lfs_vnops.c revision 1.209 1 /* $NetBSD: lfs_vnops.c,v 1.209 2007/07/27 08:26:39 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.209 2007/07/27 08:26:39 pooka Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
157 { &vop_getpages_desc, lfs_getpages }, /* getpages */
158 { &vop_putpages_desc, lfs_putpages }, /* putpages */
159 { NULL, NULL }
160 };
161 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
162 { &lfs_vnodeop_p, lfs_vnodeop_entries };
163
164 int (**lfs_specop_p)(void *);
165 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
166 { &vop_default_desc, vn_default_error },
167 { &vop_lookup_desc, spec_lookup }, /* lookup */
168 { &vop_create_desc, spec_create }, /* create */
169 { &vop_mknod_desc, spec_mknod }, /* mknod */
170 { &vop_open_desc, spec_open }, /* open */
171 { &vop_close_desc, lfsspec_close }, /* close */
172 { &vop_access_desc, ufs_access }, /* access */
173 { &vop_getattr_desc, lfs_getattr }, /* getattr */
174 { &vop_setattr_desc, lfs_setattr }, /* setattr */
175 { &vop_read_desc, ufsspec_read }, /* read */
176 { &vop_write_desc, ufsspec_write }, /* write */
177 { &vop_lease_desc, spec_lease_check }, /* lease */
178 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
179 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
180 { &vop_poll_desc, spec_poll }, /* poll */
181 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
182 { &vop_revoke_desc, spec_revoke }, /* revoke */
183 { &vop_mmap_desc, spec_mmap }, /* mmap */
184 { &vop_fsync_desc, spec_fsync }, /* fsync */
185 { &vop_seek_desc, spec_seek }, /* seek */
186 { &vop_remove_desc, spec_remove }, /* remove */
187 { &vop_link_desc, spec_link }, /* link */
188 { &vop_rename_desc, spec_rename }, /* rename */
189 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
190 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
191 { &vop_symlink_desc, spec_symlink }, /* symlink */
192 { &vop_readdir_desc, spec_readdir }, /* readdir */
193 { &vop_readlink_desc, spec_readlink }, /* readlink */
194 { &vop_abortop_desc, spec_abortop }, /* abortop */
195 { &vop_inactive_desc, lfs_inactive }, /* inactive */
196 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
197 { &vop_lock_desc, ufs_lock }, /* lock */
198 { &vop_unlock_desc, ufs_unlock }, /* unlock */
199 { &vop_bmap_desc, spec_bmap }, /* bmap */
200 { &vop_strategy_desc, spec_strategy }, /* strategy */
201 { &vop_print_desc, ufs_print }, /* print */
202 { &vop_islocked_desc, ufs_islocked }, /* islocked */
203 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
204 { &vop_advlock_desc, spec_advlock }, /* advlock */
205 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
206 { &vop_getpages_desc, spec_getpages }, /* getpages */
207 { &vop_putpages_desc, spec_putpages }, /* putpages */
208 { NULL, NULL }
209 };
210 const struct vnodeopv_desc lfs_specop_opv_desc =
211 { &lfs_specop_p, lfs_specop_entries };
212
213 int (**lfs_fifoop_p)(void *);
214 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
215 { &vop_default_desc, vn_default_error },
216 { &vop_lookup_desc, fifo_lookup }, /* lookup */
217 { &vop_create_desc, fifo_create }, /* create */
218 { &vop_mknod_desc, fifo_mknod }, /* mknod */
219 { &vop_open_desc, fifo_open }, /* open */
220 { &vop_close_desc, lfsfifo_close }, /* close */
221 { &vop_access_desc, ufs_access }, /* access */
222 { &vop_getattr_desc, lfs_getattr }, /* getattr */
223 { &vop_setattr_desc, lfs_setattr }, /* setattr */
224 { &vop_read_desc, ufsfifo_read }, /* read */
225 { &vop_write_desc, ufsfifo_write }, /* write */
226 { &vop_lease_desc, fifo_lease_check }, /* lease */
227 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
228 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
229 { &vop_poll_desc, fifo_poll }, /* poll */
230 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
231 { &vop_revoke_desc, fifo_revoke }, /* revoke */
232 { &vop_mmap_desc, fifo_mmap }, /* mmap */
233 { &vop_fsync_desc, fifo_fsync }, /* fsync */
234 { &vop_seek_desc, fifo_seek }, /* seek */
235 { &vop_remove_desc, fifo_remove }, /* remove */
236 { &vop_link_desc, fifo_link }, /* link */
237 { &vop_rename_desc, fifo_rename }, /* rename */
238 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
239 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
240 { &vop_symlink_desc, fifo_symlink }, /* symlink */
241 { &vop_readdir_desc, fifo_readdir }, /* readdir */
242 { &vop_readlink_desc, fifo_readlink }, /* readlink */
243 { &vop_abortop_desc, fifo_abortop }, /* abortop */
244 { &vop_inactive_desc, lfs_inactive }, /* inactive */
245 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
246 { &vop_lock_desc, ufs_lock }, /* lock */
247 { &vop_unlock_desc, ufs_unlock }, /* unlock */
248 { &vop_bmap_desc, fifo_bmap }, /* bmap */
249 { &vop_strategy_desc, fifo_strategy }, /* strategy */
250 { &vop_print_desc, ufs_print }, /* print */
251 { &vop_islocked_desc, ufs_islocked }, /* islocked */
252 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
253 { &vop_advlock_desc, fifo_advlock }, /* advlock */
254 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
255 { &vop_putpages_desc, fifo_putpages }, /* putpages */
256 { NULL, NULL }
257 };
258 const struct vnodeopv_desc lfs_fifoop_opv_desc =
259 { &lfs_fifoop_p, lfs_fifoop_entries };
260
261 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
262
263 #define LFS_READWRITE
264 #include <ufs/ufs/ufs_readwrite.c>
265 #undef LFS_READWRITE
266
267 /*
268 * Synch an open file.
269 */
270 /* ARGSUSED */
271 int
272 lfs_fsync(void *v)
273 {
274 struct vop_fsync_args /* {
275 struct vnode *a_vp;
276 kauth_cred_t a_cred;
277 int a_flags;
278 off_t offlo;
279 off_t offhi;
280 struct lwp *a_l;
281 } */ *ap = v;
282 struct vnode *vp = ap->a_vp;
283 int error, wait;
284 struct inode *ip = VTOI(vp);
285 struct lfs *fs = ip->i_lfs;
286
287 /* If we're mounted read-only, don't try to sync. */
288 if (fs->lfs_ronly)
289 return 0;
290
291 /*
292 * Trickle sync simply adds this vnode to the pager list, as if
293 * the pagedaemon had requested a pageout.
294 */
295 if (ap->a_flags & FSYNC_LAZY) {
296 if (lfs_ignore_lazy_sync == 0) {
297 simple_lock(&fs->lfs_interlock);
298 if (!(ip->i_flags & IN_PAGING)) {
299 ip->i_flags |= IN_PAGING;
300 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
301 i_lfs_pchain);
302 }
303 simple_unlock(&fs->lfs_interlock);
304 simple_lock(&lfs_subsys_lock);
305 wakeup(&lfs_writer_daemon);
306 simple_unlock(&lfs_subsys_lock);
307 }
308 return 0;
309 }
310
311 /*
312 * If a vnode is bring cleaned, flush it out before we try to
313 * reuse it. This prevents the cleaner from writing files twice
314 * in the same partial segment, causing an accounting underflow.
315 */
316 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
317 lfs_vflush(vp);
318 }
319
320 wait = (ap->a_flags & FSYNC_WAIT);
321 do {
322 simple_lock(&vp->v_interlock);
323 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
324 round_page(ap->a_offhi),
325 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
326 if (error == EAGAIN) {
327 simple_lock(&fs->lfs_interlock);
328 ltsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
329 hz / 100 + 1, &fs->lfs_interlock);
330 simple_unlock(&fs->lfs_interlock);
331 }
332 } while (error == EAGAIN);
333 if (error)
334 return error;
335
336 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
337 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
338
339 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
340 int l = 0;
341 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
342 ap->a_l->l_cred, ap->a_l);
343 }
344 if (wait && !VPISEMPTY(vp))
345 LFS_SET_UINO(ip, IN_MODIFIED);
346
347 return error;
348 }
349
350 /*
351 * Take IN_ADIROP off, then call ufs_inactive.
352 */
353 int
354 lfs_inactive(void *v)
355 {
356 struct vop_inactive_args /* {
357 struct vnode *a_vp;
358 struct lwp *a_l;
359 } */ *ap = v;
360
361 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
362
363 lfs_unmark_vnode(ap->a_vp);
364
365 /*
366 * The Ifile is only ever inactivated on unmount.
367 * Streamline this process by not giving it more dirty blocks.
368 */
369 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
370 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
371 VOP_UNLOCK(ap->a_vp, 0);
372 return 0;
373 }
374
375 return ufs_inactive(v);
376 }
377
378 /*
379 * These macros are used to bracket UFS directory ops, so that we can
380 * identify all the pages touched during directory ops which need to
381 * be ordered and flushed atomically, so that they may be recovered.
382 *
383 * Because we have to mark nodes VDIROP in order to prevent
384 * the cache from reclaiming them while a dirop is in progress, we must
385 * also manage the number of nodes so marked (otherwise we can run out).
386 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
387 * is decremented during segment write, when VDIROP is taken off.
388 */
389 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
390 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
391 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
392 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
393 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
394 static int lfs_set_dirop(struct vnode *, struct vnode *);
395
396 static int
397 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
398 {
399 struct lfs *fs;
400 int error;
401
402 KASSERT(VOP_ISLOCKED(dvp));
403 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
404
405 fs = VTOI(dvp)->i_lfs;
406
407 ASSERT_NO_SEGLOCK(fs);
408 /*
409 * LFS_NRESERVE calculates direct and indirect blocks as well
410 * as an inode block; an overestimate in most cases.
411 */
412 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
413 return (error);
414
415 restart:
416 simple_lock(&fs->lfs_interlock);
417 if (fs->lfs_dirops == 0) {
418 simple_unlock(&fs->lfs_interlock);
419 lfs_check(dvp, LFS_UNUSED_LBN, 0);
420 simple_lock(&fs->lfs_interlock);
421 }
422 while (fs->lfs_writer) {
423 error = ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
424 "lfs_sdirop", 0, &fs->lfs_interlock);
425 if (error == EINTR) {
426 simple_unlock(&fs->lfs_interlock);
427 goto unreserve;
428 }
429 }
430 simple_lock(&lfs_subsys_lock);
431 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
432 wakeup(&lfs_writer_daemon);
433 simple_unlock(&lfs_subsys_lock);
434 simple_unlock(&fs->lfs_interlock);
435 preempt();
436 goto restart;
437 }
438
439 if (lfs_dirvcount > LFS_MAX_DIROP) {
440 simple_unlock(&fs->lfs_interlock);
441 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
442 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
443 if ((error = ltsleep(&lfs_dirvcount,
444 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
445 &lfs_subsys_lock)) != 0) {
446 goto unreserve;
447 }
448 goto restart;
449 }
450 simple_unlock(&lfs_subsys_lock);
451
452 ++fs->lfs_dirops;
453 fs->lfs_doifile = 1;
454 simple_unlock(&fs->lfs_interlock);
455
456 /* Hold a reference so SET_ENDOP will be happy */
457 vref(dvp);
458 if (vp) {
459 vref(vp);
460 MARK_VNODE(vp);
461 }
462
463 MARK_VNODE(dvp);
464 return 0;
465
466 unreserve:
467 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
468 return error;
469 }
470
471 /*
472 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
473 * in getnewvnode(), if we have a stacked filesystem mounted on top
474 * of us.
475 *
476 * NB: this means we have to clear the new vnodes on error. Fortunately
477 * SET_ENDOP is there to do that for us.
478 */
479 static int
480 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
481 {
482 int error;
483 struct lfs *fs;
484
485 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
486 ASSERT_NO_SEGLOCK(fs);
487 if (fs->lfs_ronly)
488 return EROFS;
489 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
490 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
491 dvp, error));
492 return error;
493 }
494 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
495 if (vpp) {
496 ungetnewvnode(*vpp);
497 *vpp = NULL;
498 }
499 return error;
500 }
501 return 0;
502 }
503
504 #define SET_ENDOP_BASE(fs, dvp, str) \
505 do { \
506 simple_lock(&(fs)->lfs_interlock); \
507 --(fs)->lfs_dirops; \
508 if (!(fs)->lfs_dirops) { \
509 if ((fs)->lfs_nadirop) { \
510 panic("SET_ENDOP: %s: no dirops but " \
511 " nadirop=%d", (str), \
512 (fs)->lfs_nadirop); \
513 } \
514 wakeup(&(fs)->lfs_writer); \
515 simple_unlock(&(fs)->lfs_interlock); \
516 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
517 } else \
518 simple_unlock(&(fs)->lfs_interlock); \
519 } while(0)
520 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
521 do { \
522 UNMARK_VNODE(dvp); \
523 if (nvpp && *nvpp) \
524 UNMARK_VNODE(*nvpp); \
525 /* Check for error return to stem vnode leakage */ \
526 if (nvpp && *nvpp && !((*nvpp)->v_flag & VDIROP)) \
527 ungetnewvnode(*(nvpp)); \
528 SET_ENDOP_BASE((fs), (dvp), (str)); \
529 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
530 vrele(dvp); \
531 } while(0)
532 #define SET_ENDOP_CREATE_AP(ap, str) \
533 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
534 (ap)->a_vpp, (str))
535 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
536 do { \
537 UNMARK_VNODE(dvp); \
538 if (ovp) \
539 UNMARK_VNODE(ovp); \
540 SET_ENDOP_BASE((fs), (dvp), (str)); \
541 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
542 vrele(dvp); \
543 if (ovp) \
544 vrele(ovp); \
545 } while(0)
546
547 void
548 lfs_mark_vnode(struct vnode *vp)
549 {
550 struct inode *ip = VTOI(vp);
551 struct lfs *fs = ip->i_lfs;
552
553 simple_lock(&fs->lfs_interlock);
554 if (!(ip->i_flag & IN_ADIROP)) {
555 if (!(vp->v_flag & VDIROP)) {
556 (void)lfs_vref(vp);
557 simple_lock(&lfs_subsys_lock);
558 ++lfs_dirvcount;
559 ++fs->lfs_dirvcount;
560 simple_unlock(&lfs_subsys_lock);
561 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
562 vp->v_flag |= VDIROP;
563 }
564 ++fs->lfs_nadirop;
565 ip->i_flag |= IN_ADIROP;
566 } else
567 KASSERT(vp->v_flag & VDIROP);
568 simple_unlock(&fs->lfs_interlock);
569 }
570
571 void
572 lfs_unmark_vnode(struct vnode *vp)
573 {
574 struct inode *ip = VTOI(vp);
575
576 if (ip && (ip->i_flag & IN_ADIROP)) {
577 KASSERT(vp->v_flag & VDIROP);
578 simple_lock(&ip->i_lfs->lfs_interlock);
579 --ip->i_lfs->lfs_nadirop;
580 simple_unlock(&ip->i_lfs->lfs_interlock);
581 ip->i_flag &= ~IN_ADIROP;
582 }
583 }
584
585 int
586 lfs_symlink(void *v)
587 {
588 struct vop_symlink_args /* {
589 struct vnode *a_dvp;
590 struct vnode **a_vpp;
591 struct componentname *a_cnp;
592 struct vattr *a_vap;
593 char *a_target;
594 } */ *ap = v;
595 int error;
596
597 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
598 vput(ap->a_dvp);
599 return error;
600 }
601 error = ufs_symlink(ap);
602 SET_ENDOP_CREATE_AP(ap, "symlink");
603 return (error);
604 }
605
606 int
607 lfs_mknod(void *v)
608 {
609 struct vop_mknod_args /* {
610 struct vnode *a_dvp;
611 struct vnode **a_vpp;
612 struct componentname *a_cnp;
613 struct vattr *a_vap;
614 } */ *ap = v;
615 struct vattr *vap = ap->a_vap;
616 struct vnode **vpp = ap->a_vpp;
617 struct inode *ip;
618 int error;
619 struct mount *mp;
620 ino_t ino;
621
622 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
623 vput(ap->a_dvp);
624 return error;
625 }
626 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
627 ap->a_dvp, vpp, ap->a_cnp);
628
629 /* Either way we're done with the dirop at this point */
630 SET_ENDOP_CREATE_AP(ap, "mknod");
631
632 if (error)
633 return (error);
634
635 ip = VTOI(*vpp);
636 mp = (*vpp)->v_mount;
637 ino = ip->i_number;
638 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
639 if (vap->va_rdev != VNOVAL) {
640 /*
641 * Want to be able to use this to make badblock
642 * inodes, so don't truncate the dev number.
643 */
644 #if 0
645 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
646 UFS_MPNEEDSWAP((*vpp)->v_mount));
647 #else
648 ip->i_ffs1_rdev = vap->va_rdev;
649 #endif
650 }
651
652 /*
653 * Call fsync to write the vnode so that we don't have to deal with
654 * flushing it when it's marked VDIROP|VXLOCK.
655 *
656 * XXX KS - If we can't flush we also can't call vgone(), so must
657 * return. But, that leaves this vnode in limbo, also not good.
658 * Can this ever happen (barring hardware failure)?
659 */
660 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
661 curlwp)) != 0) {
662 panic("lfs_mknod: couldn't fsync (ino %llu)",
663 (unsigned long long)ino);
664 /* return (error); */
665 }
666 /*
667 * Remove vnode so that it will be reloaded by VFS_VGET and
668 * checked to see if it is an alias of an existing entry in
669 * the inode cache.
670 */
671 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
672
673 VOP_UNLOCK(*vpp, 0);
674 lfs_vunref(*vpp);
675 (*vpp)->v_type = VNON;
676 vgone(*vpp);
677 error = VFS_VGET(mp, ino, vpp);
678
679 if (error != 0) {
680 *vpp = NULL;
681 return (error);
682 }
683 return (0);
684 }
685
686 int
687 lfs_create(void *v)
688 {
689 struct vop_create_args /* {
690 struct vnode *a_dvp;
691 struct vnode **a_vpp;
692 struct componentname *a_cnp;
693 struct vattr *a_vap;
694 } */ *ap = v;
695 int error;
696
697 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
698 vput(ap->a_dvp);
699 return error;
700 }
701 error = ufs_create(ap);
702 SET_ENDOP_CREATE_AP(ap, "create");
703 return (error);
704 }
705
706 int
707 lfs_mkdir(void *v)
708 {
709 struct vop_mkdir_args /* {
710 struct vnode *a_dvp;
711 struct vnode **a_vpp;
712 struct componentname *a_cnp;
713 struct vattr *a_vap;
714 } */ *ap = v;
715 int error;
716
717 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
718 vput(ap->a_dvp);
719 return error;
720 }
721 error = ufs_mkdir(ap);
722 SET_ENDOP_CREATE_AP(ap, "mkdir");
723 return (error);
724 }
725
726 int
727 lfs_remove(void *v)
728 {
729 struct vop_remove_args /* {
730 struct vnode *a_dvp;
731 struct vnode *a_vp;
732 struct componentname *a_cnp;
733 } */ *ap = v;
734 struct vnode *dvp, *vp;
735 struct inode *ip;
736 int error;
737
738 dvp = ap->a_dvp;
739 vp = ap->a_vp;
740 ip = VTOI(vp);
741 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
742 if (dvp == vp)
743 vrele(vp);
744 else
745 vput(vp);
746 vput(dvp);
747 return error;
748 }
749 error = ufs_remove(ap);
750 if (ip->i_nlink == 0)
751 lfs_orphan(ip->i_lfs, ip->i_number);
752 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
753 return (error);
754 }
755
756 int
757 lfs_rmdir(void *v)
758 {
759 struct vop_rmdir_args /* {
760 struct vnodeop_desc *a_desc;
761 struct vnode *a_dvp;
762 struct vnode *a_vp;
763 struct componentname *a_cnp;
764 } */ *ap = v;
765 struct vnode *vp;
766 struct inode *ip;
767 int error;
768
769 vp = ap->a_vp;
770 ip = VTOI(vp);
771 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
772 if (ap->a_dvp == vp)
773 vrele(ap->a_dvp);
774 else
775 vput(ap->a_dvp);
776 vput(vp);
777 return error;
778 }
779 error = ufs_rmdir(ap);
780 if (ip->i_nlink == 0)
781 lfs_orphan(ip->i_lfs, ip->i_number);
782 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
783 return (error);
784 }
785
786 int
787 lfs_link(void *v)
788 {
789 struct vop_link_args /* {
790 struct vnode *a_dvp;
791 struct vnode *a_vp;
792 struct componentname *a_cnp;
793 } */ *ap = v;
794 int error;
795 struct vnode **vpp = NULL;
796
797 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
798 vput(ap->a_dvp);
799 return error;
800 }
801 error = ufs_link(ap);
802 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
803 return (error);
804 }
805
806 int
807 lfs_rename(void *v)
808 {
809 struct vop_rename_args /* {
810 struct vnode *a_fdvp;
811 struct vnode *a_fvp;
812 struct componentname *a_fcnp;
813 struct vnode *a_tdvp;
814 struct vnode *a_tvp;
815 struct componentname *a_tcnp;
816 } */ *ap = v;
817 struct vnode *tvp, *fvp, *tdvp, *fdvp;
818 struct componentname *tcnp, *fcnp;
819 int error;
820 struct lfs *fs;
821
822 fs = VTOI(ap->a_fdvp)->i_lfs;
823 tvp = ap->a_tvp;
824 tdvp = ap->a_tdvp;
825 tcnp = ap->a_tcnp;
826 fvp = ap->a_fvp;
827 fdvp = ap->a_fdvp;
828 fcnp = ap->a_fcnp;
829
830 /*
831 * Check for cross-device rename.
832 * If it is, we don't want to set dirops, just error out.
833 * (In particular note that MARK_VNODE(tdvp) will DTWT on
834 * a cross-device rename.)
835 *
836 * Copied from ufs_rename.
837 */
838 if ((fvp->v_mount != tdvp->v_mount) ||
839 (tvp && (fvp->v_mount != tvp->v_mount))) {
840 error = EXDEV;
841 goto errout;
842 }
843
844 /*
845 * Check to make sure we're not renaming a vnode onto itself
846 * (deleting a hard link by renaming one name onto another);
847 * if we are we can't recursively call VOP_REMOVE since that
848 * would leave us with an unaccounted-for number of live dirops.
849 *
850 * Inline the relevant section of ufs_rename here, *before*
851 * calling SET_DIROP_REMOVE.
852 */
853 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
854 (VTOI(tdvp)->i_flags & APPEND))) {
855 error = EPERM;
856 goto errout;
857 }
858 if (fvp == tvp) {
859 if (fvp->v_type == VDIR) {
860 error = EINVAL;
861 goto errout;
862 }
863
864 /* Release destination completely. */
865 VOP_ABORTOP(tdvp, tcnp);
866 vput(tdvp);
867 vput(tvp);
868
869 /* Delete source. */
870 vrele(fvp);
871 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
872 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
873 fcnp->cn_nameiop = DELETE;
874 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
875 if ((error = relookup(fdvp, &fvp, fcnp))) {
876 vput(fdvp);
877 return (error);
878 }
879 return (VOP_REMOVE(fdvp, fvp, fcnp));
880 }
881
882 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
883 goto errout;
884 MARK_VNODE(fdvp);
885 MARK_VNODE(fvp);
886
887 error = ufs_rename(ap);
888 UNMARK_VNODE(fdvp);
889 UNMARK_VNODE(fvp);
890 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
891 return (error);
892
893 errout:
894 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
895 if (tdvp == tvp)
896 vrele(tdvp);
897 else
898 vput(tdvp);
899 if (tvp)
900 vput(tvp);
901 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
902 vrele(fdvp);
903 vrele(fvp);
904 return (error);
905 }
906
907 /* XXX hack to avoid calling ITIMES in getattr */
908 int
909 lfs_getattr(void *v)
910 {
911 struct vop_getattr_args /* {
912 struct vnode *a_vp;
913 struct vattr *a_vap;
914 kauth_cred_t a_cred;
915 struct lwp *a_l;
916 } */ *ap = v;
917 struct vnode *vp = ap->a_vp;
918 struct inode *ip = VTOI(vp);
919 struct vattr *vap = ap->a_vap;
920 struct lfs *fs = ip->i_lfs;
921 /*
922 * Copy from inode table
923 */
924 vap->va_fsid = ip->i_dev;
925 vap->va_fileid = ip->i_number;
926 vap->va_mode = ip->i_mode & ~IFMT;
927 vap->va_nlink = ip->i_nlink;
928 vap->va_uid = ip->i_uid;
929 vap->va_gid = ip->i_gid;
930 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
931 vap->va_size = vp->v_size;
932 vap->va_atime.tv_sec = ip->i_ffs1_atime;
933 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
934 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
935 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
936 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
937 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
938 vap->va_flags = ip->i_flags;
939 vap->va_gen = ip->i_gen;
940 /* this doesn't belong here */
941 if (vp->v_type == VBLK)
942 vap->va_blocksize = BLKDEV_IOSIZE;
943 else if (vp->v_type == VCHR)
944 vap->va_blocksize = MAXBSIZE;
945 else
946 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
947 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
948 vap->va_type = vp->v_type;
949 vap->va_filerev = ip->i_modrev;
950 return (0);
951 }
952
953 /*
954 * Check to make sure the inode blocks won't choke the buffer
955 * cache, then call ufs_setattr as usual.
956 */
957 int
958 lfs_setattr(void *v)
959 {
960 struct vop_setattr_args /* {
961 struct vnode *a_vp;
962 struct vattr *a_vap;
963 kauth_cred_t a_cred;
964 struct lwp *a_l;
965 } */ *ap = v;
966 struct vnode *vp = ap->a_vp;
967
968 lfs_check(vp, LFS_UNUSED_LBN, 0);
969 return ufs_setattr(v);
970 }
971
972 /*
973 * Release the block we hold on lfs_newseg wrapping. Called on file close,
974 * or explicitly from LFCNWRAPGO. Called with the interlock held.
975 */
976 static int
977 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
978 {
979 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
980 return EBUSY;
981
982 lockmgr(&fs->lfs_stoplock, LK_RELEASE, &fs->lfs_interlock);
983
984 KASSERT(fs->lfs_nowrap > 0);
985 if (fs->lfs_nowrap <= 0) {
986 return 0;
987 }
988
989 if (--fs->lfs_nowrap == 0) {
990 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
991 wakeup(&fs->lfs_wrappass);
992 lfs_wakeup_cleaner(fs);
993 }
994 if (waitfor) {
995 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
996 "segment", 0, &fs->lfs_interlock);
997 }
998
999 return 0;
1000 }
1001
1002 /*
1003 * Close called
1004 */
1005 /* ARGSUSED */
1006 int
1007 lfs_close(void *v)
1008 {
1009 struct vop_close_args /* {
1010 struct vnode *a_vp;
1011 int a_fflag;
1012 kauth_cred_t a_cred;
1013 struct lwp *a_l;
1014 } */ *ap = v;
1015 struct vnode *vp = ap->a_vp;
1016 struct inode *ip = VTOI(vp);
1017 struct lfs *fs = ip->i_lfs;
1018
1019 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1020 lockstatus(&fs->lfs_stoplock) == LK_EXCLUSIVE) {
1021 simple_lock(&fs->lfs_interlock);
1022 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1023 lfs_wrapgo(fs, ip, 0);
1024 simple_unlock(&fs->lfs_interlock);
1025 }
1026
1027 if (vp == ip->i_lfs->lfs_ivnode &&
1028 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1029 return 0;
1030
1031 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1032 LFS_ITIMES(ip, NULL, NULL, NULL);
1033 }
1034 return (0);
1035 }
1036
1037 /*
1038 * Close wrapper for special devices.
1039 *
1040 * Update the times on the inode then do device close.
1041 */
1042 int
1043 lfsspec_close(void *v)
1044 {
1045 struct vop_close_args /* {
1046 struct vnode *a_vp;
1047 int a_fflag;
1048 kauth_cred_t a_cred;
1049 struct lwp *a_l;
1050 } */ *ap = v;
1051 struct vnode *vp;
1052 struct inode *ip;
1053
1054 vp = ap->a_vp;
1055 ip = VTOI(vp);
1056 if (vp->v_usecount > 1) {
1057 LFS_ITIMES(ip, NULL, NULL, NULL);
1058 }
1059 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1060 }
1061
1062 /*
1063 * Close wrapper for fifo's.
1064 *
1065 * Update the times on the inode then do device close.
1066 */
1067 int
1068 lfsfifo_close(void *v)
1069 {
1070 struct vop_close_args /* {
1071 struct vnode *a_vp;
1072 int a_fflag;
1073 kauth_cred_ a_cred;
1074 struct lwp *a_l;
1075 } */ *ap = v;
1076 struct vnode *vp;
1077 struct inode *ip;
1078
1079 vp = ap->a_vp;
1080 ip = VTOI(vp);
1081 if (ap->a_vp->v_usecount > 1) {
1082 LFS_ITIMES(ip, NULL, NULL, NULL);
1083 }
1084 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1085 }
1086
1087 /*
1088 * Reclaim an inode so that it can be used for other purposes.
1089 */
1090
1091 int
1092 lfs_reclaim(void *v)
1093 {
1094 struct vop_reclaim_args /* {
1095 struct vnode *a_vp;
1096 struct lwp *a_l;
1097 } */ *ap = v;
1098 struct vnode *vp = ap->a_vp;
1099 struct inode *ip = VTOI(vp);
1100 struct lfs *fs = ip->i_lfs;
1101 int error;
1102
1103 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1104
1105 LFS_CLR_UINO(ip, IN_ALLMOD);
1106 if ((error = ufs_reclaim(vp, ap->a_l)))
1107 return (error);
1108
1109 /*
1110 * Take us off the paging and/or dirop queues if we were on them.
1111 * We shouldn't be on them.
1112 */
1113 simple_lock(&fs->lfs_interlock);
1114 if (ip->i_flags & IN_PAGING) {
1115 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1116 fs->lfs_fsmnt);
1117 ip->i_flags &= ~IN_PAGING;
1118 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1119 }
1120 if (vp->v_flag & VDIROP) {
1121 panic("reclaimed vnode is VDIROP");
1122 vp->v_flag &= ~VDIROP;
1123 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1124 }
1125 simple_unlock(&fs->lfs_interlock);
1126
1127 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1128 lfs_deregister_all(vp);
1129 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1130 ip->inode_ext.lfs = NULL;
1131 genfs_node_destroy(vp);
1132 pool_put(&lfs_inode_pool, vp->v_data);
1133 vp->v_data = NULL;
1134 return (0);
1135 }
1136
1137 /*
1138 * Read a block from a storage device.
1139 * In order to avoid reading blocks that are in the process of being
1140 * written by the cleaner---and hence are not mutexed by the normal
1141 * buffer cache / page cache mechanisms---check for collisions before
1142 * reading.
1143 *
1144 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1145 * the active cleaner test.
1146 *
1147 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1148 */
1149 int
1150 lfs_strategy(void *v)
1151 {
1152 struct vop_strategy_args /* {
1153 struct vnode *a_vp;
1154 struct buf *a_bp;
1155 } */ *ap = v;
1156 struct buf *bp;
1157 struct lfs *fs;
1158 struct vnode *vp;
1159 struct inode *ip;
1160 daddr_t tbn;
1161 int i, sn, error, slept;
1162
1163 bp = ap->a_bp;
1164 vp = ap->a_vp;
1165 ip = VTOI(vp);
1166 fs = ip->i_lfs;
1167
1168 /* lfs uses its strategy routine only for read */
1169 KASSERT(bp->b_flags & B_READ);
1170
1171 if (vp->v_type == VBLK || vp->v_type == VCHR)
1172 panic("lfs_strategy: spec");
1173 KASSERT(bp->b_bcount != 0);
1174 if (bp->b_blkno == bp->b_lblkno) {
1175 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1176 NULL);
1177 if (error) {
1178 bp->b_error = error;
1179 bp->b_flags |= B_ERROR;
1180 biodone(bp);
1181 return (error);
1182 }
1183 if ((long)bp->b_blkno == -1) /* no valid data */
1184 clrbuf(bp);
1185 }
1186 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1187 biodone(bp);
1188 return (0);
1189 }
1190
1191 slept = 1;
1192 simple_lock(&fs->lfs_interlock);
1193 while (slept && fs->lfs_seglock) {
1194 simple_unlock(&fs->lfs_interlock);
1195 /*
1196 * Look through list of intervals.
1197 * There will only be intervals to look through
1198 * if the cleaner holds the seglock.
1199 * Since the cleaner is synchronous, we can trust
1200 * the list of intervals to be current.
1201 */
1202 tbn = dbtofsb(fs, bp->b_blkno);
1203 sn = dtosn(fs, tbn);
1204 slept = 0;
1205 for (i = 0; i < fs->lfs_cleanind; i++) {
1206 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1207 tbn >= fs->lfs_cleanint[i]) {
1208 DLOG((DLOG_CLEAN,
1209 "lfs_strategy: ino %d lbn %" PRId64
1210 " ind %d sn %d fsb %" PRIx32
1211 " given sn %d fsb %" PRIx64 "\n",
1212 ip->i_number, bp->b_lblkno, i,
1213 dtosn(fs, fs->lfs_cleanint[i]),
1214 fs->lfs_cleanint[i], sn, tbn));
1215 DLOG((DLOG_CLEAN,
1216 "lfs_strategy: sleeping on ino %d lbn %"
1217 PRId64 "\n", ip->i_number, bp->b_lblkno));
1218 simple_lock(&fs->lfs_interlock);
1219 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1220 /* Cleaner can't wait for itself */
1221 ltsleep(&fs->lfs_iocount,
1222 (PRIBIO + 1) | PNORELOCK,
1223 "clean2", 0,
1224 &fs->lfs_interlock);
1225 slept = 1;
1226 break;
1227 } else if (fs->lfs_seglock) {
1228 ltsleep(&fs->lfs_seglock,
1229 (PRIBIO + 1) | PNORELOCK,
1230 "clean1", 0,
1231 &fs->lfs_interlock);
1232 slept = 1;
1233 break;
1234 }
1235 simple_unlock(&fs->lfs_interlock);
1236 }
1237 }
1238 simple_lock(&fs->lfs_interlock);
1239 }
1240 simple_unlock(&fs->lfs_interlock);
1241
1242 vp = ip->i_devvp;
1243 VOP_STRATEGY(vp, bp);
1244 return (0);
1245 }
1246
1247 void
1248 lfs_flush_dirops(struct lfs *fs)
1249 {
1250 struct inode *ip, *nip;
1251 struct vnode *vp;
1252 extern int lfs_dostats;
1253 struct segment *sp;
1254 int waslocked;
1255
1256 ASSERT_MAYBE_SEGLOCK(fs);
1257 KASSERT(fs->lfs_nadirop == 0);
1258
1259 if (fs->lfs_ronly)
1260 return;
1261
1262 simple_lock(&fs->lfs_interlock);
1263 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1264 simple_unlock(&fs->lfs_interlock);
1265 return;
1266 } else
1267 simple_unlock(&fs->lfs_interlock);
1268
1269 if (lfs_dostats)
1270 ++lfs_stats.flush_invoked;
1271
1272 /*
1273 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1274 * Technically this is a checkpoint (the on-disk state is valid)
1275 * even though we are leaving out all the file data.
1276 */
1277 lfs_imtime(fs);
1278 lfs_seglock(fs, SEGM_CKP);
1279 sp = fs->lfs_sp;
1280
1281 /*
1282 * lfs_writevnodes, optimized to get dirops out of the way.
1283 * Only write dirops, and don't flush files' pages, only
1284 * blocks from the directories.
1285 *
1286 * We don't need to vref these files because they are
1287 * dirops and so hold an extra reference until the
1288 * segunlock clears them of that status.
1289 *
1290 * We don't need to check for IN_ADIROP because we know that
1291 * no dirops are active.
1292 *
1293 */
1294 simple_lock(&fs->lfs_interlock);
1295 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1296 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1297 simple_unlock(&fs->lfs_interlock);
1298 vp = ITOV(ip);
1299
1300 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1301
1302 /*
1303 * All writes to directories come from dirops; all
1304 * writes to files' direct blocks go through the page
1305 * cache, which we're not touching. Reads to files
1306 * and/or directories will not be affected by writing
1307 * directory blocks inodes and file inodes. So we don't
1308 * really need to lock. If we don't lock, though,
1309 * make sure that we don't clear IN_MODIFIED
1310 * unnecessarily.
1311 */
1312 if (vp->v_flag & (VXLOCK | VFREEING)) {
1313 simple_lock(&fs->lfs_interlock);
1314 continue;
1315 }
1316 waslocked = VOP_ISLOCKED(vp);
1317 if (vp->v_type != VREG &&
1318 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1319 lfs_writefile(fs, sp, vp);
1320 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1321 !(ip->i_flag & IN_ALLMOD)) {
1322 LFS_SET_UINO(ip, IN_MODIFIED);
1323 }
1324 }
1325 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1326 (void) lfs_writeinode(fs, sp, ip);
1327 if (waslocked == LK_EXCLOTHER)
1328 LFS_SET_UINO(ip, IN_MODIFIED);
1329 simple_lock(&fs->lfs_interlock);
1330 }
1331 simple_unlock(&fs->lfs_interlock);
1332 /* We've written all the dirops there are */
1333 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1334 lfs_finalize_fs_seguse(fs);
1335 (void) lfs_writeseg(fs, sp);
1336 lfs_segunlock(fs);
1337 }
1338
1339 /*
1340 * Flush all vnodes for which the pagedaemon has requested pageouts.
1341 * Skip over any files that are marked VDIROP (since lfs_flush_dirop()
1342 * has just run, this would be an error). If we have to skip a vnode
1343 * for any reason, just skip it; if we have to wait for the cleaner,
1344 * abort. The writer daemon will call us again later.
1345 */
1346 void
1347 lfs_flush_pchain(struct lfs *fs)
1348 {
1349 struct inode *ip, *nip;
1350 struct vnode *vp;
1351 extern int lfs_dostats;
1352 struct segment *sp;
1353 int error;
1354
1355 ASSERT_NO_SEGLOCK(fs);
1356
1357 if (fs->lfs_ronly)
1358 return;
1359
1360 simple_lock(&fs->lfs_interlock);
1361 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1362 simple_unlock(&fs->lfs_interlock);
1363 return;
1364 } else
1365 simple_unlock(&fs->lfs_interlock);
1366
1367 /* Get dirops out of the way */
1368 lfs_flush_dirops(fs);
1369
1370 if (lfs_dostats)
1371 ++lfs_stats.flush_invoked;
1372
1373 /*
1374 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1375 */
1376 lfs_imtime(fs);
1377 lfs_seglock(fs, 0);
1378 sp = fs->lfs_sp;
1379
1380 /*
1381 * lfs_writevnodes, optimized to clear pageout requests.
1382 * Only write non-dirop files that are in the pageout queue.
1383 * We're very conservative about what we write; we want to be
1384 * fast and async.
1385 */
1386 simple_lock(&fs->lfs_interlock);
1387 top:
1388 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1389 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1390 vp = ITOV(ip);
1391
1392 if (!(ip->i_flags & IN_PAGING))
1393 goto top;
1394
1395 if (vp->v_flag & (VXLOCK|VDIROP))
1396 continue;
1397 if (vp->v_type != VREG)
1398 continue;
1399 if (lfs_vref(vp))
1400 continue;
1401 simple_unlock(&fs->lfs_interlock);
1402
1403 if (VOP_ISLOCKED(vp)) {
1404 lfs_vunref(vp);
1405 simple_lock(&fs->lfs_interlock);
1406 continue;
1407 }
1408
1409 error = lfs_writefile(fs, sp, vp);
1410 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1411 !(ip->i_flag & IN_ALLMOD)) {
1412 LFS_SET_UINO(ip, IN_MODIFIED);
1413 }
1414 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1415 (void) lfs_writeinode(fs, sp, ip);
1416
1417 lfs_vunref(vp);
1418
1419 if (error == EAGAIN) {
1420 lfs_writeseg(fs, sp);
1421 simple_lock(&fs->lfs_interlock);
1422 break;
1423 }
1424 simple_lock(&fs->lfs_interlock);
1425 }
1426 simple_unlock(&fs->lfs_interlock);
1427 (void) lfs_writeseg(fs, sp);
1428 lfs_segunlock(fs);
1429 }
1430
1431 /*
1432 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1433 */
1434 int
1435 lfs_fcntl(void *v)
1436 {
1437 struct vop_fcntl_args /* {
1438 struct vnode *a_vp;
1439 u_long a_command;
1440 void * a_data;
1441 int a_fflag;
1442 kauth_cred_t a_cred;
1443 struct lwp *a_l;
1444 } */ *ap = v;
1445 struct timeval *tvp;
1446 BLOCK_INFO *blkiov;
1447 CLEANERINFO *cip;
1448 SEGUSE *sup;
1449 int blkcnt, error, oclean;
1450 size_t fh_size;
1451 struct lfs_fcntl_markv blkvp;
1452 struct lwp *l;
1453 fsid_t *fsidp;
1454 struct lfs *fs;
1455 struct buf *bp;
1456 fhandle_t *fhp;
1457 daddr_t off;
1458
1459 /* Only respect LFS fcntls on fs root or Ifile */
1460 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1461 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1462 return ufs_fcntl(v);
1463 }
1464
1465 /* Avoid locking a draining lock */
1466 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1467 return ESHUTDOWN;
1468 }
1469
1470 /* LFS control and monitoring fcntls are available only to root */
1471 l = ap->a_l;
1472 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1473 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1474 NULL)) != 0)
1475 return (error);
1476
1477 fs = VTOI(ap->a_vp)->i_lfs;
1478 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1479
1480 error = 0;
1481 switch (ap->a_command) {
1482 case LFCNSEGWAITALL:
1483 case LFCNSEGWAITALL_COMPAT:
1484 fsidp = NULL;
1485 /* FALLSTHROUGH */
1486 case LFCNSEGWAIT:
1487 case LFCNSEGWAIT_COMPAT:
1488 tvp = (struct timeval *)ap->a_data;
1489 simple_lock(&fs->lfs_interlock);
1490 ++fs->lfs_sleepers;
1491 simple_unlock(&fs->lfs_interlock);
1492
1493 error = lfs_segwait(fsidp, tvp);
1494
1495 simple_lock(&fs->lfs_interlock);
1496 if (--fs->lfs_sleepers == 0)
1497 wakeup(&fs->lfs_sleepers);
1498 simple_unlock(&fs->lfs_interlock);
1499 return error;
1500
1501 case LFCNBMAPV:
1502 case LFCNMARKV:
1503 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1504
1505 blkcnt = blkvp.blkcnt;
1506 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1507 return (EINVAL);
1508 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1509 if ((error = copyin(blkvp.blkiov, blkiov,
1510 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1511 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1512 return error;
1513 }
1514
1515 simple_lock(&fs->lfs_interlock);
1516 ++fs->lfs_sleepers;
1517 simple_unlock(&fs->lfs_interlock);
1518 if (ap->a_command == LFCNBMAPV)
1519 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1520 else /* LFCNMARKV */
1521 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1522 if (error == 0)
1523 error = copyout(blkiov, blkvp.blkiov,
1524 blkcnt * sizeof(BLOCK_INFO));
1525 simple_lock(&fs->lfs_interlock);
1526 if (--fs->lfs_sleepers == 0)
1527 wakeup(&fs->lfs_sleepers);
1528 simple_unlock(&fs->lfs_interlock);
1529 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1530 return error;
1531
1532 case LFCNRECLAIM:
1533 /*
1534 * Flush dirops and write Ifile, allowing empty segments
1535 * to be immediately reclaimed.
1536 */
1537 lfs_writer_enter(fs, "pndirop");
1538 off = fs->lfs_offset;
1539 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1540 lfs_flush_dirops(fs);
1541 LFS_CLEANERINFO(cip, fs, bp);
1542 oclean = cip->clean;
1543 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1544 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1545 fs->lfs_sp->seg_flags |= SEGM_PROT;
1546 lfs_segunlock(fs);
1547 lfs_writer_leave(fs);
1548
1549 #ifdef DEBUG
1550 LFS_CLEANERINFO(cip, fs, bp);
1551 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1552 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1553 fs->lfs_offset - off, cip->clean - oclean,
1554 fs->lfs_activesb));
1555 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1556 #endif
1557
1558 return 0;
1559
1560 #ifdef COMPAT_30
1561 case LFCNIFILEFH_COMPAT:
1562 /* Return the filehandle of the Ifile */
1563 if ((error = kauth_authorize_generic(l->l_cred,
1564 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1565 return (error);
1566 fhp = (struct fhandle *)ap->a_data;
1567 fhp->fh_fsid = *fsidp;
1568 fh_size = 16; /* former VFS_MAXFIDSIZ */
1569 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1570 #endif
1571
1572 case LFCNIFILEFH_COMPAT2:
1573 case LFCNIFILEFH:
1574 /* Return the filehandle of the Ifile */
1575 fhp = (struct fhandle *)ap->a_data;
1576 fhp->fh_fsid = *fsidp;
1577 fh_size = sizeof(struct lfs_fhandle) -
1578 offsetof(fhandle_t, fh_fid);
1579 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1580
1581 case LFCNREWIND:
1582 /* Move lfs_offset to the lowest-numbered segment */
1583 return lfs_rewind(fs, *(int *)ap->a_data);
1584
1585 case LFCNINVAL:
1586 /* Mark a segment SEGUSE_INVAL */
1587 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1588 if (sup->su_nbytes > 0) {
1589 brelse(bp);
1590 lfs_unset_inval_all(fs);
1591 return EBUSY;
1592 }
1593 sup->su_flags |= SEGUSE_INVAL;
1594 VOP_BWRITE(bp);
1595 return 0;
1596
1597 case LFCNRESIZE:
1598 /* Resize the filesystem */
1599 return lfs_resize_fs(fs, *(int *)ap->a_data);
1600
1601 case LFCNWRAPSTOP:
1602 case LFCNWRAPSTOP_COMPAT:
1603 /*
1604 * Hold lfs_newseg at segment 0; if requested, sleep until
1605 * the filesystem wraps around. To support external agents
1606 * (dump, fsck-based regression test) that need to look at
1607 * a snapshot of the filesystem, without necessarily
1608 * requiring that all fs activity stops.
1609 */
1610 if (lockstatus(&fs->lfs_stoplock))
1611 return EALREADY;
1612
1613 simple_lock(&fs->lfs_interlock);
1614 lockmgr(&fs->lfs_stoplock, LK_EXCLUSIVE, &fs->lfs_interlock);
1615 if (fs->lfs_nowrap == 0)
1616 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1617 ++fs->lfs_nowrap;
1618 if (*(int *)ap->a_data == 1 ||
1619 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1620 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1621 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1622 "segwrap", 0, &fs->lfs_interlock);
1623 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1624 if (error) {
1625 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1626 }
1627 }
1628 simple_unlock(&fs->lfs_interlock);
1629 return 0;
1630
1631 case LFCNWRAPGO:
1632 case LFCNWRAPGO_COMPAT:
1633 /*
1634 * Having done its work, the agent wakes up the writer.
1635 * If the argument is 1, it sleeps until a new segment
1636 * is selected.
1637 */
1638 simple_lock(&fs->lfs_interlock);
1639 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1640 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1641 *((int *)ap->a_data)));
1642 simple_unlock(&fs->lfs_interlock);
1643 return error;
1644
1645 case LFCNWRAPPASS:
1646 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
1647 return EALREADY;
1648 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1649 return EALREADY;
1650 simple_lock(&fs->lfs_interlock);
1651 if (fs->lfs_nowrap == 0) {
1652 simple_unlock(&fs->lfs_interlock);
1653 return EBUSY;
1654 }
1655 fs->lfs_wrappass = 1;
1656 wakeup(&fs->lfs_wrappass);
1657 /* Wait for the log to wrap, if asked */
1658 if (*(int *)ap->a_data) {
1659 lfs_vref(ap->a_vp);
1660 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1661 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1662 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1663 "segwrap", 0, &fs->lfs_interlock);
1664 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1665 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1666 lfs_vunref(ap->a_vp);
1667 }
1668 simple_unlock(&fs->lfs_interlock);
1669 return error;
1670
1671 case LFCNWRAPSTATUS:
1672 simple_lock(&fs->lfs_interlock);
1673 *(int *)ap->a_data = fs->lfs_wrapstatus;
1674 simple_unlock(&fs->lfs_interlock);
1675 return 0;
1676
1677 default:
1678 return ufs_fcntl(v);
1679 }
1680 return 0;
1681 }
1682
1683 int
1684 lfs_getpages(void *v)
1685 {
1686 struct vop_getpages_args /* {
1687 struct vnode *a_vp;
1688 voff_t a_offset;
1689 struct vm_page **a_m;
1690 int *a_count;
1691 int a_centeridx;
1692 vm_prot_t a_access_type;
1693 int a_advice;
1694 int a_flags;
1695 } */ *ap = v;
1696
1697 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1698 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1699 return EPERM;
1700 }
1701 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1702 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1703 }
1704
1705 /*
1706 * we're relying on the fact that genfs_getpages() always read in
1707 * entire filesystem blocks.
1708 */
1709 return genfs_getpages(v);
1710 }
1711
1712 /*
1713 * Wait for a page to become unbusy, possibly printing diagnostic messages
1714 * as well.
1715 *
1716 * Called with vp->v_interlock held; return with it held.
1717 */
1718 static void
1719 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1720 {
1721 if ((pg->flags & PG_BUSY) == 0)
1722 return; /* Nothing to wait for! */
1723
1724 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1725 static struct vm_page *lastpg;
1726
1727 if (label != NULL && pg != lastpg) {
1728 if (pg->owner_tag) {
1729 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1730 curproc->p_pid, curlwp->l_lid, label,
1731 pg, pg->owner, pg->lowner, pg->owner_tag);
1732 } else {
1733 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1734 curproc->p_pid, curlwp->l_lid, label, pg);
1735 }
1736 }
1737 lastpg = pg;
1738 #endif
1739
1740 pg->flags |= PG_WANTED;
1741 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1742 simple_lock(&vp->v_interlock);
1743 }
1744
1745 /*
1746 * This routine is called by lfs_putpages() when it can't complete the
1747 * write because a page is busy. This means that either (1) someone,
1748 * possibly the pagedaemon, is looking at this page, and will give it up
1749 * presently; or (2) we ourselves are holding the page busy in the
1750 * process of being written (either gathered or actually on its way to
1751 * disk). We don't need to give up the segment lock, but we might need
1752 * to call lfs_writeseg() to expedite the page's journey to disk.
1753 *
1754 * Called with vp->v_interlock held; return with it held.
1755 */
1756 /* #define BUSYWAIT */
1757 static void
1758 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1759 int seglocked, const char *label)
1760 {
1761 #ifndef BUSYWAIT
1762 struct inode *ip = VTOI(vp);
1763 struct segment *sp = fs->lfs_sp;
1764 int count = 0;
1765
1766 if (pg == NULL)
1767 return;
1768
1769 while (pg->flags & PG_BUSY) {
1770 simple_unlock(&vp->v_interlock);
1771 if (sp->cbpp - sp->bpp > 1) {
1772 /* Write gathered pages */
1773 lfs_updatemeta(sp);
1774 lfs_release_finfo(fs);
1775 (void) lfs_writeseg(fs, sp);
1776
1777 /*
1778 * Reinitialize FIP
1779 */
1780 KASSERT(sp->vp == vp);
1781 lfs_acquire_finfo(fs, ip->i_number,
1782 ip->i_gen);
1783 }
1784 ++count;
1785 simple_lock(&vp->v_interlock);
1786 wait_for_page(vp, pg, label);
1787 }
1788 if (label != NULL && count > 1)
1789 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1790 label, (count > 0 ? "looping, " : ""), count);
1791 #else
1792 preempt(1);
1793 #endif
1794 }
1795
1796 /*
1797 * Make sure that for all pages in every block in the given range,
1798 * either all are dirty or all are clean. If any of the pages
1799 * we've seen so far are dirty, put the vnode on the paging chain,
1800 * and mark it IN_PAGING.
1801 *
1802 * If checkfirst != 0, don't check all the pages but return at the
1803 * first dirty page.
1804 */
1805 static int
1806 check_dirty(struct lfs *fs, struct vnode *vp,
1807 off_t startoffset, off_t endoffset, off_t blkeof,
1808 int flags, int checkfirst, struct vm_page **pgp)
1809 {
1810 int by_list;
1811 struct vm_page *curpg = NULL; /* XXX: gcc */
1812 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1813 off_t soff = 0; /* XXX: gcc */
1814 voff_t off;
1815 int i;
1816 int nonexistent;
1817 int any_dirty; /* number of dirty pages */
1818 int dirty; /* number of dirty pages in a block */
1819 int tdirty;
1820 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1821 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1822
1823 ASSERT_MAYBE_SEGLOCK(fs);
1824 top:
1825 by_list = (vp->v_uobj.uo_npages <=
1826 ((endoffset - startoffset) >> PAGE_SHIFT) *
1827 UVM_PAGE_HASH_PENALTY);
1828 any_dirty = 0;
1829
1830 if (by_list) {
1831 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1832 } else {
1833 soff = startoffset;
1834 }
1835 while (by_list || soff < MIN(blkeof, endoffset)) {
1836 if (by_list) {
1837 /*
1838 * Find the first page in a block. Skip
1839 * blocks outside our area of interest or beyond
1840 * the end of file.
1841 */
1842 if (pages_per_block > 1) {
1843 while (curpg &&
1844 ((curpg->offset & fs->lfs_bmask) ||
1845 curpg->offset >= vp->v_size ||
1846 curpg->offset >= endoffset))
1847 curpg = TAILQ_NEXT(curpg, listq);
1848 }
1849 if (curpg == NULL)
1850 break;
1851 soff = curpg->offset;
1852 }
1853
1854 /*
1855 * Mark all pages in extended range busy; find out if any
1856 * of them are dirty.
1857 */
1858 nonexistent = dirty = 0;
1859 for (i = 0; i == 0 || i < pages_per_block; i++) {
1860 if (by_list && pages_per_block <= 1) {
1861 pgs[i] = pg = curpg;
1862 } else {
1863 off = soff + (i << PAGE_SHIFT);
1864 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1865 if (pg == NULL) {
1866 ++nonexistent;
1867 continue;
1868 }
1869 }
1870 KASSERT(pg != NULL);
1871
1872 /*
1873 * If we're holding the segment lock, we can deadlock
1874 * against a process that has our page and is waiting
1875 * for the cleaner, while the cleaner waits for the
1876 * segment lock. Just bail in that case.
1877 */
1878 if ((pg->flags & PG_BUSY) &&
1879 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1880 if (i > 0)
1881 uvm_page_unbusy(pgs, i);
1882 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1883 if (pgp)
1884 *pgp = pg;
1885 return -1;
1886 }
1887
1888 while (pg->flags & PG_BUSY) {
1889 wait_for_page(vp, pg, NULL);
1890 if (i > 0)
1891 uvm_page_unbusy(pgs, i);
1892 goto top;
1893 }
1894 pg->flags |= PG_BUSY;
1895 UVM_PAGE_OWN(pg, "lfs_putpages");
1896
1897 pmap_page_protect(pg, VM_PROT_NONE);
1898 tdirty = (pmap_clear_modify(pg) ||
1899 (pg->flags & PG_CLEAN) == 0);
1900 dirty += tdirty;
1901 }
1902 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1903 if (by_list) {
1904 curpg = TAILQ_NEXT(curpg, listq);
1905 } else {
1906 soff += fs->lfs_bsize;
1907 }
1908 continue;
1909 }
1910
1911 any_dirty += dirty;
1912 KASSERT(nonexistent == 0);
1913
1914 /*
1915 * If any are dirty make all dirty; unbusy them,
1916 * but if we were asked to clean, wire them so that
1917 * the pagedaemon doesn't bother us about them while
1918 * they're on their way to disk.
1919 */
1920 for (i = 0; i == 0 || i < pages_per_block; i++) {
1921 pg = pgs[i];
1922 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1923 if (dirty) {
1924 pg->flags &= ~PG_CLEAN;
1925 if (flags & PGO_FREE) {
1926 /*
1927 * Wire the page so that
1928 * pdaemon doesn't see it again.
1929 */
1930 uvm_lock_pageq();
1931 uvm_pagewire(pg);
1932 uvm_unlock_pageq();
1933
1934 /* Suspended write flag */
1935 pg->flags |= PG_DELWRI;
1936 }
1937 }
1938 if (pg->flags & PG_WANTED)
1939 wakeup(pg);
1940 pg->flags &= ~(PG_WANTED|PG_BUSY);
1941 UVM_PAGE_OWN(pg, NULL);
1942 }
1943
1944 if (checkfirst && any_dirty)
1945 break;
1946
1947 if (by_list) {
1948 curpg = TAILQ_NEXT(curpg, listq);
1949 } else {
1950 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1951 }
1952 }
1953
1954 return any_dirty;
1955 }
1956
1957 /*
1958 * lfs_putpages functions like genfs_putpages except that
1959 *
1960 * (1) It needs to bounds-check the incoming requests to ensure that
1961 * they are block-aligned; if they are not, expand the range and
1962 * do the right thing in case, e.g., the requested range is clean
1963 * but the expanded range is dirty.
1964 *
1965 * (2) It needs to explicitly send blocks to be written when it is done.
1966 * If VOP_PUTPAGES is called without the seglock held, we simply take
1967 * the seglock and let lfs_segunlock wait for us.
1968 * XXX There might be a bad situation if we have to flush a vnode while
1969 * XXX lfs_markv is in operation. As of this writing we panic in this
1970 * XXX case.
1971 *
1972 * Assumptions:
1973 *
1974 * (1) The caller does not hold any pages in this vnode busy. If it does,
1975 * there is a danger that when we expand the page range and busy the
1976 * pages we will deadlock.
1977 *
1978 * (2) We are called with vp->v_interlock held; we must return with it
1979 * released.
1980 *
1981 * (3) We don't absolutely have to free pages right away, provided that
1982 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1983 * us a request with PGO_FREE, we take the pages out of the paging
1984 * queue and wake up the writer, which will handle freeing them for us.
1985 *
1986 * We ensure that for any filesystem block, all pages for that
1987 * block are either resident or not, even if those pages are higher
1988 * than EOF; that means that we will be getting requests to free
1989 * "unused" pages above EOF all the time, and should ignore them.
1990 *
1991 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1992 * into has been set up for us by lfs_writefile. If not, we will
1993 * have to handle allocating and/or freeing an finfo entry.
1994 *
1995 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1996 */
1997
1998 /* How many times to loop before we should start to worry */
1999 #define TOOMANY 4
2000
2001 int
2002 lfs_putpages(void *v)
2003 {
2004 int error;
2005 struct vop_putpages_args /* {
2006 struct vnode *a_vp;
2007 voff_t a_offlo;
2008 voff_t a_offhi;
2009 int a_flags;
2010 } */ *ap = v;
2011 struct vnode *vp;
2012 struct inode *ip;
2013 struct lfs *fs;
2014 struct segment *sp;
2015 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2016 off_t off, max_endoffset;
2017 int s;
2018 bool seglocked, sync, pagedaemon;
2019 struct vm_page *pg, *busypg;
2020 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2021 #ifdef DEBUG
2022 int debug_n_again, debug_n_dirtyclean;
2023 #endif
2024
2025 vp = ap->a_vp;
2026 ip = VTOI(vp);
2027 fs = ip->i_lfs;
2028 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2029 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2030
2031 /* Putpages does nothing for metadata. */
2032 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2033 simple_unlock(&vp->v_interlock);
2034 return 0;
2035 }
2036
2037 /*
2038 * If there are no pages, don't do anything.
2039 */
2040 if (vp->v_uobj.uo_npages == 0) {
2041 s = splbio();
2042 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2043 (vp->v_flag & VONWORKLST) &&
2044 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2045 vp->v_flag &= ~VWRITEMAPDIRTY;
2046 vn_syncer_remove_from_worklist(vp);
2047 }
2048 splx(s);
2049 simple_unlock(&vp->v_interlock);
2050
2051 /* Remove us from paging queue, if we were on it */
2052 simple_lock(&fs->lfs_interlock);
2053 if (ip->i_flags & IN_PAGING) {
2054 ip->i_flags &= ~IN_PAGING;
2055 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2056 }
2057 simple_unlock(&fs->lfs_interlock);
2058 return 0;
2059 }
2060
2061 blkeof = blkroundup(fs, ip->i_size);
2062
2063 /*
2064 * Ignore requests to free pages past EOF but in the same block
2065 * as EOF, unless the request is synchronous. (If the request is
2066 * sync, it comes from lfs_truncate.)
2067 * XXXUBC Make these pages look "active" so the pagedaemon won't
2068 * XXXUBC bother us with them again.
2069 */
2070 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2071 origoffset = ap->a_offlo;
2072 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2073 pg = uvm_pagelookup(&vp->v_uobj, off);
2074 KASSERT(pg != NULL);
2075 while (pg->flags & PG_BUSY) {
2076 pg->flags |= PG_WANTED;
2077 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2078 "lfsput2", 0);
2079 simple_lock(&vp->v_interlock);
2080 }
2081 uvm_lock_pageq();
2082 uvm_pageactivate(pg);
2083 uvm_unlock_pageq();
2084 }
2085 ap->a_offlo = blkeof;
2086 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2087 simple_unlock(&vp->v_interlock);
2088 return 0;
2089 }
2090 }
2091
2092 /*
2093 * Extend page range to start and end at block boundaries.
2094 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2095 */
2096 origoffset = ap->a_offlo;
2097 origendoffset = ap->a_offhi;
2098 startoffset = origoffset & ~(fs->lfs_bmask);
2099 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2100 << fs->lfs_bshift;
2101
2102 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2103 endoffset = max_endoffset;
2104 origendoffset = endoffset;
2105 } else {
2106 origendoffset = round_page(ap->a_offhi);
2107 endoffset = round_page(blkroundup(fs, origendoffset));
2108 }
2109
2110 KASSERT(startoffset > 0 || endoffset >= startoffset);
2111 if (startoffset == endoffset) {
2112 /* Nothing to do, why were we called? */
2113 simple_unlock(&vp->v_interlock);
2114 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2115 PRId64 "\n", startoffset));
2116 return 0;
2117 }
2118
2119 ap->a_offlo = startoffset;
2120 ap->a_offhi = endoffset;
2121
2122 /*
2123 * If not cleaning, just send the pages through genfs_putpages
2124 * to be returned to the pool.
2125 */
2126 if (!(ap->a_flags & PGO_CLEANIT))
2127 return genfs_putpages(v);
2128
2129 /* Set PGO_BUSYFAIL to avoid deadlocks */
2130 ap->a_flags |= PGO_BUSYFAIL;
2131
2132 /*
2133 * Likewise, if we are asked to clean but the pages are not
2134 * dirty, we can just free them using genfs_putpages.
2135 */
2136 #ifdef DEBUG
2137 debug_n_dirtyclean = 0;
2138 #endif
2139 do {
2140 int r;
2141
2142 /* Count the number of dirty pages */
2143 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2144 ap->a_flags, 1, NULL);
2145 if (r < 0) {
2146 /* Pages are busy with another process */
2147 simple_unlock(&vp->v_interlock);
2148 return EDEADLK;
2149 }
2150 if (r > 0) /* Some pages are dirty */
2151 break;
2152
2153 /*
2154 * Sometimes pages are dirtied between the time that
2155 * we check and the time we try to clean them.
2156 * Instruct lfs_gop_write to return EDEADLK in this case
2157 * so we can write them properly.
2158 */
2159 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2160 r = genfs_do_putpages(vp, startoffset, endoffset,
2161 ap->a_flags, &busypg);
2162 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2163 if (r != EDEADLK)
2164 return r;
2165
2166 /* One of the pages was busy. Start over. */
2167 simple_lock(&vp->v_interlock);
2168 wait_for_page(vp, busypg, "dirtyclean");
2169 #ifdef DEBUG
2170 ++debug_n_dirtyclean;
2171 #endif
2172 } while(1);
2173
2174 #ifdef DEBUG
2175 if (debug_n_dirtyclean > TOOMANY)
2176 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2177 debug_n_dirtyclean);
2178 #endif
2179
2180 /*
2181 * Dirty and asked to clean.
2182 *
2183 * Pagedaemon can't actually write LFS pages; wake up
2184 * the writer to take care of that. The writer will
2185 * notice the pager inode queue and act on that.
2186 */
2187 if (pagedaemon) {
2188 simple_lock(&fs->lfs_interlock);
2189 if (!(ip->i_flags & IN_PAGING)) {
2190 ip->i_flags |= IN_PAGING;
2191 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2192 }
2193 simple_lock(&lfs_subsys_lock);
2194 wakeup(&lfs_writer_daemon);
2195 simple_unlock(&lfs_subsys_lock);
2196 simple_unlock(&fs->lfs_interlock);
2197 simple_unlock(&vp->v_interlock);
2198 preempt();
2199 return EWOULDBLOCK;
2200 }
2201
2202 /*
2203 * If this is a file created in a recent dirop, we can't flush its
2204 * inode until the dirop is complete. Drain dirops, then flush the
2205 * filesystem (taking care of any other pending dirops while we're
2206 * at it).
2207 */
2208 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2209 (vp->v_flag & VDIROP)) {
2210 int locked;
2211
2212 DLOG((DLOG_PAGE, "lfs_putpages: flushing VDIROP\n"));
2213 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2214 simple_unlock(&vp->v_interlock);
2215 lfs_writer_enter(fs, "ppdirop");
2216 if (locked)
2217 VOP_UNLOCK(vp, 0); /* XXX why? */
2218
2219 simple_lock(&fs->lfs_interlock);
2220 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2221 simple_unlock(&fs->lfs_interlock);
2222
2223 simple_lock(&vp->v_interlock);
2224 if (locked) {
2225 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2226 simple_lock(&vp->v_interlock);
2227 }
2228 lfs_writer_leave(fs);
2229
2230 /* XXX the flush should have taken care of this one too! */
2231 }
2232
2233 /*
2234 * This is it. We are going to write some pages. From here on
2235 * down it's all just mechanics.
2236 *
2237 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2238 */
2239 ap->a_flags &= ~PGO_SYNCIO;
2240
2241 /*
2242 * If we've already got the seglock, flush the node and return.
2243 * The FIP has already been set up for us by lfs_writefile,
2244 * and FIP cleanup and lfs_updatemeta will also be done there,
2245 * unless genfs_putpages returns EDEADLK; then we must flush
2246 * what we have, and correct FIP and segment header accounting.
2247 */
2248 get_seglock:
2249 /*
2250 * If we are not called with the segment locked, lock it.
2251 * Account for a new FIP in the segment header, and set sp->vp.
2252 * (This should duplicate the setup at the top of lfs_writefile().)
2253 */
2254 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2255 if (!seglocked) {
2256 simple_unlock(&vp->v_interlock);
2257 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2258 if (error != 0)
2259 return error;
2260 simple_lock(&vp->v_interlock);
2261 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2262 }
2263 sp = fs->lfs_sp;
2264 KASSERT(sp->vp == NULL);
2265 sp->vp = vp;
2266
2267 /*
2268 * Ensure that the partial segment is marked SS_DIROP if this
2269 * vnode is a DIROP.
2270 */
2271 if (!seglocked && vp->v_flag & VDIROP)
2272 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2273
2274 /*
2275 * Loop over genfs_putpages until all pages are gathered.
2276 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2277 * Whenever we lose the interlock we have to rerun check_dirty, as
2278 * well, since more pages might have been dirtied in our absence.
2279 */
2280 #ifdef DEBUG
2281 debug_n_again = 0;
2282 #endif
2283 do {
2284 busypg = NULL;
2285 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2286 ap->a_flags, 0, &busypg) < 0) {
2287 simple_unlock(&vp->v_interlock);
2288
2289 simple_lock(&vp->v_interlock);
2290 write_and_wait(fs, vp, busypg, seglocked, NULL);
2291 if (!seglocked) {
2292 lfs_release_finfo(fs);
2293 lfs_segunlock(fs);
2294 }
2295 sp->vp = NULL;
2296 goto get_seglock;
2297 }
2298
2299 busypg = NULL;
2300 error = genfs_do_putpages(vp, startoffset, endoffset,
2301 ap->a_flags, &busypg);
2302
2303 if (error == EDEADLK || error == EAGAIN) {
2304 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2305 " %d ino %d off %x (seg %d)\n", error,
2306 ip->i_number, fs->lfs_offset,
2307 dtosn(fs, fs->lfs_offset)));
2308
2309 simple_lock(&vp->v_interlock);
2310 write_and_wait(fs, vp, busypg, seglocked, "again");
2311 }
2312 #ifdef DEBUG
2313 ++debug_n_again;
2314 #endif
2315 } while (error == EDEADLK);
2316 #ifdef DEBUG
2317 if (debug_n_again > TOOMANY)
2318 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2319 #endif
2320
2321 KASSERT(sp != NULL && sp->vp == vp);
2322 if (!seglocked) {
2323 sp->vp = NULL;
2324
2325 /* Write indirect blocks as well */
2326 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2327 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2328 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2329
2330 KASSERT(sp->vp == NULL);
2331 sp->vp = vp;
2332 }
2333
2334 /*
2335 * Blocks are now gathered into a segment waiting to be written.
2336 * All that's left to do is update metadata, and write them.
2337 */
2338 lfs_updatemeta(sp);
2339 KASSERT(sp->vp == vp);
2340 sp->vp = NULL;
2341
2342 /*
2343 * If we were called from lfs_writefile, we don't need to clean up
2344 * the FIP or unlock the segment lock. We're done.
2345 */
2346 if (seglocked)
2347 return error;
2348
2349 /* Clean up FIP and send it to disk. */
2350 lfs_release_finfo(fs);
2351 lfs_writeseg(fs, fs->lfs_sp);
2352
2353 /*
2354 * Remove us from paging queue if we wrote all our pages.
2355 */
2356 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2357 simple_lock(&fs->lfs_interlock);
2358 if (ip->i_flags & IN_PAGING) {
2359 ip->i_flags &= ~IN_PAGING;
2360 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2361 }
2362 simple_unlock(&fs->lfs_interlock);
2363 }
2364
2365 /*
2366 * XXX - with the malloc/copy writeseg, the pages are freed by now
2367 * even if we don't wait (e.g. if we hold a nested lock). This
2368 * will not be true if we stop using malloc/copy.
2369 */
2370 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2371 lfs_segunlock(fs);
2372
2373 /*
2374 * Wait for v_numoutput to drop to zero. The seglock should
2375 * take care of this, but there is a slight possibility that
2376 * aiodoned might not have got around to our buffers yet.
2377 */
2378 if (sync) {
2379 s = splbio();
2380 simple_lock(&global_v_numoutput_slock);
2381 while (vp->v_numoutput > 0) {
2382 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2383 " num %d\n", ip->i_number, vp->v_numoutput));
2384 vp->v_flag |= VBWAIT;
2385 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2386 &global_v_numoutput_slock);
2387 }
2388 simple_unlock(&global_v_numoutput_slock);
2389 splx(s);
2390 }
2391 return error;
2392 }
2393
2394 /*
2395 * Return the last logical file offset that should be written for this file
2396 * if we're doing a write that ends at "size". If writing, we need to know
2397 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2398 * to know about entire blocks.
2399 */
2400 void
2401 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2402 {
2403 struct inode *ip = VTOI(vp);
2404 struct lfs *fs = ip->i_lfs;
2405 daddr_t olbn, nlbn;
2406
2407 olbn = lblkno(fs, ip->i_size);
2408 nlbn = lblkno(fs, size);
2409 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2410 *eobp = fragroundup(fs, size);
2411 } else {
2412 *eobp = blkroundup(fs, size);
2413 }
2414 }
2415
2416 #ifdef DEBUG
2417 void lfs_dump_vop(void *);
2418
2419 void
2420 lfs_dump_vop(void *v)
2421 {
2422 struct vop_putpages_args /* {
2423 struct vnode *a_vp;
2424 voff_t a_offlo;
2425 voff_t a_offhi;
2426 int a_flags;
2427 } */ *ap = v;
2428
2429 #ifdef DDB
2430 vfs_vnode_print(ap->a_vp, 0, printf);
2431 #endif
2432 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2433 }
2434 #endif
2435
2436 int
2437 lfs_mmap(void *v)
2438 {
2439 struct vop_mmap_args /* {
2440 const struct vnodeop_desc *a_desc;
2441 struct vnode *a_vp;
2442 vm_prot_t a_prot;
2443 kauth_cred_t a_cred;
2444 struct lwp *a_l;
2445 } */ *ap = v;
2446
2447 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2448 return EOPNOTSUPP;
2449 return ufs_mmap(v);
2450 }
2451