 #undef LFS_READWRITE
270
271 /*
272 * Synch an open file.
273 */
274 /* ARGSUSED */
275 int
276 lfs_fsync(void *v)
277 {
278 struct vop_fsync_args /* {
279 struct vnode *a_vp;
280 kauth_cred_t a_cred;
281 int a_flags;
282 off_t offlo;
283 off_t offhi;
284 struct lwp *a_l;
285 } */ *ap = v;
286 struct vnode *vp = ap->a_vp;
287 int error, wait;
288 struct inode *ip = VTOI(vp);
289 struct lfs *fs = ip->i_lfs;
290
291 /* If we're mounted read-only, don't try to sync. */
292 if (fs->lfs_ronly)
293 return 0;
294
295 /*
296 * Trickle sync simply adds this vnode to the pager list, as if
297 * the pagedaemon had requested a pageout.
298 */
299 if (ap->a_flags & FSYNC_LAZY) {
300 if (lfs_ignore_lazy_sync == 0) {
301 simple_lock(&fs->lfs_interlock);
302 if (!(ip->i_flags & IN_PAGING)) {
303 ip->i_flags |= IN_PAGING;
304 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
305 i_lfs_pchain);
306 }
307 simple_unlock(&fs->lfs_interlock);
308 simple_lock(&lfs_subsys_lock);
309 wakeup(&lfs_writer_daemon);
310 simple_unlock(&lfs_subsys_lock);
311 }
312 return 0;
313 }
314
315 /*
316 * If a vnode is bring cleaned, flush it out before we try to
317 * reuse it. This prevents the cleaner from writing files twice
318 * in the same partial segment, causing an accounting underflow.
319 */
320 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
321 lfs_vflush(vp);
322 }
323
324 wait = (ap->a_flags & FSYNC_WAIT);
325 simple_lock(&vp->v_interlock);
326 do {
327 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
328 round_page(ap->a_offhi),
329 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
330 if (error == EAGAIN)
331 ltsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
332 hz / 100 + 1, &fs->lfs_interlock);
333 } while (error == EAGAIN);
334 if (error)
335 return error;
336
337 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
338 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
339
340 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
341 int l = 0;
342 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
343 ap->a_l->l_cred, ap->a_l);
344 }
345 if (wait && !VPISEMPTY(vp))
346 LFS_SET_UINO(ip, IN_MODIFIED);
347
348 return error;
349 }
350
351 /*
352 * Take IN_ADIROP off, then call ufs_inactive.
353 */
354 int
355 lfs_inactive(void *v)
356 {
357 struct vop_inactive_args /* {
358 struct vnode *a_vp;
359 struct lwp *a_l;
360 } */ *ap = v;
361
362 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
363
364 lfs_unmark_vnode(ap->a_vp);
365
366 /*
367 * The Ifile is only ever inactivated on unmount.
368 * Streamline this process by not giving it more dirty blocks.
369 */
370 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
371 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
372 VOP_UNLOCK(ap->a_vp, 0);
373 return 0;
374 }
375
376 return ufs_inactive(v);
377 }
378
379 /*
380 * These macros are used to bracket UFS directory ops, so that we can
381 * identify all the pages touched during directory ops which need to
382 * be ordered and flushed atomically, so that they may be recovered.
383 *
384 * Because we have to mark nodes VDIROP in order to prevent
385 * the cache from reclaiming them while a dirop is in progress, we must
386 * also manage the number of nodes so marked (otherwise we can run out).
387 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
388 * is decremented during segment write, when VDIROP is taken off.
389 */
390 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
391 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
392 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
393 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
394 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
395 static int lfs_set_dirop(struct vnode *, struct vnode *);
396
397 static int
398 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
399 {
400 struct lfs *fs;
401 int error;
402
403 KASSERT(VOP_ISLOCKED(dvp));
404 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
405
406 fs = VTOI(dvp)->i_lfs;
407
408 ASSERT_NO_SEGLOCK(fs);
409 /*
410 * LFS_NRESERVE calculates direct and indirect blocks as well
411 * as an inode block; an overestimate in most cases.
412 */
413 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
414 return (error);
415
416 restart:
417 simple_lock(&fs->lfs_interlock);
418 if (fs->lfs_dirops == 0) {
419 simple_unlock(&fs->lfs_interlock);
420 lfs_check(dvp, LFS_UNUSED_LBN, 0);
421 simple_lock(&fs->lfs_interlock);
422 }
423 while (fs->lfs_writer) {
424 error = ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
425 "lfs_sdirop", 0, &fs->lfs_interlock);
426 if (error == EINTR) {
427 simple_unlock(&fs->lfs_interlock);
428 goto unreserve;
429 }
430 }
431 simple_lock(&lfs_subsys_lock);
432 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
433 wakeup(&lfs_writer_daemon);
434 simple_unlock(&lfs_subsys_lock);
435 simple_unlock(&fs->lfs_interlock);
436 preempt();
437 goto restart;
438 }
439
440 if (lfs_dirvcount > LFS_MAX_DIROP) {
441 simple_unlock(&fs->lfs_interlock);
442 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
443 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
444 if ((error = ltsleep(&lfs_dirvcount,
445 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
446 &lfs_subsys_lock)) != 0) {
447 goto unreserve;
448 }
449 goto restart;
450 }
451 simple_unlock(&lfs_subsys_lock);
452
453 ++fs->lfs_dirops;
454 fs->lfs_doifile = 1;
455 simple_unlock(&fs->lfs_interlock);
456
457 /* Hold a reference so SET_ENDOP will be happy */
458 vref(dvp);
459 if (vp) {
460 vref(vp);
461 MARK_VNODE(vp);
462 }
463
464 MARK_VNODE(dvp);
465 return 0;
466
467 unreserve:
468 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
469 return error;
470 }
471
472 /*
473 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
474 * in getnewvnode(), if we have a stacked filesystem mounted on top
475 * of us.
476 *
477 * NB: this means we have to clear the new vnodes on error. Fortunately
478 * SET_ENDOP is there to do that for us.
479 */
480 static int
481 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
482 {
483 int error;
484 struct lfs *fs;
485
486 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
487 ASSERT_NO_SEGLOCK(fs);
488 if (fs->lfs_ronly)
489 return EROFS;
490 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
491 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
492 dvp, error));
493 return error;
494 }
495 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
496 if (vpp) {
497 ungetnewvnode(*vpp);
498 *vpp = NULL;
499 }
500 return error;
501 }
502 return 0;
503 }
504
505 #define SET_ENDOP_BASE(fs, dvp, str) \
506 do { \
507 simple_lock(&(fs)->lfs_interlock); \
508 --(fs)->lfs_dirops; \
509 if (!(fs)->lfs_dirops) { \
510 if ((fs)->lfs_nadirop) { \
511 panic("SET_ENDOP: %s: no dirops but " \
512 " nadirop=%d", (str), \
513 (fs)->lfs_nadirop); \
514 } \
515 wakeup(&(fs)->lfs_writer); \
516 simple_unlock(&(fs)->lfs_interlock); \
517 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
518 } else \
519 simple_unlock(&(fs)->lfs_interlock); \
520 } while(0)
521 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
522 do { \
523 UNMARK_VNODE(dvp); \
524 if (nvpp && *nvpp) \
525 UNMARK_VNODE(*nvpp); \
526 /* Check for error return to stem vnode leakage */ \
527 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
528 ungetnewvnode(*(nvpp)); \
529 SET_ENDOP_BASE((fs), (dvp), (str)); \
530 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
531 vrele(dvp); \
532 } while(0)
533 #define SET_ENDOP_CREATE_AP(ap, str) \
534 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
535 (ap)->a_vpp, (str))
536 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
537 do { \
538 UNMARK_VNODE(dvp); \
539 if (ovp) \
540 UNMARK_VNODE(ovp); \
541 SET_ENDOP_BASE((fs), (dvp), (str)); \
542 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
543 vrele(dvp); \
544 if (ovp) \
545 vrele(ovp); \
546 } while(0)
547
548 void
549 lfs_mark_vnode(struct vnode *vp)
550 {
551 struct inode *ip = VTOI(vp);
552 struct lfs *fs = ip->i_lfs;
553
554 simple_lock(&fs->lfs_interlock);
555 if (!(ip->i_flag & IN_ADIROP)) {
556 if (!(vp->v_flag & VDIROP)) {
557 (void)lfs_vref(vp);
558 simple_lock(&lfs_subsys_lock);
559 ++lfs_dirvcount;
560 ++fs->lfs_dirvcount;
561 simple_unlock(&lfs_subsys_lock);
562 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
563 vp->v_flag |= VDIROP;
564 }
565 ++fs->lfs_nadirop;
566 ip->i_flag |= IN_ADIROP;
567 } else
568 KASSERT(vp->v_flag & VDIROP);
569 simple_unlock(&fs->lfs_interlock);
570 }
571
572 void
573 lfs_unmark_vnode(struct vnode *vp)
574 {
575 struct inode *ip = VTOI(vp);
576
577 if (ip && (ip->i_flag & IN_ADIROP)) {
578 KASSERT(vp->v_flag & VDIROP);
579 simple_lock(&ip->i_lfs->lfs_interlock);
580 --ip->i_lfs->lfs_nadirop;
581 simple_unlock(&ip->i_lfs->lfs_interlock);
582 ip->i_flag &= ~IN_ADIROP;
583 }
584 }
585
586 int
587 lfs_symlink(void *v)
588 {
589 struct vop_symlink_args /* {
590 struct vnode *a_dvp;
591 struct vnode **a_vpp;
592 struct componentname *a_cnp;
593 struct vattr *a_vap;
594 char *a_target;
595 } */ *ap = v;
596 int error;
597
598 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
599 vput(ap->a_dvp);
600 return error;
601 }
602 error = ufs_symlink(ap);
603 SET_ENDOP_CREATE_AP(ap, "symlink");
604 return (error);
605 }
606
607 int
608 lfs_mknod(void *v)
609 {
610 struct vop_mknod_args /* {
611 struct vnode *a_dvp;
612 struct vnode **a_vpp;
613 struct componentname *a_cnp;
614 struct vattr *a_vap;
615 } */ *ap = v;
616 struct vattr *vap = ap->a_vap;
617 struct vnode **vpp = ap->a_vpp;
618 struct inode *ip;
619 int error;
620 struct mount *mp;
621 ino_t ino;
622
623 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
624 vput(ap->a_dvp);
625 return error;
626 }
627 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
628 ap->a_dvp, vpp, ap->a_cnp);
629
630 /* Either way we're done with the dirop at this point */
631 SET_ENDOP_CREATE_AP(ap, "mknod");
632
633 if (error)
634 return (error);
635
636 ip = VTOI(*vpp);
637 mp = (*vpp)->v_mount;
638 ino = ip->i_number;
639 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
640 if (vap->va_rdev != VNOVAL) {
641 /*
642 * Want to be able to use this to make badblock
643 * inodes, so don't truncate the dev number.
644 */
645 #if 0
646 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
647 UFS_MPNEEDSWAP((*vpp)->v_mount));
648 #else
649 ip->i_ffs1_rdev = vap->va_rdev;
650 #endif
651 }
652
653 /*
654 * Call fsync to write the vnode so that we don't have to deal with
655 * flushing it when it's marked VDIROP|VXLOCK.
656 *
657 * XXX KS - If we can't flush we also can't call vgone(), so must
658 * return. But, that leaves this vnode in limbo, also not good.
659 * Can this ever happen (barring hardware failure)?
660 */
661 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
662 curlwp)) != 0) {
663 panic("lfs_mknod: couldn't fsync (ino %llu)",
664 (unsigned long long)ino);
665 /* return (error); */
666 }
667 /*
668 * Remove vnode so that it will be reloaded by VFS_VGET and
669 * checked to see if it is an alias of an existing entry in
670 * the inode cache.
671 */
672 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
673
674 VOP_UNLOCK(*vpp, 0);
675 lfs_vunref(*vpp);
676 (*vpp)->v_type = VNON;
677 vgone(*vpp);
678 error = VFS_VGET(mp, ino, vpp);
679
680 if (error != 0) {
681 *vpp = NULL;
682 return (error);
683 }
684 return (0);
685 }
686
687 int
688 lfs_create(void *v)
689 {
690 struct vop_create_args /* {
691 struct vnode *a_dvp;
692 struct vnode **a_vpp;
693 struct componentname *a_cnp;
694 struct vattr *a_vap;
695 } */ *ap = v;
696 int error;
697
698 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
699 vput(ap->a_dvp);
700 return error;
701 }
702 error = ufs_create(ap);
703 SET_ENDOP_CREATE_AP(ap, "create");
704 return (error);
705 }
706
707 int
708 lfs_mkdir(void *v)
709 {
710 struct vop_mkdir_args /* {
711 struct vnode *a_dvp;
712 struct vnode **a_vpp;
713 struct componentname *a_cnp;
714 struct vattr *a_vap;
715 } */ *ap = v;
716 int error;
717
718 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
719 vput(ap->a_dvp);
720 return error;
721 }
722 error = ufs_mkdir(ap);
723 SET_ENDOP_CREATE_AP(ap, "mkdir");
724 return (error);
725 }
726
727 int
728 lfs_remove(void *v)
729 {
730 struct vop_remove_args /* {
731 struct vnode *a_dvp;
732 struct vnode *a_vp;
733 struct componentname *a_cnp;
734 } */ *ap = v;
735 struct vnode *dvp, *vp;
736 struct inode *ip;
737 int error;
738
739 dvp = ap->a_dvp;
740 vp = ap->a_vp;
741 ip = VTOI(vp);
742 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
743 if (dvp == vp)
744 vrele(vp);
745 else
746 vput(vp);
747 vput(dvp);
748 return error;
749 }
750 error = ufs_remove(ap);
751 if (ip->i_nlink == 0)
752 lfs_orphan(ip->i_lfs, ip->i_number);
753 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
754 return (error);
755 }
756
757 int
758 lfs_rmdir(void *v)
759 {
760 struct vop_rmdir_args /* {
761 struct vnodeop_desc *a_desc;
762 struct vnode *a_dvp;
763 struct vnode *a_vp;
764 struct componentname *a_cnp;
765 } */ *ap = v;
766 struct vnode *vp;
767 struct inode *ip;
768 int error;
769
770 vp = ap->a_vp;
771 ip = VTOI(vp);
772 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
773 if (ap->a_dvp == vp)
774 vrele(ap->a_dvp);
775 else
776 vput(ap->a_dvp);
777 vput(vp);
778 return error;
779 }
780 error = ufs_rmdir(ap);
781 if (ip->i_nlink == 0)
782 lfs_orphan(ip->i_lfs, ip->i_number);
783 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
784 return (error);
785 }
786
787 int
788 lfs_link(void *v)
789 {
790 struct vop_link_args /* {
791 struct vnode *a_dvp;
792 struct vnode *a_vp;
793 struct componentname *a_cnp;
794 } */ *ap = v;
795 int error;
796 struct vnode **vpp = NULL;
797
798 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
799 vput(ap->a_dvp);
800 return error;
801 }
802 error = ufs_link(ap);
803 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
804 return (error);
805 }
806
807 int
808 lfs_rename(void *v)
809 {
810 struct vop_rename_args /* {
811 struct vnode *a_fdvp;
812 struct vnode *a_fvp;
813 struct componentname *a_fcnp;
814 struct vnode *a_tdvp;
815 struct vnode *a_tvp;
816 struct componentname *a_tcnp;
817 } */ *ap = v;
818 struct vnode *tvp, *fvp, *tdvp, *fdvp;
819 struct componentname *tcnp, *fcnp;
820 int error;
821 struct lfs *fs;
822
823 fs = VTOI(ap->a_fdvp)->i_lfs;
824 tvp = ap->a_tvp;
825 tdvp = ap->a_tdvp;
826 tcnp = ap->a_tcnp;
827 fvp = ap->a_fvp;
828 fdvp = ap->a_fdvp;
829 fcnp = ap->a_fcnp;
830
831 /*
832 * Check for cross-device rename.
833 * If it is, we don't want to set dirops, just error out.
834 * (In particular note that MARK_VNODE(tdvp) will DTWT on
835 * a cross-device rename.)
836 *
837 * Copied from ufs_rename.
838 */
839 if ((fvp->v_mount != tdvp->v_mount) ||
840 (tvp && (fvp->v_mount != tvp->v_mount))) {
841 error = EXDEV;
842 goto errout;
843 }
844
845 /*
846 * Check to make sure we're not renaming a vnode onto itself
847 * (deleting a hard link by renaming one name onto another);
848 * if we are we can't recursively call VOP_REMOVE since that
849 * would leave us with an unaccounted-for number of live dirops.
850 *
851 * Inline the relevant section of ufs_rename here, *before*
852 * calling SET_DIROP_REMOVE.
853 */
854 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
855 (VTOI(tdvp)->i_flags & APPEND))) {
856 error = EPERM;
857 goto errout;
858 }
859 if (fvp == tvp) {
860 if (fvp->v_type == VDIR) {
861 error = EINVAL;
862 goto errout;
863 }
864
865 /* Release destination completely. */
866 VOP_ABORTOP(tdvp, tcnp);
867 vput(tdvp);
868 vput(tvp);
869
870 /* Delete source. */
871 vrele(fvp);
872 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
873 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
874 fcnp->cn_nameiop = DELETE;
875 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
876 if ((error = relookup(fdvp, &fvp, fcnp))) {
877 vput(fdvp);
878 return (error);
879 }
880 return (VOP_REMOVE(fdvp, fvp, fcnp));
881 }
882
883 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
884 goto errout;
885 MARK_VNODE(fdvp);
886 MARK_VNODE(fvp);
887
888 error = ufs_rename(ap);
889 UNMARK_VNODE(fdvp);
890 UNMARK_VNODE(fvp);
891 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
892 return (error);
893
894 errout:
895 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
896 if (tdvp == tvp)
897 vrele(tdvp);
898 else
899 vput(tdvp);
900 if (tvp)
901 vput(tvp);
902 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
903 vrele(fdvp);
904 vrele(fvp);
905 return (error);
906 }
907
908 /* XXX hack to avoid calling ITIMES in getattr */
909 int
910 lfs_getattr(void *v)
911 {
912 struct vop_getattr_args /* {
913 struct vnode *a_vp;
914 struct vattr *a_vap;
915 kauth_cred_t a_cred;
916 struct lwp *a_l;
917 } */ *ap = v;
918 struct vnode *vp = ap->a_vp;
919 struct inode *ip = VTOI(vp);
920 struct vattr *vap = ap->a_vap;
921 struct lfs *fs = ip->i_lfs;
922 /*
923 * Copy from inode table
924 */
925 vap->va_fsid = ip->i_dev;
926 vap->va_fileid = ip->i_number;
927 vap->va_mode = ip->i_mode & ~IFMT;
928 vap->va_nlink = ip->i_nlink;
929 vap->va_uid = ip->i_uid;
930 vap->va_gid = ip->i_gid;
931 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
932 vap->va_size = vp->v_size;
933 vap->va_atime.tv_sec = ip->i_ffs1_atime;
934 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
935 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
936 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
937 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
938 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
939 vap->va_flags = ip->i_flags;
940 vap->va_gen = ip->i_gen;
941 /* this doesn't belong here */
942 if (vp->v_type == VBLK)
943 vap->va_blocksize = BLKDEV_IOSIZE;
944 else if (vp->v_type == VCHR)
945 vap->va_blocksize = MAXBSIZE;
946 else
947 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
948 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
949 vap->va_type = vp->v_type;
950 vap->va_filerev = ip->i_modrev;
951 return (0);
952 }
953
954 /*
955 * Check to make sure the inode blocks won't choke the buffer
956 * cache, then call ufs_setattr as usual.
957 */
958 int
959 lfs_setattr(void *v)
960 {
961 struct vop_setattr_args /* {
962 struct vnode *a_vp;
963 struct vattr *a_vap;
964 kauth_cred_t a_cred;
965 struct lwp *a_l;
966 } */ *ap = v;
967 struct vnode *vp = ap->a_vp;
968
969 lfs_check(vp, LFS_UNUSED_LBN, 0);
970 return ufs_setattr(v);
971 }
972
973 /*
974 * Release the block we hold on lfs_newseg wrapping. Called on file close,
975 * or explicitly from LFCNWRAPGO. Called with the interlock held.
976 */
977 static int
978 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
979 {
980 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
981 return EBUSY;
982
983 lockmgr(&fs->lfs_stoplock, LK_RELEASE, &fs->lfs_interlock);
984
985 KASSERT(fs->lfs_nowrap > 0);
986 if (fs->lfs_nowrap <= 0) {
987 return 0;
988 }
989
990 if (--fs->lfs_nowrap == 0) {
991 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
992 wakeup(&fs->lfs_wrappass);
993 lfs_wakeup_cleaner(fs);
994 }
995 if (waitfor) {
996 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
997 "segment", 0, &fs->lfs_interlock);
998 }
999
1000 return 0;
1001 }
1002
1003 /*
1004 * Close called
1005 */
1006 /* ARGSUSED */
1007 int
1008 lfs_close(void *v)
1009 {
1010 struct vop_close_args /* {
1011 struct vnode *a_vp;
1012 int a_fflag;
1013 kauth_cred_t a_cred;
1014 struct lwp *a_l;
1015 } */ *ap = v;
1016 struct vnode *vp = ap->a_vp;
1017 struct inode *ip = VTOI(vp);
1018 struct lfs *fs = ip->i_lfs;
1019
1020 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1021 lockstatus(&fs->lfs_stoplock) == LK_EXCLUSIVE) {
1022 simple_lock(&fs->lfs_interlock);
1023 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1024 lfs_wrapgo(fs, ip, 0);
1025 simple_unlock(&fs->lfs_interlock);
1026 }
1027
1028 if (vp == ip->i_lfs->lfs_ivnode &&
1029 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1030 return 0;
1031
1032 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1033 LFS_ITIMES(ip, NULL, NULL, NULL);
1034 }
1035 return (0);
1036 }
1037
1038 /*
1039 * Close wrapper for special devices.
1040 *
1041 * Update the times on the inode then do device close.
1042 */
1043 int
1044 lfsspec_close(void *v)
1045 {
1046 struct vop_close_args /* {
1047 struct vnode *a_vp;
1048 int a_fflag;
1049 kauth_cred_t a_cred;
1050 struct lwp *a_l;
1051 } */ *ap = v;
1052 struct vnode *vp;
1053 struct inode *ip;
1054
1055 vp = ap->a_vp;
1056 ip = VTOI(vp);
1057 if (vp->v_usecount > 1) {
1058 LFS_ITIMES(ip, NULL, NULL, NULL);
1059 }
1060 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1061 }
1062
1063 /*
1064 * Close wrapper for fifo's.
1065 *
1066 * Update the times on the inode then do device close.
1067 */
1068 int
1069 lfsfifo_close(void *v)
1070 {
1071 struct vop_close_args /* {
1072 struct vnode *a_vp;
1073 int a_fflag;
1074 kauth_cred_ a_cred;
1075 struct lwp *a_l;
1076 } */ *ap = v;
1077 struct vnode *vp;
1078 struct inode *ip;
1079
1080 vp = ap->a_vp;
1081 ip = VTOI(vp);
1082 if (ap->a_vp->v_usecount > 1) {
1083 LFS_ITIMES(ip, NULL, NULL, NULL);
1084 }
1085 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1086 }
1087
1088 /*
1089 * Reclaim an inode so that it can be used for other purposes.
1090 */
1091
1092 int
1093 lfs_reclaim(void *v)
1094 {
1095 struct vop_reclaim_args /* {
1096 struct vnode *a_vp;
1097 struct lwp *a_l;
1098 } */ *ap = v;
1099 struct vnode *vp = ap->a_vp;
1100 struct inode *ip = VTOI(vp);
1101 struct lfs *fs = ip->i_lfs;
1102 int error;
1103
1104 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1105
1106 LFS_CLR_UINO(ip, IN_ALLMOD);
1107 if ((error = ufs_reclaim(vp, ap->a_l)))
1108 return (error);
1109
1110 /*
1111 * Take us off the paging and/or dirop queues if we were on them.
1112 * We shouldn't be on them.
1113 */
1114 simple_lock(&fs->lfs_interlock);
1115 if (ip->i_flags & IN_PAGING) {
1116 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1117 fs->lfs_fsmnt);
1118 ip->i_flags &= ~IN_PAGING;
1119 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1120 }
1121 if (vp->v_flag & VDIROP) {
1122 panic("reclaimed vnode is VDIROP");
1123 vp->v_flag &= ~VDIROP;
1124 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1125 }
1126 simple_unlock(&fs->lfs_interlock);
1127
1128 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1129 lfs_deregister_all(vp);
1130 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1131 ip->inode_ext.lfs = NULL;
1132 genfs_node_destroy(vp);
1133 pool_put(&lfs_inode_pool, vp->v_data);
1134 vp->v_data = NULL;
1135 return (0);
1136 }
1137
1138 /*
1139 * Read a block from a storage device.
1140 * In order to avoid reading blocks that are in the process of being
1141 * written by the cleaner---and hence are not mutexed by the normal
1142 * buffer cache / page cache mechanisms---check for collisions before
1143 * reading.
1144 *
1145 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1146 * the active cleaner test.
1147 *
1148 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1149 */
1150 int
1151 lfs_strategy(void *v)
1152 {
1153 struct vop_strategy_args /* {
1154 struct vnode *a_vp;
1155 struct buf *a_bp;
1156 } */ *ap = v;
1157 struct buf *bp;
1158 struct lfs *fs;
1159 struct vnode *vp;
1160 struct inode *ip;
1161 daddr_t tbn;
1162 int i, sn, error, slept;
1163
1164 bp = ap->a_bp;
1165 vp = ap->a_vp;
1166 ip = VTOI(vp);
1167 fs = ip->i_lfs;
1168
1169 /* lfs uses its strategy routine only for read */
1170 KASSERT(bp->b_flags & B_READ);
1171
1172 if (vp->v_type == VBLK || vp->v_type == VCHR)
1173 panic("lfs_strategy: spec");
1174 KASSERT(bp->b_bcount != 0);
1175 if (bp->b_blkno == bp->b_lblkno) {
1176 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1177 NULL);
1178 if (error) {
1179 bp->b_error = error;
1180 bp->b_flags |= B_ERROR;
1181 biodone(bp);
1182 return (error);
1183 }
1184 if ((long)bp->b_blkno == -1) /* no valid data */
1185 clrbuf(bp);
1186 }
1187 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1188 biodone(bp);
1189 return (0);
1190 }
1191
1192 slept = 1;
1193 simple_lock(&fs->lfs_interlock);
1194 while (slept && fs->lfs_seglock) {
1195 simple_unlock(&fs->lfs_interlock);
1196 /*
1197 * Look through list of intervals.
1198 * There will only be intervals to look through
1199 * if the cleaner holds the seglock.
1200 * Since the cleaner is synchronous, we can trust
1201 * the list of intervals to be current.
1202 */
1203 tbn = dbtofsb(fs, bp->b_blkno);
1204 sn = dtosn(fs, tbn);
1205 slept = 0;
1206 for (i = 0; i < fs->lfs_cleanind; i++) {
1207 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1208 tbn >= fs->lfs_cleanint[i]) {
1209 DLOG((DLOG_CLEAN,
1210 "lfs_strategy: ino %d lbn %" PRId64
1211 " ind %d sn %d fsb %" PRIx32
1212 " given sn %d fsb %" PRIx64 "\n",
1213 ip->i_number, bp->b_lblkno, i,
1214 dtosn(fs, fs->lfs_cleanint[i]),
1215 fs->lfs_cleanint[i], sn, tbn));
1216 DLOG((DLOG_CLEAN,
1217 "lfs_strategy: sleeping on ino %d lbn %"
1218 PRId64 "\n", ip->i_number, bp->b_lblkno));
1219 simple_lock(&fs->lfs_interlock);
1220 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1221 /* Cleaner can't wait for itself */
1222 ltsleep(&fs->lfs_iocount,
1223 (PRIBIO + 1) | PNORELOCK,
1224 "clean2", 0,
1225 &fs->lfs_interlock);
1226 slept = 1;
1227 break;
1228 } else if (fs->lfs_seglock) {
1229 ltsleep(&fs->lfs_seglock,
1230 (PRIBIO + 1) | PNORELOCK,
1231 "clean1", 0,
1232 &fs->lfs_interlock);
1233 slept = 1;
1234 break;
1235 }
1236 simple_unlock(&fs->lfs_interlock);
1237 }
1238 }
1239 simple_lock(&fs->lfs_interlock);
1240 }
1241 simple_unlock(&fs->lfs_interlock);
1242
1243 vp = ip->i_devvp;
1244 VOP_STRATEGY(vp, bp);
1245 return (0);
1246 }
1247
1248 void
1249 lfs_flush_dirops(struct lfs *fs)
1250 {
1251 struct inode *ip, *nip;
1252 struct vnode *vp;
1253 extern int lfs_dostats;
1254 struct segment *sp;
1255 int waslocked;
1256
1257 ASSERT_MAYBE_SEGLOCK(fs);
1258 KASSERT(fs->lfs_nadirop == 0);
1259
1260 if (fs->lfs_ronly)
1261 return;
1262
1263 simple_lock(&fs->lfs_interlock);
1264 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1265 simple_unlock(&fs->lfs_interlock);
1266 return;
1267 } else
1268 simple_unlock(&fs->lfs_interlock);
1269
1270 if (lfs_dostats)
1271 ++lfs_stats.flush_invoked;
1272
1273 /*
1274 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1275 * Technically this is a checkpoint (the on-disk state is valid)
1276 * even though we are leaving out all the file data.
1277 */
1278 lfs_imtime(fs);
1279 lfs_seglock(fs, SEGM_CKP);
1280 sp = fs->lfs_sp;
1281
1282 /*
1283 * lfs_writevnodes, optimized to get dirops out of the way.
1284 * Only write dirops, and don't flush files' pages, only
1285 * blocks from the directories.
1286 *
1287 * We don't need to vref these files because they are
1288 * dirops and so hold an extra reference until the
1289 * segunlock clears them of that status.
1290 *
1291 * We don't need to check for IN_ADIROP because we know that
1292 * no dirops are active.
1293 *
1294 */
1295 simple_lock(&fs->lfs_interlock);
1296 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1297 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1298 simple_unlock(&fs->lfs_interlock);
1299 vp = ITOV(ip);
1300
1301 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1302
1303 /*
1304 * All writes to directories come from dirops; all
1305 * writes to files' direct blocks go through the page
1306 * cache, which we're not touching. Reads to files
1307 * and/or directories will not be affected by writing
1308 * directory blocks inodes and file inodes. So we don't
1309 * really need to lock. If we don't lock, though,
1310 * make sure that we don't clear IN_MODIFIED
1311 * unnecessarily.
1312 */
1313 if (vp->v_flag & (VXLOCK | VFREEING)) {
1314 simple_lock(&fs->lfs_interlock);
1315 continue;
1316 }
1317 waslocked = VOP_ISLOCKED(vp);
1318 if (vp->v_type != VREG &&
1319 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1320 lfs_writefile(fs, sp, vp);
1321 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1322 !(ip->i_flag & IN_ALLMOD)) {
1323 LFS_SET_UINO(ip, IN_MODIFIED);
1324 }
1325 }
1326 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1327 (void) lfs_writeinode(fs, sp, ip);
1328 if (waslocked == LK_EXCLOTHER)
1329 LFS_SET_UINO(ip, IN_MODIFIED);
1330 simple_lock(&fs->lfs_interlock);
1331 }
1332 simple_unlock(&fs->lfs_interlock);
1333 /* We've written all the dirops there are */
1334 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1335 lfs_finalize_fs_seguse(fs);
1336 (void) lfs_writeseg(fs, sp);
1337 lfs_segunlock(fs);
1338 }
1339
1340 /*
1341 * Flush all vnodes for which the pagedaemon has requested pageouts.
1342 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1343 * has just run, this would be an error). If we have to skip a vnode
1344 * for any reason, just skip it; if we have to wait for the cleaner,
1345 * abort. The writer daemon will call us again later.
1346 */
1347 void
1348 lfs_flush_pchain(struct lfs *fs)
1349 {
1350 struct inode *ip, *nip;
1351 struct vnode *vp;
1352 extern int lfs_dostats;
1353 struct segment *sp;
1354 int error;
1355
1356 ASSERT_NO_SEGLOCK(fs);
1357
1358 if (fs->lfs_ronly)
1359 return;
1360
1361 simple_lock(&fs->lfs_interlock);
1362 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1363 simple_unlock(&fs->lfs_interlock);
1364 return;
1365 } else
1366 simple_unlock(&fs->lfs_interlock);
1367
1368 /* Get dirops out of the way */
1369 lfs_flush_dirops(fs);
1370
1371 if (lfs_dostats)
1372 ++lfs_stats.flush_invoked;
1373
1374 /*
1375 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1376 */
1377 lfs_imtime(fs);
1378 lfs_seglock(fs, 0);
1379 sp = fs->lfs_sp;
1380
1381 /*
1382 * lfs_writevnodes, optimized to clear pageout requests.
1383 * Only write non-dirop files that are in the pageout queue.
1384 * We're very conservative about what we write; we want to be
1385 * fast and async.
1386 */
1387 simple_lock(&fs->lfs_interlock);
1388 top:
1389 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1390 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1391 vp = ITOV(ip);
1392
1393 if (!(ip->i_flags & IN_PAGING))
1394 goto top;
1395
1396 if (vp->v_flag & (VXLOCK|VDIROP))
1397 continue;
1398 if (vp->v_type != VREG)
1399 continue;
1400 if (lfs_vref(vp))
1401 continue;
1402 simple_unlock(&fs->lfs_interlock);
1403
1404 if (VOP_ISLOCKED(vp)) {
1405 lfs_vunref(vp);
1406 simple_lock(&fs->lfs_interlock);
1407 continue;
1408 }
1409
1410 error = lfs_writefile(fs, sp, vp);
1411 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1412 !(ip->i_flag & IN_ALLMOD)) {
1413 LFS_SET_UINO(ip, IN_MODIFIED);
1414 }
1415 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1416 (void) lfs_writeinode(fs, sp, ip);
1417
1418 lfs_vunref(vp);
1419
1420 if (error == EAGAIN) {
1421 lfs_writeseg(fs, sp);
1422 simple_lock(&fs->lfs_interlock);
1423 break;
1424 }
1425 simple_lock(&fs->lfs_interlock);
1426 }
1427 simple_unlock(&fs->lfs_interlock);
1428 (void) lfs_writeseg(fs, sp);
1429 lfs_segunlock(fs);
1430 }
1431
1432 /*
1433 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1434 */
1435 int
1436 lfs_fcntl(void *v)
1437 {
1438 struct vop_fcntl_args /* {
1439 struct vnode *a_vp;
1440 u_long a_command;
1441 void * a_data;
1442 int a_fflag;
1443 kauth_cred_t a_cred;
1444 struct lwp *a_l;
1445 } */ *ap = v;
1446 struct timeval *tvp;
1447 BLOCK_INFO *blkiov;
1448 CLEANERINFO *cip;
1449 SEGUSE *sup;
1450 int blkcnt, error, oclean;
1451 size_t fh_size;
1452 struct lfs_fcntl_markv blkvp;
1453 struct lwp *l;
1454 fsid_t *fsidp;
1455 struct lfs *fs;
1456 struct buf *bp;
1457 fhandle_t *fhp;
1458 daddr_t off;
1459
1460 /* Only respect LFS fcntls on fs root or Ifile */
1461 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1462 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1463 return ufs_fcntl(v);
1464 }
1465
1466 /* Avoid locking a draining lock */
1467 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1468 return ESHUTDOWN;
1469 }
1470
1471 /* LFS control and monitoring fcntls are available only to root */
1472 l = ap->a_l;
1473 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1474 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1475 NULL)) != 0)
1476 return (error);
1477
1478 fs = VTOI(ap->a_vp)->i_lfs;
1479 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1480
1481 error = 0;
1482 switch (ap->a_command) {
1483 case LFCNSEGWAITALL:
1484 case LFCNSEGWAITALL_COMPAT:
1485 fsidp = NULL;
1486 /* FALLSTHROUGH */
1487 case LFCNSEGWAIT:
1488 case LFCNSEGWAIT_COMPAT:
1489 tvp = (struct timeval *)ap->a_data;
1490 simple_lock(&fs->lfs_interlock);
1491 ++fs->lfs_sleepers;
1492 simple_unlock(&fs->lfs_interlock);
1493
1494 error = lfs_segwait(fsidp, tvp);
1495
1496 simple_lock(&fs->lfs_interlock);
1497 if (--fs->lfs_sleepers == 0)
1498 wakeup(&fs->lfs_sleepers);
1499 simple_unlock(&fs->lfs_interlock);
1500 return error;
1501
1502 case LFCNBMAPV:
1503 case LFCNMARKV:
1504 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1505
1506 blkcnt = blkvp.blkcnt;
1507 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1508 return (EINVAL);
1509 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1510 if ((error = copyin(blkvp.blkiov, blkiov,
1511 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1512 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1513 return error;
1514 }
1515
1516 simple_lock(&fs->lfs_interlock);
1517 ++fs->lfs_sleepers;
1518 simple_unlock(&fs->lfs_interlock);
1519 if (ap->a_command == LFCNBMAPV)
1520 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1521 else /* LFCNMARKV */
1522 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1523 if (error == 0)
1524 error = copyout(blkiov, blkvp.blkiov,
1525 blkcnt * sizeof(BLOCK_INFO));
1526 simple_lock(&fs->lfs_interlock);
1527 if (--fs->lfs_sleepers == 0)
1528 wakeup(&fs->lfs_sleepers);
1529 simple_unlock(&fs->lfs_interlock);
1530 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1531 return error;
1532
1533 case LFCNRECLAIM:
1534 /*
1535 * Flush dirops and write Ifile, allowing empty segments
1536 * to be immediately reclaimed.
1537 */
1538 lfs_writer_enter(fs, "pndirop");
1539 off = fs->lfs_offset;
1540 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1541 lfs_flush_dirops(fs);
1542 LFS_CLEANERINFO(cip, fs, bp);
1543 oclean = cip->clean;
1544 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1545 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1546 fs->lfs_sp->seg_flags |= SEGM_PROT;
1547 lfs_segunlock(fs);
1548 lfs_writer_leave(fs);
1549
1550 #ifdef DEBUG
1551 LFS_CLEANERINFO(cip, fs, bp);
1552 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1553 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1554 fs->lfs_offset - off, cip->clean - oclean,
1555 fs->lfs_activesb));
1556 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1557 #endif
1558
1559 return 0;
1560
1561 #ifdef COMPAT_30
1562 case LFCNIFILEFH_COMPAT:
1563 /* Return the filehandle of the Ifile */
1564 if ((error = kauth_authorize_generic(l->l_cred,
1565 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1566 return (error);
1567 fhp = (struct fhandle *)ap->a_data;
1568 fhp->fh_fsid = *fsidp;
1569 fh_size = 16; /* former VFS_MAXFIDSIZ */
1570 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1571 #endif
1572
1573 case LFCNIFILEFH_COMPAT2:
1574 case LFCNIFILEFH:
1575 /* Return the filehandle of the Ifile */
1576 fhp = (struct fhandle *)ap->a_data;
1577 fhp->fh_fsid = *fsidp;
1578 fh_size = sizeof(struct lfs_fhandle) -
1579 offsetof(fhandle_t, fh_fid);
1580 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1581
1582 case LFCNREWIND:
1583 /* Move lfs_offset to the lowest-numbered segment */
1584 return lfs_rewind(fs, *(int *)ap->a_data);
1585
1586 case LFCNINVAL:
1587 /* Mark a segment SEGUSE_INVAL */
1588 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1589 if (sup->su_nbytes > 0) {
1590 brelse(bp);
1591 lfs_unset_inval_all(fs);
1592 return EBUSY;
1593 }
1594 sup->su_flags |= SEGUSE_INVAL;
1595 VOP_BWRITE(bp);
1596 return 0;
1597
1598 case LFCNRESIZE:
1599 /* Resize the filesystem */
1600 return lfs_resize_fs(fs, *(int *)ap->a_data);
1601
1602 case LFCNWRAPSTOP:
1603 case LFCNWRAPSTOP_COMPAT:
1604 /*
1605 * Hold lfs_newseg at segment 0; if requested, sleep until
1606 * the filesystem wraps around. To support external agents
1607 * (dump, fsck-based regression test) that need to look at
1608 * a snapshot of the filesystem, without necessarily
1609 * requiring that all fs activity stops.
1610 */
1611 if (lockstatus(&fs->lfs_stoplock))
1612 return EALREADY;
1613
1614 simple_lock(&fs->lfs_interlock);
1615 lockmgr(&fs->lfs_stoplock, LK_EXCLUSIVE, &fs->lfs_interlock);
1616 if (fs->lfs_nowrap == 0)
1617 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1618 ++fs->lfs_nowrap;
1619 if (*(int *)ap->a_data == 1 ||
1620 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1621 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1622 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1623 "segwrap", 0, &fs->lfs_interlock);
1624 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1625 if (error) {
1626 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1627 }
1628 }
1629 simple_unlock(&fs->lfs_interlock);
1630 return 0;
1631
1632 case LFCNWRAPGO:
1633 case LFCNWRAPGO_COMPAT:
1634 /*
1635 * Having done its work, the agent wakes up the writer.
1636 * If the argument is 1, it sleeps until a new segment
1637 * is selected.
1638 */
1639 simple_lock(&fs->lfs_interlock);
1640 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1641 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1642 *((int *)ap->a_data)));
1643 simple_unlock(&fs->lfs_interlock);
1644 return error;
1645
1646 case LFCNWRAPPASS:
1647 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
1648 return EALREADY;
1649 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1650 return EALREADY;
1651 simple_lock(&fs->lfs_interlock);
1652 if (fs->lfs_nowrap == 0) {
1653 simple_unlock(&fs->lfs_interlock);
1654 return EBUSY;
1655 }
1656 fs->lfs_wrappass = 1;
1657 wakeup(&fs->lfs_wrappass);
1658 /* Wait for the log to wrap, if asked */
1659 if (*(int *)ap->a_data) {
1660 lfs_vref(ap->a_vp);
1661 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1662 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1663 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1664 "segwrap", 0, &fs->lfs_interlock);
1665 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1666 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1667 lfs_vunref(ap->a_vp);
1668 }
1669 simple_unlock(&fs->lfs_interlock);
1670 return error;
1671
1672 case LFCNWRAPSTATUS:
1673 simple_lock(&fs->lfs_interlock);
1674 *(int *)ap->a_data = fs->lfs_wrapstatus;
1675 simple_unlock(&fs->lfs_interlock);
1676 return 0;
1677
1678 default:
1679 return ufs_fcntl(v);
1680 }
1681 return 0;
1682 }
1683
1684 int
1685 lfs_getpages(void *v)
1686 {
1687 struct vop_getpages_args /* {
1688 struct vnode *a_vp;
1689 voff_t a_offset;
1690 struct vm_page **a_m;
1691 int *a_count;
1692 int a_centeridx;
1693 vm_prot_t a_access_type;
1694 int a_advice;
1695 int a_flags;
1696 } */ *ap = v;
1697
1698 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1699 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1700 return EPERM;
1701 }
1702 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1703 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1704 }
1705
1706 /*
1707 * we're relying on the fact that genfs_getpages() always read in
1708 * entire filesystem blocks.
1709 */
1710 return genfs_getpages(v);
1711 }
1712
1713 static void
1714 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1715 {
1716 if ((pg->flags & PG_BUSY) == 0)
1717 return; /* Nothing to wait for! */
1718
1719 #if defined(UVM_PAGE_TRKOWN)
1720 static struct vm_page *lastpg;
1721
1722 if (label != NULL && pg != lastpg) {
1723 if (pg->owner_tag) {
1724 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1725 curproc->p_pid, curlwp->l_lid, label,
1726 pg, pg->owner, pg->lowner, pg->owner_tag);
1727 } else {
1728 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1729 curproc->p_pid, curlwp->l_lid, label, pg);
1730 }
1731 }
1732 lastpg = pg;
1733 #endif
1734
1735 pg->flags |= PG_WANTED;
1736 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1737 simple_lock(&vp->v_interlock);
1738 }
1739
1740 /*
1741 * This routine is called by lfs_putpages() when it can't complete the
1742 * write because a page is busy. This means that either (1) someone,
1743 * possibly the pagedaemon, is looking at this page, and will give it up
1744 * presently; or (2) we ourselves are holding the page busy in the
1745 * process of being written (either gathered or actually on its way to
1746 * disk). We don't need to give up the segment lock, but we might need
1747 * to call lfs_writeseg() to expedite the page's journey to disk.
1748 */
1749 /* #define BUSYWAIT */
1750 static void
1751 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1752 int seglocked, const char *label)
1753 {
1754 #ifndef BUSYWAIT
1755 struct inode *ip = VTOI(vp);
1756 struct segment *sp = fs->lfs_sp;
1757 int count = 0;
1758
1759 if (pg == NULL)
1760 return;
1761
1762 while (pg->flags & PG_BUSY) {
1763 if (sp->cbpp - sp->bpp > 1) {
1764 /* Write gathered pages */
1765 lfs_updatemeta(sp);
1766 lfs_release_finfo(fs);
1767 (void) lfs_writeseg(fs, sp);
1768
1769 /*
1770 * Reinitialize FIP
1771 */
1772 KASSERT(sp->vp == vp);
1773 lfs_acquire_finfo(fs, ip->i_number,
1774 ip->i_gen);
1775 }
1776 wait_for_page(vp, pg, label);
1777 ++count;
1778 }
1779 if (label != NULL && count > 1)
1780 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1781 label, (count > 0 ? "looping, " : ""), count);
1782 #else
1783 preempt(1);
1784 #endif
1785 }
1786
1787 /*
1788 * Make sure that for all pages in every block in the given range,
1789 * either all are dirty or all are clean. If any of the pages
1790 * we've seen so far are dirty, put the vnode on the paging chain,
1791 * and mark it IN_PAGING.
1792 *
1793 * If checkfirst != 0, don't check all the pages but return at the
1794 * first dirty page.
1795 */
1796 static int
1797 check_dirty(struct lfs *fs, struct vnode *vp,
1798 off_t startoffset, off_t endoffset, off_t blkeof,
1799 int flags, int checkfirst, struct vm_page **pgp)
1800 {
1801 int by_list;
1802 struct vm_page *curpg = NULL; /* XXX: gcc */
1803 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1804 off_t soff = 0; /* XXX: gcc */
1805 voff_t off;
1806 int i;
1807 int nonexistent;
1808 int any_dirty; /* number of dirty pages */
1809 int dirty; /* number of dirty pages in a block */
1810 int tdirty;
1811 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1812 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1813
1814 ASSERT_MAYBE_SEGLOCK(fs);
1815 top:
1816 by_list = (vp->v_uobj.uo_npages <=
1817 ((endoffset - startoffset) >> PAGE_SHIFT) *
1818 UVM_PAGE_HASH_PENALTY);
1819 any_dirty = 0;
1820
1821 if (by_list) {
1822 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1823 } else {
1824 soff = startoffset;
1825 }
1826 while (by_list || soff < MIN(blkeof, endoffset)) {
1827 if (by_list) {
1828 /*
1829 * Find the first page in a block. Skip
1830 * blocks outside our area of interest or beyond
1831 * the end of file.
1832 */
1833 if (pages_per_block > 1) {
1834 while (curpg &&
1835 ((curpg->offset & fs->lfs_bmask) ||
1836 curpg->offset >= vp->v_size ||
1837 curpg->offset >= endoffset))
1838 curpg = TAILQ_NEXT(curpg, listq);
1839 }
1840 if (curpg == NULL)
1841 break;
1842 soff = curpg->offset;
1843 }
1844
1845 /*
1846 * Mark all pages in extended range busy; find out if any
1847 * of them are dirty.
1848 */
1849 nonexistent = dirty = 0;
1850 for (i = 0; i == 0 || i < pages_per_block; i++) {
1851 if (by_list && pages_per_block <= 1) {
1852 pgs[i] = pg = curpg;
1853 } else {
1854 off = soff + (i << PAGE_SHIFT);
1855 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1856 if (pg == NULL) {
1857 ++nonexistent;
1858 continue;
1859 }
1860 }
1861 KASSERT(pg != NULL);
1862
1863 /*
1864 * If we're holding the segment lock, we can deadlock
1865 * against a process that has our page and is waiting
1866 * for the cleaner, while the cleaner waits for the
1867 * segment lock. Just bail in that case.
1868 */
1869 if ((pg->flags & PG_BUSY) &&
1870 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1871 if (i > 0)
1872 uvm_page_unbusy(pgs, i);
1873 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1874 if (pgp)
1875 *pgp = pg;
1876 return -1;
1877 }
1878
1879 while (pg->flags & PG_BUSY) {
1880 wait_for_page(vp, pg, NULL);
1881 if (i > 0)
1882 uvm_page_unbusy(pgs, i);
1883 goto top;
1884 }
1885 pg->flags |= PG_BUSY;
1886 UVM_PAGE_OWN(pg, "lfs_putpages");
1887
1888 pmap_page_protect(pg, VM_PROT_NONE);
1889 tdirty = (pmap_clear_modify(pg) ||
1890 (pg->flags & PG_CLEAN) == 0);
1891 dirty += tdirty;
1892 }
1893 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1894 if (by_list) {
1895 curpg = TAILQ_NEXT(curpg, listq);
1896 } else {
1897 soff += fs->lfs_bsize;
1898 }
1899 continue;
1900 }
1901
1902 any_dirty += dirty;
1903 KASSERT(nonexistent == 0);
1904
1905 /*
1906 * If any are dirty make all dirty; unbusy them,
1907 * but if we were asked to clean, wire them so that
1908 * the pagedaemon doesn't bother us about them while
1909 * they're on their way to disk.
1910 */
1911 for (i = 0; i == 0 || i < pages_per_block; i++) {
1912 pg = pgs[i];
1913 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1914 if (dirty) {
1915 pg->flags &= ~PG_CLEAN;
1916 if (flags & PGO_FREE) {
1917 /*
1918 * Wire the page so that
1919 * pdaemon doesn't see it again.
1920 */
1921 uvm_lock_pageq();
1922 uvm_pagewire(pg);
1923 uvm_unlock_pageq();
1924
1925 /* Suspended write flag */
1926 pg->flags |= PG_DELWRI;
1927 }
1928 }
1929 if (pg->flags & PG_WANTED)
1930 wakeup(pg);
1931 pg->flags &= ~(PG_WANTED|PG_BUSY);
1932 UVM_PAGE_OWN(pg, NULL);
1933 }
1934
1935 if (checkfirst && any_dirty)
1936 break;
1937
1938 if (by_list) {
1939 curpg = TAILQ_NEXT(curpg, listq);
1940 } else {
1941 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1942 }
1943 }
1944
1945 return any_dirty;
1946 }
1947
1948 /*
1949 * lfs_putpages functions like genfs_putpages except that
1950 *
1951 * (1) It needs to bounds-check the incoming requests to ensure that
1952 * they are block-aligned; if they are not, expand the range and
1953 * do the right thing in case, e.g., the requested range is clean
1954 * but the expanded range is dirty.
1955 *
1956 * (2) It needs to explicitly send blocks to be written when it is done.
1957 * If VOP_PUTPAGES is called without the seglock held, we simply take
1958 * the seglock and let lfs_segunlock wait for us.
1959 * XXX There might be a bad situation if we have to flush a vnode while
1960 * XXX lfs_markv is in operation. As of this writing we panic in this
1961 * XXX case.
1962 *
1963 * Assumptions:
1964 *
1965 * (1) The caller does not hold any pages in this vnode busy. If it does,
1966 * there is a danger that when we expand the page range and busy the
1967 * pages we will deadlock.
1968 *
1969 * (2) We are called with vp->v_interlock held; we must return with it
1970 * released.
1971 *
1972 * (3) We don't absolutely have to free pages right away, provided that
1973 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1974 * us a request with PGO_FREE, we take the pages out of the paging
1975 * queue and wake up the writer, which will handle freeing them for us.
1976 *
1977 * We ensure that for any filesystem block, all pages for that
1978 * block are either resident or not, even if those pages are higher
1979 * than EOF; that means that we will be getting requests to free
1980 * "unused" pages above EOF all the time, and should ignore them.
1981 *
1982 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1983 * into has been set up for us by lfs_writefile. If not, we will
1984 * have to handle allocating and/or freeing an finfo entry.
1985 *
1986 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1987 */
1988
1989 /* How many times to loop before we should start to worry */
1990 #define TOOMANY 4
1991
1992 int
1993 lfs_putpages(void *v)
1994 {
1995 int error;
1996 struct vop_putpages_args /* {
1997 struct vnode *a_vp;
1998 voff_t a_offlo;
1999 voff_t a_offhi;
2000 int a_flags;
2001 } */ *ap = v;
2002 struct vnode *vp;
2003 struct inode *ip;
2004 struct lfs *fs;
2005 struct segment *sp;
2006 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2007 off_t off, max_endoffset;
2008 int s;
2009 bool seglocked, sync, pagedaemon;
2010 struct vm_page *pg, *busypg;
2011 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2012 #ifdef DEBUG
2013 int debug_n_again, debug_n_dirtyclean;
2014 #endif
2015
2016 vp = ap->a_vp;
2017 ip = VTOI(vp);
2018 fs = ip->i_lfs;
2019 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2020 pagedaemon = (curproc == uvm.pagedaemon_proc);
2021
2022 /* Putpages does nothing for metadata. */
2023 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2024 simple_unlock(&vp->v_interlock);
2025 return 0;
2026 }
2027
2028 /*
2029 * If there are no pages, don't do anything.
2030 */
2031 if (vp->v_uobj.uo_npages == 0) {
2032 s = splbio();
2033 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2034 (vp->v_flag & VONWORKLST) &&
2035 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2036 vp->v_flag &= ~VWRITEMAPDIRTY;
2037 vn_syncer_remove_from_worklist(vp);
2038 }
2039 splx(s);
2040 simple_unlock(&vp->v_interlock);
2041
2042 /* Remove us from paging queue, if we were on it */
2043 simple_lock(&fs->lfs_interlock);
2044 if (ip->i_flags & IN_PAGING) {
2045 ip->i_flags &= ~IN_PAGING;
2046 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2047 }
2048 simple_unlock(&fs->lfs_interlock);
2049 return 0;
2050 }
2051
2052 blkeof = blkroundup(fs, ip->i_size);
2053
2054 /*
2055 * Ignore requests to free pages past EOF but in the same block
2056 * as EOF, unless the request is synchronous. (If the request is
2057 * sync, it comes from lfs_truncate.)
2058 * XXXUBC Make these pages look "active" so the pagedaemon won't
2059 * XXXUBC bother us with them again.
2060 */
2061 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2062 origoffset = ap->a_offlo;
2063 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2064 pg = uvm_pagelookup(&vp->v_uobj, off);
2065 KASSERT(pg != NULL);
2066 while (pg->flags & PG_BUSY) {
2067 pg->flags |= PG_WANTED;
2068 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2069 "lfsput2", 0);
2070 simple_lock(&vp->v_interlock);
2071 }
2072 uvm_lock_pageq();
2073 uvm_pageactivate(pg);
2074 uvm_unlock_pageq();
2075 }
2076 ap->a_offlo = blkeof;
2077 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2078 simple_unlock(&vp->v_interlock);
2079 return 0;
2080 }
2081 }
2082
2083 /*
2084 * Extend page range to start and end at block boundaries.
2085 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2086 */
2087 origoffset = ap->a_offlo;
2088 origendoffset = ap->a_offhi;
2089 startoffset = origoffset & ~(fs->lfs_bmask);
2090 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2091 << fs->lfs_bshift;
2092
2093 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2094 endoffset = max_endoffset;
2095 origendoffset = endoffset;
2096 } else {
2097 origendoffset = round_page(ap->a_offhi);
2098 endoffset = round_page(blkroundup(fs, origendoffset));
2099 }
2100
2101 KASSERT(startoffset > 0 || endoffset >= startoffset);
2102 if (startoffset == endoffset) {
2103 /* Nothing to do, why were we called? */
2104 simple_unlock(&vp->v_interlock);
2105 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2106 PRId64 "\n", startoffset));
2107 return 0;
2108 }
2109
2110 ap->a_offlo = startoffset;
2111 ap->a_offhi = endoffset;
2112
2113 /*
2114 * If not cleaning, just send the pages through genfs_putpages
2115 * to be returned to the pool.
2116 */
2117 if (!(ap->a_flags & PGO_CLEANIT))
2118 return genfs_putpages(v);
2119
2120 /* Set PGO_BUSYFAIL to avoid deadlocks */
2121 ap->a_flags |= PGO_BUSYFAIL;
2122
2123 /*
2124 * Likewise, if we are asked to clean but the pages are not
2125 * dirty, we can just free them using genfs_putpages.
2126 */
2127 #ifdef DEBUG
2128 debug_n_dirtyclean = 0;
2129 #endif
2130 do {
2131 int r;
2132
2133 /* Count the number of dirty pages */
2134 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2135 ap->a_flags, 1, NULL);
2136 if (r < 0) {
2137 /* Pages are busy with another process */
2138 simple_unlock(&vp->v_interlock);
2139 return EDEADLK;
2140 }
2141 if (r > 0) /* Some pages are dirty */
2142 break;
2143
2144 /*
2145 * Sometimes pages are dirtied between the time that
2146 * we check and the time we try to clean them.
2147 * Instruct lfs_gop_write to return EDEADLK in this case
2148 * so we can write them properly.
2149 */
2150 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2151 r = lfs_genfs_putpages(vp, startoffset, endoffset,
2152 ap->a_flags, &busypg);
2153 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2154 if (r != EDEADLK)
2155 return r;
2156
2157 /* One of the pages was busy. Start over. */
2158 wait_for_page(vp, busypg, "dirtyclean");
2159 simple_lock(&vp->v_interlock);
2160 #ifdef DEBUG
2161 ++debug_n_dirtyclean;
2162 #endif
2163 } while(1);
2164
2165 #ifdef DEBUG
2166 if (debug_n_dirtyclean > TOOMANY)
2167 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2168 debug_n_dirtyclean);
2169 #endif
2170
2171 /*
2172 * Dirty and asked to clean.
2173 *
2174 * Pagedaemon can't actually write LFS pages; wake up
2175 * the writer to take care of that. The writer will
2176 * notice the pager inode queue and act on that.
2177 */
2178 if (pagedaemon) {
2179 simple_lock(&fs->lfs_interlock);
2180 if (!(ip->i_flags & IN_PAGING)) {
2181 ip->i_flags |= IN_PAGING;
2182 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2183 }
2184 simple_lock(&lfs_subsys_lock);
2185 wakeup(&lfs_writer_daemon);
2186 simple_unlock(&lfs_subsys_lock);
2187 simple_unlock(&fs->lfs_interlock);
2188 simple_unlock(&vp->v_interlock);
2189 preempt();
2190 return EWOULDBLOCK;
2191 }
2192
2193 /*
2194 * If this is a file created in a recent dirop, we can't flush its
2195 * inode until the dirop is complete. Drain dirops, then flush the
2196 * filesystem (taking care of any other pending dirops while we're
2197 * at it).
2198 */
2199 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2200 (vp->v_flag & VDIROP)) {
2201 int locked;
2202
2203 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
2204 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2205 simple_unlock(&vp->v_interlock);
2206 lfs_writer_enter(fs, "ppdirop");
2207 if (locked)
2208 VOP_UNLOCK(vp, 0); /* XXX why? */
2209
2210 simple_lock(&fs->lfs_interlock);
2211 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2212 simple_unlock(&fs->lfs_interlock);
2213
2214 simple_lock(&vp->v_interlock);
2215 if (locked) {
2216 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2217 simple_lock(&vp->v_interlock);
2218 }
2219 lfs_writer_leave(fs);
2220
2221 /* XXX the flush should have taken care of this one too! */
2222 }
2223
2224 /*
2225 * This is it. We are going to write some pages. From here on
2226 * down it's all just mechanics.
2227 *
2228 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2229 */
2230 ap->a_flags &= ~PGO_SYNCIO;
2231
2232 /*
2233 * If we've already got the seglock, flush the node and return.
2234 * The FIP has already been set up for us by lfs_writefile,
2235 * and FIP cleanup and lfs_updatemeta will also be done there,
2236 * unless genfs_putpages returns EDEADLK; then we must flush
2237 * what we have, and correct FIP and segment header accounting.
2238 */
2239 get_seglock:
2240 /*
2241 * If we are not called with the segment locked, lock it.
2242 * Account for a new FIP in the segment header, and set sp->vp.
2243 * (This should duplicate the setup at the top of lfs_writefile().)
2244 */
2245 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2246 if (!seglocked) {
2247 simple_unlock(&vp->v_interlock);
2248 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2249 if (error != 0)
2250 return error;
2251 simple_lock(&vp->v_interlock);
2252 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2253 }
2254 sp = fs->lfs_sp;
2255 KASSERT(sp->vp == NULL);
2256 sp->vp = vp;
2257
2258 /*
2259 * Ensure that the partial segment is marked SS_DIROP if this
2260 * vnode is a DIROP.
2261 */
2262 if (!seglocked && vp->v_flag & VDIROP)
2263 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2264
2265 /*
2266 * Loop over genfs_putpages until all pages are gathered.
2267 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2268 * Whenever we lose the interlock we have to rerun check_dirty, as
2269 * well, since more pages might have been dirtied in our absence.
2270 */
2271 #ifdef DEBUG
2272 debug_n_again = 0;
2273 #endif
2274 do {
2275 busypg = NULL;
2276 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2277 ap->a_flags, 0, &busypg) < 0) {
2278 simple_unlock(&vp->v_interlock);
2279 sp->vp = NULL;
2280
2281 write_and_wait(fs, vp, busypg, seglocked, NULL);
2282 if (!seglocked) {
2283 lfs_release_finfo(fs);
2284 lfs_segunlock(fs);
2285 }
2286 simple_lock(&vp->v_interlock);
2287 goto get_seglock;
2288 }
2289
2290 busypg = NULL;
2291 error = lfs_genfs_putpages(vp, startoffset, endoffset,
2292 ap->a_flags, &busypg);
2293
2294 if (error == EDEADLK || error == EAGAIN) {
2295 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2296 " %d ino %d off %x (seg %d)\n", error,
2297 ip->i_number, fs->lfs_offset,
2298 dtosn(fs, fs->lfs_offset)));
2299
2300 write_and_wait(fs, vp, busypg, seglocked, "again");
2301 if (error != EAGAIN) /* XXX - test on multiproc */
2302 simple_lock(&vp->v_interlock);
2303 }
2304 #ifdef DEBUG
2305 ++debug_n_again;
2306 #endif
2307 } while (error == EDEADLK);
2308 #ifdef DEBUG
2309 if (debug_n_again > TOOMANY)
2310 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2311 #endif
2312
2313 KASSERT(sp != NULL && sp->vp == vp);
2314 if (!seglocked) {
2315 sp->vp = NULL;
2316
2317 /* Write indirect blocks as well */
2318 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2319 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2320 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2321
2322 KASSERT(sp->vp == NULL);
2323 sp->vp = vp;
2324 }
2325
2326 /*
2327 * Blocks are now gathered into a segment waiting to be written.
2328 * All that's left to do is update metadata, and write them.
2329 */
2330 lfs_updatemeta(sp);
2331 KASSERT(sp->vp == vp);
2332 sp->vp = NULL;
2333
2334 /*
2335 * If we were called from lfs_writefile, we don't need to clean up
2336 * the FIP or unlock the segment lock. We're done.
2337 */
2338 if (seglocked)
2339 return error;
2340
2341 /* Clean up FIP and send it to disk. */
2342 lfs_release_finfo(fs);
2343 lfs_writeseg(fs, fs->lfs_sp);
2344
2345 /*
2346 * Remove us from paging queue if we wrote all our pages.
2347 */
2348 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2349 simple_lock(&fs->lfs_interlock);
2350 if (ip->i_flags & IN_PAGING) {
2351 ip->i_flags &= ~IN_PAGING;
2352 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2353 }
2354 simple_unlock(&fs->lfs_interlock);
2355 }
2356
2357 /*
2358 * XXX - with the malloc/copy writeseg, the pages are freed by now
2359 * even if we don't wait (e.g. if we hold a nested lock). This
2360 * will not be true if we stop using malloc/copy.
2361 */
2362 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2363 lfs_segunlock(fs);
2364
2365 /*
2366 * Wait for v_numoutput to drop to zero. The seglock should
2367 * take care of this, but there is a slight possibility that
2368 * aiodoned might not have got around to our buffers yet.
2369 */
2370 if (sync) {
2371 s = splbio();
2372 simple_lock(&global_v_numoutput_slock);
2373 while (vp->v_numoutput > 0) {
2374 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2375 " num %d\n", ip->i_number, vp->v_numoutput));
2376 vp->v_flag |= VBWAIT;
2377 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2378 &global_v_numoutput_slock);
2379 }
2380 simple_unlock(&global_v_numoutput_slock);
2381 splx(s);
2382 }
2383 return error;
2384 }
2385
2386 /*
2387 * Return the last logical file offset that should be written for this file
2388 * if we're doing a write that ends at "size". If writing, we need to know
2389 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2390 * to know about entire blocks.
2391 */
2392 void
2393 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2394 {
2395 struct inode *ip = VTOI(vp);
2396 struct lfs *fs = ip->i_lfs;
2397 daddr_t olbn, nlbn;
2398
2399 olbn = lblkno(fs, ip->i_size);
2400 nlbn = lblkno(fs, size);
2401 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2402 *eobp = fragroundup(fs, size);
2403 } else {
2404 *eobp = blkroundup(fs, size);
2405 }
2406 }
2407
2408 #ifdef DEBUG
2409 void lfs_dump_vop(void *);
2410
2411 void
2412 lfs_dump_vop(void *v)
2413 {
2414 struct vop_putpages_args /* {
2415 struct vnode *a_vp;
2416 voff_t a_offlo;
2417 voff_t a_offhi;
2418 int a_flags;
2419 } */ *ap = v;
2420
2421 #ifdef DDB
2422 vfs_vnode_print(ap->a_vp, 0, printf);
2423 #endif
2424 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2425 }
2426 #endif
2427
2428 int
2429 lfs_mmap(void *v)
2430 {
2431 struct vop_mmap_args /* {
2432 const struct vnodeop_desc *a_desc;
2433 struct vnode *a_vp;
2434 int a_fflags;
2435 kauth_cred_t a_cred;
2436 struct lwp *a_l;
2437 } */ *ap = v;
2438
2439 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2440 return EOPNOTSUPP;
2441 return ufs_mmap(v);
2442 }
2443
2444 /*
2445 * Our own version of genfs_putpages. This is never called by the pagedaemon
2446 * or with PGO_SYNCIO, always called with PGO_CLEANIT and PGO_BUSYFAIL; and
2447 * in the event of failure it returns the busy page in "busypg".
2448 */
2449 static int
2450 lfs_genfs_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
2451 struct vm_page **busypg)
2452 {
2453 struct uvm_object *uobj = &vp->v_uobj;
2454 struct simplelock *slock = &uobj->vmobjlock;
2455 off_t off;
2456 /* Even for strange MAXPHYS, the shift rounds down to a page */
2457 #define maxpages (MAXPHYS >> PAGE_SHIFT)
2458 int i, s, error, npages, nback;
2459 int freeflag;
2460 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
2461 bool wasclean, by_list, needs_clean, yld;
2462 bool async = (flags & PGO_SYNCIO) == 0;
2463 bool pagedaemon = curproc == uvm.pagedaemon_proc;
2464 struct lwp *l = curlwp ? curlwp : &lwp0;
2465 struct genfs_node *gp = VTOG(vp);
2466 int dirtygen;
2467 bool modified = false;
2468 bool has_trans = false;
2469 bool cleanall;
2470 bool writeinprog;
2471
2472 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
2473
2474 *busypg = NULL;
2475
2476 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
2477 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
2478 KASSERT(startoff < endoff || endoff == 0);
2479
2480 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
2481 vp, uobj->uo_npages, startoff, endoff - startoff);
2482
2483 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
2484 (vp->v_flag & VWRITEMAPDIRTY) == 0);
2485 if (uobj->uo_npages == 0) {
2486 s = splbio();
2487 if (vp->v_flag & VONWORKLST) {
2488 vp->v_flag &= ~VWRITEMAPDIRTY;
2489 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
2490 vn_syncer_remove_from_worklist(vp);
2491 }
2492 splx(s);
2493 simple_unlock(slock);
2494 return (0);
2495 }
2496
2497 /*
2498 * the vnode has pages, set up to process the request.
2499 */
2500
2501 if ((flags & PGO_CLEANIT) != 0) {
2502 simple_unlock(slock);
2503 if (pagedaemon)
2504 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
2505 else
2506 error = fstrans_start(vp->v_mount, FSTRANS_LAZY);
2507 if (error)
2508 return error;
2509 has_trans = true;
2510 simple_lock(slock);
2511 }
2512
2513 error = 0;
2514 s = splbio();
2515 simple_lock(&global_v_numoutput_slock);
2516 wasclean = (vp->v_numoutput == 0);
2517 simple_unlock(&global_v_numoutput_slock);
2518 splx(s);
2519 off = startoff;
2520 if (endoff == 0 || flags & PGO_ALLPAGES) {
2521 endoff = trunc_page(LLONG_MAX);
2522 }
2523 by_list = (uobj->uo_npages <=
2524 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
2525
2526 #if !defined(DEBUG)
2527 /*
2528 * if this vnode is known not to have dirty pages,
2529 * don't bother to clean it out.
2530 */
2531
2532 if ((vp->v_flag & VONWORKLST) == 0) {
2533 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
2534 goto skip_scan;
2535 }
2536 flags &= ~PGO_CLEANIT;
2537 }
2538 #endif /* !defined(DEBUG) */
2539
2540 /*
2541 * start the loop. when scanning by list, hold the last page
2542 * in the list before we start. pages allocated after we start
2543 * will be added to the end of the list, so we can stop at the
2544 * current last page.
2545 */
2546
2547 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
2548 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
2549 (vp->v_flag & VONWORKLST) != 0;
2550 dirtygen = gp->g_dirtygen;
2551 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
2552 if (by_list) {
2553 curmp.uobject = uobj;
2554 curmp.offset = (voff_t)-1;
2555 curmp.flags = PG_BUSY;
2556 endmp.uobject = uobj;
2557 endmp.offset = (voff_t)-1;
2558 endmp.flags = PG_BUSY;
2559 pg = TAILQ_FIRST(&uobj->memq);
2560 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
2561 PHOLD(l);
2562 } else {
2563 pg = uvm_pagelookup(uobj, off);
2564 }
2565 nextpg = NULL;
2566 while (by_list || off < endoff) {
2567
2568 /*
2569 * if the current page is not interesting, move on to the next.
2570 */
2571
2572 KASSERT(pg == NULL || pg->uobject == uobj);
2573 KASSERT(pg == NULL ||
2574 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
2575 (pg->flags & PG_BUSY) != 0);
2576 writeinprog = (pg->flags & PG_BUSY) &&
2577 !(pg->flags & PG_CLEAN && !pmap_is_modified(pg));
2578 if (by_list) {
2579 if (pg == &endmp) {
2580 break;
2581 }
2582 if (pg->offset < startoff || pg->offset >= endoff ||
2583 pg->flags & (PG_RELEASED|PG_PAGEOUT) ||
2584 writeinprog) {
2585 if (pg->offset >= startoff &&
2586 pg->offset < endoff) {
2587 wasclean = false;
2588 }
2589 pg = TAILQ_NEXT(pg, listq);
2590 continue;
2591 }
2592 off = pg->offset;
2593 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT) ||
2594 writeinprog) {
2595 if (pg != NULL) {
2596 wasclean = false;
2597 }
2598 off += PAGE_SIZE;
2599 if (off < endoff) {
2600 pg = uvm_pagelookup(uobj, off);
2601 }
2602 continue;
2603 }
2604
2605 /*
2606 * if the current page needs to be cleaned and it's busy,
2607 * wait for it to become unbusy.
2608 */
2609
2610 yld = (l->l_cpu->ci_schedstate.spc_flags &
2611 SPCF_SHOULDYIELD) && !pagedaemon;
2612 if (pg->flags & PG_BUSY || yld) {
2613 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
2614 if (pg->flags & PG_BUSY) {
2615 *busypg = pg;
2616 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
2617 error = EDEADLK;
2618 break;
2619 }
2620 KASSERT(!pagedaemon);
2621 if (by_list) {
2622 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
2623 UVMHIST_LOG(ubchist, "curmp next %p",
2624 TAILQ_NEXT(&curmp, listq), 0,0,0);
2625 }
2626 if (yld) {
2627 simple_unlock(slock);
2628 preempt();
2629 simple_lock(slock);
2630 } else {
2631 pg->flags |= PG_WANTED;
2632 #ifdef UVM_PAGE_TRKOWN
2633 printf("sleeping on page %lld owned by pid %d.%d (%s)\n",
2634 (long long)pg->offset, pg->owner, pg->lowner, pg->owner_tag);
2635 #endif
2636 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
2637 simple_lock(slock);
2638 }
2639 if (by_list) {
2640 UVMHIST_LOG(ubchist, "after next %p",
2641 TAILQ_NEXT(&curmp, listq), 0,0,0);
2642 pg = TAILQ_NEXT(&curmp, listq);
2643 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
2644 } else {
2645 pg = uvm_pagelookup(uobj, off);
2646 }
2647 continue;
2648 }
2649
2650 /*
2651 * if we're freeing, remove all mappings of the page now.
2652 * if we're cleaning, check if the page is needs to be cleaned.
2653 */
2654
2655 if (flags & PGO_FREE) {
2656 pmap_page_protect(pg, VM_PROT_NONE);
2657 } else if (flags & PGO_CLEANIT) {
2658
2659 /*
2660 * if we still have some hope to pull this vnode off
2661 * from the syncer queue, write-protect the page.
2662 */
2663
2664 if (cleanall && wasclean &&
2665 gp->g_dirtygen == dirtygen) {
2666
2667 /*
2668 * uobj pages get wired only by uvm_fault
2669 * where uobj is locked.
2670 */
2671
2672 if (pg->wire_count == 0) {
2673 pmap_page_protect(pg,
2674 VM_PROT_READ|VM_PROT_EXECUTE);
2675 } else {
2676 cleanall = false;
2677 }
2678 }
2679 }
2680
2681 if (flags & PGO_CLEANIT) {
2682 needs_clean = pmap_clear_modify(pg) ||
2683 (pg->flags & PG_CLEAN) == 0;
2684 pg->flags |= PG_CLEAN;
2685 } else {
2686 needs_clean = false;
2687 }
2688
2689 /*
2690 * if we're cleaning, build a cluster.
2691 * the cluster will consist of pages which are currently dirty,
2692 * but they will be returned to us marked clean.
2693 * if not cleaning, just operate on the one page.
2694 */
2695
2696 if (needs_clean) {
2697 KDASSERT((vp->v_flag & VONWORKLST));
2698 wasclean = false;
2699 memset(pgs, 0, sizeof(pgs));
2700 pg->flags |= PG_BUSY;
2701 UVM_PAGE_OWN(pg, "genfs_putpages");
2702
2703 /*
2704 * first look backward.
2705 */
2706
2707 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
2708 nback = npages;
2709 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
2710 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
2711 if (nback) {
2712 memmove(&pgs[0], &pgs[npages - nback],
2713 nback * sizeof(pgs[0]));
2714 if (npages - nback < nback)
2715 memset(&pgs[nback], 0,
2716 (npages - nback) * sizeof(pgs[0]));
2717 else
2718 memset(&pgs[npages - nback], 0,
2719 nback * sizeof(pgs[0]));
2720 }
2721
2722 /*
2723 * then plug in our page of interest.
2724 */
2725
2726 pgs[nback] = pg;
2727
2728 /*
2729 * then look forward to fill in the remaining space in
2730 * the array of pages.
2731 */
2732
2733 npages = maxpages - nback - 1;
2734 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
2735 &pgs[nback + 1],
2736 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
2737 npages += nback + 1;
2738 } else {
2739 pgs[0] = pg;
2740 npages = 1;
2741 nback = 0;
2742 }
2743
2744 /*
2745 * apply FREE or DEACTIVATE options if requested.
2746 */
2747
2748 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
2749 uvm_lock_pageq();
2750 }
2751 for (i = 0; i < npages; i++) {
2752 tpg = pgs[i];
2753 KASSERT(tpg->uobject == uobj);
2754 if (by_list && tpg == TAILQ_NEXT(pg, listq))
2755 pg = tpg;
2756 if (tpg->offset < startoff || tpg->offset >= endoff)
2757 continue;
2758 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
2759 (void) pmap_clear_reference(tpg);
2760 uvm_pagedeactivate(tpg);
2761 } else if (flags & PGO_FREE) {
2762 pmap_page_protect(tpg, VM_PROT_NONE);
2763 if (tpg->flags & PG_BUSY) {
2764 tpg->flags |= freeflag;
2765 if (pagedaemon) {
2766 uvmexp.paging++;
2767 uvm_pagedequeue(tpg);
2768 }
2769 } else {
2770
2771 /*
2772 * ``page is not busy''
2773 * implies that npages is 1
2774 * and needs_clean is false.
2775 */
2776
2777 nextpg = TAILQ_NEXT(tpg, listq);
2778 uvm_pagefree(tpg);
2779 if (pagedaemon)
2780 uvmexp.pdfreed++;
2781 }
2782 }
2783 }
2784 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
2785 uvm_unlock_pageq();
2786 }
2787 if (needs_clean) {
2788 modified = true;
2789
2790 /*
2791 * start the i/o. if we're traversing by list,
2792 * keep our place in the list with a marker page.
2793 */
2794
2795 if (by_list) {
2796 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
2797 listq);
2798 }
2799 simple_unlock(slock);
2800 error = GOP_WRITE(vp, pgs, npages, flags);
2801 simple_lock(slock);
2802 if (by_list) {
2803 pg = TAILQ_NEXT(&curmp, listq);
2804 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
2805 }
2806 if (error) {
2807 break;
2808 }
2809 if (by_list) {
2810 continue;
2811 }
2812 }
2813
2814 /*
2815 * find the next page and continue if there was no error.
2816 */
2817
2818 if (by_list) {
2819 if (nextpg) {
2820 pg = nextpg;
2821 nextpg = NULL;
2822 } else {
2823 pg = TAILQ_NEXT(pg, listq);
2824 }
2825 } else {
2826 off += (npages - nback) << PAGE_SHIFT;
2827 if (off < endoff) {
2828 pg = uvm_pagelookup(uobj, off);
2829 }
2830 }
2831 }
2832 if (by_list) {
2833 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
2834 PRELE(l);
2835 }
2836
2837 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
2838 (vp->v_type != VBLK ||
2839 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
2840 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
2841 }
2842
2843 /*
2844 * if we're cleaning and there was nothing to clean,
2845 * take us off the syncer list. if we started any i/o
2846 * and we're doing sync i/o, wait for all writes to finish.
2847 */
2848
2849 s = splbio();
2850 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
2851 (vp->v_flag & VONWORKLST) != 0) {
2852 vp->v_flag &= ~VWRITEMAPDIRTY;
2853 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
2854 vn_syncer_remove_from_worklist(vp);
2855 }
2856 splx(s);
2857
2858 #if !defined(DEBUG)
2859 skip_scan:
2860 #endif /* !defined(DEBUG) */
2861 if (!wasclean && !async) {
2862 s = splbio();
2863 /*
2864 * XXX - we want simple_unlock(&global_v_numoutput_slock);
2865 * but the slot in ltsleep() is taken!
2866 * XXX - try to recover from missed wakeups with a timeout..
2867 * must think of something better.
2868 */
2869 while (vp->v_numoutput != 0) {
2870 vp->v_flag |= VBWAIT;
2871 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
2872 "genput2", hz);
2873 simple_lock(slock);
2874 }
2875 splx(s);
2876 }
2877 simple_unlock(slock);
2878
2879 if (has_trans)
2880 fstrans_done(vp->v_mount);
2881
2882 return (error);
2883 }
2884