lfs_vnops.c revision 1.218 1 /* $NetBSD: lfs_vnops.c,v 1.218 2008/06/24 10:47:32 gmcgarry Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.218 2008/06/24 10:47:32 gmcgarry Exp $");
64
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/resourcevar.h>
73 #include <sys/kernel.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/buf.h>
77 #include <sys/proc.h>
78 #include <sys/mount.h>
79 #include <sys/vnode.h>
80 #include <sys/pool.h>
81 #include <sys/signalvar.h>
82 #include <sys/kauth.h>
83 #include <sys/syslog.h>
84 #include <sys/fstrans.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104 int lfs_ignore_lazy_sync = 1;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
170 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
171 { &vop_poll_desc, spec_poll }, /* poll */
172 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
173 { &vop_revoke_desc, spec_revoke }, /* revoke */
174 { &vop_mmap_desc, spec_mmap }, /* mmap */
175 { &vop_fsync_desc, spec_fsync }, /* fsync */
176 { &vop_seek_desc, spec_seek }, /* seek */
177 { &vop_remove_desc, spec_remove }, /* remove */
178 { &vop_link_desc, spec_link }, /* link */
179 { &vop_rename_desc, spec_rename }, /* rename */
180 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
181 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
182 { &vop_symlink_desc, spec_symlink }, /* symlink */
183 { &vop_readdir_desc, spec_readdir }, /* readdir */
184 { &vop_readlink_desc, spec_readlink }, /* readlink */
185 { &vop_abortop_desc, spec_abortop }, /* abortop */
186 { &vop_inactive_desc, lfs_inactive }, /* inactive */
187 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
188 { &vop_lock_desc, ufs_lock }, /* lock */
189 { &vop_unlock_desc, ufs_unlock }, /* unlock */
190 { &vop_bmap_desc, spec_bmap }, /* bmap */
191 { &vop_strategy_desc, spec_strategy }, /* strategy */
192 { &vop_print_desc, ufs_print }, /* print */
193 { &vop_islocked_desc, ufs_islocked }, /* islocked */
194 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
195 { &vop_advlock_desc, spec_advlock }, /* advlock */
196 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
197 { &vop_getpages_desc, spec_getpages }, /* getpages */
198 { &vop_putpages_desc, spec_putpages }, /* putpages */
199 { NULL, NULL }
200 };
201 const struct vnodeopv_desc lfs_specop_opv_desc =
202 { &lfs_specop_p, lfs_specop_entries };
203
204 int (**lfs_fifoop_p)(void *);
205 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
206 { &vop_default_desc, vn_default_error },
207 { &vop_lookup_desc, fifo_lookup }, /* lookup */
208 { &vop_create_desc, fifo_create }, /* create */
209 { &vop_mknod_desc, fifo_mknod }, /* mknod */
210 { &vop_open_desc, fifo_open }, /* open */
211 { &vop_close_desc, lfsfifo_close }, /* close */
212 { &vop_access_desc, ufs_access }, /* access */
213 { &vop_getattr_desc, lfs_getattr }, /* getattr */
214 { &vop_setattr_desc, lfs_setattr }, /* setattr */
215 { &vop_read_desc, ufsfifo_read }, /* read */
216 { &vop_write_desc, ufsfifo_write }, /* write */
217 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
218 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
219 { &vop_poll_desc, fifo_poll }, /* poll */
220 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
221 { &vop_revoke_desc, fifo_revoke }, /* revoke */
222 { &vop_mmap_desc, fifo_mmap }, /* mmap */
223 { &vop_fsync_desc, fifo_fsync }, /* fsync */
224 { &vop_seek_desc, fifo_seek }, /* seek */
225 { &vop_remove_desc, fifo_remove }, /* remove */
226 { &vop_link_desc, fifo_link }, /* link */
227 { &vop_rename_desc, fifo_rename }, /* rename */
228 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
229 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
230 { &vop_symlink_desc, fifo_symlink }, /* symlink */
231 { &vop_readdir_desc, fifo_readdir }, /* readdir */
232 { &vop_readlink_desc, fifo_readlink }, /* readlink */
233 { &vop_abortop_desc, fifo_abortop }, /* abortop */
234 { &vop_inactive_desc, lfs_inactive }, /* inactive */
235 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
236 { &vop_lock_desc, ufs_lock }, /* lock */
237 { &vop_unlock_desc, ufs_unlock }, /* unlock */
238 { &vop_bmap_desc, fifo_bmap }, /* bmap */
239 { &vop_strategy_desc, fifo_strategy }, /* strategy */
240 { &vop_print_desc, ufs_print }, /* print */
241 { &vop_islocked_desc, ufs_islocked }, /* islocked */
242 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
243 { &vop_advlock_desc, fifo_advlock }, /* advlock */
244 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
245 { &vop_putpages_desc, fifo_putpages }, /* putpages */
246 { NULL, NULL }
247 };
248 const struct vnodeopv_desc lfs_fifoop_opv_desc =
249 { &lfs_fifoop_p, lfs_fifoop_entries };
250
251 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
252
253 #define LFS_READWRITE
254 #include <ufs/ufs/ufs_readwrite.c>
255 #undef LFS_READWRITE
256
257 /*
258 * Synch an open file.
259 */
260 /* ARGSUSED */
261 int
262 lfs_fsync(void *v)
263 {
264 struct vop_fsync_args /* {
265 struct vnode *a_vp;
266 kauth_cred_t a_cred;
267 int a_flags;
268 off_t offlo;
269 off_t offhi;
270 } */ *ap = v;
271 struct vnode *vp = ap->a_vp;
272 int error, wait;
273 struct inode *ip = VTOI(vp);
274 struct lfs *fs = ip->i_lfs;
275
276 /* If we're mounted read-only, don't try to sync. */
277 if (fs->lfs_ronly)
278 return 0;
279
280 /*
281 * Trickle sync simply adds this vnode to the pager list, as if
282 * the pagedaemon had requested a pageout.
283 */
284 if (ap->a_flags & FSYNC_LAZY) {
285 if (lfs_ignore_lazy_sync == 0) {
286 mutex_enter(&lfs_lock);
287 if (!(ip->i_flags & IN_PAGING)) {
288 ip->i_flags |= IN_PAGING;
289 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
290 i_lfs_pchain);
291 }
292 wakeup(&lfs_writer_daemon);
293 mutex_exit(&lfs_lock);
294 }
295 return 0;
296 }
297
298 /*
299 * If a vnode is bring cleaned, flush it out before we try to
300 * reuse it. This prevents the cleaner from writing files twice
301 * in the same partial segment, causing an accounting underflow.
302 */
303 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
304 lfs_vflush(vp);
305 }
306
307 wait = (ap->a_flags & FSYNC_WAIT);
308 do {
309 mutex_enter(&vp->v_interlock);
310 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
311 round_page(ap->a_offhi),
312 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
313 if (error == EAGAIN) {
314 mutex_enter(&lfs_lock);
315 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
316 hz / 100 + 1, &lfs_lock);
317 mutex_exit(&lfs_lock);
318 }
319 } while (error == EAGAIN);
320 if (error)
321 return error;
322
323 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
324 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
325
326 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
327 int l = 0;
328 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
329 curlwp->l_cred);
330 }
331 if (wait && !VPISEMPTY(vp))
332 LFS_SET_UINO(ip, IN_MODIFIED);
333
334 return error;
335 }
336
337 /*
338 * Take IN_ADIROP off, then call ufs_inactive.
339 */
340 int
341 lfs_inactive(void *v)
342 {
343 struct vop_inactive_args /* {
344 struct vnode *a_vp;
345 } */ *ap = v;
346
347 KASSERT(VTOI(ap->a_vp)->i_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
348
349 lfs_unmark_vnode(ap->a_vp);
350
351 /*
352 * The Ifile is only ever inactivated on unmount.
353 * Streamline this process by not giving it more dirty blocks.
354 */
355 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
356 mutex_enter(&lfs_lock);
357 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
358 mutex_exit(&lfs_lock);
359 VOP_UNLOCK(ap->a_vp, 0);
360 return 0;
361 }
362
363 return ufs_inactive(v);
364 }
365
366 /*
367 * These macros are used to bracket UFS directory ops, so that we can
368 * identify all the pages touched during directory ops which need to
369 * be ordered and flushed atomically, so that they may be recovered.
370 *
371 * Because we have to mark nodes VU_DIROP in order to prevent
372 * the cache from reclaiming them while a dirop is in progress, we must
373 * also manage the number of nodes so marked (otherwise we can run out).
374 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
375 * is decremented during segment write, when VU_DIROP is taken off.
376 */
377 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
378 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
379 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
380 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
381 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
382 static int lfs_set_dirop(struct vnode *, struct vnode *);
383
384 static int
385 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
386 {
387 struct lfs *fs;
388 int error;
389
390 KASSERT(VOP_ISLOCKED(dvp));
391 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
392
393 fs = VTOI(dvp)->i_lfs;
394
395 ASSERT_NO_SEGLOCK(fs);
396 /*
397 * LFS_NRESERVE calculates direct and indirect blocks as well
398 * as an inode block; an overestimate in most cases.
399 */
400 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
401 return (error);
402
403 restart:
404 mutex_enter(&lfs_lock);
405 if (fs->lfs_dirops == 0) {
406 mutex_exit(&lfs_lock);
407 lfs_check(dvp, LFS_UNUSED_LBN, 0);
408 mutex_enter(&lfs_lock);
409 }
410 while (fs->lfs_writer) {
411 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
412 "lfs_sdirop", 0, &lfs_lock);
413 if (error == EINTR) {
414 mutex_exit(&lfs_lock);
415 goto unreserve;
416 }
417 }
418 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
419 wakeup(&lfs_writer_daemon);
420 mutex_exit(&lfs_lock);
421 preempt();
422 goto restart;
423 }
424
425 if (lfs_dirvcount > LFS_MAX_DIROP) {
426 mutex_exit(&lfs_lock);
427 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
428 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
429 if ((error = mtsleep(&lfs_dirvcount,
430 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
431 &lfs_lock)) != 0) {
432 goto unreserve;
433 }
434 goto restart;
435 }
436
437 ++fs->lfs_dirops;
438 fs->lfs_doifile = 1;
439 mutex_exit(&lfs_lock);
440
441 /* Hold a reference so SET_ENDOP will be happy */
442 vref(dvp);
443 if (vp) {
444 vref(vp);
445 MARK_VNODE(vp);
446 }
447
448 MARK_VNODE(dvp);
449 return 0;
450
451 unreserve:
452 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
453 return error;
454 }
455
456 /*
457 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
458 * in getnewvnode(), if we have a stacked filesystem mounted on top
459 * of us.
460 *
461 * NB: this means we have to clear the new vnodes on error. Fortunately
462 * SET_ENDOP is there to do that for us.
463 */
464 static int
465 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
466 {
467 int error;
468 struct lfs *fs;
469
470 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
471 ASSERT_NO_SEGLOCK(fs);
472 if (fs->lfs_ronly)
473 return EROFS;
474 if (vpp && (error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, vpp))) {
475 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
476 dvp, error));
477 return error;
478 }
479 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
480 if (vpp) {
481 ungetnewvnode(*vpp);
482 *vpp = NULL;
483 }
484 return error;
485 }
486 return 0;
487 }
488
489 #define SET_ENDOP_BASE(fs, dvp, str) \
490 do { \
491 mutex_enter(&lfs_lock); \
492 --(fs)->lfs_dirops; \
493 if (!(fs)->lfs_dirops) { \
494 if ((fs)->lfs_nadirop) { \
495 panic("SET_ENDOP: %s: no dirops but " \
496 " nadirop=%d", (str), \
497 (fs)->lfs_nadirop); \
498 } \
499 wakeup(&(fs)->lfs_writer); \
500 mutex_exit(&lfs_lock); \
501 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
502 } else \
503 mutex_exit(&lfs_lock); \
504 } while(0)
505 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
506 do { \
507 UNMARK_VNODE(dvp); \
508 if (nvpp && *nvpp) \
509 UNMARK_VNODE(*nvpp); \
510 /* Check for error return to stem vnode leakage */ \
511 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
512 ungetnewvnode(*(nvpp)); \
513 SET_ENDOP_BASE((fs), (dvp), (str)); \
514 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
515 vrele(dvp); \
516 } while(0)
517 #define SET_ENDOP_CREATE_AP(ap, str) \
518 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
519 (ap)->a_vpp, (str))
520 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
521 do { \
522 UNMARK_VNODE(dvp); \
523 if (ovp) \
524 UNMARK_VNODE(ovp); \
525 SET_ENDOP_BASE((fs), (dvp), (str)); \
526 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
527 vrele(dvp); \
528 if (ovp) \
529 vrele(ovp); \
530 } while(0)
531
532 void
533 lfs_mark_vnode(struct vnode *vp)
534 {
535 struct inode *ip = VTOI(vp);
536 struct lfs *fs = ip->i_lfs;
537
538 mutex_enter(&lfs_lock);
539 if (!(ip->i_flag & IN_ADIROP)) {
540 if (!(vp->v_uflag & VU_DIROP)) {
541 mutex_enter(&vp->v_interlock);
542 (void)lfs_vref(vp);
543 ++lfs_dirvcount;
544 ++fs->lfs_dirvcount;
545 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
546 vp->v_uflag |= VU_DIROP;
547 }
548 ++fs->lfs_nadirop;
549 ip->i_flag |= IN_ADIROP;
550 } else
551 KASSERT(vp->v_uflag & VU_DIROP);
552 mutex_exit(&lfs_lock);
553 }
554
555 void
556 lfs_unmark_vnode(struct vnode *vp)
557 {
558 struct inode *ip = VTOI(vp);
559
560 if (ip && (ip->i_flag & IN_ADIROP)) {
561 KASSERT(vp->v_uflag & VU_DIROP);
562 mutex_enter(&lfs_lock);
563 --ip->i_lfs->lfs_nadirop;
564 mutex_exit(&lfs_lock);
565 ip->i_flag &= ~IN_ADIROP;
566 }
567 }
568
569 int
570 lfs_symlink(void *v)
571 {
572 struct vop_symlink_args /* {
573 struct vnode *a_dvp;
574 struct vnode **a_vpp;
575 struct componentname *a_cnp;
576 struct vattr *a_vap;
577 char *a_target;
578 } */ *ap = v;
579 int error;
580
581 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
582 vput(ap->a_dvp);
583 return error;
584 }
585 error = ufs_symlink(ap);
586 SET_ENDOP_CREATE_AP(ap, "symlink");
587 return (error);
588 }
589
590 int
591 lfs_mknod(void *v)
592 {
593 struct vop_mknod_args /* {
594 struct vnode *a_dvp;
595 struct vnode **a_vpp;
596 struct componentname *a_cnp;
597 struct vattr *a_vap;
598 } */ *ap = v;
599 struct vattr *vap = ap->a_vap;
600 struct vnode **vpp = ap->a_vpp;
601 struct inode *ip;
602 int error;
603 struct mount *mp;
604 ino_t ino;
605
606 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
607 vput(ap->a_dvp);
608 return error;
609 }
610 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
611 ap->a_dvp, vpp, ap->a_cnp);
612
613 /* Either way we're done with the dirop at this point */
614 SET_ENDOP_CREATE_AP(ap, "mknod");
615
616 if (error)
617 return (error);
618
619 ip = VTOI(*vpp);
620 mp = (*vpp)->v_mount;
621 ino = ip->i_number;
622 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
623 if (vap->va_rdev != VNOVAL) {
624 /*
625 * Want to be able to use this to make badblock
626 * inodes, so don't truncate the dev number.
627 */
628 #if 0
629 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
630 UFS_MPNEEDSWAP((*vpp)->v_mount));
631 #else
632 ip->i_ffs1_rdev = vap->va_rdev;
633 #endif
634 }
635
636 /*
637 * Call fsync to write the vnode so that we don't have to deal with
638 * flushing it when it's marked VU_DIROP|VI_XLOCK.
639 *
640 * XXX KS - If we can't flush we also can't call vgone(), so must
641 * return. But, that leaves this vnode in limbo, also not good.
642 * Can this ever happen (barring hardware failure)?
643 */
644 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
645 panic("lfs_mknod: couldn't fsync (ino %llu)",
646 (unsigned long long)ino);
647 /* return (error); */
648 }
649 /*
650 * Remove vnode so that it will be reloaded by VFS_VGET and
651 * checked to see if it is an alias of an existing entry in
652 * the inode cache.
653 */
654 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
655
656 VOP_UNLOCK(*vpp, 0);
657 (*vpp)->v_type = VNON;
658 vgone(*vpp);
659 error = VFS_VGET(mp, ino, vpp);
660
661 if (error != 0) {
662 *vpp = NULL;
663 return (error);
664 }
665 return (0);
666 }
667
668 int
669 lfs_create(void *v)
670 {
671 struct vop_create_args /* {
672 struct vnode *a_dvp;
673 struct vnode **a_vpp;
674 struct componentname *a_cnp;
675 struct vattr *a_vap;
676 } */ *ap = v;
677 int error;
678
679 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
680 vput(ap->a_dvp);
681 return error;
682 }
683 error = ufs_create(ap);
684 SET_ENDOP_CREATE_AP(ap, "create");
685 return (error);
686 }
687
688 int
689 lfs_mkdir(void *v)
690 {
691 struct vop_mkdir_args /* {
692 struct vnode *a_dvp;
693 struct vnode **a_vpp;
694 struct componentname *a_cnp;
695 struct vattr *a_vap;
696 } */ *ap = v;
697 int error;
698
699 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
700 vput(ap->a_dvp);
701 return error;
702 }
703 error = ufs_mkdir(ap);
704 SET_ENDOP_CREATE_AP(ap, "mkdir");
705 return (error);
706 }
707
708 int
709 lfs_remove(void *v)
710 {
711 struct vop_remove_args /* {
712 struct vnode *a_dvp;
713 struct vnode *a_vp;
714 struct componentname *a_cnp;
715 } */ *ap = v;
716 struct vnode *dvp, *vp;
717 struct inode *ip;
718 int error;
719
720 dvp = ap->a_dvp;
721 vp = ap->a_vp;
722 ip = VTOI(vp);
723 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
724 if (dvp == vp)
725 vrele(vp);
726 else
727 vput(vp);
728 vput(dvp);
729 return error;
730 }
731 error = ufs_remove(ap);
732 if (ip->i_nlink == 0)
733 lfs_orphan(ip->i_lfs, ip->i_number);
734 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
735 return (error);
736 }
737
738 int
739 lfs_rmdir(void *v)
740 {
741 struct vop_rmdir_args /* {
742 struct vnodeop_desc *a_desc;
743 struct vnode *a_dvp;
744 struct vnode *a_vp;
745 struct componentname *a_cnp;
746 } */ *ap = v;
747 struct vnode *vp;
748 struct inode *ip;
749 int error;
750
751 vp = ap->a_vp;
752 ip = VTOI(vp);
753 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
754 if (ap->a_dvp == vp)
755 vrele(ap->a_dvp);
756 else
757 vput(ap->a_dvp);
758 vput(vp);
759 return error;
760 }
761 error = ufs_rmdir(ap);
762 if (ip->i_nlink == 0)
763 lfs_orphan(ip->i_lfs, ip->i_number);
764 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
765 return (error);
766 }
767
768 int
769 lfs_link(void *v)
770 {
771 struct vop_link_args /* {
772 struct vnode *a_dvp;
773 struct vnode *a_vp;
774 struct componentname *a_cnp;
775 } */ *ap = v;
776 int error;
777 struct vnode **vpp = NULL;
778
779 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
780 vput(ap->a_dvp);
781 return error;
782 }
783 error = ufs_link(ap);
784 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
785 return (error);
786 }
787
788 int
789 lfs_rename(void *v)
790 {
791 struct vop_rename_args /* {
792 struct vnode *a_fdvp;
793 struct vnode *a_fvp;
794 struct componentname *a_fcnp;
795 struct vnode *a_tdvp;
796 struct vnode *a_tvp;
797 struct componentname *a_tcnp;
798 } */ *ap = v;
799 struct vnode *tvp, *fvp, *tdvp, *fdvp;
800 struct componentname *tcnp, *fcnp;
801 int error;
802 struct lfs *fs;
803
804 fs = VTOI(ap->a_fdvp)->i_lfs;
805 tvp = ap->a_tvp;
806 tdvp = ap->a_tdvp;
807 tcnp = ap->a_tcnp;
808 fvp = ap->a_fvp;
809 fdvp = ap->a_fdvp;
810 fcnp = ap->a_fcnp;
811
812 /*
813 * Check for cross-device rename.
814 * If it is, we don't want to set dirops, just error out.
815 * (In particular note that MARK_VNODE(tdvp) will DTWT on
816 * a cross-device rename.)
817 *
818 * Copied from ufs_rename.
819 */
820 if ((fvp->v_mount != tdvp->v_mount) ||
821 (tvp && (fvp->v_mount != tvp->v_mount))) {
822 error = EXDEV;
823 goto errout;
824 }
825
826 /*
827 * Check to make sure we're not renaming a vnode onto itself
828 * (deleting a hard link by renaming one name onto another);
829 * if we are we can't recursively call VOP_REMOVE since that
830 * would leave us with an unaccounted-for number of live dirops.
831 *
832 * Inline the relevant section of ufs_rename here, *before*
833 * calling SET_DIROP_REMOVE.
834 */
835 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
836 (VTOI(tdvp)->i_flags & APPEND))) {
837 error = EPERM;
838 goto errout;
839 }
840 if (fvp == tvp) {
841 if (fvp->v_type == VDIR) {
842 error = EINVAL;
843 goto errout;
844 }
845
846 /* Release destination completely. */
847 VOP_ABORTOP(tdvp, tcnp);
848 vput(tdvp);
849 vput(tvp);
850
851 /* Delete source. */
852 vrele(fvp);
853 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
854 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
855 fcnp->cn_nameiop = DELETE;
856 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
857 if ((error = relookup(fdvp, &fvp, fcnp))) {
858 vput(fdvp);
859 return (error);
860 }
861 return (VOP_REMOVE(fdvp, fvp, fcnp));
862 }
863
864 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
865 goto errout;
866 MARK_VNODE(fdvp);
867 MARK_VNODE(fvp);
868
869 error = ufs_rename(ap);
870 UNMARK_VNODE(fdvp);
871 UNMARK_VNODE(fvp);
872 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
873 return (error);
874
875 errout:
876 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
877 if (tdvp == tvp)
878 vrele(tdvp);
879 else
880 vput(tdvp);
881 if (tvp)
882 vput(tvp);
883 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
884 vrele(fdvp);
885 vrele(fvp);
886 return (error);
887 }
888
889 /* XXX hack to avoid calling ITIMES in getattr */
890 int
891 lfs_getattr(void *v)
892 {
893 struct vop_getattr_args /* {
894 struct vnode *a_vp;
895 struct vattr *a_vap;
896 kauth_cred_t a_cred;
897 } */ *ap = v;
898 struct vnode *vp = ap->a_vp;
899 struct inode *ip = VTOI(vp);
900 struct vattr *vap = ap->a_vap;
901 struct lfs *fs = ip->i_lfs;
902 /*
903 * Copy from inode table
904 */
905 vap->va_fsid = ip->i_dev;
906 vap->va_fileid = ip->i_number;
907 vap->va_mode = ip->i_mode & ~IFMT;
908 vap->va_nlink = ip->i_nlink;
909 vap->va_uid = ip->i_uid;
910 vap->va_gid = ip->i_gid;
911 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
912 vap->va_size = vp->v_size;
913 vap->va_atime.tv_sec = ip->i_ffs1_atime;
914 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
915 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
916 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
917 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
918 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
919 vap->va_flags = ip->i_flags;
920 vap->va_gen = ip->i_gen;
921 /* this doesn't belong here */
922 if (vp->v_type == VBLK)
923 vap->va_blocksize = BLKDEV_IOSIZE;
924 else if (vp->v_type == VCHR)
925 vap->va_blocksize = MAXBSIZE;
926 else
927 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
928 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
929 vap->va_type = vp->v_type;
930 vap->va_filerev = ip->i_modrev;
931 return (0);
932 }
933
934 /*
935 * Check to make sure the inode blocks won't choke the buffer
936 * cache, then call ufs_setattr as usual.
937 */
938 int
939 lfs_setattr(void *v)
940 {
941 struct vop_setattr_args /* {
942 struct vnode *a_vp;
943 struct vattr *a_vap;
944 kauth_cred_t a_cred;
945 } */ *ap = v;
946 struct vnode *vp = ap->a_vp;
947
948 lfs_check(vp, LFS_UNUSED_LBN, 0);
949 return ufs_setattr(v);
950 }
951
952 /*
953 * Release the block we hold on lfs_newseg wrapping. Called on file close,
954 * or explicitly from LFCNWRAPGO. Called with the interlock held.
955 */
956 static int
957 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
958 {
959 if (fs->lfs_stoplwp != curlwp)
960 return EBUSY;
961
962 fs->lfs_stoplwp = NULL;
963 cv_signal(&fs->lfs_stopcv);
964
965 KASSERT(fs->lfs_nowrap > 0);
966 if (fs->lfs_nowrap <= 0) {
967 return 0;
968 }
969
970 if (--fs->lfs_nowrap == 0) {
971 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
972 wakeup(&fs->lfs_wrappass);
973 lfs_wakeup_cleaner(fs);
974 }
975 if (waitfor) {
976 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
977 0, &lfs_lock);
978 }
979
980 return 0;
981 }
982
983 /*
984 * Close called
985 */
986 /* ARGSUSED */
987 int
988 lfs_close(void *v)
989 {
990 struct vop_close_args /* {
991 struct vnode *a_vp;
992 int a_fflag;
993 kauth_cred_t a_cred;
994 } */ *ap = v;
995 struct vnode *vp = ap->a_vp;
996 struct inode *ip = VTOI(vp);
997 struct lfs *fs = ip->i_lfs;
998
999 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1000 fs->lfs_stoplwp == curlwp) {
1001 mutex_enter(&lfs_lock);
1002 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1003 lfs_wrapgo(fs, ip, 0);
1004 mutex_exit(&lfs_lock);
1005 }
1006
1007 if (vp == ip->i_lfs->lfs_ivnode &&
1008 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1009 return 0;
1010
1011 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1012 LFS_ITIMES(ip, NULL, NULL, NULL);
1013 }
1014 return (0);
1015 }
1016
1017 /*
1018 * Close wrapper for special devices.
1019 *
1020 * Update the times on the inode then do device close.
1021 */
1022 int
1023 lfsspec_close(void *v)
1024 {
1025 struct vop_close_args /* {
1026 struct vnode *a_vp;
1027 int a_fflag;
1028 kauth_cred_t a_cred;
1029 } */ *ap = v;
1030 struct vnode *vp;
1031 struct inode *ip;
1032
1033 vp = ap->a_vp;
1034 ip = VTOI(vp);
1035 if (vp->v_usecount > 1) {
1036 LFS_ITIMES(ip, NULL, NULL, NULL);
1037 }
1038 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1039 }
1040
1041 /*
1042 * Close wrapper for fifo's.
1043 *
1044 * Update the times on the inode then do device close.
1045 */
1046 int
1047 lfsfifo_close(void *v)
1048 {
1049 struct vop_close_args /* {
1050 struct vnode *a_vp;
1051 int a_fflag;
1052 kauth_cred_ a_cred;
1053 } */ *ap = v;
1054 struct vnode *vp;
1055 struct inode *ip;
1056
1057 vp = ap->a_vp;
1058 ip = VTOI(vp);
1059 if (ap->a_vp->v_usecount > 1) {
1060 LFS_ITIMES(ip, NULL, NULL, NULL);
1061 }
1062 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1063 }
1064
1065 /*
1066 * Reclaim an inode so that it can be used for other purposes.
1067 */
1068
1069 int
1070 lfs_reclaim(void *v)
1071 {
1072 struct vop_reclaim_args /* {
1073 struct vnode *a_vp;
1074 } */ *ap = v;
1075 struct vnode *vp = ap->a_vp;
1076 struct inode *ip = VTOI(vp);
1077 struct lfs *fs = ip->i_lfs;
1078 int error;
1079
1080 KASSERT(ip->i_nlink == ip->i_ffs_effnlink);
1081
1082 mutex_enter(&lfs_lock);
1083 LFS_CLR_UINO(ip, IN_ALLMOD);
1084 mutex_exit(&lfs_lock);
1085 if ((error = ufs_reclaim(vp)))
1086 return (error);
1087
1088 /*
1089 * Take us off the paging and/or dirop queues if we were on them.
1090 * We shouldn't be on them.
1091 */
1092 mutex_enter(&lfs_lock);
1093 if (ip->i_flags & IN_PAGING) {
1094 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1095 fs->lfs_fsmnt);
1096 ip->i_flags &= ~IN_PAGING;
1097 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1098 }
1099 if (vp->v_uflag & VU_DIROP) {
1100 panic("reclaimed vnode is VU_DIROP");
1101 vp->v_uflag &= ~VU_DIROP;
1102 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1103 }
1104 mutex_exit(&lfs_lock);
1105
1106 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1107 lfs_deregister_all(vp);
1108 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1109 ip->inode_ext.lfs = NULL;
1110 genfs_node_destroy(vp);
1111 pool_put(&lfs_inode_pool, vp->v_data);
1112 vp->v_data = NULL;
1113 return (0);
1114 }
1115
1116 /*
1117 * Read a block from a storage device.
1118 * In order to avoid reading blocks that are in the process of being
1119 * written by the cleaner---and hence are not mutexed by the normal
1120 * buffer cache / page cache mechanisms---check for collisions before
1121 * reading.
1122 *
1123 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1124 * the active cleaner test.
1125 *
1126 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1127 */
1128 int
1129 lfs_strategy(void *v)
1130 {
1131 struct vop_strategy_args /* {
1132 struct vnode *a_vp;
1133 struct buf *a_bp;
1134 } */ *ap = v;
1135 struct buf *bp;
1136 struct lfs *fs;
1137 struct vnode *vp;
1138 struct inode *ip;
1139 daddr_t tbn;
1140 int i, sn, error, slept;
1141
1142 bp = ap->a_bp;
1143 vp = ap->a_vp;
1144 ip = VTOI(vp);
1145 fs = ip->i_lfs;
1146
1147 /* lfs uses its strategy routine only for read */
1148 KASSERT(bp->b_flags & B_READ);
1149
1150 if (vp->v_type == VBLK || vp->v_type == VCHR)
1151 panic("lfs_strategy: spec");
1152 KASSERT(bp->b_bcount != 0);
1153 if (bp->b_blkno == bp->b_lblkno) {
1154 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1155 NULL);
1156 if (error) {
1157 bp->b_error = error;
1158 bp->b_resid = bp->b_bcount;
1159 biodone(bp);
1160 return (error);
1161 }
1162 if ((long)bp->b_blkno == -1) /* no valid data */
1163 clrbuf(bp);
1164 }
1165 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1166 bp->b_resid = bp->b_bcount;
1167 biodone(bp);
1168 return (0);
1169 }
1170
1171 slept = 1;
1172 mutex_enter(&lfs_lock);
1173 while (slept && fs->lfs_seglock) {
1174 mutex_exit(&lfs_lock);
1175 /*
1176 * Look through list of intervals.
1177 * There will only be intervals to look through
1178 * if the cleaner holds the seglock.
1179 * Since the cleaner is synchronous, we can trust
1180 * the list of intervals to be current.
1181 */
1182 tbn = dbtofsb(fs, bp->b_blkno);
1183 sn = dtosn(fs, tbn);
1184 slept = 0;
1185 for (i = 0; i < fs->lfs_cleanind; i++) {
1186 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1187 tbn >= fs->lfs_cleanint[i]) {
1188 DLOG((DLOG_CLEAN,
1189 "lfs_strategy: ino %d lbn %" PRId64
1190 " ind %d sn %d fsb %" PRIx32
1191 " given sn %d fsb %" PRIx64 "\n",
1192 ip->i_number, bp->b_lblkno, i,
1193 dtosn(fs, fs->lfs_cleanint[i]),
1194 fs->lfs_cleanint[i], sn, tbn));
1195 DLOG((DLOG_CLEAN,
1196 "lfs_strategy: sleeping on ino %d lbn %"
1197 PRId64 "\n", ip->i_number, bp->b_lblkno));
1198 mutex_enter(&lfs_lock);
1199 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1200 /* Cleaner can't wait for itself */
1201 mtsleep(&fs->lfs_iocount,
1202 (PRIBIO + 1) | PNORELOCK,
1203 "clean2", 0,
1204 &lfs_lock);
1205 slept = 1;
1206 break;
1207 } else if (fs->lfs_seglock) {
1208 mtsleep(&fs->lfs_seglock,
1209 (PRIBIO + 1) | PNORELOCK,
1210 "clean1", 0,
1211 &lfs_lock);
1212 slept = 1;
1213 break;
1214 }
1215 mutex_exit(&lfs_lock);
1216 }
1217 }
1218 mutex_enter(&lfs_lock);
1219 }
1220 mutex_exit(&lfs_lock);
1221
1222 vp = ip->i_devvp;
1223 VOP_STRATEGY(vp, bp);
1224 return (0);
1225 }
1226
1227 void
1228 lfs_flush_dirops(struct lfs *fs)
1229 {
1230 struct inode *ip, *nip;
1231 struct vnode *vp;
1232 extern int lfs_dostats;
1233 struct segment *sp;
1234 int waslocked;
1235
1236 ASSERT_MAYBE_SEGLOCK(fs);
1237 KASSERT(fs->lfs_nadirop == 0);
1238
1239 if (fs->lfs_ronly)
1240 return;
1241
1242 mutex_enter(&lfs_lock);
1243 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1244 mutex_exit(&lfs_lock);
1245 return;
1246 } else
1247 mutex_exit(&lfs_lock);
1248
1249 if (lfs_dostats)
1250 ++lfs_stats.flush_invoked;
1251
1252 /*
1253 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1254 * Technically this is a checkpoint (the on-disk state is valid)
1255 * even though we are leaving out all the file data.
1256 */
1257 lfs_imtime(fs);
1258 lfs_seglock(fs, SEGM_CKP);
1259 sp = fs->lfs_sp;
1260
1261 /*
1262 * lfs_writevnodes, optimized to get dirops out of the way.
1263 * Only write dirops, and don't flush files' pages, only
1264 * blocks from the directories.
1265 *
1266 * We don't need to vref these files because they are
1267 * dirops and so hold an extra reference until the
1268 * segunlock clears them of that status.
1269 *
1270 * We don't need to check for IN_ADIROP because we know that
1271 * no dirops are active.
1272 *
1273 */
1274 mutex_enter(&lfs_lock);
1275 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1276 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1277 mutex_exit(&lfs_lock);
1278 vp = ITOV(ip);
1279
1280 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1281
1282 /*
1283 * All writes to directories come from dirops; all
1284 * writes to files' direct blocks go through the page
1285 * cache, which we're not touching. Reads to files
1286 * and/or directories will not be affected by writing
1287 * directory blocks inodes and file inodes. So we don't
1288 * really need to lock. If we don't lock, though,
1289 * make sure that we don't clear IN_MODIFIED
1290 * unnecessarily.
1291 */
1292 if (vp->v_iflag & VI_XLOCK) {
1293 mutex_enter(&lfs_lock);
1294 continue;
1295 }
1296 waslocked = VOP_ISLOCKED(vp);
1297 if (vp->v_type != VREG &&
1298 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1299 lfs_writefile(fs, sp, vp);
1300 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1301 !(ip->i_flag & IN_ALLMOD)) {
1302 mutex_enter(&lfs_lock);
1303 LFS_SET_UINO(ip, IN_MODIFIED);
1304 mutex_exit(&lfs_lock);
1305 }
1306 }
1307 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1308 (void) lfs_writeinode(fs, sp, ip);
1309 mutex_enter(&lfs_lock);
1310 if (waslocked == LK_EXCLOTHER)
1311 LFS_SET_UINO(ip, IN_MODIFIED);
1312 }
1313 mutex_exit(&lfs_lock);
1314 /* We've written all the dirops there are */
1315 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1316 lfs_finalize_fs_seguse(fs);
1317 (void) lfs_writeseg(fs, sp);
1318 lfs_segunlock(fs);
1319 }
1320
1321 /*
1322 * Flush all vnodes for which the pagedaemon has requested pageouts.
1323 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1324 * has just run, this would be an error). If we have to skip a vnode
1325 * for any reason, just skip it; if we have to wait for the cleaner,
1326 * abort. The writer daemon will call us again later.
1327 */
1328 void
1329 lfs_flush_pchain(struct lfs *fs)
1330 {
1331 struct inode *ip, *nip;
1332 struct vnode *vp;
1333 extern int lfs_dostats;
1334 struct segment *sp;
1335 int error;
1336
1337 ASSERT_NO_SEGLOCK(fs);
1338
1339 if (fs->lfs_ronly)
1340 return;
1341
1342 mutex_enter(&lfs_lock);
1343 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1344 mutex_exit(&lfs_lock);
1345 return;
1346 } else
1347 mutex_exit(&lfs_lock);
1348
1349 /* Get dirops out of the way */
1350 lfs_flush_dirops(fs);
1351
1352 if (lfs_dostats)
1353 ++lfs_stats.flush_invoked;
1354
1355 /*
1356 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1357 */
1358 lfs_imtime(fs);
1359 lfs_seglock(fs, 0);
1360 sp = fs->lfs_sp;
1361
1362 /*
1363 * lfs_writevnodes, optimized to clear pageout requests.
1364 * Only write non-dirop files that are in the pageout queue.
1365 * We're very conservative about what we write; we want to be
1366 * fast and async.
1367 */
1368 mutex_enter(&lfs_lock);
1369 top:
1370 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1371 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1372 vp = ITOV(ip);
1373
1374 if (!(ip->i_flags & IN_PAGING))
1375 goto top;
1376
1377 mutex_enter(&vp->v_interlock);
1378 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1379 mutex_exit(&vp->v_interlock);
1380 continue;
1381 }
1382 if (vp->v_type != VREG) {
1383 mutex_exit(&vp->v_interlock);
1384 continue;
1385 }
1386 if (lfs_vref(vp))
1387 continue;
1388 mutex_exit(&lfs_lock);
1389
1390 if (VOP_ISLOCKED(vp)) {
1391 lfs_vunref(vp);
1392 mutex_enter(&lfs_lock);
1393 continue;
1394 }
1395
1396 error = lfs_writefile(fs, sp, vp);
1397 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1398 !(ip->i_flag & IN_ALLMOD)) {
1399 mutex_enter(&lfs_lock);
1400 LFS_SET_UINO(ip, IN_MODIFIED);
1401 mutex_exit(&lfs_lock);
1402 }
1403 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1404 (void) lfs_writeinode(fs, sp, ip);
1405
1406 lfs_vunref(vp);
1407
1408 if (error == EAGAIN) {
1409 lfs_writeseg(fs, sp);
1410 mutex_enter(&lfs_lock);
1411 break;
1412 }
1413 mutex_enter(&lfs_lock);
1414 }
1415 mutex_exit(&lfs_lock);
1416 (void) lfs_writeseg(fs, sp);
1417 lfs_segunlock(fs);
1418 }
1419
1420 /*
1421 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1422 */
1423 int
1424 lfs_fcntl(void *v)
1425 {
1426 struct vop_fcntl_args /* {
1427 struct vnode *a_vp;
1428 u_int a_command;
1429 void * a_data;
1430 int a_fflag;
1431 kauth_cred_t a_cred;
1432 } */ *ap = v;
1433 struct timeval *tvp;
1434 BLOCK_INFO *blkiov;
1435 CLEANERINFO *cip;
1436 SEGUSE *sup;
1437 int blkcnt, error, oclean;
1438 size_t fh_size;
1439 struct lfs_fcntl_markv blkvp;
1440 struct lwp *l;
1441 fsid_t *fsidp;
1442 struct lfs *fs;
1443 struct buf *bp;
1444 fhandle_t *fhp;
1445 daddr_t off;
1446
1447 /* Only respect LFS fcntls on fs root or Ifile */
1448 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1449 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1450 return ufs_fcntl(v);
1451 }
1452
1453 /* Avoid locking a draining lock */
1454 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1455 return ESHUTDOWN;
1456 }
1457
1458 /* LFS control and monitoring fcntls are available only to root */
1459 l = curlwp;
1460 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1461 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1462 NULL)) != 0)
1463 return (error);
1464
1465 fs = VTOI(ap->a_vp)->i_lfs;
1466 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1467
1468 error = 0;
1469 switch ((int)ap->a_command) {
1470 case LFCNSEGWAITALL:
1471 case LFCNSEGWAITALL_COMPAT:
1472 fsidp = NULL;
1473 /* FALLSTHROUGH */
1474 case LFCNSEGWAIT:
1475 case LFCNSEGWAIT_COMPAT:
1476 tvp = (struct timeval *)ap->a_data;
1477 mutex_enter(&lfs_lock);
1478 ++fs->lfs_sleepers;
1479 mutex_exit(&lfs_lock);
1480
1481 error = lfs_segwait(fsidp, tvp);
1482
1483 mutex_enter(&lfs_lock);
1484 if (--fs->lfs_sleepers == 0)
1485 wakeup(&fs->lfs_sleepers);
1486 mutex_exit(&lfs_lock);
1487 return error;
1488
1489 case LFCNBMAPV:
1490 case LFCNMARKV:
1491 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1492
1493 blkcnt = blkvp.blkcnt;
1494 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1495 return (EINVAL);
1496 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1497 if ((error = copyin(blkvp.blkiov, blkiov,
1498 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1499 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1500 return error;
1501 }
1502
1503 mutex_enter(&lfs_lock);
1504 ++fs->lfs_sleepers;
1505 mutex_exit(&lfs_lock);
1506 if (ap->a_command == LFCNBMAPV)
1507 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1508 else /* LFCNMARKV */
1509 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1510 if (error == 0)
1511 error = copyout(blkiov, blkvp.blkiov,
1512 blkcnt * sizeof(BLOCK_INFO));
1513 mutex_enter(&lfs_lock);
1514 if (--fs->lfs_sleepers == 0)
1515 wakeup(&fs->lfs_sleepers);
1516 mutex_exit(&lfs_lock);
1517 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1518 return error;
1519
1520 case LFCNRECLAIM:
1521 /*
1522 * Flush dirops and write Ifile, allowing empty segments
1523 * to be immediately reclaimed.
1524 */
1525 lfs_writer_enter(fs, "pndirop");
1526 off = fs->lfs_offset;
1527 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1528 lfs_flush_dirops(fs);
1529 LFS_CLEANERINFO(cip, fs, bp);
1530 oclean = cip->clean;
1531 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1532 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1533 fs->lfs_sp->seg_flags |= SEGM_PROT;
1534 lfs_segunlock(fs);
1535 lfs_writer_leave(fs);
1536
1537 #ifdef DEBUG
1538 LFS_CLEANERINFO(cip, fs, bp);
1539 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1540 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1541 fs->lfs_offset - off, cip->clean - oclean,
1542 fs->lfs_activesb));
1543 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1544 #endif
1545
1546 return 0;
1547
1548 #ifdef COMPAT_30
1549 case LFCNIFILEFH_COMPAT:
1550 /* Return the filehandle of the Ifile */
1551 if ((error = kauth_authorize_generic(l->l_cred,
1552 KAUTH_GENERIC_ISSUSER, NULL)) != 0)
1553 return (error);
1554 fhp = (struct fhandle *)ap->a_data;
1555 fhp->fh_fsid = *fsidp;
1556 fh_size = 16; /* former VFS_MAXFIDSIZ */
1557 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1558 #endif
1559
1560 case LFCNIFILEFH_COMPAT2:
1561 case LFCNIFILEFH:
1562 /* Return the filehandle of the Ifile */
1563 fhp = (struct fhandle *)ap->a_data;
1564 fhp->fh_fsid = *fsidp;
1565 fh_size = sizeof(struct lfs_fhandle) -
1566 offsetof(fhandle_t, fh_fid);
1567 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1568
1569 case LFCNREWIND:
1570 /* Move lfs_offset to the lowest-numbered segment */
1571 return lfs_rewind(fs, *(int *)ap->a_data);
1572
1573 case LFCNINVAL:
1574 /* Mark a segment SEGUSE_INVAL */
1575 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1576 if (sup->su_nbytes > 0) {
1577 brelse(bp, 0);
1578 lfs_unset_inval_all(fs);
1579 return EBUSY;
1580 }
1581 sup->su_flags |= SEGUSE_INVAL;
1582 VOP_BWRITE(bp);
1583 return 0;
1584
1585 case LFCNRESIZE:
1586 /* Resize the filesystem */
1587 return lfs_resize_fs(fs, *(int *)ap->a_data);
1588
1589 case LFCNWRAPSTOP:
1590 case LFCNWRAPSTOP_COMPAT:
1591 /*
1592 * Hold lfs_newseg at segment 0; if requested, sleep until
1593 * the filesystem wraps around. To support external agents
1594 * (dump, fsck-based regression test) that need to look at
1595 * a snapshot of the filesystem, without necessarily
1596 * requiring that all fs activity stops.
1597 */
1598 if (fs->lfs_stoplwp == curlwp)
1599 return EALREADY;
1600
1601 mutex_enter(&lfs_lock);
1602 while (fs->lfs_stoplwp != NULL)
1603 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1604 fs->lfs_stoplwp = curlwp;
1605 if (fs->lfs_nowrap == 0)
1606 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1607 ++fs->lfs_nowrap;
1608 if (*(int *)ap->a_data == 1 ||
1609 ap->a_command == LFCNWRAPSTOP_COMPAT) {
1610 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1611 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1612 "segwrap", 0, &lfs_lock);
1613 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1614 if (error) {
1615 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1616 }
1617 }
1618 mutex_exit(&lfs_lock);
1619 return 0;
1620
1621 case LFCNWRAPGO:
1622 case LFCNWRAPGO_COMPAT:
1623 /*
1624 * Having done its work, the agent wakes up the writer.
1625 * If the argument is 1, it sleeps until a new segment
1626 * is selected.
1627 */
1628 mutex_enter(&lfs_lock);
1629 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1630 (ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1631 *((int *)ap->a_data)));
1632 mutex_exit(&lfs_lock);
1633 return error;
1634
1635 case LFCNWRAPPASS:
1636 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1637 return EALREADY;
1638 mutex_enter(&lfs_lock);
1639 if (fs->lfs_stoplwp != curlwp) {
1640 mutex_exit(&lfs_lock);
1641 return EALREADY;
1642 }
1643 if (fs->lfs_nowrap == 0) {
1644 mutex_exit(&lfs_lock);
1645 return EBUSY;
1646 }
1647 fs->lfs_wrappass = 1;
1648 wakeup(&fs->lfs_wrappass);
1649 /* Wait for the log to wrap, if asked */
1650 if (*(int *)ap->a_data) {
1651 mutex_enter(&ap->a_vp->v_interlock);
1652 lfs_vref(ap->a_vp);
1653 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1654 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1655 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1656 "segwrap", 0, &lfs_lock);
1657 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1658 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1659 lfs_vunref(ap->a_vp);
1660 }
1661 mutex_exit(&lfs_lock);
1662 return error;
1663
1664 case LFCNWRAPSTATUS:
1665 mutex_enter(&lfs_lock);
1666 *(int *)ap->a_data = fs->lfs_wrapstatus;
1667 mutex_exit(&lfs_lock);
1668 return 0;
1669
1670 default:
1671 return ufs_fcntl(v);
1672 }
1673 return 0;
1674 }
1675
1676 int
1677 lfs_getpages(void *v)
1678 {
1679 struct vop_getpages_args /* {
1680 struct vnode *a_vp;
1681 voff_t a_offset;
1682 struct vm_page **a_m;
1683 int *a_count;
1684 int a_centeridx;
1685 vm_prot_t a_access_type;
1686 int a_advice;
1687 int a_flags;
1688 } */ *ap = v;
1689
1690 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1691 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1692 return EPERM;
1693 }
1694 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1695 mutex_enter(&lfs_lock);
1696 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1697 mutex_exit(&lfs_lock);
1698 }
1699
1700 /*
1701 * we're relying on the fact that genfs_getpages() always read in
1702 * entire filesystem blocks.
1703 */
1704 return genfs_getpages(v);
1705 }
1706
1707 /*
1708 * Wait for a page to become unbusy, possibly printing diagnostic messages
1709 * as well.
1710 *
1711 * Called with vp->v_interlock held; return with it held.
1712 */
1713 static void
1714 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1715 {
1716 if ((pg->flags & PG_BUSY) == 0)
1717 return; /* Nothing to wait for! */
1718
1719 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1720 static struct vm_page *lastpg;
1721
1722 if (label != NULL && pg != lastpg) {
1723 if (pg->owner_tag) {
1724 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1725 curproc->p_pid, curlwp->l_lid, label,
1726 pg, pg->owner, pg->lowner, pg->owner_tag);
1727 } else {
1728 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1729 curproc->p_pid, curlwp->l_lid, label, pg);
1730 }
1731 }
1732 lastpg = pg;
1733 #endif
1734
1735 pg->flags |= PG_WANTED;
1736 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0, "lfsput", 0);
1737 mutex_enter(&vp->v_interlock);
1738 }
1739
1740 /*
1741 * This routine is called by lfs_putpages() when it can't complete the
1742 * write because a page is busy. This means that either (1) someone,
1743 * possibly the pagedaemon, is looking at this page, and will give it up
1744 * presently; or (2) we ourselves are holding the page busy in the
1745 * process of being written (either gathered or actually on its way to
1746 * disk). We don't need to give up the segment lock, but we might need
1747 * to call lfs_writeseg() to expedite the page's journey to disk.
1748 *
1749 * Called with vp->v_interlock held; return with it held.
1750 */
1751 /* #define BUSYWAIT */
1752 static void
1753 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1754 int seglocked, const char *label)
1755 {
1756 #ifndef BUSYWAIT
1757 struct inode *ip = VTOI(vp);
1758 struct segment *sp = fs->lfs_sp;
1759 int count = 0;
1760
1761 if (pg == NULL)
1762 return;
1763
1764 while (pg->flags & PG_BUSY) {
1765 mutex_exit(&vp->v_interlock);
1766 if (sp->cbpp - sp->bpp > 1) {
1767 /* Write gathered pages */
1768 lfs_updatemeta(sp);
1769 lfs_release_finfo(fs);
1770 (void) lfs_writeseg(fs, sp);
1771
1772 /*
1773 * Reinitialize FIP
1774 */
1775 KASSERT(sp->vp == vp);
1776 lfs_acquire_finfo(fs, ip->i_number,
1777 ip->i_gen);
1778 }
1779 ++count;
1780 mutex_enter(&vp->v_interlock);
1781 wait_for_page(vp, pg, label);
1782 }
1783 if (label != NULL && count > 1)
1784 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1785 label, (count > 0 ? "looping, " : ""), count);
1786 #else
1787 preempt(1);
1788 #endif
1789 }
1790
1791 /*
1792 * Make sure that for all pages in every block in the given range,
1793 * either all are dirty or all are clean. If any of the pages
1794 * we've seen so far are dirty, put the vnode on the paging chain,
1795 * and mark it IN_PAGING.
1796 *
1797 * If checkfirst != 0, don't check all the pages but return at the
1798 * first dirty page.
1799 */
1800 static int
1801 check_dirty(struct lfs *fs, struct vnode *vp,
1802 off_t startoffset, off_t endoffset, off_t blkeof,
1803 int flags, int checkfirst, struct vm_page **pgp)
1804 {
1805 int by_list;
1806 struct vm_page *curpg = NULL; /* XXX: gcc */
1807 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1808 off_t soff = 0; /* XXX: gcc */
1809 voff_t off;
1810 int i;
1811 int nonexistent;
1812 int any_dirty; /* number of dirty pages */
1813 int dirty; /* number of dirty pages in a block */
1814 int tdirty;
1815 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1816 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1817
1818 ASSERT_MAYBE_SEGLOCK(fs);
1819 top:
1820 by_list = (vp->v_uobj.uo_npages <=
1821 ((endoffset - startoffset) >> PAGE_SHIFT) *
1822 UVM_PAGE_HASH_PENALTY);
1823 any_dirty = 0;
1824
1825 if (by_list) {
1826 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1827 } else {
1828 soff = startoffset;
1829 }
1830 while (by_list || soff < MIN(blkeof, endoffset)) {
1831 if (by_list) {
1832 /*
1833 * Find the first page in a block. Skip
1834 * blocks outside our area of interest or beyond
1835 * the end of file.
1836 */
1837 if (pages_per_block > 1) {
1838 while (curpg &&
1839 ((curpg->offset & fs->lfs_bmask) ||
1840 curpg->offset >= vp->v_size ||
1841 curpg->offset >= endoffset))
1842 curpg = TAILQ_NEXT(curpg, listq.queue);
1843 }
1844 if (curpg == NULL)
1845 break;
1846 soff = curpg->offset;
1847 }
1848
1849 /*
1850 * Mark all pages in extended range busy; find out if any
1851 * of them are dirty.
1852 */
1853 nonexistent = dirty = 0;
1854 for (i = 0; i == 0 || i < pages_per_block; i++) {
1855 if (by_list && pages_per_block <= 1) {
1856 pgs[i] = pg = curpg;
1857 } else {
1858 off = soff + (i << PAGE_SHIFT);
1859 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1860 if (pg == NULL) {
1861 ++nonexistent;
1862 continue;
1863 }
1864 }
1865 KASSERT(pg != NULL);
1866
1867 /*
1868 * If we're holding the segment lock, we can deadlock
1869 * against a process that has our page and is waiting
1870 * for the cleaner, while the cleaner waits for the
1871 * segment lock. Just bail in that case.
1872 */
1873 if ((pg->flags & PG_BUSY) &&
1874 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1875 if (i > 0)
1876 uvm_page_unbusy(pgs, i);
1877 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1878 if (pgp)
1879 *pgp = pg;
1880 return -1;
1881 }
1882
1883 while (pg->flags & PG_BUSY) {
1884 wait_for_page(vp, pg, NULL);
1885 if (i > 0)
1886 uvm_page_unbusy(pgs, i);
1887 goto top;
1888 }
1889 pg->flags |= PG_BUSY;
1890 UVM_PAGE_OWN(pg, "lfs_putpages");
1891
1892 pmap_page_protect(pg, VM_PROT_NONE);
1893 tdirty = (pmap_clear_modify(pg) ||
1894 (pg->flags & PG_CLEAN) == 0);
1895 dirty += tdirty;
1896 }
1897 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1898 if (by_list) {
1899 curpg = TAILQ_NEXT(curpg, listq.queue);
1900 } else {
1901 soff += fs->lfs_bsize;
1902 }
1903 continue;
1904 }
1905
1906 any_dirty += dirty;
1907 KASSERT(nonexistent == 0);
1908
1909 /*
1910 * If any are dirty make all dirty; unbusy them,
1911 * but if we were asked to clean, wire them so that
1912 * the pagedaemon doesn't bother us about them while
1913 * they're on their way to disk.
1914 */
1915 for (i = 0; i == 0 || i < pages_per_block; i++) {
1916 pg = pgs[i];
1917 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1918 if (dirty) {
1919 pg->flags &= ~PG_CLEAN;
1920 if (flags & PGO_FREE) {
1921 /*
1922 * Wire the page so that
1923 * pdaemon doesn't see it again.
1924 */
1925 mutex_enter(&uvm_pageqlock);
1926 uvm_pagewire(pg);
1927 mutex_exit(&uvm_pageqlock);
1928
1929 /* Suspended write flag */
1930 pg->flags |= PG_DELWRI;
1931 }
1932 }
1933 if (pg->flags & PG_WANTED)
1934 wakeup(pg);
1935 pg->flags &= ~(PG_WANTED|PG_BUSY);
1936 UVM_PAGE_OWN(pg, NULL);
1937 }
1938
1939 if (checkfirst && any_dirty)
1940 break;
1941
1942 if (by_list) {
1943 curpg = TAILQ_NEXT(curpg, listq.queue);
1944 } else {
1945 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1946 }
1947 }
1948
1949 return any_dirty;
1950 }
1951
1952 /*
1953 * lfs_putpages functions like genfs_putpages except that
1954 *
1955 * (1) It needs to bounds-check the incoming requests to ensure that
1956 * they are block-aligned; if they are not, expand the range and
1957 * do the right thing in case, e.g., the requested range is clean
1958 * but the expanded range is dirty.
1959 *
1960 * (2) It needs to explicitly send blocks to be written when it is done.
1961 * If VOP_PUTPAGES is called without the seglock held, we simply take
1962 * the seglock and let lfs_segunlock wait for us.
1963 * XXX There might be a bad situation if we have to flush a vnode while
1964 * XXX lfs_markv is in operation. As of this writing we panic in this
1965 * XXX case.
1966 *
1967 * Assumptions:
1968 *
1969 * (1) The caller does not hold any pages in this vnode busy. If it does,
1970 * there is a danger that when we expand the page range and busy the
1971 * pages we will deadlock.
1972 *
1973 * (2) We are called with vp->v_interlock held; we must return with it
1974 * released.
1975 *
1976 * (3) We don't absolutely have to free pages right away, provided that
1977 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1978 * us a request with PGO_FREE, we take the pages out of the paging
1979 * queue and wake up the writer, which will handle freeing them for us.
1980 *
1981 * We ensure that for any filesystem block, all pages for that
1982 * block are either resident or not, even if those pages are higher
1983 * than EOF; that means that we will be getting requests to free
1984 * "unused" pages above EOF all the time, and should ignore them.
1985 *
1986 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1987 * into has been set up for us by lfs_writefile. If not, we will
1988 * have to handle allocating and/or freeing an finfo entry.
1989 *
1990 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1991 */
1992
1993 /* How many times to loop before we should start to worry */
1994 #define TOOMANY 4
1995
1996 int
1997 lfs_putpages(void *v)
1998 {
1999 int error;
2000 struct vop_putpages_args /* {
2001 struct vnode *a_vp;
2002 voff_t a_offlo;
2003 voff_t a_offhi;
2004 int a_flags;
2005 } */ *ap = v;
2006 struct vnode *vp;
2007 struct inode *ip;
2008 struct lfs *fs;
2009 struct segment *sp;
2010 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2011 off_t off, max_endoffset;
2012 bool seglocked, sync, pagedaemon;
2013 struct vm_page *pg, *busypg;
2014 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2015 #ifdef DEBUG
2016 int debug_n_again, debug_n_dirtyclean;
2017 #endif
2018
2019 vp = ap->a_vp;
2020 ip = VTOI(vp);
2021 fs = ip->i_lfs;
2022 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2023 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2024
2025 /* Putpages does nothing for metadata. */
2026 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2027 mutex_exit(&vp->v_interlock);
2028 return 0;
2029 }
2030
2031 /*
2032 * If there are no pages, don't do anything.
2033 */
2034 if (vp->v_uobj.uo_npages == 0) {
2035 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2036 (vp->v_iflag & VI_ONWORKLST) &&
2037 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2038 vp->v_iflag &= ~VI_WRMAPDIRTY;
2039 vn_syncer_remove_from_worklist(vp);
2040 }
2041 mutex_exit(&vp->v_interlock);
2042
2043 /* Remove us from paging queue, if we were on it */
2044 mutex_enter(&lfs_lock);
2045 if (ip->i_flags & IN_PAGING) {
2046 ip->i_flags &= ~IN_PAGING;
2047 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2048 }
2049 mutex_exit(&lfs_lock);
2050 return 0;
2051 }
2052
2053 blkeof = blkroundup(fs, ip->i_size);
2054
2055 /*
2056 * Ignore requests to free pages past EOF but in the same block
2057 * as EOF, unless the request is synchronous. (If the request is
2058 * sync, it comes from lfs_truncate.)
2059 * XXXUBC Make these pages look "active" so the pagedaemon won't
2060 * XXXUBC bother us with them again.
2061 */
2062 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2063 origoffset = ap->a_offlo;
2064 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2065 pg = uvm_pagelookup(&vp->v_uobj, off);
2066 KASSERT(pg != NULL);
2067 while (pg->flags & PG_BUSY) {
2068 pg->flags |= PG_WANTED;
2069 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
2070 "lfsput2", 0);
2071 mutex_enter(&vp->v_interlock);
2072 }
2073 mutex_enter(&uvm_pageqlock);
2074 uvm_pageactivate(pg);
2075 mutex_exit(&uvm_pageqlock);
2076 }
2077 ap->a_offlo = blkeof;
2078 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2079 mutex_exit(&vp->v_interlock);
2080 return 0;
2081 }
2082 }
2083
2084 /*
2085 * Extend page range to start and end at block boundaries.
2086 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2087 */
2088 origoffset = ap->a_offlo;
2089 origendoffset = ap->a_offhi;
2090 startoffset = origoffset & ~(fs->lfs_bmask);
2091 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2092 << fs->lfs_bshift;
2093
2094 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2095 endoffset = max_endoffset;
2096 origendoffset = endoffset;
2097 } else {
2098 origendoffset = round_page(ap->a_offhi);
2099 endoffset = round_page(blkroundup(fs, origendoffset));
2100 }
2101
2102 KASSERT(startoffset > 0 || endoffset >= startoffset);
2103 if (startoffset == endoffset) {
2104 /* Nothing to do, why were we called? */
2105 mutex_exit(&vp->v_interlock);
2106 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2107 PRId64 "\n", startoffset));
2108 return 0;
2109 }
2110
2111 ap->a_offlo = startoffset;
2112 ap->a_offhi = endoffset;
2113
2114 /*
2115 * If not cleaning, just send the pages through genfs_putpages
2116 * to be returned to the pool.
2117 */
2118 if (!(ap->a_flags & PGO_CLEANIT))
2119 return genfs_putpages(v);
2120
2121 /* Set PGO_BUSYFAIL to avoid deadlocks */
2122 ap->a_flags |= PGO_BUSYFAIL;
2123
2124 /*
2125 * Likewise, if we are asked to clean but the pages are not
2126 * dirty, we can just free them using genfs_putpages.
2127 */
2128 #ifdef DEBUG
2129 debug_n_dirtyclean = 0;
2130 #endif
2131 do {
2132 int r;
2133
2134 /* Count the number of dirty pages */
2135 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2136 ap->a_flags, 1, NULL);
2137 if (r < 0) {
2138 /* Pages are busy with another process */
2139 mutex_exit(&vp->v_interlock);
2140 return EDEADLK;
2141 }
2142 if (r > 0) /* Some pages are dirty */
2143 break;
2144
2145 /*
2146 * Sometimes pages are dirtied between the time that
2147 * we check and the time we try to clean them.
2148 * Instruct lfs_gop_write to return EDEADLK in this case
2149 * so we can write them properly.
2150 */
2151 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2152 r = genfs_do_putpages(vp, startoffset, endoffset,
2153 ap->a_flags, &busypg);
2154 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2155 if (r != EDEADLK)
2156 return r;
2157
2158 /* One of the pages was busy. Start over. */
2159 mutex_enter(&vp->v_interlock);
2160 wait_for_page(vp, busypg, "dirtyclean");
2161 #ifdef DEBUG
2162 ++debug_n_dirtyclean;
2163 #endif
2164 } while(1);
2165
2166 #ifdef DEBUG
2167 if (debug_n_dirtyclean > TOOMANY)
2168 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2169 debug_n_dirtyclean);
2170 #endif
2171
2172 /*
2173 * Dirty and asked to clean.
2174 *
2175 * Pagedaemon can't actually write LFS pages; wake up
2176 * the writer to take care of that. The writer will
2177 * notice the pager inode queue and act on that.
2178 */
2179 if (pagedaemon) {
2180 mutex_enter(&lfs_lock);
2181 if (!(ip->i_flags & IN_PAGING)) {
2182 ip->i_flags |= IN_PAGING;
2183 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2184 }
2185 wakeup(&lfs_writer_daemon);
2186 mutex_exit(&lfs_lock);
2187 mutex_exit(&vp->v_interlock);
2188 preempt();
2189 return EWOULDBLOCK;
2190 }
2191
2192 /*
2193 * If this is a file created in a recent dirop, we can't flush its
2194 * inode until the dirop is complete. Drain dirops, then flush the
2195 * filesystem (taking care of any other pending dirops while we're
2196 * at it).
2197 */
2198 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2199 (vp->v_uflag & VU_DIROP)) {
2200 int locked;
2201
2202 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2203 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2204 mutex_exit(&vp->v_interlock);
2205 lfs_writer_enter(fs, "ppdirop");
2206 if (locked)
2207 VOP_UNLOCK(vp, 0); /* XXX why? */
2208
2209 mutex_enter(&lfs_lock);
2210 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2211 mutex_exit(&lfs_lock);
2212
2213 mutex_enter(&vp->v_interlock);
2214 if (locked) {
2215 VOP_LOCK(vp, LK_EXCLUSIVE | LK_INTERLOCK);
2216 mutex_enter(&vp->v_interlock);
2217 }
2218 lfs_writer_leave(fs);
2219
2220 /* XXX the flush should have taken care of this one too! */
2221 }
2222
2223 /*
2224 * This is it. We are going to write some pages. From here on
2225 * down it's all just mechanics.
2226 *
2227 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2228 */
2229 ap->a_flags &= ~PGO_SYNCIO;
2230
2231 /*
2232 * If we've already got the seglock, flush the node and return.
2233 * The FIP has already been set up for us by lfs_writefile,
2234 * and FIP cleanup and lfs_updatemeta will also be done there,
2235 * unless genfs_putpages returns EDEADLK; then we must flush
2236 * what we have, and correct FIP and segment header accounting.
2237 */
2238 get_seglock:
2239 /*
2240 * If we are not called with the segment locked, lock it.
2241 * Account for a new FIP in the segment header, and set sp->vp.
2242 * (This should duplicate the setup at the top of lfs_writefile().)
2243 */
2244 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2245 if (!seglocked) {
2246 mutex_exit(&vp->v_interlock);
2247 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2248 if (error != 0)
2249 return error;
2250 mutex_enter(&vp->v_interlock);
2251 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2252 }
2253 sp = fs->lfs_sp;
2254 KASSERT(sp->vp == NULL);
2255 sp->vp = vp;
2256
2257 /*
2258 * Ensure that the partial segment is marked SS_DIROP if this
2259 * vnode is a DIROP.
2260 */
2261 if (!seglocked && vp->v_uflag & VU_DIROP)
2262 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2263
2264 /*
2265 * Loop over genfs_putpages until all pages are gathered.
2266 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2267 * Whenever we lose the interlock we have to rerun check_dirty, as
2268 * well, since more pages might have been dirtied in our absence.
2269 */
2270 #ifdef DEBUG
2271 debug_n_again = 0;
2272 #endif
2273 do {
2274 busypg = NULL;
2275 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2276 ap->a_flags, 0, &busypg) < 0) {
2277 mutex_exit(&vp->v_interlock);
2278
2279 mutex_enter(&vp->v_interlock);
2280 write_and_wait(fs, vp, busypg, seglocked, NULL);
2281 if (!seglocked) {
2282 lfs_release_finfo(fs);
2283 lfs_segunlock(fs);
2284 }
2285 sp->vp = NULL;
2286 goto get_seglock;
2287 }
2288
2289 busypg = NULL;
2290 error = genfs_do_putpages(vp, startoffset, endoffset,
2291 ap->a_flags, &busypg);
2292
2293 if (error == EDEADLK || error == EAGAIN) {
2294 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2295 " %d ino %d off %x (seg %d)\n", error,
2296 ip->i_number, fs->lfs_offset,
2297 dtosn(fs, fs->lfs_offset)));
2298
2299 mutex_enter(&vp->v_interlock);
2300 write_and_wait(fs, vp, busypg, seglocked, "again");
2301 }
2302 #ifdef DEBUG
2303 ++debug_n_again;
2304 #endif
2305 } while (error == EDEADLK);
2306 #ifdef DEBUG
2307 if (debug_n_again > TOOMANY)
2308 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2309 #endif
2310
2311 KASSERT(sp != NULL && sp->vp == vp);
2312 if (!seglocked) {
2313 sp->vp = NULL;
2314
2315 /* Write indirect blocks as well */
2316 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2317 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2318 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2319
2320 KASSERT(sp->vp == NULL);
2321 sp->vp = vp;
2322 }
2323
2324 /*
2325 * Blocks are now gathered into a segment waiting to be written.
2326 * All that's left to do is update metadata, and write them.
2327 */
2328 lfs_updatemeta(sp);
2329 KASSERT(sp->vp == vp);
2330 sp->vp = NULL;
2331
2332 /*
2333 * If we were called from lfs_writefile, we don't need to clean up
2334 * the FIP or unlock the segment lock. We're done.
2335 */
2336 if (seglocked)
2337 return error;
2338
2339 /* Clean up FIP and send it to disk. */
2340 lfs_release_finfo(fs);
2341 lfs_writeseg(fs, fs->lfs_sp);
2342
2343 /*
2344 * Remove us from paging queue if we wrote all our pages.
2345 */
2346 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2347 mutex_enter(&lfs_lock);
2348 if (ip->i_flags & IN_PAGING) {
2349 ip->i_flags &= ~IN_PAGING;
2350 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2351 }
2352 mutex_exit(&lfs_lock);
2353 }
2354
2355 /*
2356 * XXX - with the malloc/copy writeseg, the pages are freed by now
2357 * even if we don't wait (e.g. if we hold a nested lock). This
2358 * will not be true if we stop using malloc/copy.
2359 */
2360 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2361 lfs_segunlock(fs);
2362
2363 /*
2364 * Wait for v_numoutput to drop to zero. The seglock should
2365 * take care of this, but there is a slight possibility that
2366 * aiodoned might not have got around to our buffers yet.
2367 */
2368 if (sync) {
2369 mutex_enter(&vp->v_interlock);
2370 while (vp->v_numoutput > 0) {
2371 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2372 " num %d\n", ip->i_number, vp->v_numoutput));
2373 cv_wait(&vp->v_cv, &vp->v_interlock);
2374 }
2375 mutex_exit(&vp->v_interlock);
2376 }
2377 return error;
2378 }
2379
2380 /*
2381 * Return the last logical file offset that should be written for this file
2382 * if we're doing a write that ends at "size". If writing, we need to know
2383 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2384 * to know about entire blocks.
2385 */
2386 void
2387 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2388 {
2389 struct inode *ip = VTOI(vp);
2390 struct lfs *fs = ip->i_lfs;
2391 daddr_t olbn, nlbn;
2392
2393 olbn = lblkno(fs, ip->i_size);
2394 nlbn = lblkno(fs, size);
2395 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2396 *eobp = fragroundup(fs, size);
2397 } else {
2398 *eobp = blkroundup(fs, size);
2399 }
2400 }
2401
2402 #ifdef DEBUG
2403 void lfs_dump_vop(void *);
2404
2405 void
2406 lfs_dump_vop(void *v)
2407 {
2408 struct vop_putpages_args /* {
2409 struct vnode *a_vp;
2410 voff_t a_offlo;
2411 voff_t a_offhi;
2412 int a_flags;
2413 } */ *ap = v;
2414
2415 #ifdef DDB
2416 vfs_vnode_print(ap->a_vp, 0, printf);
2417 #endif
2418 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2419 }
2420 #endif
2421
2422 int
2423 lfs_mmap(void *v)
2424 {
2425 struct vop_mmap_args /* {
2426 const struct vnodeop_desc *a_desc;
2427 struct vnode *a_vp;
2428 vm_prot_t a_prot;
2429 kauth_cred_t a_cred;
2430 } */ *ap = v;
2431
2432 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2433 return EOPNOTSUPP;
2434 return ufs_mmap(v);
2435 }
2436