lfs_vnops.c revision 1.213 1 /* $NetBSD: lfs_vnops.c,v 1.213 2007/11/26 19:02:32 pooka Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.213 2007/11/26 19:02:32 pooka Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
157 { &vop_getpages_desc, lfs_getpages }, /* getpages */
158 { &vop_putpages_desc, lfs_putpages }, /* putpages */
159 { NULL, NULL }
160 };
161 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
162 { &lfs_vnodeop_p, lfs_vnodeop_entries };
163
164 int (**lfs_specop_p)(void *);
165 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
166 { &vop_default_desc, vn_default_error },
167 { &vop_lookup_desc, spec_lookup }, /* lookup */
168 { &vop_create_desc, spec_create }, /* create */
169 { &vop_mknod_desc, spec_mknod }, /* mknod */
170 { &vop_open_desc, spec_open }, /* open */
171 { &vop_close_desc, lfsspec_close }, /* close */
172 { &vop_access_desc, ufs_access }, /* access */
173 { &vop_getattr_desc, lfs_getattr }, /* getattr */
174 { &vop_setattr_desc, lfs_setattr }, /* setattr */
175 { &vop_read_desc, ufsspec_read }, /* read */
176 { &vop_write_desc, ufsspec_write }, /* write */
177 { &vop_lease_desc, spec_lease_check }, /* lease */
178 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
179 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
180 { &vop_poll_desc, spec_poll }, /* poll */
181 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
182 { &vop_revoke_desc, spec_revoke }, /* revoke */
183 { &vop_mmap_desc, spec_mmap }, /* mmap */
184 { &vop_fsync_desc, spec_fsync }, /* fsync */
185 { &vop_seek_desc, spec_seek }, /* seek */
186 { &vop_remove_desc, spec_remove }, /* remove */
187 { &vop_link_desc, spec_link }, /* link */
188 { &vop_rename_desc, spec_rename }, /* rename */
189 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
190 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
191 { &vop_symlink_desc, spec_symlink }, /* symlink */
192 { &vop_readdir_desc, spec_readdir }, /* readdir */
193 { &vop_readlink_desc, spec_readlink }, /* readlink */
194 { &vop_abortop_desc, spec_abortop }, /* abortop */
195 { &vop_inactive_desc, lfs_inactive }, /* inactive */
196 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
197 { &vop_lock_desc, ufs_lock }, /* lock */
198 { &vop_unlock_desc, ufs_unlock }, /* unlock */
199 { &vop_bmap_desc, spec_bmap }, /* bmap */
200 { &vop_strategy_desc, spec_strategy }, /* strategy */
201 { &vop_print_desc, ufs_print }, /* print */
202 { &vop_islocked_desc, ufs_islocked }, /* islocked */
203 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
204 { &vop_advlock_desc, spec_advlock }, /* advlock */
205 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
206 { &vop_getpages_desc, spec_getpages }, /* getpages */
207 { &vop_putpages_desc, spec_putpages }, /* putpages */
208 { NULL, NULL }
209 };
210 const struct vnodeopv_desc lfs_specop_opv_desc =
211 { &lfs_specop_p, lfs_specop_entries };
212
213 int (**lfs_fifoop_p)(void *);
214 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
215 { &vop_default_desc, vn_default_error },
216 { &vop_lookup_desc, fifo_lookup }, /* lookup */
217 { &vop_create_desc, fifo_create }, /* create */
218 { &vop_mknod_desc, fifo_mknod }, /* mknod */
219 { &vop_open_desc, fifo_open }, /* open */
220 { &vop_close_desc, lfsfifo_close }, /* close */
221 { &vop_access_desc, ufs_access }, /* access */
222 { &vop_getattr_desc, lfs_getattr }, /* getattr */
223 { &vop_setattr_desc, lfs_setattr }, /* setattr */
224 { &vop_read_desc, ufsfifo_read }, /* read */
225 { &vop_write_desc, ufsfifo_write }, /* write */
226 { &vop_lease_desc, fifo_lease_check }, /* lease */
227 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
228 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
229 { &vop_poll_desc, fifo_poll }, /* poll */
230 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
231 { &vop_revoke_desc, fifo_revoke }, /* revoke */
232 { &vop_mmap_desc, fifo_mmap }, /* mmap */
233 { &vop_fsync_desc, fifo_fsync }, /* fsync */
234 { &vop_seek_desc, fifo_seek }, /* seek */
235 { &vop_remove_desc, fifo_remove }, /* remove */
236 { &vop_link_desc, fifo_link }, /* link */
237 { &vop_rename_desc, fifo_rename }, /* rename */
238 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
239 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
240 { &vop_symlink_desc, fifo_symlink }, /* symlink */
241 { &vop_readdir_desc, fifo_readdir }, /* readdir */
242 { &vop_readlink_desc, fifo_readlink }, /* readlink */
243 { &vop_abortop_desc, fifo_abortop }, /* abortop */
244 { &vop_inactive_desc, lfs_inactive }, /* inactive */
245 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
246 { &vop_lock_desc, ufs_lock }, /* lock */
247 { &vop_unlock_desc, ufs_unlock }, /* unlock */
248 { &vop_bmap_desc, fifo_bmap }, /* bmap */
249 { &vop_strategy_desc, fifo_strategy }, /* strategy */
250 { &vop_print_desc, ufs_print }, /* print */
251 { &vop_islocked_desc, ufs_islocked }, /* islocked */
252 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
253 { &vop_advlock_desc, fifo_advlock }, /* advlock */
254 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
255 { &vop_putpages_desc, fifo_putpages }, /* putpages */
256 { NULL, NULL }
257 };
258 const struct vnodeopv_desc lfs_fifoop_opv_desc =
259 { &lfs_fifoop_p, lfs_fifoop_entries };
260
261 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
262
263 #define LFS_READWRITE
264 #include <ufs/ufs/ufs_readwrite.c>
265 #undef LFS_READWRITE
266
267 /*
268 * Synch an open file.
269 */
270 /* ARGSUSED */
271 int
272 lfs_fsync(void *v)
273 {
274 struct vop_fsync_args /* {
275 struct vnode *a_vp;
276 kauth_cred_t a_cred;
277 int a_flags;
278 off_t offlo;
279 off_t offhi;
280 } */ *ap = v;
281 struct vnode *vp = ap->a_vp;
282 int error, wait;
283 struct inode *ip = VTOI(vp);
284 struct lfs *fs = ip->i_lfs;
285
286 /* If we're mounted read-only, don't try to sync. */
287 if (fs->lfs_ronly)
288 return 0;
289
290 /*
291 * Trickle sync simply adds this vnode to the pager list, as if
292 * the pagedaemon had requested a pageout.
293 */
294 if (ap->a_flags & FSYNC_LAZY) {
295 if (lfs_ignore_lazy_sync == 0) {
296 simple_lock(&fs->lfs_interlock);
297 if (!(ip->i_flags & IN_PAGING)) {
298 ip->i_flags |= IN_PAGING;
299 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
300 i_lfs_pchain);
301 }
302 simple_unlock(&fs->lfs_interlock);
303 simple_lock(&lfs_subsys_lock);
304 wakeup(&lfs_writer_daemon);
305 simple_unlock(&lfs_subsys_lock);
306 }
307 return 0;
308 }
309
310 /*
311 * If a vnode is bring cleaned, flush it out before we try to
312 * reuse it. This prevents the cleaner from writing files twice
313 * in the same partial segment, causing an accounting underflow.
314 */
315 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
316 lfs_vflush(vp);
317 }
318
319 wait = (ap->a_flags & FSYNC_WAIT);
320 do {
321 simple_lock(&vp->v_interlock);
322 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
323 round_page(ap->a_offhi),
324 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
325 if (error == EAGAIN) {
326 simple_lock(&fs->lfs_interlock);
327 ltsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
328 hz / 100 + 1, &fs->lfs_interlock);
329 simple_unlock(&fs->lfs_interlock);
330 }
331 } while (error == EAGAIN);
332 if (error)
333 return error;
334
335 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
336 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
337
338 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
339 int l = 0;
340 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
341 curlwp->l_cred);
342 }
343 if (wait && !VPISEMPTY(vp))
344 LFS_SET_UINO(ip, IN_MODIFIED);
345
346 return error;
347 }
348
349 /*
350 * Take IN_ADIROP off, then call ufs_inactive.
351 */
352 int
353 lfs_inactive(void *v)
354 {
355 struct vop_inactive_args /* {
356 struct vnode *a_vp;
357 } */ *ap = v;
358
359 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
360
361 lfs_unmark_vnode(ap->a_vp);
362
363 /*
364 * The Ifile is only ever inactivated on unmount.
365 * Streamline this process by not giving it more dirty blocks.
366 */
367 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
368 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
369 VOP_UNLOCK(ap->a_vp, 0);
370 return 0;
371 }
372
373 return ufs_inactive(v);
374 }
375
376 /*
377 * These macros are used to bracket UFS directory ops, so that we can
378 * identify all the pages touched during directory ops which need to
379 * be ordered and flushed atomically, so that they may be recovered.
380 *
381 * Because we have to mark nodes VU_DIROP in order to prevent
382 * the cache from reclaiming them while a dirop is in progress, we must
383 * also manage the number of nodes so marked (otherwise we can run out).
384 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
385 * is decremented during segment write, when VU_DIROP is taken off.
386 */
387 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
388 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
389 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
390 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
391 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
392 static int lfs_set_dirop(struct vnode *, struct vnode *);
393
394 static int
395 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
396 {
397 struct lfs *fs;
398 int error;
399
400 KASSERT(VOP_ISLOCKED(dvp));
401 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
402
403 fs = VTOI(dvp)->i_lfs;
404
405 ASSERT_NO_SEGLOCK(fs);
406 /*
407 * LFS_NRESERVE calculates direct and indirect blocks as well
408 * as an inode block; an overestimate in most cases.
409 */
410 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
411 return (error);
412
413 restart:
414 simple_lock(&fs->lfs_interlock);
415 if (fs->lfs_dirops == 0) {
416 simple_unlock(&fs->lfs_interlock);
417 lfs_check(dvp, LFS_UNUSED_LBN, 0);
418 simple_lock(&fs->lfs_interlock);
419 }
420 while (fs->lfs_writer) {
421 error = ltsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
422 "lfs_sdirop", 0, &fs->lfs_interlock);
423 if (error == EINTR) {
424 simple_unlock(&fs->lfs_interlock);
425 goto unreserve;
426 }
427 }
428 simple_lock(&lfs_subsys_lock);
429 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
430 wakeup(&lfs_writer_daemon);
431 simple_unlock(&lfs_subsys_lock);
432 simple_unlock(&fs->lfs_interlock);
433 preempt();
434 goto restart;
435 }
436
437 if (lfs_dirvcount > LFS_MAX_DIROP) {
438 simple_unlock(&fs->lfs_interlock);
439 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
440 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
441 if ((error = ltsleep(&lfs_dirvcount,
442 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
443 &lfs_subsys_lock)) != 0) {
444 goto unreserve;
445 }
446 goto restart;
447 }
448 simple_unlock(&lfs_subsys_lock);
449
450 ++fs->lfs_dirops;
451 fs->lfs_doifile = 1;
452 simple_unlock(&fs->lfs_interlock);
453
454 /* Hold a reference so SET_ENDOP will be happy */
455 vref(dvp);
456 if (vp) {
457 vref(vp);
458 MARK_VNODE(vp);
459 }
460
461 MARK_VNODE(dvp);
462 return 0;
463
464 unreserve:
465 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
466 return error;
467 }
468
469 /*
470 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
471 * in getnewvnode(), if we have a stacked filesystem mounted on top
472 * of us.
473 *
474 * NB: this means we have to clear the new vnodes on error. Fortunately
475 * SET_ENDOP is there to do that for us.
476 */
477 static int
478 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
479 {
480 int error;
481 struct lfs *fs;
482
483 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
484 ASSERT_NO_SEGLOCK(fs);
485 if (fs->lfs_ronly)
486 return EROFS;
487 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
488 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
489 dvp, error));
490 return error;
491 }
492 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
493 if (vpp) {
494 ungetnewvnode(*vpp);
495 *vpp = NULL;
496 }
497 return error;
498 }
499 return 0;
500 }
501
502 #define SET_ENDOP_BASE(fs, dvp, str) \
503 do { \
504 simple_lock(&(fs)->lfs_interlock); \
505 --(fs)->lfs_dirops; \
506 if (!(fs)->lfs_dirops) { \
507 if ((fs)->lfs_nadirop) { \
508 panic("SET_ENDOP: %s: no dirops but " \
509 " nadirop=%d", (str), \
510 (fs)->lfs_nadirop); \
511 } \
512 wakeup(&(fs)->lfs_writer); \
513 simple_unlock(&(fs)->lfs_interlock); \
514 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
515 } else \
516 simple_unlock(&(fs)->lfs_interlock); \
517 } while(0)
518 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
519 do { \
520 UNMARK_VNODE(dvp); \
521 if (nvpp && *nvpp) \
522 UNMARK_VNODE(*nvpp); \
523 /* Check for error return to stem vnode leakage */ \
524 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
525 ungetnewvnode(*(nvpp)); \
526 SET_ENDOP_BASE((fs), (dvp), (str)); \
527 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
528 vrele(dvp); \
529 } while(0)
530 #define SET_ENDOP_CREATE_AP(ap, str) \
531 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
532 (ap)->a_vpp, (str))
533 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
534 do { \
535 UNMARK_VNODE(dvp); \
536 if (ovp) \
537 UNMARK_VNODE(ovp); \
538 SET_ENDOP_BASE((fs), (dvp), (str)); \
539 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
540 vrele(dvp); \
541 if (ovp) \
542 vrele(ovp); \
543 } while(0)
544
545 void
546 lfs_mark_vnode(struct vnode *vp)
547 {
548 struct inode *ip = VTOI(vp);
549 struct lfs *fs = ip->i_lfs;
550
551 simple_lock(&fs->lfs_interlock);
552 if (!(ip->i_flag & IN_ADIROP)) {
553 if (!(vp->v_uflag & VU_DIROP)) {
554 (void)lfs_vref(vp);
555 simple_lock(&lfs_subsys_lock);
556 ++lfs_dirvcount;
557 ++fs->lfs_dirvcount;
558 simple_unlock(&lfs_subsys_lock);
559 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
560 vp->v_uflag |= VU_DIROP;
561 }
562 ++fs->lfs_nadirop;
563 ip->i_flag |= IN_ADIROP;
564 } else
565 KASSERT(vp->v_uflag & VU_DIROP);
566 simple_unlock(&fs->lfs_interlock);
567 }
568
569 void
570 lfs_unmark_vnode(struct vnode *vp)
571 {
572 struct inode *ip = VTOI(vp);
573
574 if (ip && (ip->i_flag & IN_ADIROP)) {
575 KASSERT(vp->v_uflag & VU_DIROP);
576 simple_lock(&ip->i_lfs->lfs_interlock);
577 --ip->i_lfs->lfs_nadirop;
578 simple_unlock(&ip->i_lfs->lfs_interlock);
579 ip->i_flag &= ~IN_ADIROP;
580 }
581 }
582
583 int
584 lfs_symlink(void *v)
585 {
586 struct vop_symlink_args /* {
587 struct vnode *a_dvp;
588 struct vnode **a_vpp;
589 struct componentname *a_cnp;
590 struct vattr *a_vap;
591 char *a_target;
592 } */ *ap = v;
593 int error;
594
595 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
596 vput(ap->a_dvp);
597 return error;
598 }
599 error = ufs_symlink(ap);
600 SET_ENDOP_CREATE_AP(ap, "symlink");
601 return (error);
602 }
603
604 int
605 lfs_mknod(void *v)
606 {
607 struct vop_mknod_args /* {
608 struct vnode *a_dvp;
609 struct vnode **a_vpp;
610 struct componentname *a_cnp;
611 struct vattr *a_vap;
612 } */ *ap = v;
613 struct vattr *vap = ap->a_vap;
614 struct vnode **vpp = ap->a_vpp;
615 struct inode *ip;
616 int error;
617 struct mount *mp;
618 ino_t ino;
619
620 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
621 vput(ap->a_dvp);
622 return error;
623 }
624 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
625 ap->a_dvp, vpp, ap->a_cnp);
626
627 /* Either way we're done with the dirop at this point */
628 SET_ENDOP_CREATE_AP(ap, "mknod");
629
630 if (error)
631 return (error);
632
633 ip = VTOI(*vpp);
634 mp = (*vpp)->v_mount;
635 ino = ip->i_number;
636 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
637 if (vap->va_rdev != VNOVAL) {
638 /*
639 * Want to be able to use this to make badblock
640 * inodes, so don't truncate the dev number.
641 */
642 #if 0
643 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
644 UFS_MPNEEDSWAP((*vpp)->v_mount));
645 #else
646 ip->i_ffs1_rdev = vap->va_rdev;
647 #endif
648 }
649
650 /*
651 * Call fsync to write the vnode so that we don't have to deal with
652 * flushing it when it's marked VU_DIROP|VI_XLOCK.
653 *
654 * XXX KS - If we can't flush we also can't call vgone(), so must
655 * return. But, that leaves this vnode in limbo, also not good.
656 * Can this ever happen (barring hardware failure)?
657 */
658 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
659 panic("lfs_mknod: couldn't fsync (ino %llu)",
660 (unsigned long long)ino);
661 /* return (error); */
662 }
663 /*
664 * Remove vnode so that it will be reloaded by VFS_VGET and
665 * checked to see if it is an alias of an existing entry in
666 * the inode cache.
667 */
668 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
669
670 VOP_UNLOCK(*vpp, 0);
671 lfs_vunref(*vpp);
672 (*vpp)->v_type = VNON;
673 vgone(*vpp);
674 error = VFS_VGET(mp, ino, vpp);
675
676 if (error != 0) {
677 *vpp = NULL;
678 return (error);
679 }
680 return (0);
681 }
682
683 int
684 lfs_create(void *v)
685 {
686 struct vop_create_args /* {
687 struct vnode *a_dvp;
688 struct vnode **a_vpp;
689 struct componentname *a_cnp;
690 struct vattr *a_vap;
691 } */ *ap = v;
692 int error;
693
694 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
695 vput(ap->a_dvp);
696 return error;
697 }
698 error = ufs_create(ap);
699 SET_ENDOP_CREATE_AP(ap, "create");
700 return (error);
701 }
702
703 int
704 lfs_mkdir(void *v)
705 {
706 struct vop_mkdir_args /* {
707 struct vnode *a_dvp;
708 struct vnode **a_vpp;
709 struct componentname *a_cnp;
710 struct vattr *a_vap;
711 } */ *ap = v;
712 int error;
713
714 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
715 vput(ap->a_dvp);
716 return error;
717 }
718 error = ufs_mkdir(ap);
719 SET_ENDOP_CREATE_AP(ap, "mkdir");
720 return (error);
721 }
722
723 int
724 lfs_remove(void *v)
725 {
726 struct vop_remove_args /* {
727 struct vnode *a_dvp;
728 struct vnode *a_vp;
729 struct componentname *a_cnp;
730 } */ *ap = v;
731 struct vnode *dvp, *vp;
732 struct inode *ip;
733 int error;
734
735 dvp = ap->a_dvp;
736 vp = ap->a_vp;
737 ip = VTOI(vp);
738 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
739 if (dvp == vp)
740 vrele(vp);
741 else
742 vput(vp);
743 vput(dvp);
744 return error;
745 }
746 error = ufs_remove(ap);
747 if (ip->i_nlink == 0)
748 lfs_orphan(ip->i_lfs, ip->i_number);
749 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
750 return (error);
751 }
752
753 int
754 lfs_rmdir(void *v)
755 {
756 struct vop_rmdir_args /* {
757 struct vnodeop_desc *a_desc;
758 struct vnode *a_dvp;
759 struct vnode *a_vp;
760 struct componentname *a_cnp;
761 } */ *ap = v;
762 struct vnode *vp;
763 struct inode *ip;
764 int error;
765
766 vp = ap->a_vp;
767 ip = VTOI(vp);
768 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
769 if (ap->a_dvp == vp)
770 vrele(ap->a_dvp);
771 else
772 vput(ap->a_dvp);
773 vput(vp);
774 return error;
775 }
776 error = ufs_rmdir(ap);
777 if (ip->i_nlink == 0)
778 lfs_orphan(ip->i_lfs, ip->i_number);
779 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
780 return (error);
781 }
782
783 int
784 lfs_link(void *v)
785 {
786 struct vop_link_args /* {
787 struct vnode *a_dvp;
788 struct vnode *a_vp;
789 struct componentname *a_cnp;
790 } */ *ap = v;
791 int error;
792 struct vnode **vpp = NULL;
793
794 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
795 vput(ap->a_dvp);
796 return error;
797 }
798 error = ufs_link(ap);
799 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
800 return (error);
801 }
802
803 int
804 lfs_rename(void *v)
805 {
806 struct vop_rename_args /* {
807 struct vnode *a_fdvp;
808 struct vnode *a_fvp;
809 struct componentname *a_fcnp;
810 struct vnode *a_tdvp;
811 struct vnode *a_tvp;
812 struct componentname *a_tcnp;
813 } */ *ap = v;
814 struct vnode *tvp, *fvp, *tdvp, *fdvp;
815 struct componentname *tcnp, *fcnp;
816 int error;
817 struct lfs *fs;
818
819 fs = VTOI(ap->a_fdvp)->i_lfs;
820 tvp = ap->a_tvp;
821 tdvp = ap->a_tdvp;
822 tcnp = ap->a_tcnp;
823 fvp = ap->a_fvp;
824 fdvp = ap->a_fdvp;
825 fcnp = ap->a_fcnp;
826
827 /*
828 * Check for cross-device rename.
829 * If it is, we don't want to set dirops, just error out.
830 * (In particular note that MARK_VNODE(tdvp) will DTWT on
831 * a cross-device rename.)
832 *
833 * Copied from ufs_rename.
834 */
835 if ((fvp->v_mount != tdvp->v_mount) ||
836 (tvp && (fvp->v_mount != tvp->v_mount))) {
837 error = EXDEV;
838 goto errout;
839 }
840
841 /*
842 * Check to make sure we're not renaming a vnode onto itself
843 * (deleting a hard link by renaming one name onto another);
844 * if we are we can't recursively call VOP_REMOVE since that
845 * would leave us with an unaccounted-for number of live dirops.
846 *
847 * Inline the relevant section of ufs_rename here, *before*
848 * calling SET_DIROP_REMOVE.
849 */
850 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
851 (VTOI(tdvp)->i_flags & APPEND))) {
852 error = EPERM;
853 goto errout;
854 }
855 if (fvp == tvp) {
856 if (fvp->v_type == VDIR) {
857 error = EINVAL;
858 goto errout;
859 }
860
861 /* Release destination completely. */
862 VOP_ABORTOP(tdvp, tcnp);
863 vput(tdvp);
864 vput(tvp);
865
866 /* Delete source. */
867 vrele(fvp);
868 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
869 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
870 fcnp->cn_nameiop = DELETE;
871 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
872 if ((error = relookup(fdvp, &fvp, fcnp))) {
873 vput(fdvp);
874 return (error);
875 }
876 return (VOP_REMOVE(fdvp, fvp, fcnp));
877 }
878
879 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
880 goto errout;
881 MARK_VNODE(fdvp);
882 MARK_VNODE(fvp);
883
884 error = ufs_rename(ap);
885 UNMARK_VNODE(fdvp);
886 UNMARK_VNODE(fvp);
887 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
888 return (error);
889
890 errout:
891 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
892 if (tdvp == tvp)
893 vrele(tdvp);
894 else
895 vput(tdvp);
896 if (tvp)
897 vput(tvp);
898 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
899 vrele(fdvp);
900 vrele(fvp);
901 return (error);
902 }
903
904 /* XXX hack to avoid calling ITIMES in getattr */
905 int
906 lfs_getattr(void *v)
907 {
908 struct vop_getattr_args /* {
909 struct vnode *a_vp;
910 struct vattr *a_vap;
911 kauth_cred_t a_cred;
912 } */ *ap = v;
913 struct vnode *vp = ap->a_vp;
914 struct inode *ip = VTOI(vp);
915 struct vattr *vap = ap->a_vap;
916 struct lfs *fs = ip->i_lfs;
917 /*
918 * Copy from inode table
919 */
920 vap->va_fsid = ip->i_dev;
921 vap->va_fileid = ip->i_number;
922 vap->va_mode = ip->i_mode & ~IFMT;
923 vap->va_nlink = ip->i_nlink;
924 vap->va_uid = ip->i_uid;
925 vap->va_gid = ip->i_gid;
926 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
927 vap->va_size = vp->v_size;
928 vap->va_atime.tv_sec = ip->i_ffs1_atime;
929 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
930 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
931 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
932 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
933 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
934 vap->va_flags = ip->i_flags;
935 vap->va_gen = ip->i_gen;
936 /* this doesn't belong here */
937 if (vp->v_type == VBLK)
938 vap->va_blocksize = BLKDEV_IOSIZE;
939 else if (vp->v_type == VCHR)
940 vap->va_blocksize = MAXBSIZE;
941 else
942 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
943 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
944 vap->va_type = vp->v_type;
945 vap->va_filerev = ip->i_modrev;
946 return (0);
947 }
948
949 /*
950 * Check to make sure the inode blocks won't choke the buffer
951 * cache, then call ufs_setattr as usual.
952 */
953 int
954 lfs_setattr(void *v)
955 {
956 struct vop_setattr_args /* {
957 struct vnode *a_vp;
958 struct vattr *a_vap;
959 kauth_cred_t a_cred;
960 } */ *ap = v;
961 struct vnode *vp = ap->a_vp;
962
963 lfs_check(vp, LFS_UNUSED_LBN, 0);
964 return ufs_setattr(v);
965 }
966
967 /*
968 * Release the block we hold on lfs_newseg wrapping. Called on file close,
969 * or explicitly from LFCNWRAPGO. Called with the interlock held.
970 */
971 static int
972 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
973 {
974 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
975 return EBUSY;
976
977 lockmgr(&fs->lfs_stoplock, LK_RELEASE, &fs->lfs_interlock);
978
979 KASSERT(fs->lfs_nowrap > 0);
980 if (fs->lfs_nowrap <= 0) {
981 return 0;
982 }
983
984 if (--fs->lfs_nowrap == 0) {
985 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
986 wakeup(&fs->lfs_wrappass);
987 lfs_wakeup_cleaner(fs);
988 }
989 if (waitfor) {
990 ltsleep(&fs->lfs_nextseg, PCATCH | PUSER,
991 "segment", 0, &fs->lfs_interlock);
992 }
993
994 return 0;
995 }
996
997 /*
998 * Close called
999 */
1000 /* ARGSUSED */
1001 int
1002 lfs_close(void *v)
1003 {
1004 struct vop_close_args /* {
1005 struct vnode *a_vp;
1006 int a_fflag;
1007 kauth_cred_t a_cred;
1008 } */ *ap = v;
1009 struct vnode *vp = ap->a_vp;
1010 struct inode *ip = VTOI(vp);
1011 struct lfs *fs = ip->i_lfs;
1012
1013 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1014 lockstatus(&fs->lfs_stoplock) == LK_EXCLUSIVE) {
1015 simple_lock(&fs->lfs_interlock);
1016 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1017 lfs_wrapgo(fs, ip, 0);
1018 simple_unlock(&fs->lfs_interlock);
1019 }
1020
1021 if (vp == ip->i_lfs->lfs_ivnode &&
1022 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1023 return 0;
1024
1025 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1026 LFS_ITIMES(ip, NULL, NULL, NULL);
1027 }
1028 return (0);
1029 }
1030
1031 /*
1032 * Close wrapper for special devices.
1033 *
1034 * Update the times on the inode then do device close.
1035 */
1036 int
1037 lfsspec_close(void *v)
1038 {
1039 struct vop_close_args /* {
1040 struct vnode *a_vp;
1041 int a_fflag;
1042 kauth_cred_t a_cred;
1043 } */ *ap = v;
1044 struct vnode *vp;
1045 struct inode *ip;
1046
1047 vp = ap->a_vp;
1048 ip = VTOI(vp);
1049 if (vp->v_usecount > 1) {
1050 LFS_ITIMES(ip, NULL, NULL, NULL);
1051 }
1052 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1053 }
1054
1055 /*
1056 * Close wrapper for fifo's.
1057 *
1058 * Update the times on the inode then do device close.
1059 */
1060 int
1061 lfsfifo_close(void *v)
1062 {
1063 struct vop_close_args /* {
1064 struct vnode *a_vp;
1065 int a_fflag;
1066 kauth_cred_ a_cred;
1067 } */ *ap = v;
1068 struct vnode *vp;
1069 struct inode *ip;
1070
1071 vp = ap->a_vp;
1072 ip = VTOI(vp);
1073 if (ap->a_vp->v_usecount > 1) {
1074 LFS_ITIMES(ip, NULL, NULL, NULL);
1075 }
1076 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1077 }
1078
1079 /*
1080 * Reclaim an inode so that it can be used for other purposes.
1081 */
1082
1083 int
1084 lfs_reclaim(void *v)
1085 {
1086 struct vop_reclaim_args /* {
1087 struct vnode *a_vp;
1088 } */ *ap = v;
1089 struct vnode *vp = ap->a_vp;
1090 struct inode *ip = VTOI(vp);
1091 struct lfs *fs = ip->i_lfs;
1092 int error;
1093
1094 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1095
1096 LFS_CLR_UINO(ip, IN_ALLMOD);
1097 if ((error = ufs_reclaim(vp)))
1098 return (error);
1099
1100 /*
1101 * Take us off the paging and/or dirop queues if we were on them.
1102 * We shouldn't be on them.
1103 */
1104 simple_lock(&fs->lfs_interlock);
1105 if (ip->i_flags & IN_PAGING) {
1106 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1107 fs->lfs_fsmnt);
1108 ip->i_flags &= ~IN_PAGING;
1109 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1110 }
1111 if (vp->v_uflag & VU_DIROP) {
1112 panic("reclaimed vnode is VU_DIROP");
1113 vp->v_uflag &= ~VU_DIROP;
1114 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1115 }
1116 simple_unlock(&fs->lfs_interlock);
1117
1118 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1119 lfs_deregister_all(vp);
1120 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1121 ip->inode_ext.lfs = NULL;
1122 genfs_node_destroy(vp);
1123 pool_put(&lfs_inode_pool, vp->v_data);
1124 vp->v_data = NULL;
1125 return (0);
1126 }
1127
1128 /*
1129 * Read a block from a storage device.
1130 * In order to avoid reading blocks that are in the process of being
1131 * written by the cleaner---and hence are not mutexed by the normal
1132 * buffer cache / page cache mechanisms---check for collisions before
1133 * reading.
1134 *
1135 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1136 * the active cleaner test.
1137 *
1138 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1139 */
1140 int
1141 lfs_strategy(void *v)
1142 {
1143 struct vop_strategy_args /* {
1144 struct vnode *a_vp;
1145 struct buf *a_bp;
1146 } */ *ap = v;
1147 struct buf *bp;
1148 struct lfs *fs;
1149 struct vnode *vp;
1150 struct inode *ip;
1151 daddr_t tbn;
1152 int i, sn, error, slept;
1153
1154 bp = ap->a_bp;
1155 vp = ap->a_vp;
1156 ip = VTOI(vp);
1157 fs = ip->i_lfs;
1158
1159 /* lfs uses its strategy routine only for read */
1160 KASSERT(bp->b_flags & B_READ);
1161
1162 if (vp->v_type == VBLK || vp->v_type == VCHR)
1163 panic("lfs_strategy: spec");
1164 KASSERT(bp->b_bcount != 0);
1165 if (bp->b_blkno == bp->b_lblkno) {
1166 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1167 NULL);
1168 if (error) {
1169 bp->b_error = error;
1170 biodone(bp);
1171 return (error);
1172 }
1173 if ((long)bp->b_blkno == -1) /* no valid data */
1174 clrbuf(bp);
1175 }
1176 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1177 biodone(bp);
1178 return (0);
1179 }
1180
1181 slept = 1;
1182 simple_lock(&fs->lfs_interlock);
1183 while (slept && fs->lfs_seglock) {
1184 simple_unlock(&fs->lfs_interlock);
1185 /*
1186 * Look through list of intervals.
1187 * There will only be intervals to look through
1188 * if the cleaner holds the seglock.
1189 * Since the cleaner is synchronous, we can trust
1190 * the list of intervals to be current.
1191 */
1192 tbn = dbtofsb(fs, bp->b_blkno);
1193 sn = dtosn(fs, tbn);
1194 slept = 0;
1195 for (i = 0; i < fs->lfs_cleanind; i++) {
1196 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1197 tbn >= fs->lfs_cleanint[i]) {
1198 DLOG((DLOG_CLEAN,
1199 "lfs_strategy: ino %d lbn %" PRId64
1200 " ind %d sn %d fsb %" PRIx32
1201 " given sn %d fsb %" PRIx64 "\n",
1202 ip->i_number, bp->b_lblkno, i,
1203 dtosn(fs, fs->lfs_cleanint[i]),
1204 fs->lfs_cleanint[i], sn, tbn));
1205 DLOG((DLOG_CLEAN,
1206 "lfs_strategy: sleeping on ino %d lbn %"
1207 PRId64 "\n", ip->i_number, bp->b_lblkno));
1208 simple_lock(&fs->lfs_interlock);
1209 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1210 /* Cleaner can't wait for itself */
1211 ltsleep(&fs->lfs_iocount,
1212 (PRIBIO + 1) | PNORELOCK,
1213 "clean2", 0,
1214 &fs->lfs_interlock);
1215 slept = 1;
1216 break;
1217 } else if (fs->lfs_seglock) {
1218 ltsleep(&fs->lfs_seglock,
1219 (PRIBIO + 1) | PNORELOCK,
1220 "clean1", 0,
1221 &fs->lfs_interlock);
1222 slept = 1;
1223 break;
1224 }
1225 simple_unlock(&fs->lfs_interlock);
1226 }
1227 }
1228 simple_lock(&fs->lfs_interlock);
1229 }
1230 simple_unlock(&fs->lfs_interlock);
1231
1232 vp = ip->i_devvp;
1233 VOP_STRATEGY(vp, bp);
1234 return (0);
1235 }
1236
1237 void
1238 lfs_flush_dirops(struct lfs *fs)
1239 {
1240 struct inode *ip, *nip;
1241 struct vnode *vp;
1242 extern int lfs_dostats;
1243 struct segment *sp;
1244 int waslocked;
1245
1246 ASSERT_MAYBE_SEGLOCK(fs);
1247 KASSERT(fs->lfs_nadirop == 0);
1248
1249 if (fs->lfs_ronly)
1250 return;
1251
1252 simple_lock(&fs->lfs_interlock);
1253 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1254 simple_unlock(&fs->lfs_interlock);
1255 return;
1256 } else
1257 simple_unlock(&fs->lfs_interlock);
1258
1259 if (lfs_dostats)
1260 ++lfs_stats.flush_invoked;
1261
1262 /*
1263 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1264 * Technically this is a checkpoint (the on-disk state is valid)
1265 * even though we are leaving out all the file data.
1266 */
1267 lfs_imtime(fs);
1268 lfs_seglock(fs, SEGM_CKP);
1269 sp = fs->lfs_sp;
1270
1271 /*
1272 * lfs_writevnodes, optimized to get dirops out of the way.
1273 * Only write dirops, and don't flush files' pages, only
1274 * blocks from the directories.
1275 *
1276 * We don't need to vref these files because they are
1277 * dirops and so hold an extra reference until the
1278 * segunlock clears them of that status.
1279 *
1280 * We don't need to check for IN_ADIROP because we know that
1281 * no dirops are active.
1282 *
1283 */
1284 simple_lock(&fs->lfs_interlock);
1285 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1286 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1287 simple_unlock(&fs->lfs_interlock);
1288 vp = ITOV(ip);
1289
1290 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1291
1292 /*
1293 * All writes to directories come from dirops; all
1294 * writes to files' direct blocks go through the page
1295 * cache, which we're not touching. Reads to files
1296 * and/or directories will not be affected by writing
1297 * directory blocks inodes and file inodes. So we don't
1298 * really need to lock. If we don't lock, though,
1299 * make sure that we don't clear IN_MODIFIED
1300 * unnecessarily.
1301 */
1302 if (vp->v_iflag & (VI_XLOCK | VI_FREEING)) {
1303 simple_lock(&fs->lfs_interlock);
1304 continue;
1305 }
1306 waslocked = VOP_ISLOCKED(vp);
1307 if (vp->v_type != VREG &&
1308 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1309 lfs_writefile(fs, sp, vp);
1310 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1311 !(ip->i_flag & IN_ALLMOD)) {
1312 LFS_SET_UINO(ip, IN_MODIFIED);
1313 }
1314 }
1315 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1316 (void) lfs_writeinode(fs, sp, ip);
1317 if (waslocked == LK_EXCLOTHER)
1318 LFS_SET_UINO(ip, IN_MODIFIED);
1319 simple_lock(&fs->lfs_interlock);
1320 }
1321 simple_unlock(&fs->lfs_interlock);
1322 /* We've written all the dirops there are */
1323 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1324 lfs_finalize_fs_seguse(fs);
1325 (void) lfs_writeseg(fs, sp);
1326 lfs_segunlock(fs);
1327 }
1328
1329 /*
1330 * Flush all vnodes for which the pagedaemon has requested pageouts.
1331 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1332 * has just run, this would be an error). If we have to skip a vnode
1333 * for any reason, just skip it; if we have to wait for the cleaner,
1334 * abort. The writer daemon will call us again later.
1335 */
1336 void
1337 lfs_flush_pchain(struct lfs *fs)
1338 {
1339 struct inode *ip, *nip;
1340 struct vnode *vp;
1341 extern int lfs_dostats;
1342 struct segment *sp;
1343 int error;
1344
1345 ASSERT_NO_SEGLOCK(fs);
1346
1347 if (fs->lfs_ronly)
1348 return;
1349
1350 simple_lock(&fs->lfs_interlock);
1351 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1352 simple_unlock(&fs->lfs_interlock);
1353 return;
1354 } else
1355 simple_unlock(&fs->lfs_interlock);
1356
1357 /* Get dirops out of the way */
1358 lfs_flush_dirops(fs);
1359
1360 if (lfs_dostats)
1361 ++lfs_stats.flush_invoked;
1362
1363 /*
1364 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1365 */
1366 lfs_imtime(fs);
1367 lfs_seglock(fs, 0);
1368 sp = fs->lfs_sp;
1369
1370 /*
1371 * lfs_writevnodes, optimized to clear pageout requests.
1372 * Only write non-dirop files that are in the pageout queue.
1373 * We're very conservative about what we write; we want to be
1374 * fast and async.
1375 */
1376 simple_lock(&fs->lfs_interlock);
1377 top:
1378 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1379 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1380 vp = ITOV(ip);
1381
1382 if (!(ip->i_flags & IN_PAGING))
1383 goto top;
1384
1385 if ((vp->v_iflag|vp->v_uflag) & (VI_XLOCK|VU_DIROP))
1386 continue;
1387 if (vp->v_type != VREG)
1388 continue;
1389 if (lfs_vref(vp))
1390 continue;
1391 simple_unlock(&fs->lfs_interlock);
1392
1393 if (VOP_ISLOCKED(vp)) {
1394 lfs_vunref(vp);
1395 simple_lock(&fs->lfs_interlock);
1396 continue;
1397 }
1398
1399 error = lfs_writefile(fs, sp, vp);
1400 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1401 !(ip->i_flag & IN_ALLMOD)) {
1402 LFS_SET_UINO(ip, IN_MODIFIED);
1403 }
1404 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1405 (void) lfs_writeinode(fs, sp, ip);
1406
1407 lfs_vunref(vp);
1408
1409 if (error == EAGAIN) {
1410 lfs_writeseg(fs, sp);
1411 simple_lock(&fs->lfs_interlock);
1412 break;
1413 }
1414 simple_lock(&fs->lfs_interlock);
1415 }
1416 simple_unlock(&fs->lfs_interlock);
1417 (void) lfs_writeseg(fs, sp);
1418 lfs_segunlock(fs);
1419 }
1420
1421 /*
1422 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1423 */
1424 int
1425 lfs_fcntl(void *v)
1426 {
1427 struct vop_fcntl_args /* {
1428 struct vnode *a_vp;
1429 u_long a_command;
1430 void * a_data;
1431 int a_fflag;
1432 kauth_cred_t a_cred;
1433 } */ *ap = v;
1434 struct timeval *tvp;
1435 BLOCK_INFO *blkiov;
1436 CLEANERINFO *cip;
1437 SEGUSE *sup;
1438 int blkcnt, error, oclean;
1439 size_t fh_size;
1440 struct lfs_fcntl_markv blkvp;
1441 struct lwp *l;
1442 fsid_t *fsidp;
1443 struct lfs *fs;
1444 struct buf *bp;
1445 fhandle_t *fhp;
1446 daddr_t off;
1447
1448 /* Only respect LFS fcntls on fs root or Ifile */
1449 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1450 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1451 return ufs_fcntl(v);
1452 }
1453
1454 /* Avoid locking a draining lock */
1455 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1456 return ESHUTDOWN;
1457 }
1458
1459 /* LFS control and monitoring fcntls are available only to root */
1460 l = curlwp;
1461 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1462 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1463 NULL)) != 0)
1464 return (error);
1465
1466 fs = VTOI(ap->a_vp)->i_lfs;
1467 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1468
1469 error = 0;
1470 switch (ap->a_command) {
1471 case LFCNSEGWAITALL:
1472 case LFCNSEGWAITALL_COMPAT:
1473 fsidp = NULL;
1474 /* FALLSTHROUGH */
1475 case LFCNSEGWAIT:
1476 case LFCNSEGWAIT_COMPAT:
1477 tvp = (struct timeval *)ap->a_data;
1478 simple_lock(&fs->lfs_interlock);
1479 ++fs->lfs_sleepers;
1480 simple_unlock(&fs->lfs_interlock);
1481
1482 error = lfs_segwait(fsidp, tvp);
1483
1484 simple_lock(&fs->lfs_interlock);
1485 if (--fs->lfs_sleepers == 0)
1486 wakeup(&fs->lfs_sleepers);
1487 simple_unlock(&fs->lfs_interlock);
1488 return error;
1489
1490 case LFCNBMAPV:
1491 case LFCNMARKV:
1492 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1493
1494 blkcnt = blkvp.blkcnt;
1495 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1496 return (EINVAL);
1497 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1498 if ((error = copyin(blkvp.blkiov, blkiov,
1499 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1500 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1501 return error;
1502 }
1503
1504 simple_lock(&fs->lfs_interlock);
1505 ++fs->lfs_sleepers;
1506 simple_unlock(&fs->lfs_interlock);
1507 if (ap->a_command == LFCNBMAPV)
1508 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1509 else /* LFCNMARKV */
1510 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1511 if (error == 0)
1512 error = copyout(blkiov, blkvp.blkiov,
1513 blkcnt * sizeof(BLOCK_INFO));
1514 simple_lock(&fs->lfs_interlock);
1515 if (--fs->lfs_sleepers == 0)
1516 wakeup(&fs->lfs_sleepers);
1517 simple_unlock(&fs->lfs_interlock);
1518 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1519 return error;
1520
1521 case LFCNRECLAIM:
1522 /*
1523 * Flush dirops and write Ifile, allowing empty segments
1524 * to be immediately reclaimed.
1525 */
1526 lfs_writer_enter(fs, "pndirop");
1527 off = fs->lfs_offset;
1528 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1529 lfs_flush_dirops(fs);
1530 LFS_CLEANERINFO(cip, fs, bp);
1531 oclean = cip->clean;
1532 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1533 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1534 fs->lfs_sp->seg_flags |= SEGM_PROT;
1535 lfs_segunlock(fs);
1536 lfs_writer_leave(fs);
1537
1538 #ifdef DEBUG
1539 LFS_CLEANERINFO(cip, fs, bp);
1540 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1541 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1542 fs->lfs_offset - off, cip->clean - oclean,
1543 fs->lfs_activesb));
1544 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1545 #endif
1546
1547 return 0;
1548
1549 #ifdef COMPAT_30
1550 case LFCNIFILEFH_COMPAT:
1551 /* Return the filehandle of the Ifile */
1552 if ((error = kauth_authorize_generic(l->l_cred,
1553 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1554 return (error);
1555 fhp = (struct fhandle *)ap->a_data;
1556 fhp->fh_fsid = *fsidp;
1557 fh_size = 16; /* former VFS_MAXFIDSIZ */
1558 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1559 #endif
1560
1561 case LFCNIFILEFH_COMPAT2:
1562 case LFCNIFILEFH:
1563 /* Return the filehandle of the Ifile */
1564 fhp = (struct fhandle *)ap->a_data;
1565 fhp->fh_fsid = *fsidp;
1566 fh_size = sizeof(struct lfs_fhandle) -
1567 offsetof(fhandle_t, fh_fid);
1568 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1569
1570 case LFCNREWIND:
1571 /* Move lfs_offset to the lowest-numbered segment */
1572 return lfs_rewind(fs, *(int *)ap->a_data);
1573
1574 case LFCNINVAL:
1575 /* Mark a segment SEGUSE_INVAL */
1576 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1577 if (sup->su_nbytes > 0) {
1578 brelse(bp, 0);
1579 lfs_unset_inval_all(fs);
1580 return EBUSY;
1581 }
1582 sup->su_flags |= SEGUSE_INVAL;
1583 VOP_BWRITE(bp);
1584 return 0;
1585
1586 case LFCNRESIZE:
1587 /* Resize the filesystem */
1588 return lfs_resize_fs(fs, *(int *)ap->a_data);
1589
1590 case LFCNWRAPSTOP:
1591 case LFCNWRAPSTOP_COMPAT:
1592 /*
1593 * Hold lfs_newseg at segment 0; if requested, sleep until
1594 * the filesystem wraps around. To support external agents
1595 * (dump, fsck-based regression test) that need to look at
1596 * a snapshot of the filesystem, without necessarily
1597 * requiring that all fs activity stops.
1598 */
1599 if (lockstatus(&fs->lfs_stoplock))
1600 return EALREADY;
1601
1602 simple_lock(&fs->lfs_interlock);
1603 lockmgr(&fs->lfs_stoplock, LK_EXCLUSIVE, &fs->lfs_interlock);
1604 if (fs->lfs_nowrap == 0)
1605 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1606 ++fs->lfs_nowrap;
1607 if (*(int *)ap->a_data == 1 ||
1608 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1609 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1610 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1611 "segwrap", 0, &fs->lfs_interlock);
1612 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1613 if (error) {
1614 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1615 }
1616 }
1617 simple_unlock(&fs->lfs_interlock);
1618 return 0;
1619
1620 case LFCNWRAPGO:
1621 case LFCNWRAPGO_COMPAT:
1622 /*
1623 * Having done its work, the agent wakes up the writer.
1624 * If the argument is 1, it sleeps until a new segment
1625 * is selected.
1626 */
1627 simple_lock(&fs->lfs_interlock);
1628 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1629 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1630 *((int *)ap->a_data)));
1631 simple_unlock(&fs->lfs_interlock);
1632 return error;
1633
1634 case LFCNWRAPPASS:
1635 if (lockstatus(&fs->lfs_stoplock) != LK_EXCLUSIVE)
1636 return EALREADY;
1637 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1638 return EALREADY;
1639 simple_lock(&fs->lfs_interlock);
1640 if (fs->lfs_nowrap == 0) {
1641 simple_unlock(&fs->lfs_interlock);
1642 return EBUSY;
1643 }
1644 fs->lfs_wrappass = 1;
1645 wakeup(&fs->lfs_wrappass);
1646 /* Wait for the log to wrap, if asked */
1647 if (*(int *)ap->a_data) {
1648 lfs_vref(ap->a_vp);
1649 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1650 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1651 error = ltsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1652 "segwrap", 0, &fs->lfs_interlock);
1653 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1654 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1655 lfs_vunref(ap->a_vp);
1656 }
1657 simple_unlock(&fs->lfs_interlock);
1658 return error;
1659
1660 case LFCNWRAPSTATUS:
1661 simple_lock(&fs->lfs_interlock);
1662 *(int *)ap->a_data = fs->lfs_wrapstatus;
1663 simple_unlock(&fs->lfs_interlock);
1664 return 0;
1665
1666 default:
1667 return ufs_fcntl(v);
1668 }
1669 return 0;
1670 }
1671
1672 int
1673 lfs_getpages(void *v)
1674 {
1675 struct vop_getpages_args /* {
1676 struct vnode *a_vp;
1677 voff_t a_offset;
1678 struct vm_page **a_m;
1679 int *a_count;
1680 int a_centeridx;
1681 vm_prot_t a_access_type;
1682 int a_advice;
1683 int a_flags;
1684 } */ *ap = v;
1685
1686 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1687 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1688 return EPERM;
1689 }
1690 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1691 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1692 }
1693
1694 /*
1695 * we're relying on the fact that genfs_getpages() always read in
1696 * entire filesystem blocks.
1697 */
1698 return genfs_getpages(v);
1699 }
1700
1701 /*
1702 * Wait for a page to become unbusy, possibly printing diagnostic messages
1703 * as well.
1704 *
1705 * Called with vp->v_interlock held; return with it held.
1706 */
1707 static void
1708 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1709 {
1710 if ((pg->flags & PG_BUSY) == 0)
1711 return; /* Nothing to wait for! */
1712
1713 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1714 static struct vm_page *lastpg;
1715
1716 if (label != NULL && pg != lastpg) {
1717 if (pg->owner_tag) {
1718 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1719 curproc->p_pid, curlwp->l_lid, label,
1720 pg, pg->owner, pg->lowner, pg->owner_tag);
1721 } else {
1722 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1723 curproc->p_pid, curlwp->l_lid, label, pg);
1724 }
1725 }
1726 lastpg = pg;
1727 #endif
1728
1729 pg->flags |= PG_WANTED;
1730 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1731 simple_lock(&vp->v_interlock);
1732 }
1733
1734 /*
1735 * This routine is called by lfs_putpages() when it can't complete the
1736 * write because a page is busy. This means that either (1) someone,
1737 * possibly the pagedaemon, is looking at this page, and will give it up
1738 * presently; or (2) we ourselves are holding the page busy in the
1739 * process of being written (either gathered or actually on its way to
1740 * disk). We don't need to give up the segment lock, but we might need
1741 * to call lfs_writeseg() to expedite the page's journey to disk.
1742 *
1743 * Called with vp->v_interlock held; return with it held.
1744 */
1745 /* #define BUSYWAIT */
1746 static void
1747 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1748 int seglocked, const char *label)
1749 {
1750 #ifndef BUSYWAIT
1751 struct inode *ip = VTOI(vp);
1752 struct segment *sp = fs->lfs_sp;
1753 int count = 0;
1754
1755 if (pg == NULL)
1756 return;
1757
1758 while (pg->flags & PG_BUSY) {
1759 simple_unlock(&vp->v_interlock);
1760 if (sp->cbpp - sp->bpp > 1) {
1761 /* Write gathered pages */
1762 lfs_updatemeta(sp);
1763 lfs_release_finfo(fs);
1764 (void) lfs_writeseg(fs, sp);
1765
1766 /*
1767 * Reinitialize FIP
1768 */
1769 KASSERT(sp->vp == vp);
1770 lfs_acquire_finfo(fs, ip->i_number,
1771 ip->i_gen);
1772 }
1773 ++count;
1774 simple_lock(&vp->v_interlock);
1775 wait_for_page(vp, pg, label);
1776 }
1777 if (label != NULL && count > 1)
1778 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1779 label, (count > 0 ? "looping, " : ""), count);
1780 #else
1781 preempt(1);
1782 #endif
1783 }
1784
1785 /*
1786 * Make sure that for all pages in every block in the given range,
1787 * either all are dirty or all are clean. If any of the pages
1788 * we've seen so far are dirty, put the vnode on the paging chain,
1789 * and mark it IN_PAGING.
1790 *
1791 * If checkfirst != 0, don't check all the pages but return at the
1792 * first dirty page.
1793 */
1794 static int
1795 check_dirty(struct lfs *fs, struct vnode *vp,
1796 off_t startoffset, off_t endoffset, off_t blkeof,
1797 int flags, int checkfirst, struct vm_page **pgp)
1798 {
1799 int by_list;
1800 struct vm_page *curpg = NULL; /* XXX: gcc */
1801 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1802 off_t soff = 0; /* XXX: gcc */
1803 voff_t off;
1804 int i;
1805 int nonexistent;
1806 int any_dirty; /* number of dirty pages */
1807 int dirty; /* number of dirty pages in a block */
1808 int tdirty;
1809 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1810 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1811
1812 ASSERT_MAYBE_SEGLOCK(fs);
1813 top:
1814 by_list = (vp->v_uobj.uo_npages <=
1815 ((endoffset - startoffset) >> PAGE_SHIFT) *
1816 UVM_PAGE_HASH_PENALTY);
1817 any_dirty = 0;
1818
1819 if (by_list) {
1820 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1821 } else {
1822 soff = startoffset;
1823 }
1824 while (by_list || soff < MIN(blkeof, endoffset)) {
1825 if (by_list) {
1826 /*
1827 * Find the first page in a block. Skip
1828 * blocks outside our area of interest or beyond
1829 * the end of file.
1830 */
1831 if (pages_per_block > 1) {
1832 while (curpg &&
1833 ((curpg->offset & fs->lfs_bmask) ||
1834 curpg->offset >= vp->v_size ||
1835 curpg->offset >= endoffset))
1836 curpg = TAILQ_NEXT(curpg, listq);
1837 }
1838 if (curpg == NULL)
1839 break;
1840 soff = curpg->offset;
1841 }
1842
1843 /*
1844 * Mark all pages in extended range busy; find out if any
1845 * of them are dirty.
1846 */
1847 nonexistent = dirty = 0;
1848 for (i = 0; i == 0 || i < pages_per_block; i++) {
1849 if (by_list && pages_per_block <= 1) {
1850 pgs[i] = pg = curpg;
1851 } else {
1852 off = soff + (i << PAGE_SHIFT);
1853 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1854 if (pg == NULL) {
1855 ++nonexistent;
1856 continue;
1857 }
1858 }
1859 KASSERT(pg != NULL);
1860
1861 /*
1862 * If we're holding the segment lock, we can deadlock
1863 * against a process that has our page and is waiting
1864 * for the cleaner, while the cleaner waits for the
1865 * segment lock. Just bail in that case.
1866 */
1867 if ((pg->flags & PG_BUSY) &&
1868 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1869 if (i > 0)
1870 uvm_page_unbusy(pgs, i);
1871 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1872 if (pgp)
1873 *pgp = pg;
1874 return -1;
1875 }
1876
1877 while (pg->flags & PG_BUSY) {
1878 wait_for_page(vp, pg, NULL);
1879 if (i > 0)
1880 uvm_page_unbusy(pgs, i);
1881 goto top;
1882 }
1883 pg->flags |= PG_BUSY;
1884 UVM_PAGE_OWN(pg, "lfs_putpages");
1885
1886 pmap_page_protect(pg, VM_PROT_NONE);
1887 tdirty = (pmap_clear_modify(pg) ||
1888 (pg->flags & PG_CLEAN) == 0);
1889 dirty += tdirty;
1890 }
1891 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1892 if (by_list) {
1893 curpg = TAILQ_NEXT(curpg, listq);
1894 } else {
1895 soff += fs->lfs_bsize;
1896 }
1897 continue;
1898 }
1899
1900 any_dirty += dirty;
1901 KASSERT(nonexistent == 0);
1902
1903 /*
1904 * If any are dirty make all dirty; unbusy them,
1905 * but if we were asked to clean, wire them so that
1906 * the pagedaemon doesn't bother us about them while
1907 * they're on their way to disk.
1908 */
1909 for (i = 0; i == 0 || i < pages_per_block; i++) {
1910 pg = pgs[i];
1911 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1912 if (dirty) {
1913 pg->flags &= ~PG_CLEAN;
1914 if (flags & PGO_FREE) {
1915 /*
1916 * Wire the page so that
1917 * pdaemon doesn't see it again.
1918 */
1919 uvm_lock_pageq();
1920 uvm_pagewire(pg);
1921 uvm_unlock_pageq();
1922
1923 /* Suspended write flag */
1924 pg->flags |= PG_DELWRI;
1925 }
1926 }
1927 if (pg->flags & PG_WANTED)
1928 wakeup(pg);
1929 pg->flags &= ~(PG_WANTED|PG_BUSY);
1930 UVM_PAGE_OWN(pg, NULL);
1931 }
1932
1933 if (checkfirst && any_dirty)
1934 break;
1935
1936 if (by_list) {
1937 curpg = TAILQ_NEXT(curpg, listq);
1938 } else {
1939 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1940 }
1941 }
1942
1943 return any_dirty;
1944 }
1945
1946 /*
1947 * lfs_putpages functions like genfs_putpages except that
1948 *
1949 * (1) It needs to bounds-check the incoming requests to ensure that
1950 * they are block-aligned; if they are not, expand the range and
1951 * do the right thing in case, e.g., the requested range is clean
1952 * but the expanded range is dirty.
1953 *
1954 * (2) It needs to explicitly send blocks to be written when it is done.
1955 * If VOP_PUTPAGES is called without the seglock held, we simply take
1956 * the seglock and let lfs_segunlock wait for us.
1957 * XXX There might be a bad situation if we have to flush a vnode while
1958 * XXX lfs_markv is in operation. As of this writing we panic in this
1959 * XXX case.
1960 *
1961 * Assumptions:
1962 *
1963 * (1) The caller does not hold any pages in this vnode busy. If it does,
1964 * there is a danger that when we expand the page range and busy the
1965 * pages we will deadlock.
1966 *
1967 * (2) We are called with vp->v_interlock held; we must return with it
1968 * released.
1969 *
1970 * (3) We don't absolutely have to free pages right away, provided that
1971 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1972 * us a request with PGO_FREE, we take the pages out of the paging
1973 * queue and wake up the writer, which will handle freeing them for us.
1974 *
1975 * We ensure that for any filesystem block, all pages for that
1976 * block are either resident or not, even if those pages are higher
1977 * than EOF; that means that we will be getting requests to free
1978 * "unused" pages above EOF all the time, and should ignore them.
1979 *
1980 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1981 * into has been set up for us by lfs_writefile. If not, we will
1982 * have to handle allocating and/or freeing an finfo entry.
1983 *
1984 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1985 */
1986
1987 /* How many times to loop before we should start to worry */
1988 #define TOOMANY 4
1989
1990 int
1991 lfs_putpages(void *v)
1992 {
1993 int error;
1994 struct vop_putpages_args /* {
1995 struct vnode *a_vp;
1996 voff_t a_offlo;
1997 voff_t a_offhi;
1998 int a_flags;
1999 } */ *ap = v;
2000 struct vnode *vp;
2001 struct inode *ip;
2002 struct lfs *fs;
2003 struct segment *sp;
2004 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2005 off_t off, max_endoffset;
2006 int s;
2007 bool seglocked, sync, pagedaemon;
2008 struct vm_page *pg, *busypg;
2009 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2010 #ifdef DEBUG
2011 int debug_n_again, debug_n_dirtyclean;
2012 #endif
2013
2014 vp = ap->a_vp;
2015 ip = VTOI(vp);
2016 fs = ip->i_lfs;
2017 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2018 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2019
2020 /* Putpages does nothing for metadata. */
2021 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2022 simple_unlock(&vp->v_interlock);
2023 return 0;
2024 }
2025
2026 /*
2027 * If there are no pages, don't do anything.
2028 */
2029 if (vp->v_uobj.uo_npages == 0) {
2030 s = splbio();
2031 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2032 (vp->v_iflag & VI_ONWORKLST) &&
2033 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2034 vp->v_iflag &= ~VI_WRMAPDIRTY;
2035 vn_syncer_remove_from_worklist(vp);
2036 }
2037 splx(s);
2038 simple_unlock(&vp->v_interlock);
2039
2040 /* Remove us from paging queue, if we were on it */
2041 simple_lock(&fs->lfs_interlock);
2042 if (ip->i_flags & IN_PAGING) {
2043 ip->i_flags &= ~IN_PAGING;
2044 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2045 }
2046 simple_unlock(&fs->lfs_interlock);
2047 return 0;
2048 }
2049
2050 blkeof = blkroundup(fs, ip->i_size);
2051
2052 /*
2053 * Ignore requests to free pages past EOF but in the same block
2054 * as EOF, unless the request is synchronous. (If the request is
2055 * sync, it comes from lfs_truncate.)
2056 * XXXUBC Make these pages look "active" so the pagedaemon won't
2057 * XXXUBC bother us with them again.
2058 */
2059 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2060 origoffset = ap->a_offlo;
2061 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2062 pg = uvm_pagelookup(&vp->v_uobj, off);
2063 KASSERT(pg != NULL);
2064 while (pg->flags & PG_BUSY) {
2065 pg->flags |= PG_WANTED;
2066 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2067 "lfsput2", 0);
2068 simple_lock(&vp->v_interlock);
2069 }
2070 uvm_lock_pageq();
2071 uvm_pageactivate(pg);
2072 uvm_unlock_pageq();
2073 }
2074 ap->a_offlo = blkeof;
2075 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2076 simple_unlock(&vp->v_interlock);
2077 return 0;
2078 }
2079 }
2080
2081 /*
2082 * Extend page range to start and end at block boundaries.
2083 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2084 */
2085 origoffset = ap->a_offlo;
2086 origendoffset = ap->a_offhi;
2087 startoffset = origoffset & ~(fs->lfs_bmask);
2088 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2089 << fs->lfs_bshift;
2090
2091 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2092 endoffset = max_endoffset;
2093 origendoffset = endoffset;
2094 } else {
2095 origendoffset = round_page(ap->a_offhi);
2096 endoffset = round_page(blkroundup(fs, origendoffset));
2097 }
2098
2099 KASSERT(startoffset > 0 || endoffset >= startoffset);
2100 if (startoffset == endoffset) {
2101 /* Nothing to do, why were we called? */
2102 simple_unlock(&vp->v_interlock);
2103 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2104 PRId64 "\n", startoffset));
2105 return 0;
2106 }
2107
2108 ap->a_offlo = startoffset;
2109 ap->a_offhi = endoffset;
2110
2111 /*
2112 * If not cleaning, just send the pages through genfs_putpages
2113 * to be returned to the pool.
2114 */
2115 if (!(ap->a_flags & PGO_CLEANIT))
2116 return genfs_putpages(v);
2117
2118 /* Set PGO_BUSYFAIL to avoid deadlocks */
2119 ap->a_flags |= PGO_BUSYFAIL;
2120
2121 /*
2122 * Likewise, if we are asked to clean but the pages are not
2123 * dirty, we can just free them using genfs_putpages.
2124 */
2125 #ifdef DEBUG
2126 debug_n_dirtyclean = 0;
2127 #endif
2128 do {
2129 int r;
2130
2131 /* Count the number of dirty pages */
2132 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2133 ap->a_flags, 1, NULL);
2134 if (r < 0) {
2135 /* Pages are busy with another process */
2136 simple_unlock(&vp->v_interlock);
2137 return EDEADLK;
2138 }
2139 if (r > 0) /* Some pages are dirty */
2140 break;
2141
2142 /*
2143 * Sometimes pages are dirtied between the time that
2144 * we check and the time we try to clean them.
2145 * Instruct lfs_gop_write to return EDEADLK in this case
2146 * so we can write them properly.
2147 */
2148 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2149 r = genfs_do_putpages(vp, startoffset, endoffset,
2150 ap->a_flags, &busypg);
2151 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2152 if (r != EDEADLK)
2153 return r;
2154
2155 /* One of the pages was busy. Start over. */
2156 simple_lock(&vp->v_interlock);
2157 wait_for_page(vp, busypg, "dirtyclean");
2158 #ifdef DEBUG
2159 ++debug_n_dirtyclean;
2160 #endif
2161 } while(1);
2162
2163 #ifdef DEBUG
2164 if (debug_n_dirtyclean > TOOMANY)
2165 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2166 debug_n_dirtyclean);
2167 #endif
2168
2169 /*
2170 * Dirty and asked to clean.
2171 *
2172 * Pagedaemon can't actually write LFS pages; wake up
2173 * the writer to take care of that. The writer will
2174 * notice the pager inode queue and act on that.
2175 */
2176 if (pagedaemon) {
2177 simple_lock(&fs->lfs_interlock);
2178 if (!(ip->i_flags & IN_PAGING)) {
2179 ip->i_flags |= IN_PAGING;
2180 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2181 }
2182 simple_lock(&lfs_subsys_lock);
2183 wakeup(&lfs_writer_daemon);
2184 simple_unlock(&lfs_subsys_lock);
2185 simple_unlock(&fs->lfs_interlock);
2186 simple_unlock(&vp->v_interlock);
2187 preempt();
2188 return EWOULDBLOCK;
2189 }
2190
2191 /*
2192 * If this is a file created in a recent dirop, we can't flush its
2193 * inode until the dirop is complete. Drain dirops, then flush the
2194 * filesystem (taking care of any other pending dirops while we're
2195 * at it).
2196 */
2197 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2198 (vp->v_uflag & VU_DIROP)) {
2199 int locked;
2200
2201 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2202 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2203 simple_unlock(&vp->v_interlock);
2204 lfs_writer_enter(fs, "ppdirop");
2205 if (locked)
2206 VOP_UNLOCK(vp, 0); /* XXX why? */
2207
2208 simple_lock(&fs->lfs_interlock);
2209 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2210 simple_unlock(&fs->lfs_interlock);
2211
2212 simple_lock(&vp->v_interlock);
2213 if (locked) {
2214 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2215 simple_lock(&vp->v_interlock);
2216 }
2217 lfs_writer_leave(fs);
2218
2219 /* XXX the flush should have taken care of this one too! */
2220 }
2221
2222 /*
2223 * This is it. We are going to write some pages. From here on
2224 * down it's all just mechanics.
2225 *
2226 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2227 */
2228 ap->a_flags &= ~PGO_SYNCIO;
2229
2230 /*
2231 * If we've already got the seglock, flush the node and return.
2232 * The FIP has already been set up for us by lfs_writefile,
2233 * and FIP cleanup and lfs_updatemeta will also be done there,
2234 * unless genfs_putpages returns EDEADLK; then we must flush
2235 * what we have, and correct FIP and segment header accounting.
2236 */
2237 get_seglock:
2238 /*
2239 * If we are not called with the segment locked, lock it.
2240 * Account for a new FIP in the segment header, and set sp->vp.
2241 * (This should duplicate the setup at the top of lfs_writefile().)
2242 */
2243 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2244 if (!seglocked) {
2245 simple_unlock(&vp->v_interlock);
2246 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2247 if (error != 0)
2248 return error;
2249 simple_lock(&vp->v_interlock);
2250 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2251 }
2252 sp = fs->lfs_sp;
2253 KASSERT(sp->vp == NULL);
2254 sp->vp = vp;
2255
2256 /*
2257 * Ensure that the partial segment is marked SS_DIROP if this
2258 * vnode is a DIROP.
2259 */
2260 if (!seglocked && vp->v_uflag & VU_DIROP)
2261 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2262
2263 /*
2264 * Loop over genfs_putpages until all pages are gathered.
2265 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2266 * Whenever we lose the interlock we have to rerun check_dirty, as
2267 * well, since more pages might have been dirtied in our absence.
2268 */
2269 #ifdef DEBUG
2270 debug_n_again = 0;
2271 #endif
2272 do {
2273 busypg = NULL;
2274 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2275 ap->a_flags, 0, &busypg) < 0) {
2276 simple_unlock(&vp->v_interlock);
2277
2278 simple_lock(&vp->v_interlock);
2279 write_and_wait(fs, vp, busypg, seglocked, NULL);
2280 if (!seglocked) {
2281 lfs_release_finfo(fs);
2282 lfs_segunlock(fs);
2283 }
2284 sp->vp = NULL;
2285 goto get_seglock;
2286 }
2287
2288 busypg = NULL;
2289 error = genfs_do_putpages(vp, startoffset, endoffset,
2290 ap->a_flags, &busypg);
2291
2292 if (error == EDEADLK || error == EAGAIN) {
2293 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2294 " %d ino %d off %x (seg %d)\n", error,
2295 ip->i_number, fs->lfs_offset,
2296 dtosn(fs, fs->lfs_offset)));
2297
2298 simple_lock(&vp->v_interlock);
2299 write_and_wait(fs, vp, busypg, seglocked, "again");
2300 }
2301 #ifdef DEBUG
2302 ++debug_n_again;
2303 #endif
2304 } while (error == EDEADLK);
2305 #ifdef DEBUG
2306 if (debug_n_again > TOOMANY)
2307 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2308 #endif
2309
2310 KASSERT(sp != NULL && sp->vp == vp);
2311 if (!seglocked) {
2312 sp->vp = NULL;
2313
2314 /* Write indirect blocks as well */
2315 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2316 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2317 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2318
2319 KASSERT(sp->vp == NULL);
2320 sp->vp = vp;
2321 }
2322
2323 /*
2324 * Blocks are now gathered into a segment waiting to be written.
2325 * All that's left to do is update metadata, and write them.
2326 */
2327 lfs_updatemeta(sp);
2328 KASSERT(sp->vp == vp);
2329 sp->vp = NULL;
2330
2331 /*
2332 * If we were called from lfs_writefile, we don't need to clean up
2333 * the FIP or unlock the segment lock. We're done.
2334 */
2335 if (seglocked)
2336 return error;
2337
2338 /* Clean up FIP and send it to disk. */
2339 lfs_release_finfo(fs);
2340 lfs_writeseg(fs, fs->lfs_sp);
2341
2342 /*
2343 * Remove us from paging queue if we wrote all our pages.
2344 */
2345 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2346 simple_lock(&fs->lfs_interlock);
2347 if (ip->i_flags & IN_PAGING) {
2348 ip->i_flags &= ~IN_PAGING;
2349 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2350 }
2351 simple_unlock(&fs->lfs_interlock);
2352 }
2353
2354 /*
2355 * XXX - with the malloc/copy writeseg, the pages are freed by now
2356 * even if we don't wait (e.g. if we hold a nested lock). This
2357 * will not be true if we stop using malloc/copy.
2358 */
2359 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2360 lfs_segunlock(fs);
2361
2362 /*
2363 * Wait for v_numoutput to drop to zero. The seglock should
2364 * take care of this, but there is a slight possibility that
2365 * aiodoned might not have got around to our buffers yet.
2366 */
2367 if (sync) {
2368 s = splbio();
2369 simple_lock(&global_v_numoutput_slock);
2370 while (vp->v_numoutput > 0) {
2371 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2372 " num %d\n", ip->i_number, vp->v_numoutput));
2373 vp->v_iflag |= VI_BWAIT;
2374 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
2375 &global_v_numoutput_slock);
2376 }
2377 simple_unlock(&global_v_numoutput_slock);
2378 splx(s);
2379 }
2380 return error;
2381 }
2382
2383 /*
2384 * Return the last logical file offset that should be written for this file
2385 * if we're doing a write that ends at "size". If writing, we need to know
2386 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2387 * to know about entire blocks.
2388 */
2389 void
2390 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2391 {
2392 struct inode *ip = VTOI(vp);
2393 struct lfs *fs = ip->i_lfs;
2394 daddr_t olbn, nlbn;
2395
2396 olbn = lblkno(fs, ip->i_size);
2397 nlbn = lblkno(fs, size);
2398 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2399 *eobp = fragroundup(fs, size);
2400 } else {
2401 *eobp = blkroundup(fs, size);
2402 }
2403 }
2404
2405 #ifdef DEBUG
2406 void lfs_dump_vop(void *);
2407
2408 void
2409 lfs_dump_vop(void *v)
2410 {
2411 struct vop_putpages_args /* {
2412 struct vnode *a_vp;
2413 voff_t a_offlo;
2414 voff_t a_offhi;
2415 int a_flags;
2416 } */ *ap = v;
2417
2418 #ifdef DDB
2419 vfs_vnode_print(ap->a_vp, 0, printf);
2420 #endif
2421 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2422 }
2423 #endif
2424
2425 int
2426 lfs_mmap(void *v)
2427 {
2428 struct vop_mmap_args /* {
2429 const struct vnodeop_desc *a_desc;
2430 struct vnode *a_vp;
2431 vm_prot_t a_prot;
2432 kauth_cred_t a_cred;
2433 } */ *ap = v;
2434
2435 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2436 return EOPNOTSUPP;
2437 return ufs_mmap(v);
2438 }
2439