lfs_vnops.c revision 1.214 1 /* $NetBSD: lfs_vnops.c,v 1.214 2008/01/02 11:49:12 ad Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. Neither the name of the University nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
55 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 *
66 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
67 */
68
69 #include <sys/cdefs.h>
70 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.214 2008/01/02 11:49:12 ad Exp $");
71
72 #ifdef _KERNEL_OPT
73 #include "opt_compat_netbsd.h"
74 #endif
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/pool.h>
88 #include <sys/signalvar.h>
89 #include <sys/kauth.h>
90 #include <sys/syslog.h>
91 #include <sys/fstrans.h>
92
93 #include <miscfs/fifofs/fifo.h>
94 #include <miscfs/genfs/genfs.h>
95 #include <miscfs/specfs/specdev.h>
96
97 #include <ufs/ufs/inode.h>
98 #include <ufs/ufs/dir.h>
99 #include <ufs/ufs/ufsmount.h>
100 #include <ufs/ufs/ufs_extern.h>
101
102 #include <uvm/uvm.h>
103 #include <uvm/uvm_pmap.h>
104 #include <uvm/uvm_stat.h>
105 #include <uvm/uvm_pager.h>
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern pid_t lfs_writer_daemon;
111 int lfs_ignore_lazy_sync = 1;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
157 { &vop_getpages_desc, lfs_getpages }, /* getpages */
158 { &vop_putpages_desc, lfs_putpages }, /* putpages */
159 { NULL, NULL }
160 };
161 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
162 { &lfs_vnodeop_p, lfs_vnodeop_entries };
163
164 int (**lfs_specop_p)(void *);
165 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
166 { &vop_default_desc, vn_default_error },
167 { &vop_lookup_desc, spec_lookup }, /* lookup */
168 { &vop_create_desc, spec_create }, /* create */
169 { &vop_mknod_desc, spec_mknod }, /* mknod */
170 { &vop_open_desc, spec_open }, /* open */
171 { &vop_close_desc, lfsspec_close }, /* close */
172 { &vop_access_desc, ufs_access }, /* access */
173 { &vop_getattr_desc, lfs_getattr }, /* getattr */
174 { &vop_setattr_desc, lfs_setattr }, /* setattr */
175 { &vop_read_desc, ufsspec_read }, /* read */
176 { &vop_write_desc, ufsspec_write }, /* write */
177 { &vop_lease_desc, spec_lease_check }, /* lease */
178 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
179 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
180 { &vop_poll_desc, spec_poll }, /* poll */
181 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
182 { &vop_revoke_desc, spec_revoke }, /* revoke */
183 { &vop_mmap_desc, spec_mmap }, /* mmap */
184 { &vop_fsync_desc, spec_fsync }, /* fsync */
185 { &vop_seek_desc, spec_seek }, /* seek */
186 { &vop_remove_desc, spec_remove }, /* remove */
187 { &vop_link_desc, spec_link }, /* link */
188 { &vop_rename_desc, spec_rename }, /* rename */
189 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
190 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
191 { &vop_symlink_desc, spec_symlink }, /* symlink */
192 { &vop_readdir_desc, spec_readdir }, /* readdir */
193 { &vop_readlink_desc, spec_readlink }, /* readlink */
194 { &vop_abortop_desc, spec_abortop }, /* abortop */
195 { &vop_inactive_desc, lfs_inactive }, /* inactive */
196 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
197 { &vop_lock_desc, ufs_lock }, /* lock */
198 { &vop_unlock_desc, ufs_unlock }, /* unlock */
199 { &vop_bmap_desc, spec_bmap }, /* bmap */
200 { &vop_strategy_desc, spec_strategy }, /* strategy */
201 { &vop_print_desc, ufs_print }, /* print */
202 { &vop_islocked_desc, ufs_islocked }, /* islocked */
203 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
204 { &vop_advlock_desc, spec_advlock }, /* advlock */
205 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
206 { &vop_getpages_desc, spec_getpages }, /* getpages */
207 { &vop_putpages_desc, spec_putpages }, /* putpages */
208 { NULL, NULL }
209 };
210 const struct vnodeopv_desc lfs_specop_opv_desc =
211 { &lfs_specop_p, lfs_specop_entries };
212
213 int (**lfs_fifoop_p)(void *);
214 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
215 { &vop_default_desc, vn_default_error },
216 { &vop_lookup_desc, fifo_lookup }, /* lookup */
217 { &vop_create_desc, fifo_create }, /* create */
218 { &vop_mknod_desc, fifo_mknod }, /* mknod */
219 { &vop_open_desc, fifo_open }, /* open */
220 { &vop_close_desc, lfsfifo_close }, /* close */
221 { &vop_access_desc, ufs_access }, /* access */
222 { &vop_getattr_desc, lfs_getattr }, /* getattr */
223 { &vop_setattr_desc, lfs_setattr }, /* setattr */
224 { &vop_read_desc, ufsfifo_read }, /* read */
225 { &vop_write_desc, ufsfifo_write }, /* write */
226 { &vop_lease_desc, fifo_lease_check }, /* lease */
227 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
228 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
229 { &vop_poll_desc, fifo_poll }, /* poll */
230 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
231 { &vop_revoke_desc, fifo_revoke }, /* revoke */
232 { &vop_mmap_desc, fifo_mmap }, /* mmap */
233 { &vop_fsync_desc, fifo_fsync }, /* fsync */
234 { &vop_seek_desc, fifo_seek }, /* seek */
235 { &vop_remove_desc, fifo_remove }, /* remove */
236 { &vop_link_desc, fifo_link }, /* link */
237 { &vop_rename_desc, fifo_rename }, /* rename */
238 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
239 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
240 { &vop_symlink_desc, fifo_symlink }, /* symlink */
241 { &vop_readdir_desc, fifo_readdir }, /* readdir */
242 { &vop_readlink_desc, fifo_readlink }, /* readlink */
243 { &vop_abortop_desc, fifo_abortop }, /* abortop */
244 { &vop_inactive_desc, lfs_inactive }, /* inactive */
245 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
246 { &vop_lock_desc, ufs_lock }, /* lock */
247 { &vop_unlock_desc, ufs_unlock }, /* unlock */
248 { &vop_bmap_desc, fifo_bmap }, /* bmap */
249 { &vop_strategy_desc, fifo_strategy }, /* strategy */
250 { &vop_print_desc, ufs_print }, /* print */
251 { &vop_islocked_desc, ufs_islocked }, /* islocked */
252 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
253 { &vop_advlock_desc, fifo_advlock }, /* advlock */
254 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
255 { &vop_putpages_desc, fifo_putpages }, /* putpages */
256 { NULL, NULL }
257 };
258 const struct vnodeopv_desc lfs_fifoop_opv_desc =
259 { &lfs_fifoop_p, lfs_fifoop_entries };
260
261 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
262
263 #define LFS_READWRITE
264 #include <ufs/ufs/ufs_readwrite.c>
265 #undef LFS_READWRITE
266
267 /*
268 * Synch an open file.
269 */
270 /* ARGSUSED */
271 int
272 lfs_fsync(void *v)
273 {
274 struct vop_fsync_args /* {
275 struct vnode *a_vp;
276 kauth_cred_t a_cred;
277 int a_flags;
278 off_t offlo;
279 off_t offhi;
280 } */ *ap = v;
281 struct vnode *vp = ap->a_vp;
282 int error, wait;
283 struct inode *ip = VTOI(vp);
284 struct lfs *fs = ip->i_lfs;
285
286 /* If we're mounted read-only, don't try to sync. */
287 if (fs->lfs_ronly)
288 return 0;
289
290 /*
291 * Trickle sync simply adds this vnode to the pager list, as if
292 * the pagedaemon had requested a pageout.
293 */
294 if (ap->a_flags & FSYNC_LAZY) {
295 if (lfs_ignore_lazy_sync == 0) {
296 mutex_enter(&lfs_lock);
297 if (!(ip->i_flags & IN_PAGING)) {
298 ip->i_flags |= IN_PAGING;
299 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
300 i_lfs_pchain);
301 }
302 wakeup(&lfs_writer_daemon);
303 mutex_exit(&lfs_lock);
304 }
305 return 0;
306 }
307
308 /*
309 * If a vnode is bring cleaned, flush it out before we try to
310 * reuse it. This prevents the cleaner from writing files twice
311 * in the same partial segment, causing an accounting underflow.
312 */
313 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
314 lfs_vflush(vp);
315 }
316
317 wait = (ap->a_flags & FSYNC_WAIT);
318 do {
319 mutex_enter(&vp->v_interlock);
320 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
321 round_page(ap->a_offhi),
322 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
323 if (error == EAGAIN) {
324 mutex_enter(&lfs_lock);
325 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
326 hz / 100 + 1, &lfs_lock);
327 mutex_exit(&lfs_lock);
328 }
329 } while (error == EAGAIN);
330 if (error)
331 return error;
332
333 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
334 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
335
336 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
337 int l = 0;
338 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
339 curlwp->l_cred);
340 }
341 if (wait && !VPISEMPTY(vp))
342 LFS_SET_UINO(ip, IN_MODIFIED);
343
344 return error;
345 }
346
347 /*
348 * Take IN_ADIROP off, then call ufs_inactive.
349 */
350 int
351 lfs_inactive(void *v)
352 {
353 struct vop_inactive_args /* {
354 struct vnode *a_vp;
355 } */ *ap = v;
356
357 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
358
359 lfs_unmark_vnode(ap->a_vp);
360
361 /*
362 * The Ifile is only ever inactivated on unmount.
363 * Streamline this process by not giving it more dirty blocks.
364 */
365 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
366 mutex_enter(&lfs_lock);
367 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
368 mutex_exit(&lfs_lock);
369 VOP_UNLOCK(ap->a_vp, 0);
370 return 0;
371 }
372
373 return ufs_inactive(v);
374 }
375
376 /*
377 * These macros are used to bracket UFS directory ops, so that we can
378 * identify all the pages touched during directory ops which need to
379 * be ordered and flushed atomically, so that they may be recovered.
380 *
381 * Because we have to mark nodes VU_DIROP in order to prevent
382 * the cache from reclaiming them while a dirop is in progress, we must
383 * also manage the number of nodes so marked (otherwise we can run out).
384 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
385 * is decremented during segment write, when VU_DIROP is taken off.
386 */
387 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
388 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
389 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
390 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
391 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
392 static int lfs_set_dirop(struct vnode *, struct vnode *);
393
394 static int
395 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
396 {
397 struct lfs *fs;
398 int error;
399
400 KASSERT(VOP_ISLOCKED(dvp));
401 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
402
403 fs = VTOI(dvp)->i_lfs;
404
405 ASSERT_NO_SEGLOCK(fs);
406 /*
407 * LFS_NRESERVE calculates direct and indirect blocks as well
408 * as an inode block; an overestimate in most cases.
409 */
410 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
411 return (error);
412
413 restart:
414 mutex_enter(&lfs_lock);
415 if (fs->lfs_dirops == 0) {
416 mutex_exit(&lfs_lock);
417 lfs_check(dvp, LFS_UNUSED_LBN, 0);
418 mutex_enter(&lfs_lock);
419 }
420 while (fs->lfs_writer) {
421 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
422 "lfs_sdirop", 0, &lfs_lock);
423 if (error == EINTR) {
424 mutex_exit(&lfs_lock);
425 goto unreserve;
426 }
427 }
428 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
429 wakeup(&lfs_writer_daemon);
430 mutex_exit(&lfs_lock);
431 preempt();
432 goto restart;
433 }
434
435 if (lfs_dirvcount > LFS_MAX_DIROP) {
436 mutex_exit(&lfs_lock);
437 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
438 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
439 if ((error = mtsleep(&lfs_dirvcount,
440 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
441 &lfs_lock)) != 0) {
442 goto unreserve;
443 }
444 goto restart;
445 }
446
447 ++fs->lfs_dirops;
448 fs->lfs_doifile = 1;
449 mutex_exit(&lfs_lock);
450
451 /* Hold a reference so SET_ENDOP will be happy */
452 vref(dvp);
453 if (vp) {
454 vref(vp);
455 MARK_VNODE(vp);
456 }
457
458 MARK_VNODE(dvp);
459 return 0;
460
461 unreserve:
462 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
463 return error;
464 }
465
466 /*
467 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
468 * in getnewvnode(), if we have a stacked filesystem mounted on top
469 * of us.
470 *
471 * NB: this means we have to clear the new vnodes on error. Fortunately
472 * SET_ENDOP is there to do that for us.
473 */
474 static int
475 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
476 {
477 int error;
478 struct lfs *fs;
479
480 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
481 ASSERT_NO_SEGLOCK(fs);
482 if (fs->lfs_ronly)
483 return EROFS;
484 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
485 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
486 dvp, error));
487 return error;
488 }
489 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
490 if (vpp) {
491 ungetnewvnode(*vpp);
492 *vpp = NULL;
493 }
494 return error;
495 }
496 return 0;
497 }
498
499 #define SET_ENDOP_BASE(fs, dvp, str) \
500 do { \
501 mutex_enter(&lfs_lock); \
502 --(fs)->lfs_dirops; \
503 if (!(fs)->lfs_dirops) { \
504 if ((fs)->lfs_nadirop) { \
505 panic("SET_ENDOP: %s: no dirops but " \
506 " nadirop=%d", (str), \
507 (fs)->lfs_nadirop); \
508 } \
509 wakeup(&(fs)->lfs_writer); \
510 mutex_exit(&lfs_lock); \
511 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
512 } else \
513 mutex_exit(&lfs_lock); \
514 } while(0)
515 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
516 do { \
517 UNMARK_VNODE(dvp); \
518 if (nvpp && *nvpp) \
519 UNMARK_VNODE(*nvpp); \
520 /* Check for error return to stem vnode leakage */ \
521 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
522 ungetnewvnode(*(nvpp)); \
523 SET_ENDOP_BASE((fs), (dvp), (str)); \
524 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
525 vrele(dvp); \
526 } while(0)
527 #define SET_ENDOP_CREATE_AP(ap, str) \
528 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
529 (ap)->a_vpp, (str))
530 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
531 do { \
532 UNMARK_VNODE(dvp); \
533 if (ovp) \
534 UNMARK_VNODE(ovp); \
535 SET_ENDOP_BASE((fs), (dvp), (str)); \
536 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
537 vrele(dvp); \
538 if (ovp) \
539 vrele(ovp); \
540 } while(0)
541
542 void
543 lfs_mark_vnode(struct vnode *vp)
544 {
545 struct inode *ip = VTOI(vp);
546 struct lfs *fs = ip->i_lfs;
547
548 mutex_enter(&lfs_lock);
549 if (!(ip->i_flag & IN_ADIROP)) {
550 if (!(vp->v_uflag & VU_DIROP)) {
551 mutex_enter(&vp->v_interlock);
552 (void)lfs_vref(vp);
553 ++lfs_dirvcount;
554 ++fs->lfs_dirvcount;
555 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
556 vp->v_uflag |= VU_DIROP;
557 }
558 ++fs->lfs_nadirop;
559 ip->i_flag |= IN_ADIROP;
560 } else
561 KASSERT(vp->v_uflag & VU_DIROP);
562 mutex_exit(&lfs_lock);
563 }
564
565 void
566 lfs_unmark_vnode(struct vnode *vp)
567 {
568 struct inode *ip = VTOI(vp);
569
570 if (ip && (ip->i_flag & IN_ADIROP)) {
571 KASSERT(vp->v_uflag & VU_DIROP);
572 mutex_enter(&lfs_lock);
573 --ip->i_lfs->lfs_nadirop;
574 mutex_exit(&lfs_lock);
575 ip->i_flag &= ~IN_ADIROP;
576 }
577 }
578
579 int
580 lfs_symlink(void *v)
581 {
582 struct vop_symlink_args /* {
583 struct vnode *a_dvp;
584 struct vnode **a_vpp;
585 struct componentname *a_cnp;
586 struct vattr *a_vap;
587 char *a_target;
588 } */ *ap = v;
589 int error;
590
591 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
592 vput(ap->a_dvp);
593 return error;
594 }
595 error = ufs_symlink(ap);
596 SET_ENDOP_CREATE_AP(ap, "symlink");
597 return (error);
598 }
599
600 int
601 lfs_mknod(void *v)
602 {
603 struct vop_mknod_args /* {
604 struct vnode *a_dvp;
605 struct vnode **a_vpp;
606 struct componentname *a_cnp;
607 struct vattr *a_vap;
608 } */ *ap = v;
609 struct vattr *vap = ap->a_vap;
610 struct vnode **vpp = ap->a_vpp;
611 struct inode *ip;
612 int error;
613 struct mount *mp;
614 ino_t ino;
615
616 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
617 vput(ap->a_dvp);
618 return error;
619 }
620 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
621 ap->a_dvp, vpp, ap->a_cnp);
622
623 /* Either way we're done with the dirop at this point */
624 SET_ENDOP_CREATE_AP(ap, "mknod");
625
626 if (error)
627 return (error);
628
629 ip = VTOI(*vpp);
630 mp = (*vpp)->v_mount;
631 ino = ip->i_number;
632 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
633 if (vap->va_rdev != VNOVAL) {
634 /*
635 * Want to be able to use this to make badblock
636 * inodes, so don't truncate the dev number.
637 */
638 #if 0
639 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
640 UFS_MPNEEDSWAP((*vpp)->v_mount));
641 #else
642 ip->i_ffs1_rdev = vap->va_rdev;
643 #endif
644 }
645
646 /*
647 * Call fsync to write the vnode so that we don't have to deal with
648 * flushing it when it's marked VU_DIROP|VI_XLOCK.
649 *
650 * XXX KS - If we can't flush we also can't call vgone(), so must
651 * return. But, that leaves this vnode in limbo, also not good.
652 * Can this ever happen (barring hardware failure)?
653 */
654 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
655 panic("lfs_mknod: couldn't fsync (ino %llu)",
656 (unsigned long long)ino);
657 /* return (error); */
658 }
659 /*
660 * Remove vnode so that it will be reloaded by VFS_VGET and
661 * checked to see if it is an alias of an existing entry in
662 * the inode cache.
663 */
664 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
665
666 VOP_UNLOCK(*vpp, 0);
667 (*vpp)->v_type = VNON;
668 vgone(*vpp);
669 error = VFS_VGET(mp, ino, vpp);
670
671 if (error != 0) {
672 *vpp = NULL;
673 return (error);
674 }
675 return (0);
676 }
677
678 int
679 lfs_create(void *v)
680 {
681 struct vop_create_args /* {
682 struct vnode *a_dvp;
683 struct vnode **a_vpp;
684 struct componentname *a_cnp;
685 struct vattr *a_vap;
686 } */ *ap = v;
687 int error;
688
689 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
690 vput(ap->a_dvp);
691 return error;
692 }
693 error = ufs_create(ap);
694 SET_ENDOP_CREATE_AP(ap, "create");
695 return (error);
696 }
697
698 int
699 lfs_mkdir(void *v)
700 {
701 struct vop_mkdir_args /* {
702 struct vnode *a_dvp;
703 struct vnode **a_vpp;
704 struct componentname *a_cnp;
705 struct vattr *a_vap;
706 } */ *ap = v;
707 int error;
708
709 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
710 vput(ap->a_dvp);
711 return error;
712 }
713 error = ufs_mkdir(ap);
714 SET_ENDOP_CREATE_AP(ap, "mkdir");
715 return (error);
716 }
717
718 int
719 lfs_remove(void *v)
720 {
721 struct vop_remove_args /* {
722 struct vnode *a_dvp;
723 struct vnode *a_vp;
724 struct componentname *a_cnp;
725 } */ *ap = v;
726 struct vnode *dvp, *vp;
727 struct inode *ip;
728 int error;
729
730 dvp = ap->a_dvp;
731 vp = ap->a_vp;
732 ip = VTOI(vp);
733 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
734 if (dvp == vp)
735 vrele(vp);
736 else
737 vput(vp);
738 vput(dvp);
739 return error;
740 }
741 error = ufs_remove(ap);
742 if (ip->i_nlink == 0)
743 lfs_orphan(ip->i_lfs, ip->i_number);
744 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
745 return (error);
746 }
747
748 int
749 lfs_rmdir(void *v)
750 {
751 struct vop_rmdir_args /* {
752 struct vnodeop_desc *a_desc;
753 struct vnode *a_dvp;
754 struct vnode *a_vp;
755 struct componentname *a_cnp;
756 } */ *ap = v;
757 struct vnode *vp;
758 struct inode *ip;
759 int error;
760
761 vp = ap->a_vp;
762 ip = VTOI(vp);
763 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
764 if (ap->a_dvp == vp)
765 vrele(ap->a_dvp);
766 else
767 vput(ap->a_dvp);
768 vput(vp);
769 return error;
770 }
771 error = ufs_rmdir(ap);
772 if (ip->i_nlink == 0)
773 lfs_orphan(ip->i_lfs, ip->i_number);
774 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
775 return (error);
776 }
777
778 int
779 lfs_link(void *v)
780 {
781 struct vop_link_args /* {
782 struct vnode *a_dvp;
783 struct vnode *a_vp;
784 struct componentname *a_cnp;
785 } */ *ap = v;
786 int error;
787 struct vnode **vpp = NULL;
788
789 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
790 vput(ap->a_dvp);
791 return error;
792 }
793 error = ufs_link(ap);
794 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
795 return (error);
796 }
797
798 int
799 lfs_rename(void *v)
800 {
801 struct vop_rename_args /* {
802 struct vnode *a_fdvp;
803 struct vnode *a_fvp;
804 struct componentname *a_fcnp;
805 struct vnode *a_tdvp;
806 struct vnode *a_tvp;
807 struct componentname *a_tcnp;
808 } */ *ap = v;
809 struct vnode *tvp, *fvp, *tdvp, *fdvp;
810 struct componentname *tcnp, *fcnp;
811 int error;
812 struct lfs *fs;
813
814 fs = VTOI(ap->a_fdvp)->i_lfs;
815 tvp = ap->a_tvp;
816 tdvp = ap->a_tdvp;
817 tcnp = ap->a_tcnp;
818 fvp = ap->a_fvp;
819 fdvp = ap->a_fdvp;
820 fcnp = ap->a_fcnp;
821
822 /*
823 * Check for cross-device rename.
824 * If it is, we don't want to set dirops, just error out.
825 * (In particular note that MARK_VNODE(tdvp) will DTWT on
826 * a cross-device rename.)
827 *
828 * Copied from ufs_rename.
829 */
830 if ((fvp->v_mount != tdvp->v_mount) ||
831 (tvp && (fvp->v_mount != tvp->v_mount))) {
832 error = EXDEV;
833 goto errout;
834 }
835
836 /*
837 * Check to make sure we're not renaming a vnode onto itself
838 * (deleting a hard link by renaming one name onto another);
839 * if we are we can't recursively call VOP_REMOVE since that
840 * would leave us with an unaccounted-for number of live dirops.
841 *
842 * Inline the relevant section of ufs_rename here, *before*
843 * calling SET_DIROP_REMOVE.
844 */
845 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
846 (VTOI(tdvp)->i_flags & APPEND))) {
847 error = EPERM;
848 goto errout;
849 }
850 if (fvp == tvp) {
851 if (fvp->v_type == VDIR) {
852 error = EINVAL;
853 goto errout;
854 }
855
856 /* Release destination completely. */
857 VOP_ABORTOP(tdvp, tcnp);
858 vput(tdvp);
859 vput(tvp);
860
861 /* Delete source. */
862 vrele(fvp);
863 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
864 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
865 fcnp->cn_nameiop = DELETE;
866 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
867 if ((error = relookup(fdvp, &fvp, fcnp))) {
868 vput(fdvp);
869 return (error);
870 }
871 return (VOP_REMOVE(fdvp, fvp, fcnp));
872 }
873
874 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
875 goto errout;
876 MARK_VNODE(fdvp);
877 MARK_VNODE(fvp);
878
879 error = ufs_rename(ap);
880 UNMARK_VNODE(fdvp);
881 UNMARK_VNODE(fvp);
882 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
883 return (error);
884
885 errout:
886 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
887 if (tdvp == tvp)
888 vrele(tdvp);
889 else
890 vput(tdvp);
891 if (tvp)
892 vput(tvp);
893 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
894 vrele(fdvp);
895 vrele(fvp);
896 return (error);
897 }
898
899 /* XXX hack to avoid calling ITIMES in getattr */
900 int
901 lfs_getattr(void *v)
902 {
903 struct vop_getattr_args /* {
904 struct vnode *a_vp;
905 struct vattr *a_vap;
906 kauth_cred_t a_cred;
907 } */ *ap = v;
908 struct vnode *vp = ap->a_vp;
909 struct inode *ip = VTOI(vp);
910 struct vattr *vap = ap->a_vap;
911 struct lfs *fs = ip->i_lfs;
912 /*
913 * Copy from inode table
914 */
915 vap->va_fsid = ip->i_dev;
916 vap->va_fileid = ip->i_number;
917 vap->va_mode = ip->i_mode & ~IFMT;
918 vap->va_nlink = ip->i_nlink;
919 vap->va_uid = ip->i_uid;
920 vap->va_gid = ip->i_gid;
921 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
922 vap->va_size = vp->v_size;
923 vap->va_atime.tv_sec = ip->i_ffs1_atime;
924 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
925 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
926 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
927 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
928 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
929 vap->va_flags = ip->i_flags;
930 vap->va_gen = ip->i_gen;
931 /* this doesn't belong here */
932 if (vp->v_type == VBLK)
933 vap->va_blocksize = BLKDEV_IOSIZE;
934 else if (vp->v_type == VCHR)
935 vap->va_blocksize = MAXBSIZE;
936 else
937 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
938 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
939 vap->va_type = vp->v_type;
940 vap->va_filerev = ip->i_modrev;
941 return (0);
942 }
943
944 /*
945 * Check to make sure the inode blocks won't choke the buffer
946 * cache, then call ufs_setattr as usual.
947 */
948 int
949 lfs_setattr(void *v)
950 {
951 struct vop_setattr_args /* {
952 struct vnode *a_vp;
953 struct vattr *a_vap;
954 kauth_cred_t a_cred;
955 } */ *ap = v;
956 struct vnode *vp = ap->a_vp;
957
958 lfs_check(vp, LFS_UNUSED_LBN, 0);
959 return ufs_setattr(v);
960 }
961
962 /*
963 * Release the block we hold on lfs_newseg wrapping. Called on file close,
964 * or explicitly from LFCNWRAPGO. Called with the interlock held.
965 */
966 static int
967 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
968 {
969 if (fs->lfs_stoplwp != curlwp)
970 return EBUSY;
971
972 fs->lfs_stoplwp = NULL;
973 cv_signal(&fs->lfs_stopcv);
974
975 KASSERT(fs->lfs_nowrap > 0);
976 if (fs->lfs_nowrap <= 0) {
977 return 0;
978 }
979
980 if (--fs->lfs_nowrap == 0) {
981 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
982 wakeup(&fs->lfs_wrappass);
983 lfs_wakeup_cleaner(fs);
984 }
985 if (waitfor) {
986 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
987 0, &lfs_lock);
988 }
989
990 return 0;
991 }
992
993 /*
994 * Close called
995 */
996 /* ARGSUSED */
997 int
998 lfs_close(void *v)
999 {
1000 struct vop_close_args /* {
1001 struct vnode *a_vp;
1002 int a_fflag;
1003 kauth_cred_t a_cred;
1004 } */ *ap = v;
1005 struct vnode *vp = ap->a_vp;
1006 struct inode *ip = VTOI(vp);
1007 struct lfs *fs = ip->i_lfs;
1008
1009 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1010 fs->lfs_stoplwp == curlwp) {
1011 mutex_enter(&lfs_lock);
1012 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1013 lfs_wrapgo(fs, ip, 0);
1014 mutex_exit(&lfs_lock);
1015 }
1016
1017 if (vp == ip->i_lfs->lfs_ivnode &&
1018 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1019 return 0;
1020
1021 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1022 LFS_ITIMES(ip, NULL, NULL, NULL);
1023 }
1024 return (0);
1025 }
1026
1027 /*
1028 * Close wrapper for special devices.
1029 *
1030 * Update the times on the inode then do device close.
1031 */
1032 int
1033 lfsspec_close(void *v)
1034 {
1035 struct vop_close_args /* {
1036 struct vnode *a_vp;
1037 int a_fflag;
1038 kauth_cred_t a_cred;
1039 } */ *ap = v;
1040 struct vnode *vp;
1041 struct inode *ip;
1042
1043 vp = ap->a_vp;
1044 ip = VTOI(vp);
1045 if (vp->v_usecount > 1) {
1046 LFS_ITIMES(ip, NULL, NULL, NULL);
1047 }
1048 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1049 }
1050
1051 /*
1052 * Close wrapper for fifo's.
1053 *
1054 * Update the times on the inode then do device close.
1055 */
1056 int
1057 lfsfifo_close(void *v)
1058 {
1059 struct vop_close_args /* {
1060 struct vnode *a_vp;
1061 int a_fflag;
1062 kauth_cred_ a_cred;
1063 } */ *ap = v;
1064 struct vnode *vp;
1065 struct inode *ip;
1066
1067 vp = ap->a_vp;
1068 ip = VTOI(vp);
1069 if (ap->a_vp->v_usecount > 1) {
1070 LFS_ITIMES(ip, NULL, NULL, NULL);
1071 }
1072 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1073 }
1074
1075 /*
1076 * Reclaim an inode so that it can be used for other purposes.
1077 */
1078
1079 int
1080 lfs_reclaim(void *v)
1081 {
1082 struct vop_reclaim_args /* {
1083 struct vnode *a_vp;
1084 } */ *ap = v;
1085 struct vnode *vp = ap->a_vp;
1086 struct inode *ip = VTOI(vp);
1087 struct lfs *fs = ip->i_lfs;
1088 int error;
1089
1090 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1091
1092 mutex_enter(&lfs_lock);
1093 LFS_CLR_UINO(ip, IN_ALLMOD);
1094 mutex_exit(&lfs_lock);
1095 if ((error = ufs_reclaim(vp)))
1096 return (error);
1097
1098 /*
1099 * Take us off the paging and/or dirop queues if we were on them.
1100 * We shouldn't be on them.
1101 */
1102 mutex_enter(&lfs_lock);
1103 if (ip->i_flags & IN_PAGING) {
1104 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1105 fs->lfs_fsmnt);
1106 ip->i_flags &= ~IN_PAGING;
1107 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1108 }
1109 if (vp->v_uflag & VU_DIROP) {
1110 panic("reclaimed vnode is VU_DIROP");
1111 vp->v_uflag &= ~VU_DIROP;
1112 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1113 }
1114 mutex_exit(&lfs_lock);
1115
1116 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1117 lfs_deregister_all(vp);
1118 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1119 ip->inode_ext.lfs = NULL;
1120 genfs_node_destroy(vp);
1121 pool_put(&lfs_inode_pool, vp->v_data);
1122 vp->v_data = NULL;
1123 return (0);
1124 }
1125
1126 /*
1127 * Read a block from a storage device.
1128 * In order to avoid reading blocks that are in the process of being
1129 * written by the cleaner---and hence are not mutexed by the normal
1130 * buffer cache / page cache mechanisms---check for collisions before
1131 * reading.
1132 *
1133 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1134 * the active cleaner test.
1135 *
1136 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1137 */
1138 int
1139 lfs_strategy(void *v)
1140 {
1141 struct vop_strategy_args /* {
1142 struct vnode *a_vp;
1143 struct buf *a_bp;
1144 } */ *ap = v;
1145 struct buf *bp;
1146 struct lfs *fs;
1147 struct vnode *vp;
1148 struct inode *ip;
1149 daddr_t tbn;
1150 int i, sn, error, slept;
1151
1152 bp = ap->a_bp;
1153 vp = ap->a_vp;
1154 ip = VTOI(vp);
1155 fs = ip->i_lfs;
1156
1157 /* lfs uses its strategy routine only for read */
1158 KASSERT(bp->b_flags & B_READ);
1159
1160 if (vp->v_type == VBLK || vp->v_type == VCHR)
1161 panic("lfs_strategy: spec");
1162 KASSERT(bp->b_bcount != 0);
1163 if (bp->b_blkno == bp->b_lblkno) {
1164 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1165 NULL);
1166 if (error) {
1167 bp->b_error = error;
1168 bp->b_resid = bp->b_bcount;
1169 biodone(bp);
1170 return (error);
1171 }
1172 if ((long)bp->b_blkno == -1) /* no valid data */
1173 clrbuf(bp);
1174 }
1175 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1176 bp->b_resid = bp->b_bcount;
1177 biodone(bp);
1178 return (0);
1179 }
1180
1181 slept = 1;
1182 mutex_enter(&lfs_lock);
1183 while (slept && fs->lfs_seglock) {
1184 mutex_exit(&lfs_lock);
1185 /*
1186 * Look through list of intervals.
1187 * There will only be intervals to look through
1188 * if the cleaner holds the seglock.
1189 * Since the cleaner is synchronous, we can trust
1190 * the list of intervals to be current.
1191 */
1192 tbn = dbtofsb(fs, bp->b_blkno);
1193 sn = dtosn(fs, tbn);
1194 slept = 0;
1195 for (i = 0; i < fs->lfs_cleanind; i++) {
1196 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1197 tbn >= fs->lfs_cleanint[i]) {
1198 DLOG((DLOG_CLEAN,
1199 "lfs_strategy: ino %d lbn %" PRId64
1200 " ind %d sn %d fsb %" PRIx32
1201 " given sn %d fsb %" PRIx64 "\n",
1202 ip->i_number, bp->b_lblkno, i,
1203 dtosn(fs, fs->lfs_cleanint[i]),
1204 fs->lfs_cleanint[i], sn, tbn));
1205 DLOG((DLOG_CLEAN,
1206 "lfs_strategy: sleeping on ino %d lbn %"
1207 PRId64 "\n", ip->i_number, bp->b_lblkno));
1208 mutex_enter(&lfs_lock);
1209 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1210 /* Cleaner can't wait for itself */
1211 mtsleep(&fs->lfs_iocount,
1212 (PRIBIO + 1) | PNORELOCK,
1213 "clean2", 0,
1214 &lfs_lock);
1215 slept = 1;
1216 break;
1217 } else if (fs->lfs_seglock) {
1218 mtsleep(&fs->lfs_seglock,
1219 (PRIBIO + 1) | PNORELOCK,
1220 "clean1", 0,
1221 &lfs_lock);
1222 slept = 1;
1223 break;
1224 }
1225 mutex_exit(&lfs_lock);
1226 }
1227 }
1228 mutex_enter(&lfs_lock);
1229 }
1230 mutex_exit(&lfs_lock);
1231
1232 vp = ip->i_devvp;
1233 VOP_STRATEGY(vp, bp);
1234 return (0);
1235 }
1236
1237 void
1238 lfs_flush_dirops(struct lfs *fs)
1239 {
1240 struct inode *ip, *nip;
1241 struct vnode *vp;
1242 extern int lfs_dostats;
1243 struct segment *sp;
1244 int waslocked;
1245
1246 ASSERT_MAYBE_SEGLOCK(fs);
1247 KASSERT(fs->lfs_nadirop == 0);
1248
1249 if (fs->lfs_ronly)
1250 return;
1251
1252 mutex_enter(&lfs_lock);
1253 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1254 mutex_exit(&lfs_lock);
1255 return;
1256 } else
1257 mutex_exit(&lfs_lock);
1258
1259 if (lfs_dostats)
1260 ++lfs_stats.flush_invoked;
1261
1262 /*
1263 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1264 * Technically this is a checkpoint (the on-disk state is valid)
1265 * even though we are leaving out all the file data.
1266 */
1267 lfs_imtime(fs);
1268 lfs_seglock(fs, SEGM_CKP);
1269 sp = fs->lfs_sp;
1270
1271 /*
1272 * lfs_writevnodes, optimized to get dirops out of the way.
1273 * Only write dirops, and don't flush files' pages, only
1274 * blocks from the directories.
1275 *
1276 * We don't need to vref these files because they are
1277 * dirops and so hold an extra reference until the
1278 * segunlock clears them of that status.
1279 *
1280 * We don't need to check for IN_ADIROP because we know that
1281 * no dirops are active.
1282 *
1283 */
1284 mutex_enter(&lfs_lock);
1285 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1286 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1287 mutex_exit(&lfs_lock);
1288 vp = ITOV(ip);
1289
1290 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1291
1292 /*
1293 * All writes to directories come from dirops; all
1294 * writes to files' direct blocks go through the page
1295 * cache, which we're not touching. Reads to files
1296 * and/or directories will not be affected by writing
1297 * directory blocks inodes and file inodes. So we don't
1298 * really need to lock. If we don't lock, though,
1299 * make sure that we don't clear IN_MODIFIED
1300 * unnecessarily.
1301 */
1302 if (vp->v_iflag & VI_XLOCK) {
1303 mutex_enter(&lfs_lock);
1304 continue;
1305 }
1306 waslocked = VOP_ISLOCKED(vp);
1307 if (vp->v_type != VREG &&
1308 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1309 lfs_writefile(fs, sp, vp);
1310 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1311 !(ip->i_flag & IN_ALLMOD)) {
1312 mutex_enter(&lfs_lock);
1313 LFS_SET_UINO(ip, IN_MODIFIED);
1314 mutex_exit(&lfs_lock);
1315 }
1316 }
1317 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1318 (void) lfs_writeinode(fs, sp, ip);
1319 mutex_enter(&lfs_lock);
1320 if (waslocked == LK_EXCLOTHER)
1321 LFS_SET_UINO(ip, IN_MODIFIED);
1322 }
1323 mutex_exit(&lfs_lock);
1324 /* We've written all the dirops there are */
1325 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1326 lfs_finalize_fs_seguse(fs);
1327 (void) lfs_writeseg(fs, sp);
1328 lfs_segunlock(fs);
1329 }
1330
1331 /*
1332 * Flush all vnodes for which the pagedaemon has requested pageouts.
1333 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1334 * has just run, this would be an error). If we have to skip a vnode
1335 * for any reason, just skip it; if we have to wait for the cleaner,
1336 * abort. The writer daemon will call us again later.
1337 */
1338 void
1339 lfs_flush_pchain(struct lfs *fs)
1340 {
1341 struct inode *ip, *nip;
1342 struct vnode *vp;
1343 extern int lfs_dostats;
1344 struct segment *sp;
1345 int error;
1346
1347 ASSERT_NO_SEGLOCK(fs);
1348
1349 if (fs->lfs_ronly)
1350 return;
1351
1352 mutex_enter(&lfs_lock);
1353 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1354 mutex_exit(&lfs_lock);
1355 return;
1356 } else
1357 mutex_exit(&lfs_lock);
1358
1359 /* Get dirops out of the way */
1360 lfs_flush_dirops(fs);
1361
1362 if (lfs_dostats)
1363 ++lfs_stats.flush_invoked;
1364
1365 /*
1366 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1367 */
1368 lfs_imtime(fs);
1369 lfs_seglock(fs, 0);
1370 sp = fs->lfs_sp;
1371
1372 /*
1373 * lfs_writevnodes, optimized to clear pageout requests.
1374 * Only write non-dirop files that are in the pageout queue.
1375 * We're very conservative about what we write; we want to be
1376 * fast and async.
1377 */
1378 mutex_enter(&lfs_lock);
1379 top:
1380 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1381 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1382 vp = ITOV(ip);
1383
1384 if (!(ip->i_flags & IN_PAGING))
1385 goto top;
1386
1387 mutex_enter(&vp->v_interlock);
1388 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1389 mutex_exit(&vp->v_interlock);
1390 continue;
1391 }
1392 if (vp->v_type != VREG) {
1393 mutex_exit(&vp->v_interlock);
1394 continue;
1395 }
1396 if (lfs_vref(vp))
1397 continue;
1398 mutex_exit(&lfs_lock);
1399
1400 if (VOP_ISLOCKED(vp)) {
1401 lfs_vunref(vp);
1402 mutex_enter(&lfs_lock);
1403 continue;
1404 }
1405
1406 error = lfs_writefile(fs, sp, vp);
1407 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1408 !(ip->i_flag & IN_ALLMOD)) {
1409 mutex_enter(&lfs_lock);
1410 LFS_SET_UINO(ip, IN_MODIFIED);
1411 mutex_exit(&lfs_lock);
1412 }
1413 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1414 (void) lfs_writeinode(fs, sp, ip);
1415
1416 lfs_vunref(vp);
1417
1418 if (error == EAGAIN) {
1419 lfs_writeseg(fs, sp);
1420 mutex_enter(&lfs_lock);
1421 break;
1422 }
1423 mutex_enter(&lfs_lock);
1424 }
1425 mutex_exit(&lfs_lock);
1426 (void) lfs_writeseg(fs, sp);
1427 lfs_segunlock(fs);
1428 }
1429
1430 /*
1431 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1432 */
1433 int
1434 lfs_fcntl(void *v)
1435 {
1436 struct vop_fcntl_args /* {
1437 struct vnode *a_vp;
1438 u_long a_command;
1439 void * a_data;
1440 int a_fflag;
1441 kauth_cred_t a_cred;
1442 } */ *ap = v;
1443 struct timeval *tvp;
1444 BLOCK_INFO *blkiov;
1445 CLEANERINFO *cip;
1446 SEGUSE *sup;
1447 int blkcnt, error, oclean;
1448 size_t fh_size;
1449 struct lfs_fcntl_markv blkvp;
1450 struct lwp *l;
1451 fsid_t *fsidp;
1452 struct lfs *fs;
1453 struct buf *bp;
1454 fhandle_t *fhp;
1455 daddr_t off;
1456
1457 /* Only respect LFS fcntls on fs root or Ifile */
1458 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1459 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1460 return ufs_fcntl(v);
1461 }
1462
1463 /* Avoid locking a draining lock */
1464 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1465 return ESHUTDOWN;
1466 }
1467
1468 /* LFS control and monitoring fcntls are available only to root */
1469 l = curlwp;
1470 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1471 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1472 NULL)) != 0)
1473 return (error);
1474
1475 fs = VTOI(ap->a_vp)->i_lfs;
1476 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1477
1478 error = 0;
1479 switch (ap->a_command) {
1480 case LFCNSEGWAITALL:
1481 case LFCNSEGWAITALL_COMPAT:
1482 fsidp = NULL;
1483 /* FALLSTHROUGH */
1484 case LFCNSEGWAIT:
1485 case LFCNSEGWAIT_COMPAT:
1486 tvp = (struct timeval *)ap->a_data;
1487 mutex_enter(&lfs_lock);
1488 ++fs->lfs_sleepers;
1489 mutex_exit(&lfs_lock);
1490
1491 error = lfs_segwait(fsidp, tvp);
1492
1493 mutex_enter(&lfs_lock);
1494 if (--fs->lfs_sleepers == 0)
1495 wakeup(&fs->lfs_sleepers);
1496 mutex_exit(&lfs_lock);
1497 return error;
1498
1499 case LFCNBMAPV:
1500 case LFCNMARKV:
1501 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1502
1503 blkcnt = blkvp.blkcnt;
1504 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1505 return (EINVAL);
1506 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1507 if ((error = copyin(blkvp.blkiov, blkiov,
1508 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1509 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1510 return error;
1511 }
1512
1513 mutex_enter(&lfs_lock);
1514 ++fs->lfs_sleepers;
1515 mutex_exit(&lfs_lock);
1516 if (ap->a_command == LFCNBMAPV)
1517 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1518 else /* LFCNMARKV */
1519 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1520 if (error == 0)
1521 error = copyout(blkiov, blkvp.blkiov,
1522 blkcnt * sizeof(BLOCK_INFO));
1523 mutex_enter(&lfs_lock);
1524 if (--fs->lfs_sleepers == 0)
1525 wakeup(&fs->lfs_sleepers);
1526 mutex_exit(&lfs_lock);
1527 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1528 return error;
1529
1530 case LFCNRECLAIM:
1531 /*
1532 * Flush dirops and write Ifile, allowing empty segments
1533 * to be immediately reclaimed.
1534 */
1535 lfs_writer_enter(fs, "pndirop");
1536 off = fs->lfs_offset;
1537 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1538 lfs_flush_dirops(fs);
1539 LFS_CLEANERINFO(cip, fs, bp);
1540 oclean = cip->clean;
1541 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1542 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1543 fs->lfs_sp->seg_flags |= SEGM_PROT;
1544 lfs_segunlock(fs);
1545 lfs_writer_leave(fs);
1546
1547 #ifdef DEBUG
1548 LFS_CLEANERINFO(cip, fs, bp);
1549 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1550 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1551 fs->lfs_offset - off, cip->clean - oclean,
1552 fs->lfs_activesb));
1553 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1554 #endif
1555
1556 return 0;
1557
1558 #ifdef COMPAT_30
1559 case LFCNIFILEFH_COMPAT:
1560 /* Return the filehandle of the Ifile */
1561 if ((error = kauth_authorize_generic(l->l_cred,
1562 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1563 return (error);
1564 fhp = (struct fhandle *)ap->a_data;
1565 fhp->fh_fsid = *fsidp;
1566 fh_size = 16; /* former VFS_MAXFIDSIZ */
1567 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1568 #endif
1569
1570 case LFCNIFILEFH_COMPAT2:
1571 case LFCNIFILEFH:
1572 /* Return the filehandle of the Ifile */
1573 fhp = (struct fhandle *)ap->a_data;
1574 fhp->fh_fsid = *fsidp;
1575 fh_size = sizeof(struct lfs_fhandle) -
1576 offsetof(fhandle_t, fh_fid);
1577 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1578
1579 case LFCNREWIND:
1580 /* Move lfs_offset to the lowest-numbered segment */
1581 return lfs_rewind(fs, *(int *)ap->a_data);
1582
1583 case LFCNINVAL:
1584 /* Mark a segment SEGUSE_INVAL */
1585 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1586 if (sup->su_nbytes > 0) {
1587 brelse(bp, 0);
1588 lfs_unset_inval_all(fs);
1589 return EBUSY;
1590 }
1591 sup->su_flags |= SEGUSE_INVAL;
1592 VOP_BWRITE(bp);
1593 return 0;
1594
1595 case LFCNRESIZE:
1596 /* Resize the filesystem */
1597 return lfs_resize_fs(fs, *(int *)ap->a_data);
1598
1599 case LFCNWRAPSTOP:
1600 case LFCNWRAPSTOP_COMPAT:
1601 /*
1602 * Hold lfs_newseg at segment 0; if requested, sleep until
1603 * the filesystem wraps around. To support external agents
1604 * (dump, fsck-based regression test) that need to look at
1605 * a snapshot of the filesystem, without necessarily
1606 * requiring that all fs activity stops.
1607 */
1608 if (fs->lfs_stoplwp == curlwp)
1609 return EALREADY;
1610
1611 mutex_enter(&lfs_lock);
1612 while (fs->lfs_stoplwp != NULL)
1613 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1614 fs->lfs_stoplwp = curlwp;
1615 if (fs->lfs_nowrap == 0)
1616 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1617 ++fs->lfs_nowrap;
1618 if (*(int *)ap->a_data == 1 ||
1619 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1620 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1621 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1622 "segwrap", 0, &lfs_lock);
1623 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1624 if (error) {
1625 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1626 }
1627 }
1628 mutex_exit(&lfs_lock);
1629 return 0;
1630
1631 case LFCNWRAPGO:
1632 case LFCNWRAPGO_COMPAT:
1633 /*
1634 * Having done its work, the agent wakes up the writer.
1635 * If the argument is 1, it sleeps until a new segment
1636 * is selected.
1637 */
1638 mutex_enter(&lfs_lock);
1639 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1640 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1641 *((int *)ap->a_data)));
1642 mutex_exit(&lfs_lock);
1643 return error;
1644
1645 case LFCNWRAPPASS:
1646 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1647 return EALREADY;
1648 mutex_enter(&lfs_lock);
1649 if (fs->lfs_stoplwp != curlwp) {
1650 mutex_exit(&lfs_lock);
1651 return EALREADY;
1652 }
1653 if (fs->lfs_nowrap == 0) {
1654 mutex_exit(&lfs_lock);
1655 return EBUSY;
1656 }
1657 fs->lfs_wrappass = 1;
1658 wakeup(&fs->lfs_wrappass);
1659 /* Wait for the log to wrap, if asked */
1660 if (*(int *)ap->a_data) {
1661 mutex_enter(&ap->a_vp->v_interlock);
1662 lfs_vref(ap->a_vp);
1663 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1664 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1665 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1666 "segwrap", 0, &lfs_lock);
1667 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1668 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1669 lfs_vunref(ap->a_vp);
1670 }
1671 mutex_exit(&lfs_lock);
1672 return error;
1673
1674 case LFCNWRAPSTATUS:
1675 mutex_enter(&lfs_lock);
1676 *(int *)ap->a_data = fs->lfs_wrapstatus;
1677 mutex_exit(&lfs_lock);
1678 return 0;
1679
1680 default:
1681 return ufs_fcntl(v);
1682 }
1683 return 0;
1684 }
1685
1686 int
1687 lfs_getpages(void *v)
1688 {
1689 struct vop_getpages_args /* {
1690 struct vnode *a_vp;
1691 voff_t a_offset;
1692 struct vm_page **a_m;
1693 int *a_count;
1694 int a_centeridx;
1695 vm_prot_t a_access_type;
1696 int a_advice;
1697 int a_flags;
1698 } */ *ap = v;
1699
1700 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1701 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1702 return EPERM;
1703 }
1704 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1705 mutex_enter(&lfs_lock);
1706 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1707 mutex_exit(&lfs_lock);
1708 }
1709
1710 /*
1711 * we're relying on the fact that genfs_getpages() always read in
1712 * entire filesystem blocks.
1713 */
1714 return genfs_getpages(v);
1715 }
1716
1717 /*
1718 * Wait for a page to become unbusy, possibly printing diagnostic messages
1719 * as well.
1720 *
1721 * Called with vp->v_interlock held; return with it held.
1722 */
1723 static void
1724 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1725 {
1726 if ((pg->flags & PG_BUSY) == 0)
1727 return; /* Nothing to wait for! */
1728
1729 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1730 static struct vm_page *lastpg;
1731
1732 if (label != NULL && pg != lastpg) {
1733 if (pg->owner_tag) {
1734 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1735 curproc->p_pid, curlwp->l_lid, label,
1736 pg, pg->owner, pg->lowner, pg->owner_tag);
1737 } else {
1738 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1739 curproc->p_pid, curlwp->l_lid, label, pg);
1740 }
1741 }
1742 lastpg = pg;
1743 #endif
1744
1745 pg->flags |= PG_WANTED;
1746 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1747 mutex_enter(&vp->v_interlock);
1748 }
1749
1750 /*
1751 * This routine is called by lfs_putpages() when it can't complete the
1752 * write because a page is busy. This means that either (1) someone,
1753 * possibly the pagedaemon, is looking at this page, and will give it up
1754 * presently; or (2) we ourselves are holding the page busy in the
1755 * process of being written (either gathered or actually on its way to
1756 * disk). We don't need to give up the segment lock, but we might need
1757 * to call lfs_writeseg() to expedite the page's journey to disk.
1758 *
1759 * Called with vp->v_interlock held; return with it held.
1760 */
1761 /* #define BUSYWAIT */
1762 static void
1763 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1764 int seglocked, const char *label)
1765 {
1766 #ifndef BUSYWAIT
1767 struct inode *ip = VTOI(vp);
1768 struct segment *sp = fs->lfs_sp;
1769 int count = 0;
1770
1771 if (pg == NULL)
1772 return;
1773
1774 while (pg->flags & PG_BUSY) {
1775 mutex_exit(&vp->v_interlock);
1776 if (sp->cbpp - sp->bpp > 1) {
1777 /* Write gathered pages */
1778 lfs_updatemeta(sp);
1779 lfs_release_finfo(fs);
1780 (void) lfs_writeseg(fs, sp);
1781
1782 /*
1783 * Reinitialize FIP
1784 */
1785 KASSERT(sp->vp == vp);
1786 lfs_acquire_finfo(fs, ip->i_number,
1787 ip->i_gen);
1788 }
1789 ++count;
1790 mutex_enter(&vp->v_interlock);
1791 wait_for_page(vp, pg, label);
1792 }
1793 if (label != NULL && count > 1)
1794 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1795 label, (count > 0 ? "looping, " : ""), count);
1796 #else
1797 preempt(1);
1798 #endif
1799 }
1800
1801 /*
1802 * Make sure that for all pages in every block in the given range,
1803 * either all are dirty or all are clean. If any of the pages
1804 * we've seen so far are dirty, put the vnode on the paging chain,
1805 * and mark it IN_PAGING.
1806 *
1807 * If checkfirst != 0, don't check all the pages but return at the
1808 * first dirty page.
1809 */
1810 static int
1811 check_dirty(struct lfs *fs, struct vnode *vp,
1812 off_t startoffset, off_t endoffset, off_t blkeof,
1813 int flags, int checkfirst, struct vm_page **pgp)
1814 {
1815 int by_list;
1816 struct vm_page *curpg = NULL; /* XXX: gcc */
1817 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1818 off_t soff = 0; /* XXX: gcc */
1819 voff_t off;
1820 int i;
1821 int nonexistent;
1822 int any_dirty; /* number of dirty pages */
1823 int dirty; /* number of dirty pages in a block */
1824 int tdirty;
1825 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1826 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1827
1828 ASSERT_MAYBE_SEGLOCK(fs);
1829 top:
1830 by_list = (vp->v_uobj.uo_npages <=
1831 ((endoffset - startoffset) >> PAGE_SHIFT) *
1832 UVM_PAGE_HASH_PENALTY);
1833 any_dirty = 0;
1834
1835 if (by_list) {
1836 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1837 } else {
1838 soff = startoffset;
1839 }
1840 while (by_list || soff < MIN(blkeof, endoffset)) {
1841 if (by_list) {
1842 /*
1843 * Find the first page in a block. Skip
1844 * blocks outside our area of interest or beyond
1845 * the end of file.
1846 */
1847 if (pages_per_block > 1) {
1848 while (curpg &&
1849 ((curpg->offset & fs->lfs_bmask) ||
1850 curpg->offset >= vp->v_size ||
1851 curpg->offset >= endoffset))
1852 curpg = TAILQ_NEXT(curpg, listq);
1853 }
1854 if (curpg == NULL)
1855 break;
1856 soff = curpg->offset;
1857 }
1858
1859 /*
1860 * Mark all pages in extended range busy; find out if any
1861 * of them are dirty.
1862 */
1863 nonexistent = dirty = 0;
1864 for (i = 0; i == 0 || i < pages_per_block; i++) {
1865 if (by_list && pages_per_block <= 1) {
1866 pgs[i] = pg = curpg;
1867 } else {
1868 off = soff + (i << PAGE_SHIFT);
1869 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1870 if (pg == NULL) {
1871 ++nonexistent;
1872 continue;
1873 }
1874 }
1875 KASSERT(pg != NULL);
1876
1877 /*
1878 * If we're holding the segment lock, we can deadlock
1879 * against a process that has our page and is waiting
1880 * for the cleaner, while the cleaner waits for the
1881 * segment lock. Just bail in that case.
1882 */
1883 if ((pg->flags & PG_BUSY) &&
1884 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1885 if (i > 0)
1886 uvm_page_unbusy(pgs, i);
1887 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1888 if (pgp)
1889 *pgp = pg;
1890 return -1;
1891 }
1892
1893 while (pg->flags & PG_BUSY) {
1894 wait_for_page(vp, pg, NULL);
1895 if (i > 0)
1896 uvm_page_unbusy(pgs, i);
1897 goto top;
1898 }
1899 pg->flags |= PG_BUSY;
1900 UVM_PAGE_OWN(pg, "lfs_putpages");
1901
1902 pmap_page_protect(pg, VM_PROT_NONE);
1903 tdirty = (pmap_clear_modify(pg) ||
1904 (pg->flags & PG_CLEAN) == 0);
1905 dirty += tdirty;
1906 }
1907 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1908 if (by_list) {
1909 curpg = TAILQ_NEXT(curpg, listq);
1910 } else {
1911 soff += fs->lfs_bsize;
1912 }
1913 continue;
1914 }
1915
1916 any_dirty += dirty;
1917 KASSERT(nonexistent == 0);
1918
1919 /*
1920 * If any are dirty make all dirty; unbusy them,
1921 * but if we were asked to clean, wire them so that
1922 * the pagedaemon doesn't bother us about them while
1923 * they're on their way to disk.
1924 */
1925 for (i = 0; i == 0 || i < pages_per_block; i++) {
1926 pg = pgs[i];
1927 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1928 if (dirty) {
1929 pg->flags &= ~PG_CLEAN;
1930 if (flags & PGO_FREE) {
1931 /*
1932 * Wire the page so that
1933 * pdaemon doesn't see it again.
1934 */
1935 mutex_enter(&uvm_pageqlock);
1936 uvm_pagewire(pg);
1937 mutex_exit(&uvm_pageqlock);
1938
1939 /* Suspended write flag */
1940 pg->flags |= PG_DELWRI;
1941 }
1942 }
1943 if (pg->flags & PG_WANTED)
1944 wakeup(pg);
1945 pg->flags &= ~(PG_WANTED|PG_BUSY);
1946 UVM_PAGE_OWN(pg, NULL);
1947 }
1948
1949 if (checkfirst && any_dirty)
1950 break;
1951
1952 if (by_list) {
1953 curpg = TAILQ_NEXT(curpg, listq);
1954 } else {
1955 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1956 }
1957 }
1958
1959 return any_dirty;
1960 }
1961
1962 /*
1963 * lfs_putpages functions like genfs_putpages except that
1964 *
1965 * (1) It needs to bounds-check the incoming requests to ensure that
1966 * they are block-aligned; if they are not, expand the range and
1967 * do the right thing in case, e.g., the requested range is clean
1968 * but the expanded range is dirty.
1969 *
1970 * (2) It needs to explicitly send blocks to be written when it is done.
1971 * If VOP_PUTPAGES is called without the seglock held, we simply take
1972 * the seglock and let lfs_segunlock wait for us.
1973 * XXX There might be a bad situation if we have to flush a vnode while
1974 * XXX lfs_markv is in operation. As of this writing we panic in this
1975 * XXX case.
1976 *
1977 * Assumptions:
1978 *
1979 * (1) The caller does not hold any pages in this vnode busy. If it does,
1980 * there is a danger that when we expand the page range and busy the
1981 * pages we will deadlock.
1982 *
1983 * (2) We are called with vp->v_interlock held; we must return with it
1984 * released.
1985 *
1986 * (3) We don't absolutely have to free pages right away, provided that
1987 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1988 * us a request with PGO_FREE, we take the pages out of the paging
1989 * queue and wake up the writer, which will handle freeing them for us.
1990 *
1991 * We ensure that for any filesystem block, all pages for that
1992 * block are either resident or not, even if those pages are higher
1993 * than EOF; that means that we will be getting requests to free
1994 * "unused" pages above EOF all the time, and should ignore them.
1995 *
1996 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1997 * into has been set up for us by lfs_writefile. If not, we will
1998 * have to handle allocating and/or freeing an finfo entry.
1999 *
2000 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2001 */
2002
2003 /* How many times to loop before we should start to worry */
2004 #define TOOMANY 4
2005
2006 int
2007 lfs_putpages(void *v)
2008 {
2009 int error;
2010 struct vop_putpages_args /* {
2011 struct vnode *a_vp;
2012 voff_t a_offlo;
2013 voff_t a_offhi;
2014 int a_flags;
2015 } */ *ap = v;
2016 struct vnode *vp;
2017 struct inode *ip;
2018 struct lfs *fs;
2019 struct segment *sp;
2020 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2021 off_t off, max_endoffset;
2022 bool seglocked, sync, pagedaemon;
2023 struct vm_page *pg, *busypg;
2024 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2025 #ifdef DEBUG
2026 int debug_n_again, debug_n_dirtyclean;
2027 #endif
2028
2029 vp = ap->a_vp;
2030 ip = VTOI(vp);
2031 fs = ip->i_lfs;
2032 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2033 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2034
2035 /* Putpages does nothing for metadata. */
2036 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2037 mutex_exit(&vp->v_interlock);
2038 return 0;
2039 }
2040
2041 /*
2042 * If there are no pages, don't do anything.
2043 */
2044 if (vp->v_uobj.uo_npages == 0) {
2045 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2046 (vp->v_iflag & VI_ONWORKLST) &&
2047 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2048 vp->v_iflag &= ~VI_WRMAPDIRTY;
2049 vn_syncer_remove_from_worklist(vp);
2050 }
2051 mutex_exit(&vp->v_interlock);
2052
2053 /* Remove us from paging queue, if we were on it */
2054 mutex_enter(&lfs_lock);
2055 if (ip->i_flags & IN_PAGING) {
2056 ip->i_flags &= ~IN_PAGING;
2057 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2058 }
2059 mutex_exit(&lfs_lock);
2060 return 0;
2061 }
2062
2063 blkeof = blkroundup(fs, ip->i_size);
2064
2065 /*
2066 * Ignore requests to free pages past EOF but in the same block
2067 * as EOF, unless the request is synchronous. (If the request is
2068 * sync, it comes from lfs_truncate.)
2069 * XXXUBC Make these pages look "active" so the pagedaemon won't
2070 * XXXUBC bother us with them again.
2071 */
2072 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2073 origoffset = ap->a_offlo;
2074 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2075 pg = uvm_pagelookup(&vp->v_uobj, off);
2076 KASSERT(pg != NULL);
2077 while (pg->flags & PG_BUSY) {
2078 pg->flags |= PG_WANTED;
2079 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2080 "lfsput2", 0);
2081 mutex_enter(&vp->v_interlock);
2082 }
2083 mutex_enter(&uvm_pageqlock);
2084 uvm_pageactivate(pg);
2085 mutex_exit(&uvm_pageqlock);
2086 }
2087 ap->a_offlo = blkeof;
2088 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2089 mutex_exit(&vp->v_interlock);
2090 return 0;
2091 }
2092 }
2093
2094 /*
2095 * Extend page range to start and end at block boundaries.
2096 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2097 */
2098 origoffset = ap->a_offlo;
2099 origendoffset = ap->a_offhi;
2100 startoffset = origoffset & ~(fs->lfs_bmask);
2101 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2102 << fs->lfs_bshift;
2103
2104 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2105 endoffset = max_endoffset;
2106 origendoffset = endoffset;
2107 } else {
2108 origendoffset = round_page(ap->a_offhi);
2109 endoffset = round_page(blkroundup(fs, origendoffset));
2110 }
2111
2112 KASSERT(startoffset > 0 || endoffset >= startoffset);
2113 if (startoffset == endoffset) {
2114 /* Nothing to do, why were we called? */
2115 mutex_exit(&vp->v_interlock);
2116 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2117 PRId64 "\n", startoffset));
2118 return 0;
2119 }
2120
2121 ap->a_offlo = startoffset;
2122 ap->a_offhi = endoffset;
2123
2124 /*
2125 * If not cleaning, just send the pages through genfs_putpages
2126 * to be returned to the pool.
2127 */
2128 if (!(ap->a_flags & PGO_CLEANIT))
2129 return genfs_putpages(v);
2130
2131 /* Set PGO_BUSYFAIL to avoid deadlocks */
2132 ap->a_flags |= PGO_BUSYFAIL;
2133
2134 /*
2135 * Likewise, if we are asked to clean but the pages are not
2136 * dirty, we can just free them using genfs_putpages.
2137 */
2138 #ifdef DEBUG
2139 debug_n_dirtyclean = 0;
2140 #endif
2141 do {
2142 int r;
2143
2144 /* Count the number of dirty pages */
2145 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2146 ap->a_flags, 1, NULL);
2147 if (r < 0) {
2148 /* Pages are busy with another process */
2149 mutex_exit(&vp->v_interlock);
2150 return EDEADLK;
2151 }
2152 if (r > 0) /* Some pages are dirty */
2153 break;
2154
2155 /*
2156 * Sometimes pages are dirtied between the time that
2157 * we check and the time we try to clean them.
2158 * Instruct lfs_gop_write to return EDEADLK in this case
2159 * so we can write them properly.
2160 */
2161 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2162 r = genfs_do_putpages(vp, startoffset, endoffset,
2163 ap->a_flags, &busypg);
2164 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2165 if (r != EDEADLK)
2166 return r;
2167
2168 /* One of the pages was busy. Start over. */
2169 mutex_enter(&vp->v_interlock);
2170 wait_for_page(vp, busypg, "dirtyclean");
2171 #ifdef DEBUG
2172 ++debug_n_dirtyclean;
2173 #endif
2174 } while(1);
2175
2176 #ifdef DEBUG
2177 if (debug_n_dirtyclean > TOOMANY)
2178 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2179 debug_n_dirtyclean);
2180 #endif
2181
2182 /*
2183 * Dirty and asked to clean.
2184 *
2185 * Pagedaemon can't actually write LFS pages; wake up
2186 * the writer to take care of that. The writer will
2187 * notice the pager inode queue and act on that.
2188 */
2189 if (pagedaemon) {
2190 mutex_enter(&lfs_lock);
2191 if (!(ip->i_flags & IN_PAGING)) {
2192 ip->i_flags |= IN_PAGING;
2193 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2194 }
2195 wakeup(&lfs_writer_daemon);
2196 mutex_exit(&lfs_lock);
2197 mutex_exit(&vp->v_interlock);
2198 preempt();
2199 return EWOULDBLOCK;
2200 }
2201
2202 /*
2203 * If this is a file created in a recent dirop, we can't flush its
2204 * inode until the dirop is complete. Drain dirops, then flush the
2205 * filesystem (taking care of any other pending dirops while we're
2206 * at it).
2207 */
2208 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2209 (vp->v_uflag & VU_DIROP)) {
2210 int locked;
2211
2212 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2213 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2214 mutex_exit(&vp->v_interlock);
2215 lfs_writer_enter(fs, "ppdirop");
2216 if (locked)
2217 VOP_UNLOCK(vp, 0); /* XXX why? */
2218
2219 mutex_enter(&lfs_lock);
2220 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2221 mutex_exit(&lfs_lock);
2222
2223 mutex_enter(&vp->v_interlock);
2224 if (locked) {
2225 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2226 mutex_enter(&vp->v_interlock);
2227 }
2228 lfs_writer_leave(fs);
2229
2230 /* XXX the flush should have taken care of this one too! */
2231 }
2232
2233 /*
2234 * This is it. We are going to write some pages. From here on
2235 * down it's all just mechanics.
2236 *
2237 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2238 */
2239 ap->a_flags &= ~PGO_SYNCIO;
2240
2241 /*
2242 * If we've already got the seglock, flush the node and return.
2243 * The FIP has already been set up for us by lfs_writefile,
2244 * and FIP cleanup and lfs_updatemeta will also be done there,
2245 * unless genfs_putpages returns EDEADLK; then we must flush
2246 * what we have, and correct FIP and segment header accounting.
2247 */
2248 get_seglock:
2249 /*
2250 * If we are not called with the segment locked, lock it.
2251 * Account for a new FIP in the segment header, and set sp->vp.
2252 * (This should duplicate the setup at the top of lfs_writefile().)
2253 */
2254 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2255 if (!seglocked) {
2256 mutex_exit(&vp->v_interlock);
2257 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2258 if (error != 0)
2259 return error;
2260 mutex_enter(&vp->v_interlock);
2261 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2262 }
2263 sp = fs->lfs_sp;
2264 KASSERT(sp->vp == NULL);
2265 sp->vp = vp;
2266
2267 /*
2268 * Ensure that the partial segment is marked SS_DIROP if this
2269 * vnode is a DIROP.
2270 */
2271 if (!seglocked && vp->v_uflag & VU_DIROP)
2272 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2273
2274 /*
2275 * Loop over genfs_putpages until all pages are gathered.
2276 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2277 * Whenever we lose the interlock we have to rerun check_dirty, as
2278 * well, since more pages might have been dirtied in our absence.
2279 */
2280 #ifdef DEBUG
2281 debug_n_again = 0;
2282 #endif
2283 do {
2284 busypg = NULL;
2285 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2286 ap->a_flags, 0, &busypg) < 0) {
2287 mutex_exit(&vp->v_interlock);
2288
2289 mutex_enter(&vp->v_interlock);
2290 write_and_wait(fs, vp, busypg, seglocked, NULL);
2291 if (!seglocked) {
2292 lfs_release_finfo(fs);
2293 lfs_segunlock(fs);
2294 }
2295 sp->vp = NULL;
2296 goto get_seglock;
2297 }
2298
2299 busypg = NULL;
2300 error = genfs_do_putpages(vp, startoffset, endoffset,
2301 ap->a_flags, &busypg);
2302
2303 if (error == EDEADLK || error == EAGAIN) {
2304 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2305 " %d ino %d off %x (seg %d)\n", error,
2306 ip->i_number, fs->lfs_offset,
2307 dtosn(fs, fs->lfs_offset)));
2308
2309 mutex_enter(&vp->v_interlock);
2310 write_and_wait(fs, vp, busypg, seglocked, "again");
2311 }
2312 #ifdef DEBUG
2313 ++debug_n_again;
2314 #endif
2315 } while (error == EDEADLK);
2316 #ifdef DEBUG
2317 if (debug_n_again > TOOMANY)
2318 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2319 #endif
2320
2321 KASSERT(sp != NULL && sp->vp == vp);
2322 if (!seglocked) {
2323 sp->vp = NULL;
2324
2325 /* Write indirect blocks as well */
2326 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2327 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2328 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2329
2330 KASSERT(sp->vp == NULL);
2331 sp->vp = vp;
2332 }
2333
2334 /*
2335 * Blocks are now gathered into a segment waiting to be written.
2336 * All that's left to do is update metadata, and write them.
2337 */
2338 lfs_updatemeta(sp);
2339 KASSERT(sp->vp == vp);
2340 sp->vp = NULL;
2341
2342 /*
2343 * If we were called from lfs_writefile, we don't need to clean up
2344 * the FIP or unlock the segment lock. We're done.
2345 */
2346 if (seglocked)
2347 return error;
2348
2349 /* Clean up FIP and send it to disk. */
2350 lfs_release_finfo(fs);
2351 lfs_writeseg(fs, fs->lfs_sp);
2352
2353 /*
2354 * Remove us from paging queue if we wrote all our pages.
2355 */
2356 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2357 mutex_enter(&lfs_lock);
2358 if (ip->i_flags & IN_PAGING) {
2359 ip->i_flags &= ~IN_PAGING;
2360 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2361 }
2362 mutex_exit(&lfs_lock);
2363 }
2364
2365 /*
2366 * XXX - with the malloc/copy writeseg, the pages are freed by now
2367 * even if we don't wait (e.g. if we hold a nested lock). This
2368 * will not be true if we stop using malloc/copy.
2369 */
2370 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2371 lfs_segunlock(fs);
2372
2373 /*
2374 * Wait for v_numoutput to drop to zero. The seglock should
2375 * take care of this, but there is a slight possibility that
2376 * aiodoned might not have got around to our buffers yet.
2377 */
2378 if (sync) {
2379 mutex_enter(&vp->v_interlock);
2380 while (vp->v_numoutput > 0) {
2381 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2382 " num %d\n", ip->i_number, vp->v_numoutput));
2383 cv_wait(&vp->v_cv, &vp->v_interlock);
2384 }
2385 mutex_exit(&vp->v_interlock);
2386 }
2387 return error;
2388 }
2389
2390 /*
2391 * Return the last logical file offset that should be written for this file
2392 * if we're doing a write that ends at "size". If writing, we need to know
2393 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2394 * to know about entire blocks.
2395 */
2396 void
2397 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2398 {
2399 struct inode *ip = VTOI(vp);
2400 struct lfs *fs = ip->i_lfs;
2401 daddr_t olbn, nlbn;
2402
2403 olbn = lblkno(fs, ip->i_size);
2404 nlbn = lblkno(fs, size);
2405 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2406 *eobp = fragroundup(fs, size);
2407 } else {
2408 *eobp = blkroundup(fs, size);
2409 }
2410 }
2411
2412 #ifdef DEBUG
2413 void lfs_dump_vop(void *);
2414
2415 void
2416 lfs_dump_vop(void *v)
2417 {
2418 struct vop_putpages_args /* {
2419 struct vnode *a_vp;
2420 voff_t a_offlo;
2421 voff_t a_offhi;
2422 int a_flags;
2423 } */ *ap = v;
2424
2425 #ifdef DDB
2426 vfs_vnode_print(ap->a_vp, 0, printf);
2427 #endif
2428 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2429 }
2430 #endif
2431
2432 int
2433 lfs_mmap(void *v)
2434 {
2435 struct vop_mmap_args /* {
2436 const struct vnodeop_desc *a_desc;
2437 struct vnode *a_vp;
2438 vm_prot_t a_prot;
2439 kauth_cred_t a_cred;
2440 } */ *ap = v;
2441
2442 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2443 return EOPNOTSUPP;
2444 return ufs_mmap(v);
2445 }
2446