lfs_vnops.c revision 1.205 1 /* $NetBSD: lfs_vnops.c,v 1.205 2007/04/17 20:30:29 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.205 2007/04/17 20:30:29 perseant Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Forward declaration for hackish genfs_putpages */
114 static int
115 lfs_genfs_putpages(struct vnode *, off_t, off_t, int, struct vm_page **);
116
117 /* Global vfs data structures for lfs. */
118 int (**lfs_vnodeop_p)(void *);
119 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
120 { &vop_default_desc, vn_default_error },
121 { &vop_lookup_desc, ufs_lookup }, /* lookup */
122 { &vop_create_desc, lfs_create }, /* create */
123 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
124 { &vop_mknod_desc, lfs_mknod }, /* mknod */
125 { &vop_open_desc, ufs_open }, /* open */
126 { &vop_close_desc, lfs_close }, /* close */
127 { &vop_access_desc, ufs_access }, /* access */
128 { &vop_getattr_desc, lfs_getattr }, /* getattr */
129 { &vop_setattr_desc, lfs_setattr }, /* setattr */
130 { &vop_read_desc, lfs_read }, /* read */
131 { &vop_write_desc, lfs_write }, /* write */
132 { &vop_lease_desc, ufs_lease_check }, /* lease */
133 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
134 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
135 { &vop_poll_desc, ufs_poll }, /* poll */
136 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
137 { &vop_revoke_desc, ufs_revoke }, /* revoke */
138 { &vop_mmap_desc, lfs_mmap }, /* mmap */
139 { &vop_fsync_desc, lfs_fsync }, /* fsync */
140 { &vop_seek_desc, ufs_seek }, /* seek */
141 { &vop_remove_desc, lfs_remove }, /* remove */
142 { &vop_link_desc, lfs_link }, /* link */
143 { &vop_rename_desc, lfs_rename }, /* rename */
144 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
145 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
146 { &vop_symlink_desc, lfs_symlink }, /* symlink */
147 { &vop_readdir_desc, ufs_readdir }, /* readdir */
148 { &vop_readlink_desc, ufs_readlink }, /* readlink */
149 { &vop_abortop_desc, ufs_abortop }, /* abortop */
150 { &vop_inactive_desc, lfs_inactive }, /* inactive */
151 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
152 { &vop_lock_desc, ufs_lock }, /* lock */
153 { &vop_unlock_desc, ufs_unlock }, /* unlock */
154 { &vop_bmap_desc, ufs_bmap }, /* bmap */
155 { &vop_strategy_desc, lfs_strategy }, /* strategy */
156 { &vop_print_desc, ufs_print }, /* print */
157 { &vop_islocked_desc, ufs_islocked }, /* islocked */
158 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
159 { &vop_advlock_desc, ufs_advlock }, /* advlock */
160 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
161 { &vop_getpages_desc, lfs_getpages }, /* getpages */
162 { &vop_putpages_desc, lfs_putpages }, /* putpages */
163 { NULL, NULL }
164 };
165 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
166 { &lfs_vnodeop_p, lfs_vnodeop_entries };
167
168 int (**lfs_specop_p)(void *);
169 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
170 { &vop_default_desc, vn_default_error },
171 { &vop_lookup_desc, spec_lookup }, /* lookup */
172 { &vop_create_desc, spec_create }, /* create */
173 { &vop_mknod_desc, spec_mknod }, /* mknod */
174 { &vop_open_desc, spec_open }, /* open */
175 { &vop_close_desc, lfsspec_close }, /* close */
176 { &vop_access_desc, ufs_access }, /* access */
177 { &vop_getattr_desc, lfs_getattr }, /* getattr */
178 { &vop_setattr_desc, lfs_setattr }, /* setattr */
179 { &vop_read_desc, ufsspec_read }, /* read */
180 { &vop_write_desc, ufsspec_write }, /* write */
181 { &vop_lease_desc, spec_lease_check }, /* lease */
182 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
183 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
184 { &vop_poll_desc, spec_poll }, /* poll */
185 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
186 { &vop_revoke_desc, spec_revoke }, /* revoke */
187 { &vop_mmap_desc, spec_mmap }, /* mmap */
188 { &vop_fsync_desc, spec_fsync }, /* fsync */
189 { &vop_seek_desc, spec_seek }, /* seek */
190 { &vop_remove_desc, spec_remove }, /* remove */
191 { &vop_link_desc, spec_link }, /* link */
192 { &vop_rename_desc, spec_rename }, /* rename */
193 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
194 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
195 { &vop_symlink_desc, spec_symlink }, /* symlink */
196 { &vop_readdir_desc, spec_readdir }, /* readdir */
197 { &vop_readlink_desc, spec_readlink }, /* readlink */
198 { &vop_abortop_desc, spec_abortop }, /* abortop */
199 { &vop_inactive_desc, lfs_inactive }, /* inactive */
200 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
201 { &vop_lock_desc, ufs_lock }, /* lock */
202 { &vop_unlock_desc, ufs_unlock }, /* unlock */
203 { &vop_bmap_desc, spec_bmap }, /* bmap */
204 { &vop_strategy_desc, spec_strategy }, /* strategy */
205 { &vop_print_desc, ufs_print }, /* print */
206 { &vop_islocked_desc, ufs_islocked }, /* islocked */
207 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
208 { &vop_advlock_desc, spec_advlock }, /* advlock */
209 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
210 { &vop_getpages_desc, spec_getpages }, /* getpages */
211 { &vop_putpages_desc, spec_putpages }, /* putpages */
212 { NULL, NULL }
213 };
214 const struct vnodeopv_desc lfs_specop_opv_desc =
215 { &lfs_specop_p, lfs_specop_entries };
216
217 int (**lfs_fifoop_p)(void *);
218 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
219 { &vop_default_desc, vn_default_error },
220 { &vop_lookup_desc, fifo_lookup }, /* lookup */
221 { &vop_create_desc, fifo_create }, /* create */
222 { &vop_mknod_desc, fifo_mknod }, /* mknod */
223 { &vop_open_desc, fifo_open }, /* open */
224 { &vop_close_desc, lfsfifo_close }, /* close */
225 { &vop_access_desc, ufs_access }, /* access */
226 { &vop_getattr_desc, lfs_getattr }, /* getattr */
227 { &vop_setattr_desc, lfs_setattr }, /* setattr */
228 { &vop_read_desc, ufsfifo_read }, /* read */
229 { &vop_write_desc, ufsfifo_write }, /* write */
230 { &vop_lease_desc, fifo_lease_check }, /* lease */
231 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
232 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
233 { &vop_poll_desc, fifo_poll }, /* poll */
234 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
235 { &vop_revoke_desc, fifo_revoke }, /* revoke */
236 { &vop_mmap_desc, fifo_mmap }, /* mmap */
237 { &vop_fsync_desc, fifo_fsync }, /* fsync */
238 { &vop_seek_desc, fifo_seek }, /* seek */
239 { &vop_remove_desc, fifo_remove }, /* remove */
240 { &vop_link_desc, fifo_link }, /* link */
241 { &vop_rename_desc, fifo_rename }, /* rename */
242 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
243 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
244 { &vop_symlink_desc, fifo_symlink }, /* symlink */
245 { &vop_readdir_desc, fifo_readdir }, /* readdir */
246 { &vop_readlink_desc, fifo_readlink }, /* readlink */
247 { &vop_abortop_desc, fifo_abortop }, /* abortop */
248 { &vop_inactive_desc, lfs_inactive }, /* inactive */
249 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
250 { &vop_lock_desc, ufs_lock }, /* lock */
251 { &vop_unlock_desc, ufs_unlock }, /* unlock */
252 { &vop_bmap_desc, fifo_bmap }, /* bmap */
253 { &vop_strategy_desc, fifo_strategy }, /* strategy */
254 { &vop_print_desc, ufs_print }, /* print */
255 { &vop_islocked_desc, ufs_islocked }, /* islocked */
256 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
257 { &vop_advlock_desc, fifo_advlock }, /* advlock */
258 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
259 { &vop_putpages_desc, fifo_putpages }, /* putpages */
260 { NULL, NULL }
261 };
262 const struct vnodeopv_desc lfs_fifoop_opv_desc =
263 { &lfs_fifoop_p, lfs_fifoop_entries };
264
265 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
266
267 #define LFS_READWRITE
268 #include <ufs/ufs/ufs_readwrite.c>
269 #undef LFS_READWRITE
270
271 /*
272 * Synch an open file.
273 */
274 /* ARGSUSED */
275 int
276 lfs_fsync(void *v)
277 {
278 struct vop_fsync_args /* {
279 struct vnode *a_vp;
280 kauth_cred_t a_cred;
281 int a_flags;
282 off_t offlo;
283 off_t offhi;
284 struct lwp *a_l;
285 } */ *ap = v;
286 struct vnode *vp = ap->a_vp;
287 int error, wait;
288 struct inode *ip = VTOI(vp);
289 struct lfs *fs = ip->i_lfs;
290
291 /* If we're mounted read-only, don't try to sync. */
292 if (fs->lfs_ronly)
293 return 0;
294
295 /*
296 * Trickle sync simply adds this vnode to the pager list, as if
297 * the pagedaemon had requested a pageout.
298 */
299 if (ap->a_flags & FSYNC_LAZY) {
300 if (lfs_ignore_lazy_sync == 0) {
301 simple_lock(&fs->lfs_interlock);
302 if (!(ip->i_flags & IN_PAGING)) {
303 ip->i_flags |= IN_PAGING;
304 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
305 i_lfs_pchain);
306 }
307 simple_unlock(&fs->lfs_interlock);
308 simple_lock(&lfs_subsys_lock);
309 wakeup(&lfs_writer_daemon);
310 simple_unlock(&lfs_subsys_lock);
311 }
312 return 0;
313 }
314
315 /*
316 * If a vnode is bring cleaned, flush it out before we try to
317 * reuse it. This prevents the cleaner from writing files twice
318 * in the same partial segment, causing an accounting underflow.
319 */
320 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
321 lfs_vflush(vp);
322 }
323
324 wait = (ap->a_flags & FSYNC_WAIT);
325 do {
326 simple_lock(&vp->v_interlock);
327 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
328 round_page(ap->a_offhi),
329 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
330 if (error == EAGAIN) {
331 simple_lock(&fs->lfs_interlock);
332 ltsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
333 hz / 100 + 1, &fs->lfs_interlock);
334 simple_unlock(&fs->lfs_interlock);
335 }
336 } while (error == EAGAIN);
337 if (error)
338 return error;
339
340 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
341 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
342
343 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
344 int l = 0;
345 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
346 ap->a_l->l_cred, ap->a_l);
347 }
348 if (wait && !VPISEMPTY(vp))
349 LFS_SET_UINO(ip, IN_MODIFIED);
350
351 return error;
352 }
353
354 /*
355 * Take IN_ADIROP off, then call ufs_inactive.
356 */
357 int
358 lfs_inactive(void *v)
359 {
360 struct vop_inactive_args /* {
361 struct vnode *a_vp;
362 struct lwp *a_l;
363 } */ *ap = v;
364
365 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
366
367 lfs_unmark_vnode(ap->a_vp);
368
369 /*
370 * The Ifile is only ever inactivated on unmount.
371 * Streamline this process by not giving it more dirty blocks.
372 */
373 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
374 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
375 VOP_UNLOCK(ap->a_vp, 0);
376 return 0;
377 }
378
379 return ufs_inactive(v);
380 }
381
382 /*
383 * These macros are used to bracket UFS directory ops, so that we can
384 * identify all the pages touched during directory ops which need to
385 * be ordered and flushed atomically, so that they may be recovered.
386 *
387 * Because we have to mark nodes VDIROP in order to prevent
388 * the cache from reclaiming them while a dirop is in progress, we must
389 * also manage the number of nodes so marked (otherwise we can run out).
390 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
391 * is decremented during segment write, when VDIROP is taken off.
392 */
393 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
394 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
395 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
396 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
397 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
398 static int lfs_set_dirop(struct vnode *, struct vnode *);
399
400 static int
401 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
402 {
403 struct lfs *fs;
404 int error;
405
406 KASSERT(VOP_ISLOCKED(dvp));
407 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
408
409 fs = VTOI(dvp)->i_lfs;
410
411 ASSERT_NO_SEGLOCK(fs);
412 /*
413 * LFS_NRESERVE calculates direct and indirect blocks as well
414 * as an inode block; an overestimate in most cases.
415 */
416 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
417 return (error);
418
419 restart:
420 simple_lock(&fs->lfs_interlock);
421 if (fs->lfs_dirops == 0) {
422 simple_unlock(&fs->lfs_interlock);
423 lfs_check(dvp, LFS_UNUSED_LBN, 0);
424 simple_lock(&fs->lfs_interlock);
425 }
426 while (fs->lfs_writer) {
427 error = ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
428 "lfs_sdirop", 0, &fs->lfs_interlock);
429 if (error == EINTR) {
430 simple_unlock(&fs->lfs_interlock);
431 goto unreserve;
432 }
433 }
434 simple_lock(&lfs_subsys_lock);
435 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
436 wakeup(&lfs_writer_daemon);
437 simple_unlock(&lfs_subsys_lock);
438 simple_unlock(&fs->lfs_interlock);
439 preempt();
440 goto restart;
441 }
442
443 if (lfs_dirvcount > LFS_MAX_DIROP) {
444 simple_unlock(&fs->lfs_interlock);
445 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
446 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
447 if ((error = ltsleep(&lfs_dirvcount,
448 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
449 &lfs_subsys_lock)) != 0) {
450 goto unreserve;
451 }
452 goto restart;
453 }
454 simple_unlock(&lfs_subsys_lock);
455
456 ++fs->lfs_dirops;
457 fs->lfs_doifile = 1;
458 simple_unlock(&fs->lfs_interlock);
459
460 /* Hold a reference so SET_ENDOP will be happy */
461 vref(dvp);
462 if (vp) {
463 vref(vp);
464 MARK_VNODE(vp);
465 }
466
467 MARK_VNODE(dvp);
468 return 0;
469
470 unreserve:
471 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
472 return error;
473 }
474
475 /*
476 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
477 * in getnewvnode(), if we have a stacked filesystem mounted on top
478 * of us.
479 *
480 * NB: this means we have to clear the new vnodes on error. Fortunately
481 * SET_ENDOP is there to do that for us.
482 */
483 static int
484 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
485 {
486 int error;
487 struct lfs *fs;
488
489 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
490 ASSERT_NO_SEGLOCK(fs);
491 if (fs->lfs_ronly)
492 return EROFS;
493 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
494 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
495 dvp, error));
496 return error;
497 }
498 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
499 if (vpp) {
500 ungetnewvnode(*vpp);
501 *vpp = NULL;
502 }
503 return error;
504 }
505 return 0;
506 }
507
508 #define SET_ENDOP_BASE(fs, dvp, str) \
509 do { \
510 simple_lock(&(fs)->lfs_interlock); \
511 --(fs)->lfs_dirops; \
512 if (!(fs)->lfs_dirops) { \
513 if ((fs)->lfs_nadirop) { \
514 panic("SET_ENDOP: %s: no dirops but " \
515 " nadirop=%d", (str), \
516 (fs)->lfs_nadirop); \
517 } \
518 wakeup(&(fs)->lfs_writer); \
519 simple_unlock(&(fs)->lfs_interlock); \
520 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
521 } else \
522 simple_unlock(&(fs)->lfs_interlock); \
523 } while(0)
524 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
525 do { \
526 UNMARK_VNODE(dvp); \
527 if (nvpp && *nvpp) \
528 UNMARK_VNODE(*nvpp); \
529 /* Check for error return to stem vnode leakage */ \
530 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
531 ungetnewvnode(*(nvpp)); \
532 SET_ENDOP_BASE((fs), (dvp), (str)); \
533 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
534 vrele(dvp); \
535 } while(0)
536 #define SET_ENDOP_CREATE_AP(ap, str) \
537 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
538 (ap)->a_vpp, (str))
539 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
540 do { \
541 UNMARK_VNODE(dvp); \
542 if (ovp) \
543 UNMARK_VNODE(ovp); \
544 SET_ENDOP_BASE((fs), (dvp), (str)); \
545 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
546 vrele(dvp); \
547 if (ovp) \
548 vrele(ovp); \
549 } while(0)
550
551 void
552 lfs_mark_vnode(struct vnode *vp)
553 {
554 struct inode *ip = VTOI(vp);
555 struct lfs *fs = ip->i_lfs;
556
557 simple_lock(&fs->lfs_interlock);
558 if (!(ip->i_flag & IN_ADIROP)) {
559 if (!(vp->v_flag & VDIROP)) {
560 (void)lfs_vref(vp);
561 simple_lock(&lfs_subsys_lock);
562 ++lfs_dirvcount;
563 ++fs->lfs_dirvcount;
564 simple_unlock(&lfs_subsys_lock);
565 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
566 vp->v_flag |= VDIROP;
567 }
568 ++fs->lfs_nadirop;
569 ip->i_flag |= IN_ADIROP;
570 } else
571 KASSERT(vp->v_flag & VDIROP);
572 simple_unlock(&fs->lfs_interlock);
573 }
574
575 void
576 lfs_unmark_vnode(struct vnode *vp)
577 {
578 struct inode *ip = VTOI(vp);
579
580 if (ip && (ip->i_flag & IN_ADIROP)) {
581 KASSERT(vp->v_flag & VDIROP);
582 simple_lock(&ip->i_lfs->lfs_interlock);
583 --ip->i_lfs->lfs_nadirop;
584 simple_unlock(&ip->i_lfs->lfs_interlock);
585 ip->i_flag &= ~IN_ADIROP;
586 }
587 }
588
589 int
590 lfs_symlink(void *v)
591 {
592 struct vop_symlink_args /* {
593 struct vnode *a_dvp;
594 struct vnode **a_vpp;
595 struct componentname *a_cnp;
596 struct vattr *a_vap;
597 char *a_target;
598 } */ *ap = v;
599 int error;
600
601 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
602 vput(ap->a_dvp);
603 return error;
604 }
605 error = ufs_symlink(ap);
606 SET_ENDOP_CREATE_AP(ap, "symlink");
607 return (error);
608 }
609
610 int
611 lfs_mknod(void *v)
612 {
613 struct vop_mknod_args /* {
614 struct vnode *a_dvp;
615 struct vnode **a_vpp;
616 struct componentname *a_cnp;
617 struct vattr *a_vap;
618 } */ *ap = v;
619 struct vattr *vap = ap->a_vap;
620 struct vnode **vpp = ap->a_vpp;
621 struct inode *ip;
622 int error;
623 struct mount *mp;
624 ino_t ino;
625
626 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
627 vput(ap->a_dvp);
628 return error;
629 }
630 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
631 ap->a_dvp, vpp, ap->a_cnp);
632
633 /* Either way we're done with the dirop at this point */
634 SET_ENDOP_CREATE_AP(ap, "mknod");
635
636 if (error)
637 return (error);
638
639 ip = VTOI(*vpp);
640 mp = (*vpp)->v_mount;
641 ino = ip->i_number;
642 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
643 if (vap->va_rdev != VNOVAL) {
644 /*
645 * Want to be able to use this to make badblock
646 * inodes, so don't truncate the dev number.
647 */
648 #if 0
649 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
650 UFS_MPNEEDSWAP((*vpp)->v_mount));
651 #else
652 ip->i_ffs1_rdev = vap->va_rdev;
653 #endif
654 }
655
656 /*
657 * Call fsync to write the vnode so that we don't have to deal with
658 * flushing it when it's marked VDIROP|VXLOCK.
659 *
660 * XXX KS - If we can't flush we also can't call vgone(), so must
661 * return. But, that leaves this vnode in limbo, also not good.
662 * Can this ever happen (barring hardware failure)?
663 */
664 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
665 curlwp)) != 0) {
666 panic("lfs_mknod: couldn't fsync (ino %llu)",
667 (unsigned long long)ino);
668 /* return (error); */
669 }
670 /*
671 * Remove vnode so that it will be reloaded by VFS_VGET and
672 * checked to see if it is an alias of an existing entry in
673 * the inode cache.
674 */
675 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
676
677 VOP_UNLOCK(*vpp, 0);
678 lfs_vunref(*vpp);
679 (*vpp)->v_type = VNON;
680 vgone(*vpp);
681 error = VFS_VGET(mp, ino, vpp);
682
683 if (error != 0) {
684 *vpp = NULL;
685 return (error);
686 }
687 return (0);
688 }
689
690 int
691 lfs_create(void *v)
692 {
693 struct vop_create_args /* {
694 struct vnode *a_dvp;
695 struct vnode **a_vpp;
696 struct componentname *a_cnp;
697 struct vattr *a_vap;
698 } */ *ap = v;
699 int error;
700
701 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
702 vput(ap->a_dvp);
703 return error;
704 }
705 error = ufs_create(ap);
706 SET_ENDOP_CREATE_AP(ap, "create");
707 return (error);
708 }
709
710 int
711 lfs_mkdir(void *v)
712 {
713 struct vop_mkdir_args /* {
714 struct vnode *a_dvp;
715 struct vnode **a_vpp;
716 struct componentname *a_cnp;
717 struct vattr *a_vap;
718 } */ *ap = v;
719 int error;
720
721 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
722 vput(ap->a_dvp);
723 return error;
724 }
725 error = ufs_mkdir(ap);
726 SET_ENDOP_CREATE_AP(ap, "mkdir");
727 return (error);
728 }
729
730 int
731 lfs_remove(void *v)
732 {
733 struct vop_remove_args /* {
734 struct vnode *a_dvp;
735 struct vnode *a_vp;
736 struct componentname *a_cnp;
737 } */ *ap = v;
738 struct vnode *dvp, *vp;
739 struct inode *ip;
740 int error;
741
742 dvp = ap->a_dvp;
743 vp = ap->a_vp;
744 ip = VTOI(vp);
745 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
746 if (dvp == vp)
747 vrele(vp);
748 else
749 vput(vp);
750 vput(dvp);
751 return error;
752 }
753 error = ufs_remove(ap);
754 if (ip->i_nlink == 0)
755 lfs_orphan(ip->i_lfs, ip->i_number);
756 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
757 return (error);
758 }
759
760 int
761 lfs_rmdir(void *v)
762 {
763 struct vop_rmdir_args /* {
764 struct vnodeop_desc *a_desc;
765 struct vnode *a_dvp;
766 struct vnode *a_vp;
767 struct componentname *a_cnp;
768 } */ *ap = v;
769 struct vnode *vp;
770 struct inode *ip;
771 int error;
772
773 vp = ap->a_vp;
774 ip = VTOI(vp);
775 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
776 if (ap->a_dvp == vp)
777 vrele(ap->a_dvp);
778 else
779 vput(ap->a_dvp);
780 vput(vp);
781 return error;
782 }
783 error = ufs_rmdir(ap);
784 if (ip->i_nlink == 0)
785 lfs_orphan(ip->i_lfs, ip->i_number);
786 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
787 return (error);
788 }
789
790 int
791 lfs_link(void *v)
792 {
793 struct vop_link_args /* {
794 struct vnode *a_dvp;
795 struct vnode *a_vp;
796 struct componentname *a_cnp;
797 } */ *ap = v;
798 int error;
799 struct vnode **vpp = NULL;
800
801 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
802 vput(ap->a_dvp);
803 return error;
804 }
805 error = ufs_link(ap);
806 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
807 return (error);
808 }
809
810 int
811 lfs_rename(void *v)
812 {
813 struct vop_rename_args /* {
814 struct vnode *a_fdvp;
815 struct vnode *a_fvp;
816 struct componentname *a_fcnp;
817 struct vnode *a_tdvp;
818 struct vnode *a_tvp;
819 struct componentname *a_tcnp;
820 } */ *ap = v;
821 struct vnode *tvp, *fvp, *tdvp, *fdvp;
822 struct componentname *tcnp, *fcnp;
823 int error;
824 struct lfs *fs;
825
826 fs = VTOI(ap->a_fdvp)->i_lfs;
827 tvp = ap->a_tvp;
828 tdvp = ap->a_tdvp;
829 tcnp = ap->a_tcnp;
830 fvp = ap->a_fvp;
831 fdvp = ap->a_fdvp;
832 fcnp = ap->a_fcnp;
833
834 /*
835 * Check for cross-device rename.
836 * If it is, we don't want to set dirops, just error out.
837 * (In particular note that MARK_VNODE(tdvp) will DTWT on
838 * a cross-device rename.)
839 *
840 * Copied from ufs_rename.
841 */
842 if ((fvp->v_mount != tdvp->v_mount) ||
843 (tvp && (fvp->v_mount != tvp->v_mount))) {
844 error = EXDEV;
845 goto errout;
846 }
847
848 /*
849 * Check to make sure we're not renaming a vnode onto itself
850 * (deleting a hard link by renaming one name onto another);
851 * if we are we can't recursively call VOP_REMOVE since that
852 * would leave us with an unaccounted-for number of live dirops.
853 *
854 * Inline the relevant section of ufs_rename here, *before*
855 * calling SET_DIROP_REMOVE.
856 */
857 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
858 (VTOI(tdvp)->i_flags & APPEND))) {
859 error = EPERM;
860 goto errout;
861 }
862 if (fvp == tvp) {
863 if (fvp->v_type == VDIR) {
864 error = EINVAL;
865 goto errout;
866 }
867
868 /* Release destination completely. */
869 VOP_ABORTOP(tdvp, tcnp);
870 vput(tdvp);
871 vput(tvp);
872
873 /* Delete source. */
874 vrele(fvp);
875 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
876 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
877 fcnp->cn_nameiop = DELETE;
878 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
879 if ((error = relookup(fdvp, &fvp, fcnp))) {
880 vput(fdvp);
881 return (error);
882 }
883 return (VOP_REMOVE(fdvp, fvp, fcnp));
884 }
885
886 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
887 goto errout;
888 MARK_VNODE(fdvp);
889 MARK_VNODE(fvp);
890
891 error = ufs_rename(ap);
892 UNMARK_VNODE(fdvp);
893 UNMARK_VNODE(fvp);
894 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
895 return (error);
896
897 errout:
898 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
899 if (tdvp == tvp)
900 vrele(tdvp);
901 else
902 vput(tdvp);
903 if (tvp)
904 vput(tvp);
905 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
906 vrele(fdvp);
907 vrele(fvp);
908 return (error);
909 }
910
911 /* XXX hack to avoid calling ITIMES in getattr */
912 int
913 lfs_getattr(void *v)
914 {
915 struct vop_getattr_args /* {
916 struct vnode *a_vp;
917 struct vattr *a_vap;
918 kauth_cred_t a_cred;
919 struct lwp *a_l;
920 } */ *ap = v;
921 struct vnode *vp = ap->a_vp;
922 struct inode *ip = VTOI(vp);
923 struct vattr *vap = ap->a_vap;
924 struct lfs *fs = ip->i_lfs;
925 /*
926 * Copy from inode table
927 */
928 vap->va_fsid = ip->i_dev;
929 vap->va_fileid = ip->i_number;
930 vap->va_mode = ip->i_mode & ~IFMT;
931 vap->va_nlink = ip->i_nlink;
932 vap->va_uid = ip->i_uid;
933 vap->va_gid = ip->i_gid;
934 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
935 vap->va_size = vp->v_size;
936 vap->va_atime.tv_sec = ip->i_ffs1_atime;
937 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
938 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
939 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
940 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
941 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
942 vap->va_flags = ip->i_flags;
943 vap->va_gen = ip->i_gen;
944 /* this doesn't belong here */
945 if (vp->v_type == VBLK)
946 vap->va_blocksize = BLKDEV_IOSIZE;
947 else if (vp->v_type == VCHR)
948 vap->va_blocksize = MAXBSIZE;
949 else
950 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
951 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
952 vap->va_type = vp->v_type;
953 vap->va_filerev = ip->i_modrev;
954 return (0);
955 }
956
957 /*
958 * Check to make sure the inode blocks won't choke the buffer
959 * cache, then call ufs_setattr as usual.
960 */
961 int
962 lfs_setattr(void *v)
963 {
964 struct vop_setattr_args /* {
965 struct vnode *a_vp;
966 struct vattr *a_vap;
967 kauth_cred_t a_cred;
968 struct lwp *a_l;
969 } */ *ap = v;
970 struct vnode *vp = ap->a_vp;
971
972 lfs_check(vp, LFS_UNUSED_LBN, 0);
973 return ufs_setattr(v);
974 }
975
976 /*
977 * Release the block we hold on lfs_newseg wrapping. Called on file close,
978 * or explicitly from LFCNWRAPGO. Called with the interlock held.
979 */
980 static int
981 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
982 {
983 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
984 return EBUSY;
985
986 lockmgr(&fs->lfs_stoplock, LK_RELEASE, &fs->lfs_interlock);
987
988 KASSERT(fs->lfs_nowrap > 0);
989 if (fs->lfs_nowrap <= 0) {
990 return 0;
991 }
992
993 if (--fs->lfs_nowrap == 0) {
994 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
995 wakeup(&fs->lfs_wrappass);
996 lfs_wakeup_cleaner(fs);
997 }
998 if (waitfor) {
999 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
1000 "segment", 0, &fs->lfs_interlock);
1001 }
1002
1003 return 0;
1004 }
1005
1006 /*
1007 * Close called
1008 */
1009 /* ARGSUSED */
1010 int
1011 lfs_close(void *v)
1012 {
1013 struct vop_close_args /* {
1014 struct vnode *a_vp;
1015 int a_fflag;
1016 kauth_cred_t a_cred;
1017 struct lwp *a_l;
1018 } */ *ap = v;
1019 struct vnode *vp = ap->a_vp;
1020 struct inode *ip = VTOI(vp);
1021 struct lfs *fs = ip->i_lfs;
1022
1023 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1024 lockstatus(&fs->lfs_stoplock) == LK_EXCLUSIVE) {
1025 simple_lock(&fs->lfs_interlock);
1026 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1027 lfs_wrapgo(fs, ip, 0);
1028 simple_unlock(&fs->lfs_interlock);
1029 }
1030
1031 if (vp == ip->i_lfs->lfs_ivnode &&
1032 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1033 return 0;
1034
1035 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1036 LFS_ITIMES(ip, NULL, NULL, NULL);
1037 }
1038 return (0);
1039 }
1040
1041 /*
1042 * Close wrapper for special devices.
1043 *
1044 * Update the times on the inode then do device close.
1045 */
1046 int
1047 lfsspec_close(void *v)
1048 {
1049 struct vop_close_args /* {
1050 struct vnode *a_vp;
1051 int a_fflag;
1052 kauth_cred_t a_cred;
1053 struct lwp *a_l;
1054 } */ *ap = v;
1055 struct vnode *vp;
1056 struct inode *ip;
1057
1058 vp = ap->a_vp;
1059 ip = VTOI(vp);
1060 if (vp->v_usecount > 1) {
1061 LFS_ITIMES(ip, NULL, NULL, NULL);
1062 }
1063 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1064 }
1065
1066 /*
1067 * Close wrapper for fifo's.
1068 *
1069 * Update the times on the inode then do device close.
1070 */
1071 int
1072 lfsfifo_close(void *v)
1073 {
1074 struct vop_close_args /* {
1075 struct vnode *a_vp;
1076 int a_fflag;
1077 kauth_cred_ a_cred;
1078 struct lwp *a_l;
1079 } */ *ap = v;
1080 struct vnode *vp;
1081 struct inode *ip;
1082
1083 vp = ap->a_vp;
1084 ip = VTOI(vp);
1085 if (ap->a_vp->v_usecount > 1) {
1086 LFS_ITIMES(ip, NULL, NULL, NULL);
1087 }
1088 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1089 }
1090
1091 /*
1092 * Reclaim an inode so that it can be used for other purposes.
1093 */
1094
1095 int
1096 lfs_reclaim(void *v)
1097 {
1098 struct vop_reclaim_args /* {
1099 struct vnode *a_vp;
1100 struct lwp *a_l;
1101 } */ *ap = v;
1102 struct vnode *vp = ap->a_vp;
1103 struct inode *ip = VTOI(vp);
1104 struct lfs *fs = ip->i_lfs;
1105 int error;
1106
1107 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1108
1109 LFS_CLR_UINO(ip, IN_ALLMOD);
1110 if ((error = ufs_reclaim(vp, ap->a_l)))
1111 return (error);
1112
1113 /*
1114 * Take us off the paging and/or dirop queues if we were on them.
1115 * We shouldn't be on them.
1116 */
1117 simple_lock(&fs->lfs_interlock);
1118 if (ip->i_flags & IN_PAGING) {
1119 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1120 fs->lfs_fsmnt);
1121 ip->i_flags &= ~IN_PAGING;
1122 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1123 }
1124 if (vp->v_flag & VDIROP) {
1125 panic("reclaimed vnode is VDIROP");
1126 vp->v_flag &= ~VDIROP;
1127 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1128 }
1129 simple_unlock(&fs->lfs_interlock);
1130
1131 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1132 lfs_deregister_all(vp);
1133 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1134 ip->inode_ext.lfs = NULL;
1135 genfs_node_destroy(vp);
1136 pool_put(&lfs_inode_pool, vp->v_data);
1137 vp->v_data = NULL;
1138 return (0);
1139 }
1140
1141 /*
1142 * Read a block from a storage device.
1143 * In order to avoid reading blocks that are in the process of being
1144 * written by the cleaner---and hence are not mutexed by the normal
1145 * buffer cache / page cache mechanisms---check for collisions before
1146 * reading.
1147 *
1148 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1149 * the active cleaner test.
1150 *
1151 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1152 */
1153 int
1154 lfs_strategy(void *v)
1155 {
1156 struct vop_strategy_args /* {
1157 struct vnode *a_vp;
1158 struct buf *a_bp;
1159 } */ *ap = v;
1160 struct buf *bp;
1161 struct lfs *fs;
1162 struct vnode *vp;
1163 struct inode *ip;
1164 daddr_t tbn;
1165 int i, sn, error, slept;
1166
1167 bp = ap->a_bp;
1168 vp = ap->a_vp;
1169 ip = VTOI(vp);
1170 fs = ip->i_lfs;
1171
1172 /* lfs uses its strategy routine only for read */
1173 KASSERT(bp->b_flags & B_READ);
1174
1175 if (vp->v_type == VBLK || vp->v_type == VCHR)
1176 panic("lfs_strategy: spec");
1177 KASSERT(bp->b_bcount != 0);
1178 if (bp->b_blkno == bp->b_lblkno) {
1179 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1180 NULL);
1181 if (error) {
1182 bp->b_error = error;
1183 bp->b_flags |= B_ERROR;
1184 biodone(bp);
1185 return (error);
1186 }
1187 if ((long)bp->b_blkno == -1) /* no valid data */
1188 clrbuf(bp);
1189 }
1190 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1191 biodone(bp);
1192 return (0);
1193 }
1194
1195 slept = 1;
1196 simple_lock(&fs->lfs_interlock);
1197 while (slept && fs->lfs_seglock) {
1198 simple_unlock(&fs->lfs_interlock);
1199 /*
1200 * Look through list of intervals.
1201 * There will only be intervals to look through
1202 * if the cleaner holds the seglock.
1203 * Since the cleaner is synchronous, we can trust
1204 * the list of intervals to be current.
1205 */
1206 tbn = dbtofsb(fs, bp->b_blkno);
1207 sn = dtosn(fs, tbn);
1208 slept = 0;
1209 for (i = 0; i < fs->lfs_cleanind; i++) {
1210 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1211 tbn >= fs->lfs_cleanint[i]) {
1212 DLOG((DLOG_CLEAN,
1213 "lfs_strategy: ino %d lbn %" PRId64
1214 " ind %d sn %d fsb %" PRIx32
1215 " given sn %d fsb %" PRIx64 "\n",
1216 ip->i_number, bp->b_lblkno, i,
1217 dtosn(fs, fs->lfs_cleanint[i]),
1218 fs->lfs_cleanint[i], sn, tbn));
1219 DLOG((DLOG_CLEAN,
1220 "lfs_strategy: sleeping on ino %d lbn %"
1221 PRId64 "\n", ip->i_number, bp->b_lblkno));
1222 simple_lock(&fs->lfs_interlock);
1223 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1224 /* Cleaner can't wait for itself */
1225 ltsleep(&fs->lfs_iocount,
1226 (PRIBIO + 1) | PNORELOCK,
1227 "clean2", 0,
1228 &fs->lfs_interlock);
1229 slept = 1;
1230 break;
1231 } else if (fs->lfs_seglock) {
1232 ltsleep(&fs->lfs_seglock,
1233 (PRIBIO + 1) | PNORELOCK,
1234 "clean1", 0,
1235 &fs->lfs_interlock);
1236 slept = 1;
1237 break;
1238 }
1239 simple_unlock(&fs->lfs_interlock);
1240 }
1241 }
1242 simple_lock(&fs->lfs_interlock);
1243 }
1244 simple_unlock(&fs->lfs_interlock);
1245
1246 vp = ip->i_devvp;
1247 VOP_STRATEGY(vp, bp);
1248 return (0);
1249 }
1250
1251 void
1252 lfs_flush_dirops(struct lfs *fs)
1253 {
1254 struct inode *ip, *nip;
1255 struct vnode *vp;
1256 extern int lfs_dostats;
1257 struct segment *sp;
1258 int waslocked;
1259
1260 ASSERT_MAYBE_SEGLOCK(fs);
1261 KASSERT(fs->lfs_nadirop == 0);
1262
1263 if (fs->lfs_ronly)
1264 return;
1265
1266 simple_lock(&fs->lfs_interlock);
1267 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1268 simple_unlock(&fs->lfs_interlock);
1269 return;
1270 } else
1271 simple_unlock(&fs->lfs_interlock);
1272
1273 if (lfs_dostats)
1274 ++lfs_stats.flush_invoked;
1275
1276 /*
1277 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1278 * Technically this is a checkpoint (the on-disk state is valid)
1279 * even though we are leaving out all the file data.
1280 */
1281 lfs_imtime(fs);
1282 lfs_seglock(fs, SEGM_CKP);
1283 sp = fs->lfs_sp;
1284
1285 /*
1286 * lfs_writevnodes, optimized to get dirops out of the way.
1287 * Only write dirops, and don't flush files' pages, only
1288 * blocks from the directories.
1289 *
1290 * We don't need to vref these files because they are
1291 * dirops and so hold an extra reference until the
1292 * segunlock clears them of that status.
1293 *
1294 * We don't need to check for IN_ADIROP because we know that
1295 * no dirops are active.
1296 *
1297 */
1298 simple_lock(&fs->lfs_interlock);
1299 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1300 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1301 simple_unlock(&fs->lfs_interlock);
1302 vp = ITOV(ip);
1303
1304 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1305
1306 /*
1307 * All writes to directories come from dirops; all
1308 * writes to files' direct blocks go through the page
1309 * cache, which we're not touching. Reads to files
1310 * and/or directories will not be affected by writing
1311 * directory blocks inodes and file inodes. So we don't
1312 * really need to lock. If we don't lock, though,
1313 * make sure that we don't clear IN_MODIFIED
1314 * unnecessarily.
1315 */
1316 if (vp->v_flag & (VXLOCK | VFREEING)) {
1317 simple_lock(&fs->lfs_interlock);
1318 continue;
1319 }
1320 waslocked = VOP_ISLOCKED(vp);
1321 if (vp->v_type != VREG &&
1322 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1323 lfs_writefile(fs, sp, vp);
1324 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1325 !(ip->i_flag & IN_ALLMOD)) {
1326 LFS_SET_UINO(ip, IN_MODIFIED);
1327 }
1328 }
1329 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1330 (void) lfs_writeinode(fs, sp, ip);
1331 if (waslocked == LK_EXCLOTHER)
1332 LFS_SET_UINO(ip, IN_MODIFIED);
1333 simple_lock(&fs->lfs_interlock);
1334 }
1335 simple_unlock(&fs->lfs_interlock);
1336 /* We've written all the dirops there are */
1337 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1338 lfs_finalize_fs_seguse(fs);
1339 (void) lfs_writeseg(fs, sp);
1340 lfs_segunlock(fs);
1341 }
1342
1343 /*
1344 * Flush all vnodes for which the pagedaemon has requested pageouts.
1345 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1346 * has just run, this would be an error). If we have to skip a vnode
1347 * for any reason, just skip it; if we have to wait for the cleaner,
1348 * abort. The writer daemon will call us again later.
1349 */
1350 void
1351 lfs_flush_pchain(struct lfs *fs)
1352 {
1353 struct inode *ip, *nip;
1354 struct vnode *vp;
1355 extern int lfs_dostats;
1356 struct segment *sp;
1357 int error;
1358
1359 ASSERT_NO_SEGLOCK(fs);
1360
1361 if (fs->lfs_ronly)
1362 return;
1363
1364 simple_lock(&fs->lfs_interlock);
1365 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1366 simple_unlock(&fs->lfs_interlock);
1367 return;
1368 } else
1369 simple_unlock(&fs->lfs_interlock);
1370
1371 /* Get dirops out of the way */
1372 lfs_flush_dirops(fs);
1373
1374 if (lfs_dostats)
1375 ++lfs_stats.flush_invoked;
1376
1377 /*
1378 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1379 */
1380 lfs_imtime(fs);
1381 lfs_seglock(fs, 0);
1382 sp = fs->lfs_sp;
1383
1384 /*
1385 * lfs_writevnodes, optimized to clear pageout requests.
1386 * Only write non-dirop files that are in the pageout queue.
1387 * We're very conservative about what we write; we want to be
1388 * fast and async.
1389 */
1390 simple_lock(&fs->lfs_interlock);
1391 top:
1392 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1393 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1394 vp = ITOV(ip);
1395
1396 if (!(ip->i_flags & IN_PAGING))
1397 goto top;
1398
1399 if (vp->v_flag & (VXLOCK|VDIROP))
1400 continue;
1401 if (vp->v_type != VREG)
1402 continue;
1403 if (lfs_vref(vp))
1404 continue;
1405 simple_unlock(&fs->lfs_interlock);
1406
1407 if (VOP_ISLOCKED(vp)) {
1408 lfs_vunref(vp);
1409 simple_lock(&fs->lfs_interlock);
1410 continue;
1411 }
1412
1413 error = lfs_writefile(fs, sp, vp);
1414 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1415 !(ip->i_flag & IN_ALLMOD)) {
1416 LFS_SET_UINO(ip, IN_MODIFIED);
1417 }
1418 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1419 (void) lfs_writeinode(fs, sp, ip);
1420
1421 lfs_vunref(vp);
1422
1423 if (error == EAGAIN) {
1424 lfs_writeseg(fs, sp);
1425 simple_lock(&fs->lfs_interlock);
1426 break;
1427 }
1428 simple_lock(&fs->lfs_interlock);
1429 }
1430 simple_unlock(&fs->lfs_interlock);
1431 (void) lfs_writeseg(fs, sp);
1432 lfs_segunlock(fs);
1433 }
1434
1435 /*
1436 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1437 */
1438 int
1439 lfs_fcntl(void *v)
1440 {
1441 struct vop_fcntl_args /* {
1442 struct vnode *a_vp;
1443 u_long a_command;
1444 void * a_data;
1445 int a_fflag;
1446 kauth_cred_t a_cred;
1447 struct lwp *a_l;
1448 } */ *ap = v;
1449 struct timeval *tvp;
1450 BLOCK_INFO *blkiov;
1451 CLEANERINFO *cip;
1452 SEGUSE *sup;
1453 int blkcnt, error, oclean;
1454 size_t fh_size;
1455 struct lfs_fcntl_markv blkvp;
1456 struct lwp *l;
1457 fsid_t *fsidp;
1458 struct lfs *fs;
1459 struct buf *bp;
1460 fhandle_t *fhp;
1461 daddr_t off;
1462
1463 /* Only respect LFS fcntls on fs root or Ifile */
1464 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1465 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1466 return ufs_fcntl(v);
1467 }
1468
1469 /* Avoid locking a draining lock */
1470 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1471 return ESHUTDOWN;
1472 }
1473
1474 /* LFS control and monitoring fcntls are available only to root */
1475 l = ap->a_l;
1476 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1477 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1478 NULL)) != 0)
1479 return (error);
1480
1481 fs = VTOI(ap->a_vp)->i_lfs;
1482 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1483
1484 error = 0;
1485 switch (ap->a_command) {
1486 case LFCNSEGWAITALL:
1487 case LFCNSEGWAITALL_COMPAT:
1488 fsidp = NULL;
1489 /* FALLSTHROUGH */
1490 case LFCNSEGWAIT:
1491 case LFCNSEGWAIT_COMPAT:
1492 tvp = (struct timeval *)ap->a_data;
1493 simple_lock(&fs->lfs_interlock);
1494 ++fs->lfs_sleepers;
1495 simple_unlock(&fs->lfs_interlock);
1496
1497 error = lfs_segwait(fsidp, tvp);
1498
1499 simple_lock(&fs->lfs_interlock);
1500 if (--fs->lfs_sleepers == 0)
1501 wakeup(&fs->lfs_sleepers);
1502 simple_unlock(&fs->lfs_interlock);
1503 return error;
1504
1505 case LFCNBMAPV:
1506 case LFCNMARKV:
1507 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1508
1509 blkcnt = blkvp.blkcnt;
1510 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1511 return (EINVAL);
1512 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1513 if ((error = copyin(blkvp.blkiov, blkiov,
1514 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1515 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1516 return error;
1517 }
1518
1519 simple_lock(&fs->lfs_interlock);
1520 ++fs->lfs_sleepers;
1521 simple_unlock(&fs->lfs_interlock);
1522 if (ap->a_command == LFCNBMAPV)
1523 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1524 else /* LFCNMARKV */
1525 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1526 if (error == 0)
1527 error = copyout(blkiov, blkvp.blkiov,
1528 blkcnt * sizeof(BLOCK_INFO));
1529 simple_lock(&fs->lfs_interlock);
1530 if (--fs->lfs_sleepers == 0)
1531 wakeup(&fs->lfs_sleepers);
1532 simple_unlock(&fs->lfs_interlock);
1533 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1534 return error;
1535
1536 case LFCNRECLAIM:
1537 /*
1538 * Flush dirops and write Ifile, allowing empty segments
1539 * to be immediately reclaimed.
1540 */
1541 lfs_writer_enter(fs, "pndirop");
1542 off = fs->lfs_offset;
1543 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1544 lfs_flush_dirops(fs);
1545 LFS_CLEANERINFO(cip, fs, bp);
1546 oclean = cip->clean;
1547 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1548 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1549 fs->lfs_sp->seg_flags |= SEGM_PROT;
1550 lfs_segunlock(fs);
1551 lfs_writer_leave(fs);
1552
1553 #ifdef DEBUG
1554 LFS_CLEANERINFO(cip, fs, bp);
1555 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1556 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1557 fs->lfs_offset - off, cip->clean - oclean,
1558 fs->lfs_activesb));
1559 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1560 #endif
1561
1562 return 0;
1563
1564 #ifdef COMPAT_30
1565 case LFCNIFILEFH_COMPAT:
1566 /* Return the filehandle of the Ifile */
1567 if ((error = kauth_authorize_generic(l->l_cred,
1568 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1569 return (error);
1570 fhp = (struct fhandle *)ap->a_data;
1571 fhp->fh_fsid = *fsidp;
1572 fh_size = 16; /* former VFS_MAXFIDSIZ */
1573 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1574 #endif
1575
1576 case LFCNIFILEFH_COMPAT2:
1577 case LFCNIFILEFH:
1578 /* Return the filehandle of the Ifile */
1579 fhp = (struct fhandle *)ap->a_data;
1580 fhp->fh_fsid = *fsidp;
1581 fh_size = sizeof(struct lfs_fhandle) -
1582 offsetof(fhandle_t, fh_fid);
1583 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1584
1585 case LFCNREWIND:
1586 /* Move lfs_offset to the lowest-numbered segment */
1587 return lfs_rewind(fs, *(int *)ap->a_data);
1588
1589 case LFCNINVAL:
1590 /* Mark a segment SEGUSE_INVAL */
1591 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1592 if (sup->su_nbytes > 0) {
1593 brelse(bp);
1594 lfs_unset_inval_all(fs);
1595 return EBUSY;
1596 }
1597 sup->su_flags |= SEGUSE_INVAL;
1598 VOP_BWRITE(bp);
1599 return 0;
1600
1601 case LFCNRESIZE:
1602 /* Resize the filesystem */
1603 return lfs_resize_fs(fs, *(int *)ap->a_data);
1604
1605 case LFCNWRAPSTOP:
1606 case LFCNWRAPSTOP_COMPAT:
1607 /*
1608 * Hold lfs_newseg at segment 0; if requested, sleep until
1609 * the filesystem wraps around. To support external agents
1610 * (dump, fsck-based regression test) that need to look at
1611 * a snapshot of the filesystem, without necessarily
1612 * requiring that all fs activity stops.
1613 */
1614 if (lockstatus(&fs->lfs_stoplock))
1615 return EALREADY;
1616
1617 simple_lock(&fs->lfs_interlock);
1618 lockmgr(&fs->lfs_stoplock, LK_EXCLUSIVE, &fs->lfs_interlock);
1619 if (fs->lfs_nowrap == 0)
1620 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1621 ++fs->lfs_nowrap;
1622 if (*(int *)ap->a_data == 1 ||
1623 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1624 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1625 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1626 "segwrap", 0, &fs->lfs_interlock);
1627 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1628 if (error) {
1629 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1630 }
1631 }
1632 simple_unlock(&fs->lfs_interlock);
1633 return 0;
1634
1635 case LFCNWRAPGO:
1636 case LFCNWRAPGO_COMPAT:
1637 /*
1638 * Having done its work, the agent wakes up the writer.
1639 * If the argument is 1, it sleeps until a new segment
1640 * is selected.
1641 */
1642 simple_lock(&fs->lfs_interlock);
1643 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1644 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1645 *((int *)ap->a_data)));
1646 simple_unlock(&fs->lfs_interlock);
1647 return error;
1648
1649 case LFCNWRAPPASS:
1650 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
1651 return EALREADY;
1652 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1653 return EALREADY;
1654 simple_lock(&fs->lfs_interlock);
1655 if (fs->lfs_nowrap == 0) {
1656 simple_unlock(&fs->lfs_interlock);
1657 return EBUSY;
1658 }
1659 fs->lfs_wrappass = 1;
1660 wakeup(&fs->lfs_wrappass);
1661 /* Wait for the log to wrap, if asked */
1662 if (*(int *)ap->a_data) {
1663 lfs_vref(ap->a_vp);
1664 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1665 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1666 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1667 "segwrap", 0, &fs->lfs_interlock);
1668 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1669 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1670 lfs_vunref(ap->a_vp);
1671 }
1672 simple_unlock(&fs->lfs_interlock);
1673 return error;
1674
1675 case LFCNWRAPSTATUS:
1676 simple_lock(&fs->lfs_interlock);
1677 *(int *)ap->a_data = fs->lfs_wrapstatus;
1678 simple_unlock(&fs->lfs_interlock);
1679 return 0;
1680
1681 default:
1682 return ufs_fcntl(v);
1683 }
1684 return 0;
1685 }
1686
1687 int
1688 lfs_getpages(void *v)
1689 {
1690 struct vop_getpages_args /* {
1691 struct vnode *a_vp;
1692 voff_t a_offset;
1693 struct vm_page **a_m;
1694 int *a_count;
1695 int a_centeridx;
1696 vm_prot_t a_access_type;
1697 int a_advice;
1698 int a_flags;
1699 } */ *ap = v;
1700
1701 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1702 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1703 return EPERM;
1704 }
1705 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1706 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1707 }
1708
1709 /*
1710 * we're relying on the fact that genfs_getpages() always read in
1711 * entire filesystem blocks.
1712 */
1713 return genfs_getpages(v);
1714 }
1715
1716 /*
1717 * Wait for a page to become unbusy, possibly printing diagnostic messages
1718 * as well.
1719 *
1720 * Called with vp->v_interlock held; return with it held.
1721 */
1722 static void
1723 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1724 {
1725 if ((pg->flags & PG_BUSY) == 0)
1726 return; /* Nothing to wait for! */
1727
1728 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1729 static struct vm_page *lastpg;
1730
1731 if (label != NULL && pg != lastpg) {
1732 if (pg->owner_tag) {
1733 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1734 curproc->p_pid, curlwp->l_lid, label,
1735 pg, pg->owner, pg->lowner, pg->owner_tag);
1736 } else {
1737 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1738 curproc->p_pid, curlwp->l_lid, label, pg);
1739 }
1740 }
1741 lastpg = pg;
1742 #endif
1743
1744 pg->flags |= PG_WANTED;
1745 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1746 simple_lock(&vp->v_interlock);
1747 }
1748
1749 /*
1750 * This routine is called by lfs_putpages() when it can't complete the
1751 * write because a page is busy. This means that either (1) someone,
1752 * possibly the pagedaemon, is looking at this page, and will give it up
1753 * presently; or (2) we ourselves are holding the page busy in the
1754 * process of being written (either gathered or actually on its way to
1755 * disk). We don't need to give up the segment lock, but we might need
1756 * to call lfs_writeseg() to expedite the page's journey to disk.
1757 *
1758 * Called with vp->v_interlock held; return with it held.
1759 */
1760 /* #define BUSYWAIT */
1761 static void
1762 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1763 int seglocked, const char *label)
1764 {
1765 #ifndef BUSYWAIT
1766 struct inode *ip = VTOI(vp);
1767 struct segment *sp = fs->lfs_sp;
1768 int count = 0;
1769
1770 if (pg == NULL)
1771 return;
1772
1773 while (pg->flags & PG_BUSY) {
1774 simple_unlock(&vp->v_interlock);
1775 if (sp->cbpp - sp->bpp > 1) {
1776 /* Write gathered pages */
1777 lfs_updatemeta(sp);
1778 lfs_release_finfo(fs);
1779 (void) lfs_writeseg(fs, sp);
1780
1781 /*
1782 * Reinitialize FIP
1783 */
1784 KASSERT(sp->vp == vp);
1785 lfs_acquire_finfo(fs, ip->i_number,
1786 ip->i_gen);
1787 }
1788 ++count;
1789 simple_lock(&vp->v_interlock);
1790 wait_for_page(vp, pg, label);
1791 }
1792 if (label != NULL && count > 1)
1793 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1794 label, (count > 0 ? "looping, " : ""), count);
1795 #else
1796 preempt(1);
1797 #endif
1798 }
1799
1800 /*
1801 * Make sure that for all pages in every block in the given range,
1802 * either all are dirty or all are clean. If any of the pages
1803 * we've seen so far are dirty, put the vnode on the paging chain,
1804 * and mark it IN_PAGING.
1805 *
1806 * If checkfirst != 0, don't check all the pages but return at the
1807 * first dirty page.
1808 */
1809 static int
1810 check_dirty(struct lfs *fs, struct vnode *vp,
1811 off_t startoffset, off_t endoffset, off_t blkeof,
1812 int flags, int checkfirst, struct vm_page **pgp)
1813 {
1814 int by_list;
1815 struct vm_page *curpg = NULL; /* XXX: gcc */
1816 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1817 off_t soff = 0; /* XXX: gcc */
1818 voff_t off;
1819 int i;
1820 int nonexistent;
1821 int any_dirty; /* number of dirty pages */
1822 int dirty; /* number of dirty pages in a block */
1823 int tdirty;
1824 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1825 int pagedaemon = (curproc == uvm.pagedaemon_proc);
1826
1827 ASSERT_MAYBE_SEGLOCK(fs);
1828 top:
1829 by_list = (vp->v_uobj.uo_npages <=
1830 ((endoffset - startoffset) >> PAGE_SHIFT) *
1831 UVM_PAGE_HASH_PENALTY);
1832 any_dirty = 0;
1833
1834 if (by_list) {
1835 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1836 } else {
1837 soff = startoffset;
1838 }
1839 while (by_list || soff < MIN(blkeof, endoffset)) {
1840 if (by_list) {
1841 /*
1842 * Find the first page in a block. Skip
1843 * blocks outside our area of interest or beyond
1844 * the end of file.
1845 */
1846 if (pages_per_block > 1) {
1847 while (curpg &&
1848 ((curpg->offset & fs->lfs_bmask) ||
1849 curpg->offset >= vp->v_size ||
1850 curpg->offset >= endoffset))
1851 curpg = TAILQ_NEXT(curpg, listq);
1852 }
1853 if (curpg == NULL)
1854 break;
1855 soff = curpg->offset;
1856 }
1857
1858 /*
1859 * Mark all pages in extended range busy; find out if any
1860 * of them are dirty.
1861 */
1862 nonexistent = dirty = 0;
1863 for (i = 0; i == 0 || i < pages_per_block; i++) {
1864 if (by_list && pages_per_block <= 1) {
1865 pgs[i] = pg = curpg;
1866 } else {
1867 off = soff + (i << PAGE_SHIFT);
1868 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1869 if (pg == NULL) {
1870 ++nonexistent;
1871 continue;
1872 }
1873 }
1874 KASSERT(pg != NULL);
1875
1876 /*
1877 * If we're holding the segment lock, we can deadlock
1878 * against a process that has our page and is waiting
1879 * for the cleaner, while the cleaner waits for the
1880 * segment lock. Just bail in that case.
1881 */
1882 if ((pg->flags & PG_BUSY) &&
1883 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1884 if (i > 0)
1885 uvm_page_unbusy(pgs, i);
1886 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1887 if (pgp)
1888 *pgp = pg;
1889 return -1;
1890 }
1891
1892 while (pg->flags & PG_BUSY) {
1893 wait_for_page(vp, pg, NULL);
1894 if (i > 0)
1895 uvm_page_unbusy(pgs, i);
1896 goto top;
1897 }
1898 pg->flags |= PG_BUSY;
1899 UVM_PAGE_OWN(pg, "lfs_putpages");
1900
1901 pmap_page_protect(pg, VM_PROT_NONE);
1902 tdirty = (pmap_clear_modify(pg) ||
1903 (pg->flags & PG_CLEAN) == 0);
1904 dirty += tdirty;
1905 }
1906 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1907 if (by_list) {
1908 curpg = TAILQ_NEXT(curpg, listq);
1909 } else {
1910 soff += fs->lfs_bsize;
1911 }
1912 continue;
1913 }
1914
1915 any_dirty += dirty;
1916 KASSERT(nonexistent == 0);
1917
1918 /*
1919 * If any are dirty make all dirty; unbusy them,
1920 * but if we were asked to clean, wire them so that
1921 * the pagedaemon doesn't bother us about them while
1922 * they're on their way to disk.
1923 */
1924 for (i = 0; i == 0 || i < pages_per_block; i++) {
1925 pg = pgs[i];
1926 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1927 if (dirty) {
1928 pg->flags &= ~PG_CLEAN;
1929 if (flags & PGO_FREE) {
1930 /*
1931 * Wire the page so that
1932 * pdaemon doesn't see it again.
1933 */
1934 uvm_lock_pageq();
1935 uvm_pagewire(pg);
1936 uvm_unlock_pageq();
1937
1938 /* Suspended write flag */
1939 pg->flags |= PG_DELWRI;
1940 }
1941 }
1942 if (pg->flags & PG_WANTED)
1943 wakeup(pg);
1944 pg->flags &= ~(PG_WANTED|PG_BUSY);
1945 UVM_PAGE_OWN(pg, NULL);
1946 }
1947
1948 if (checkfirst && any_dirty)
1949 break;
1950
1951 if (by_list) {
1952 curpg = TAILQ_NEXT(curpg, listq);
1953 } else {
1954 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1955 }
1956 }
1957
1958 return any_dirty;
1959 }
1960
1961 /*
1962 * lfs_putpages functions like genfs_putpages except that
1963 *
1964 * (1) It needs to bounds-check the incoming requests to ensure that
1965 * they are block-aligned; if they are not, expand the range and
1966 * do the right thing in case, e.g., the requested range is clean
1967 * but the expanded range is dirty.
1968 *
1969 * (2) It needs to explicitly send blocks to be written when it is done.
1970 * If VOP_PUTPAGES is called without the seglock held, we simply take
1971 * the seglock and let lfs_segunlock wait for us.
1972 * XXX There might be a bad situation if we have to flush a vnode while
1973 * XXX lfs_markv is in operation. As of this writing we panic in this
1974 * XXX case.
1975 *
1976 * Assumptions:
1977 *
1978 * (1) The caller does not hold any pages in this vnode busy. If it does,
1979 * there is a danger that when we expand the page range and busy the
1980 * pages we will deadlock.
1981 *
1982 * (2) We are called with vp->v_interlock held; we must return with it
1983 * released.
1984 *
1985 * (3) We don't absolutely have to free pages right away, provided that
1986 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1987 * us a request with PGO_FREE, we take the pages out of the paging
1988 * queue and wake up the writer, which will handle freeing them for us.
1989 *
1990 * We ensure that for any filesystem block, all pages for that
1991 * block are either resident or not, even if those pages are higher
1992 * than EOF; that means that we will be getting requests to free
1993 * "unused" pages above EOF all the time, and should ignore them.
1994 *
1995 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1996 * into has been set up for us by lfs_writefile. If not, we will
1997 * have to handle allocating and/or freeing an finfo entry.
1998 *
1999 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2000 */
2001
2002 /* How many times to loop before we should start to worry */
2003 #define TOOMANY 4
2004
2005 int
2006 lfs_putpages(void *v)
2007 {
2008 int error;
2009 struct vop_putpages_args /* {
2010 struct vnode *a_vp;
2011 voff_t a_offlo;
2012 voff_t a_offhi;
2013 int a_flags;
2014 } */ *ap = v;
2015 struct vnode *vp;
2016 struct inode *ip;
2017 struct lfs *fs;
2018 struct segment *sp;
2019 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2020 off_t off, max_endoffset;
2021 int s;
2022 bool seglocked, sync, pagedaemon;
2023 struct vm_page *pg, *busypg;
2024 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2025 #ifdef DEBUG
2026 int debug_n_again, debug_n_dirtyclean;
2027 #endif
2028
2029 vp = ap->a_vp;
2030 ip = VTOI(vp);
2031 fs = ip->i_lfs;
2032 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2033 pagedaemon = (curproc == uvm.pagedaemon_proc);
2034
2035 /* Putpages does nothing for metadata. */
2036 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2037 simple_unlock(&vp->v_interlock);
2038 return 0;
2039 }
2040
2041 /*
2042 * If there are no pages, don't do anything.
2043 */
2044 if (vp->v_uobj.uo_npages == 0) {
2045 s = splbio();
2046 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2047 (vp->v_flag & VONWORKLST) &&
2048 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2049 vp->v_flag &= ~VWRITEMAPDIRTY;
2050 vn_syncer_remove_from_worklist(vp);
2051 }
2052 splx(s);
2053 simple_unlock(&vp->v_interlock);
2054
2055 /* Remove us from paging queue, if we were on it */
2056 simple_lock(&fs->lfs_interlock);
2057 if (ip->i_flags & IN_PAGING) {
2058 ip->i_flags &= ~IN_PAGING;
2059 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2060 }
2061 simple_unlock(&fs->lfs_interlock);
2062 return 0;
2063 }
2064
2065 blkeof = blkroundup(fs, ip->i_size);
2066
2067 /*
2068 * Ignore requests to free pages past EOF but in the same block
2069 * as EOF, unless the request is synchronous. (If the request is
2070 * sync, it comes from lfs_truncate.)
2071 * XXXUBC Make these pages look "active" so the pagedaemon won't
2072 * XXXUBC bother us with them again.
2073 */
2074 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2075 origoffset = ap->a_offlo;
2076 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2077 pg = uvm_pagelookup(&vp->v_uobj, off);
2078 KASSERT(pg != NULL);
2079 while (pg->flags & PG_BUSY) {
2080 pg->flags |= PG_WANTED;
2081 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2082 "lfsput2", 0);
2083 simple_lock(&vp->v_interlock);
2084 }
2085 uvm_lock_pageq();
2086 uvm_pageactivate(pg);
2087 uvm_unlock_pageq();
2088 }
2089 ap->a_offlo = blkeof;
2090 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2091 simple_unlock(&vp->v_interlock);
2092 return 0;
2093 }
2094 }
2095
2096 /*
2097 * Extend page range to start and end at block boundaries.
2098 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2099 */
2100 origoffset = ap->a_offlo;
2101 origendoffset = ap->a_offhi;
2102 startoffset = origoffset & ~(fs->lfs_bmask);
2103 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2104 << fs->lfs_bshift;
2105
2106 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2107 endoffset = max_endoffset;
2108 origendoffset = endoffset;
2109 } else {
2110 origendoffset = round_page(ap->a_offhi);
2111 endoffset = round_page(blkroundup(fs, origendoffset));
2112 }
2113
2114 KASSERT(startoffset > 0 || endoffset >= startoffset);
2115 if (startoffset == endoffset) {
2116 /* Nothing to do, why were we called? */
2117 simple_unlock(&vp->v_interlock);
2118 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2119 PRId64 "\n", startoffset));
2120 return 0;
2121 }
2122
2123 ap->a_offlo = startoffset;
2124 ap->a_offhi = endoffset;
2125
2126 /*
2127 * If not cleaning, just send the pages through genfs_putpages
2128 * to be returned to the pool.
2129 */
2130 if (!(ap->a_flags & PGO_CLEANIT))
2131 return genfs_putpages(v);
2132
2133 /* Set PGO_BUSYFAIL to avoid deadlocks */
2134 ap->a_flags |= PGO_BUSYFAIL;
2135
2136 /*
2137 * Likewise, if we are asked to clean but the pages are not
2138 * dirty, we can just free them using genfs_putpages.
2139 */
2140 #ifdef DEBUG
2141 debug_n_dirtyclean = 0;
2142 #endif
2143 do {
2144 int r;
2145
2146 /* Count the number of dirty pages */
2147 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2148 ap->a_flags, 1, NULL);
2149 if (r < 0) {
2150 /* Pages are busy with another process */
2151 simple_unlock(&vp->v_interlock);
2152 return EDEADLK;
2153 }
2154 if (r > 0) /* Some pages are dirty */
2155 break;
2156
2157 /*
2158 * Sometimes pages are dirtied between the time that
2159 * we check and the time we try to clean them.
2160 * Instruct lfs_gop_write to return EDEADLK in this case
2161 * so we can write them properly.
2162 */
2163 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2164 r = lfs_genfs_putpages(vp, startoffset, endoffset,
2165 ap->a_flags, &busypg);
2166 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2167 if (r != EDEADLK)
2168 return r;
2169
2170 /* One of the pages was busy. Start over. */
2171 simple_lock(&vp->v_interlock);
2172 wait_for_page(vp, busypg, "dirtyclean");
2173 #ifdef DEBUG
2174 ++debug_n_dirtyclean;
2175 #endif
2176 } while(1);
2177
2178 #ifdef DEBUG
2179 if (debug_n_dirtyclean > TOOMANY)
2180 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2181 debug_n_dirtyclean);
2182 #endif
2183
2184 /*
2185 * Dirty and asked to clean.
2186 *
2187 * Pagedaemon can't actually write LFS pages; wake up
2188 * the writer to take care of that. The writer will
2189 * notice the pager inode queue and act on that.
2190 */
2191 if (pagedaemon) {
2192 simple_lock(&fs->lfs_interlock);
2193 if (!(ip->i_flags & IN_PAGING)) {
2194 ip->i_flags |= IN_PAGING;
2195 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2196 }
2197 simple_lock(&lfs_subsys_lock);
2198 wakeup(&lfs_writer_daemon);
2199 simple_unlock(&lfs_subsys_lock);
2200 simple_unlock(&fs->lfs_interlock);
2201 simple_unlock(&vp->v_interlock);
2202 preempt();
2203 return EWOULDBLOCK;
2204 }
2205
2206 /*
2207 * If this is a file created in a recent dirop, we can't flush its
2208 * inode until the dirop is complete. Drain dirops, then flush the
2209 * filesystem (taking care of any other pending dirops while we're
2210 * at it).
2211 */
2212 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2213 (vp->v_flag & VDIROP)) {
2214 int locked;
2215
2216 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
2217 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2218 simple_unlock(&vp->v_interlock);
2219 lfs_writer_enter(fs, "ppdirop");
2220 if (locked)
2221 VOP_UNLOCK(vp, 0); /* XXX why? */
2222
2223 simple_lock(&fs->lfs_interlock);
2224 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2225 simple_unlock(&fs->lfs_interlock);
2226
2227 simple_lock(&vp->v_interlock);
2228 if (locked) {
2229 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2230 simple_lock(&vp->v_interlock);
2231 }
2232 lfs_writer_leave(fs);
2233
2234 /* XXX the flush should have taken care of this one too! */
2235 }
2236
2237 /*
2238 * This is it. We are going to write some pages. From here on
2239 * down it's all just mechanics.
2240 *
2241 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2242 */
2243 ap->a_flags &= ~PGO_SYNCIO;
2244
2245 /*
2246 * If we've already got the seglock, flush the node and return.
2247 * The FIP has already been set up for us by lfs_writefile,
2248 * and FIP cleanup and lfs_updatemeta will also be done there,
2249 * unless genfs_putpages returns EDEADLK; then we must flush
2250 * what we have, and correct FIP and segment header accounting.
2251 */
2252 get_seglock:
2253 /*
2254 * If we are not called with the segment locked, lock it.
2255 * Account for a new FIP in the segment header, and set sp->vp.
2256 * (This should duplicate the setup at the top of lfs_writefile().)
2257 */
2258 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2259 if (!seglocked) {
2260 simple_unlock(&vp->v_interlock);
2261 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2262 if (error != 0)
2263 return error;
2264 simple_lock(&vp->v_interlock);
2265 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2266 }
2267 sp = fs->lfs_sp;
2268 KASSERT(sp->vp == NULL);
2269 sp->vp = vp;
2270
2271 /*
2272 * Ensure that the partial segment is marked SS_DIROP if this
2273 * vnode is a DIROP.
2274 */
2275 if (!seglocked && vp->v_flag & VDIROP)
2276 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2277
2278 /*
2279 * Loop over genfs_putpages until all pages are gathered.
2280 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2281 * Whenever we lose the interlock we have to rerun check_dirty, as
2282 * well, since more pages might have been dirtied in our absence.
2283 */
2284 #ifdef DEBUG
2285 debug_n_again = 0;
2286 #endif
2287 do {
2288 busypg = NULL;
2289 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2290 ap->a_flags, 0, &busypg) < 0) {
2291 simple_unlock(&vp->v_interlock);
2292 sp->vp = NULL;
2293
2294 simple_lock(&vp->v_interlock);
2295 write_and_wait(fs, vp, busypg, seglocked, NULL);
2296 if (!seglocked) {
2297 lfs_release_finfo(fs);
2298 lfs_segunlock(fs);
2299 }
2300 goto get_seglock;
2301 }
2302
2303 busypg = NULL;
2304 error = lfs_genfs_putpages(vp, startoffset, endoffset,
2305 ap->a_flags, &busypg);
2306
2307 if (error == EDEADLK || error == EAGAIN) {
2308 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2309 " %d ino %d off %x (seg %d)\n", error,
2310 ip->i_number, fs->lfs_offset,
2311 dtosn(fs, fs->lfs_offset)));
2312
2313 simple_lock(&vp->v_interlock);
2314 write_and_wait(fs, vp, busypg, seglocked, "again");
2315 }
2316 #ifdef DEBUG
2317 ++debug_n_again;
2318 #endif
2319 } while (error == EDEADLK);
2320 #ifdef DEBUG
2321 if (debug_n_again > TOOMANY)
2322 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2323 #endif
2324
2325 KASSERT(sp != NULL && sp->vp == vp);
2326 if (!seglocked) {
2327 sp->vp = NULL;
2328
2329 /* Write indirect blocks as well */
2330 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2331 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2332 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2333
2334 KASSERT(sp->vp == NULL);
2335 sp->vp = vp;
2336 }
2337
2338 /*
2339 * Blocks are now gathered into a segment waiting to be written.
2340 * All that's left to do is update metadata, and write them.
2341 */
2342 lfs_updatemeta(sp);
2343 KASSERT(sp->vp == vp);
2344 sp->vp = NULL;
2345
2346 /*
2347 * If we were called from lfs_writefile, we don't need to clean up
2348 * the FIP or unlock the segment lock. We're done.
2349 */
2350 if (seglocked)
2351 return error;
2352
2353 /* Clean up FIP and send it to disk. */
2354 lfs_release_finfo(fs);
2355 lfs_writeseg(fs, fs->lfs_sp);
2356
2357 /*
2358 * Remove us from paging queue if we wrote all our pages.
2359 */
2360 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2361 simple_lock(&fs->lfs_interlock);
2362 if (ip->i_flags & IN_PAGING) {
2363 ip->i_flags &= ~IN_PAGING;
2364 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2365 }
2366 simple_unlock(&fs->lfs_interlock);
2367 }
2368
2369 /*
2370 * XXX - with the malloc/copy writeseg, the pages are freed by now
2371 * even if we don't wait (e.g. if we hold a nested lock). This
2372 * will not be true if we stop using malloc/copy.
2373 */
2374 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2375 lfs_segunlock(fs);
2376
2377 /*
2378 * Wait for v_numoutput to drop to zero. The seglock should
2379 * take care of this, but there is a slight possibility that
2380 * aiodoned might not have got around to our buffers yet.
2381 */
2382 if (sync) {
2383 s = splbio();
2384 simple_lock(&global_v_numoutput_slock);
2385 while (vp->v_numoutput > 0) {
2386 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2387 " num %d\n", ip->i_number, vp->v_numoutput));
2388 vp->v_flag |= VBWAIT;
2389 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2390 &global_v_numoutput_slock);
2391 }
2392 simple_unlock(&global_v_numoutput_slock);
2393 splx(s);
2394 }
2395 return error;
2396 }
2397
2398 /*
2399 * Return the last logical file offset that should be written for this file
2400 * if we're doing a write that ends at "size". If writing, we need to know
2401 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2402 * to know about entire blocks.
2403 */
2404 void
2405 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2406 {
2407 struct inode *ip = VTOI(vp);
2408 struct lfs *fs = ip->i_lfs;
2409 daddr_t olbn, nlbn;
2410
2411 olbn = lblkno(fs, ip->i_size);
2412 nlbn = lblkno(fs, size);
2413 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2414 *eobp = fragroundup(fs, size);
2415 } else {
2416 *eobp = blkroundup(fs, size);
2417 }
2418 }
2419
2420 #ifdef DEBUG
2421 void lfs_dump_vop(void *);
2422
2423 void
2424 lfs_dump_vop(void *v)
2425 {
2426 struct vop_putpages_args /* {
2427 struct vnode *a_vp;
2428 voff_t a_offlo;
2429 voff_t a_offhi;
2430 int a_flags;
2431 } */ *ap = v;
2432
2433 #ifdef DDB
2434 vfs_vnode_print(ap->a_vp, 0, printf);
2435 #endif
2436 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2437 }
2438 #endif
2439
2440 int
2441 lfs_mmap(void *v)
2442 {
2443 struct vop_mmap_args /* {
2444 const struct vnodeop_desc *a_desc;
2445 struct vnode *a_vp;
2446 int a_fflags;
2447 kauth_cred_t a_cred;
2448 struct lwp *a_l;
2449 } */ *ap = v;
2450
2451 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2452 return EOPNOTSUPP;
2453 return ufs_mmap(v);
2454 }
2455
2456 /*
2457 * Our own version of genfs_putpages. This is never called by the pagedaemon
2458 * or with PGO_SYNCIO, always called with PGO_CLEANIT and PGO_BUSYFAIL; and
2459 * in the event of failure it returns the busy page in "busypg".
2460 */
2461 static int
2462 lfs_genfs_putpages(struct vnode *vp, off_t startoff, off_t endoff, int flags,
2463 struct vm_page **busypg)
2464 {
2465 struct uvm_object *uobj = &vp->v_uobj;
2466 struct simplelock *slock = &uobj->vmobjlock;
2467 off_t off;
2468 /* Even for strange MAXPHYS, the shift rounds down to a page */
2469 #define maxpages (MAXPHYS >> PAGE_SHIFT)
2470 int i, s, error, npages, nback;
2471 int freeflag;
2472 struct vm_page *pgs[maxpages], *pg, *nextpg, *tpg, curmp, endmp;
2473 bool wasclean, by_list, needs_clean, yld;
2474 bool async = (flags & PGO_SYNCIO) == 0;
2475 bool pagedaemon = curproc == uvm.pagedaemon_proc;
2476 struct lwp *l = curlwp ? curlwp : &lwp0;
2477 struct genfs_node *gp = VTOG(vp);
2478 int dirtygen;
2479 bool modified = false;
2480 bool has_trans = false;
2481 bool cleanall;
2482 bool writeinprog;
2483
2484 UVMHIST_FUNC("genfs_putpages"); UVMHIST_CALLED(ubchist);
2485
2486 *busypg = NULL;
2487
2488 KASSERT(flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE));
2489 KASSERT((startoff & PAGE_MASK) == 0 && (endoff & PAGE_MASK) == 0);
2490 KASSERT(startoff < endoff || endoff == 0);
2491
2492 UVMHIST_LOG(ubchist, "vp %p pages %d off 0x%x len 0x%x",
2493 vp, uobj->uo_npages, startoff, endoff - startoff);
2494
2495 KASSERT((vp->v_flag & VONWORKLST) != 0 ||
2496 (vp->v_flag & VWRITEMAPDIRTY) == 0);
2497 if (uobj->uo_npages == 0) {
2498 s = splbio();
2499 if (vp->v_flag & VONWORKLST) {
2500 vp->v_flag &= ~VWRITEMAPDIRTY;
2501 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
2502 vn_syncer_remove_from_worklist(vp);
2503 }
2504 splx(s);
2505 simple_unlock(slock);
2506 return (0);
2507 }
2508
2509 /*
2510 * the vnode has pages, set up to process the request.
2511 */
2512
2513 if ((flags & PGO_CLEANIT) != 0) {
2514 simple_unlock(slock);
2515 if (pagedaemon)
2516 error = fstrans_start_nowait(vp->v_mount, FSTRANS_LAZY);
2517 else
2518 error = fstrans_start(vp->v_mount, FSTRANS_LAZY);
2519 if (error)
2520 return error;
2521 has_trans = true;
2522 simple_lock(slock);
2523 }
2524
2525 error = 0;
2526 s = splbio();
2527 simple_lock(&global_v_numoutput_slock);
2528 wasclean = (vp->v_numoutput == 0);
2529 simple_unlock(&global_v_numoutput_slock);
2530 splx(s);
2531 off = startoff;
2532 if (endoff == 0 || flags & PGO_ALLPAGES) {
2533 endoff = trunc_page(LLONG_MAX);
2534 }
2535 by_list = (uobj->uo_npages <=
2536 ((endoff - startoff) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
2537
2538 #if !defined(DEBUG)
2539 /*
2540 * if this vnode is known not to have dirty pages,
2541 * don't bother to clean it out.
2542 */
2543
2544 if ((vp->v_flag & VONWORKLST) == 0) {
2545 if ((flags & (PGO_FREE|PGO_DEACTIVATE)) == 0) {
2546 goto skip_scan;
2547 }
2548 flags &= ~PGO_CLEANIT;
2549 }
2550 #endif /* !defined(DEBUG) */
2551
2552 /*
2553 * start the loop. when scanning by list, hold the last page
2554 * in the list before we start. pages allocated after we start
2555 * will be added to the end of the list, so we can stop at the
2556 * current last page.
2557 */
2558
2559 cleanall = (flags & PGO_CLEANIT) != 0 && wasclean &&
2560 startoff == 0 && endoff == trunc_page(LLONG_MAX) &&
2561 (vp->v_flag & VONWORKLST) != 0;
2562 dirtygen = gp->g_dirtygen;
2563 freeflag = pagedaemon ? PG_PAGEOUT : PG_RELEASED;
2564 if (by_list) {
2565 curmp.uobject = uobj;
2566 curmp.offset = (voff_t)-1;
2567 curmp.flags = PG_BUSY;
2568 endmp.uobject = uobj;
2569 endmp.offset = (voff_t)-1;
2570 endmp.flags = PG_BUSY;
2571 pg = TAILQ_FIRST(&uobj->memq);
2572 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
2573 PHOLD(l);
2574 } else {
2575 pg = uvm_pagelookup(uobj, off);
2576 }
2577 nextpg = NULL;
2578 while (by_list || off < endoff) {
2579
2580 /*
2581 * if the current page is not interesting, move on to the next.
2582 */
2583
2584 KASSERT(pg == NULL || pg->uobject == uobj);
2585 KASSERT(pg == NULL ||
2586 (pg->flags & (PG_RELEASED|PG_PAGEOUT)) == 0 ||
2587 (pg->flags & PG_BUSY) != 0);
2588 writeinprog = (pg->flags & PG_BUSY) &&
2589 !(pg->flags & PG_CLEAN && !pmap_is_modified(pg));
2590 if (by_list) {
2591 if (pg == &endmp) {
2592 break;
2593 }
2594 if (pg->offset < startoff || pg->offset >= endoff ||
2595 pg->flags & (PG_RELEASED|PG_PAGEOUT) ||
2596 writeinprog) {
2597 if (pg->offset >= startoff &&
2598 pg->offset < endoff) {
2599 wasclean = false;
2600 }
2601 pg = TAILQ_NEXT(pg, listq);
2602 continue;
2603 }
2604 off = pg->offset;
2605 } else if (pg == NULL || pg->flags & (PG_RELEASED|PG_PAGEOUT) ||
2606 writeinprog) {
2607 if (pg != NULL) {
2608 wasclean = false;
2609 }
2610 off += PAGE_SIZE;
2611 if (off < endoff) {
2612 pg = uvm_pagelookup(uobj, off);
2613 }
2614 continue;
2615 }
2616
2617 /*
2618 * if the current page needs to be cleaned and it's busy,
2619 * wait for it to become unbusy.
2620 */
2621
2622 yld = (l->l_cpu->ci_schedstate.spc_flags &
2623 SPCF_SHOULDYIELD) && !pagedaemon;
2624 if (pg->flags & PG_BUSY || yld) {
2625 UVMHIST_LOG(ubchist, "busy %p", pg,0,0,0);
2626 if (pg->flags & PG_BUSY) {
2627 *busypg = pg;
2628 UVMHIST_LOG(ubchist, "busyfail %p", pg, 0,0,0);
2629 error = EDEADLK;
2630 break;
2631 }
2632 KASSERT(!pagedaemon);
2633 if (by_list) {
2634 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
2635 UVMHIST_LOG(ubchist, "curmp next %p",
2636 TAILQ_NEXT(&curmp, listq), 0,0,0);
2637 }
2638 if (yld) {
2639 simple_unlock(slock);
2640 preempt();
2641 simple_lock(slock);
2642 } else {
2643 pg->flags |= PG_WANTED;
2644 #ifdef UVM_PAGE_TRKOWN
2645 printf("sleeping on page %lld owned by pid %d.%d (%s)\n",
2646 (long long)pg->offset, pg->owner, pg->lowner, pg->owner_tag);
2647 #endif
2648 UVM_UNLOCK_AND_WAIT(pg, slock, 0, "genput", 0);
2649 simple_lock(slock);
2650 }
2651 if (by_list) {
2652 UVMHIST_LOG(ubchist, "after next %p",
2653 TAILQ_NEXT(&curmp, listq), 0,0,0);
2654 pg = TAILQ_NEXT(&curmp, listq);
2655 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
2656 } else {
2657 pg = uvm_pagelookup(uobj, off);
2658 }
2659 continue;
2660 }
2661
2662 /*
2663 * if we're freeing, remove all mappings of the page now.
2664 * if we're cleaning, check if the page is needs to be cleaned.
2665 */
2666
2667 if (flags & PGO_FREE) {
2668 pmap_page_protect(pg, VM_PROT_NONE);
2669 } else if (flags & PGO_CLEANIT) {
2670
2671 /*
2672 * if we still have some hope to pull this vnode off
2673 * from the syncer queue, write-protect the page.
2674 */
2675
2676 if (cleanall && wasclean &&
2677 gp->g_dirtygen == dirtygen) {
2678
2679 /*
2680 * uobj pages get wired only by uvm_fault
2681 * where uobj is locked.
2682 */
2683
2684 if (pg->wire_count == 0) {
2685 pmap_page_protect(pg,
2686 VM_PROT_READ|VM_PROT_EXECUTE);
2687 } else {
2688 cleanall = false;
2689 }
2690 }
2691 }
2692
2693 if (flags & PGO_CLEANIT) {
2694 needs_clean = pmap_clear_modify(pg) ||
2695 (pg->flags & PG_CLEAN) == 0;
2696 pg->flags |= PG_CLEAN;
2697 } else {
2698 needs_clean = false;
2699 }
2700
2701 /*
2702 * if we're cleaning, build a cluster.
2703 * the cluster will consist of pages which are currently dirty,
2704 * but they will be returned to us marked clean.
2705 * if not cleaning, just operate on the one page.
2706 */
2707
2708 if (needs_clean) {
2709 KDASSERT((vp->v_flag & VONWORKLST));
2710 wasclean = false;
2711 memset(pgs, 0, sizeof(pgs));
2712 pg->flags |= PG_BUSY;
2713 UVM_PAGE_OWN(pg, "genfs_putpages");
2714
2715 /*
2716 * first look backward.
2717 */
2718
2719 npages = MIN(maxpages >> 1, off >> PAGE_SHIFT);
2720 nback = npages;
2721 uvn_findpages(uobj, off - PAGE_SIZE, &nback, &pgs[0],
2722 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY|UFP_BACKWARD);
2723 if (nback) {
2724 memmove(&pgs[0], &pgs[npages - nback],
2725 nback * sizeof(pgs[0]));
2726 if (npages - nback < nback)
2727 memset(&pgs[nback], 0,
2728 (npages - nback) * sizeof(pgs[0]));
2729 else
2730 memset(&pgs[npages - nback], 0,
2731 nback * sizeof(pgs[0]));
2732 }
2733
2734 /*
2735 * then plug in our page of interest.
2736 */
2737
2738 pgs[nback] = pg;
2739
2740 /*
2741 * then look forward to fill in the remaining space in
2742 * the array of pages.
2743 */
2744
2745 npages = maxpages - nback - 1;
2746 uvn_findpages(uobj, off + PAGE_SIZE, &npages,
2747 &pgs[nback + 1],
2748 UFP_NOWAIT|UFP_NOALLOC|UFP_DIRTYONLY);
2749 npages += nback + 1;
2750 } else {
2751 pgs[0] = pg;
2752 npages = 1;
2753 nback = 0;
2754 }
2755
2756 /*
2757 * apply FREE or DEACTIVATE options if requested.
2758 */
2759
2760 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
2761 uvm_lock_pageq();
2762 }
2763 for (i = 0; i < npages; i++) {
2764 tpg = pgs[i];
2765 KASSERT(tpg->uobject == uobj);
2766 if (by_list && tpg == TAILQ_NEXT(pg, listq))
2767 pg = tpg;
2768 if (tpg->offset < startoff || tpg->offset >= endoff)
2769 continue;
2770 if (flags & PGO_DEACTIVATE && tpg->wire_count == 0) {
2771 (void) pmap_clear_reference(tpg);
2772 uvm_pagedeactivate(tpg);
2773 } else if (flags & PGO_FREE) {
2774 pmap_page_protect(tpg, VM_PROT_NONE);
2775 if (tpg->flags & PG_BUSY) {
2776 tpg->flags |= freeflag;
2777 if (pagedaemon) {
2778 uvmexp.paging++;
2779 uvm_pagedequeue(tpg);
2780 }
2781 } else {
2782
2783 /*
2784 * ``page is not busy''
2785 * implies that npages is 1
2786 * and needs_clean is false.
2787 */
2788
2789 nextpg = TAILQ_NEXT(tpg, listq);
2790 uvm_pagefree(tpg);
2791 if (pagedaemon)
2792 uvmexp.pdfreed++;
2793 }
2794 }
2795 }
2796 if (flags & (PGO_DEACTIVATE|PGO_FREE)) {
2797 uvm_unlock_pageq();
2798 }
2799 if (needs_clean) {
2800 modified = true;
2801
2802 /*
2803 * start the i/o. if we're traversing by list,
2804 * keep our place in the list with a marker page.
2805 */
2806
2807 if (by_list) {
2808 TAILQ_INSERT_AFTER(&uobj->memq, pg, &curmp,
2809 listq);
2810 }
2811 simple_unlock(slock);
2812 error = GOP_WRITE(vp, pgs, npages, flags);
2813 simple_lock(slock);
2814 if (by_list) {
2815 pg = TAILQ_NEXT(&curmp, listq);
2816 TAILQ_REMOVE(&uobj->memq, &curmp, listq);
2817 }
2818 if (error) {
2819 break;
2820 }
2821 if (by_list) {
2822 continue;
2823 }
2824 }
2825
2826 /*
2827 * find the next page and continue if there was no error.
2828 */
2829
2830 if (by_list) {
2831 if (nextpg) {
2832 pg = nextpg;
2833 nextpg = NULL;
2834 } else {
2835 pg = TAILQ_NEXT(pg, listq);
2836 }
2837 } else {
2838 off += (npages - nback) << PAGE_SHIFT;
2839 if (off < endoff) {
2840 pg = uvm_pagelookup(uobj, off);
2841 }
2842 }
2843 }
2844 if (by_list) {
2845 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
2846 PRELE(l);
2847 }
2848
2849 if (modified && (vp->v_flag & VWRITEMAPDIRTY) != 0 &&
2850 (vp->v_type != VBLK ||
2851 (vp->v_mount->mnt_flag & MNT_NODEVMTIME) == 0)) {
2852 GOP_MARKUPDATE(vp, GOP_UPDATE_MODIFIED);
2853 }
2854
2855 /*
2856 * if we're cleaning and there was nothing to clean,
2857 * take us off the syncer list. if we started any i/o
2858 * and we're doing sync i/o, wait for all writes to finish.
2859 */
2860
2861 s = splbio();
2862 if (cleanall && wasclean && gp->g_dirtygen == dirtygen &&
2863 (vp->v_flag & VONWORKLST) != 0) {
2864 vp->v_flag &= ~VWRITEMAPDIRTY;
2865 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL)
2866 vn_syncer_remove_from_worklist(vp);
2867 }
2868 splx(s);
2869
2870 #if !defined(DEBUG)
2871 skip_scan:
2872 #endif /* !defined(DEBUG) */
2873 if (!wasclean && !async) {
2874 s = splbio();
2875 /*
2876 * XXX - we want simple_unlock(&global_v_numoutput_slock);
2877 * but the slot in ltsleep() is taken!
2878 * XXX - try to recover from missed wakeups with a timeout..
2879 * must think of something better.
2880 */
2881 while (vp->v_numoutput != 0) {
2882 vp->v_flag |= VBWAIT;
2883 UVM_UNLOCK_AND_WAIT(&vp->v_numoutput, slock, false,
2884 "genput2", hz);
2885 simple_lock(slock);
2886 }
2887 splx(s);
2888 }
2889 simple_unlock(slock);
2890
2891 if (has_trans)
2892 fstrans_done(vp->v_mount);
2893
2894 return (error);
2895 }
2896