lfs_vnops.c revision 1.235 1 /* $NetBSD: lfs_vnops.c,v 1.235 2011/06/12 03:36:01 rmind Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.235 2011/06/12 03:36:01 rmind Exp $");
64
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/resourcevar.h>
73 #include <sys/kernel.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/buf.h>
77 #include <sys/proc.h>
78 #include <sys/mount.h>
79 #include <sys/vnode.h>
80 #include <sys/pool.h>
81 #include <sys/signalvar.h>
82 #include <sys/kauth.h>
83 #include <sys/syslog.h>
84 #include <sys/fstrans.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104 int lfs_ignore_lazy_sync = 1;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
170 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
171 { &vop_poll_desc, spec_poll }, /* poll */
172 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
173 { &vop_revoke_desc, spec_revoke }, /* revoke */
174 { &vop_mmap_desc, spec_mmap }, /* mmap */
175 { &vop_fsync_desc, spec_fsync }, /* fsync */
176 { &vop_seek_desc, spec_seek }, /* seek */
177 { &vop_remove_desc, spec_remove }, /* remove */
178 { &vop_link_desc, spec_link }, /* link */
179 { &vop_rename_desc, spec_rename }, /* rename */
180 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
181 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
182 { &vop_symlink_desc, spec_symlink }, /* symlink */
183 { &vop_readdir_desc, spec_readdir }, /* readdir */
184 { &vop_readlink_desc, spec_readlink }, /* readlink */
185 { &vop_abortop_desc, spec_abortop }, /* abortop */
186 { &vop_inactive_desc, lfs_inactive }, /* inactive */
187 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
188 { &vop_lock_desc, ufs_lock }, /* lock */
189 { &vop_unlock_desc, ufs_unlock }, /* unlock */
190 { &vop_bmap_desc, spec_bmap }, /* bmap */
191 { &vop_strategy_desc, spec_strategy }, /* strategy */
192 { &vop_print_desc, ufs_print }, /* print */
193 { &vop_islocked_desc, ufs_islocked }, /* islocked */
194 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
195 { &vop_advlock_desc, spec_advlock }, /* advlock */
196 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
197 { &vop_getpages_desc, spec_getpages }, /* getpages */
198 { &vop_putpages_desc, spec_putpages }, /* putpages */
199 { NULL, NULL }
200 };
201 const struct vnodeopv_desc lfs_specop_opv_desc =
202 { &lfs_specop_p, lfs_specop_entries };
203
204 int (**lfs_fifoop_p)(void *);
205 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
206 { &vop_default_desc, vn_default_error },
207 { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
208 { &vop_create_desc, vn_fifo_bypass }, /* create */
209 { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
210 { &vop_open_desc, vn_fifo_bypass }, /* open */
211 { &vop_close_desc, lfsfifo_close }, /* close */
212 { &vop_access_desc, ufs_access }, /* access */
213 { &vop_getattr_desc, lfs_getattr }, /* getattr */
214 { &vop_setattr_desc, lfs_setattr }, /* setattr */
215 { &vop_read_desc, ufsfifo_read }, /* read */
216 { &vop_write_desc, ufsfifo_write }, /* write */
217 { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
218 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
219 { &vop_poll_desc, vn_fifo_bypass }, /* poll */
220 { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
221 { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
222 { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
223 { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
224 { &vop_seek_desc, vn_fifo_bypass }, /* seek */
225 { &vop_remove_desc, vn_fifo_bypass }, /* remove */
226 { &vop_link_desc, vn_fifo_bypass }, /* link */
227 { &vop_rename_desc, vn_fifo_bypass }, /* rename */
228 { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
229 { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
230 { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
231 { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
232 { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
233 { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
234 { &vop_inactive_desc, lfs_inactive }, /* inactive */
235 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
236 { &vop_lock_desc, ufs_lock }, /* lock */
237 { &vop_unlock_desc, ufs_unlock }, /* unlock */
238 { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
239 { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
240 { &vop_print_desc, ufs_print }, /* print */
241 { &vop_islocked_desc, ufs_islocked }, /* islocked */
242 { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
243 { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
244 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
245 { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
246 { NULL, NULL }
247 };
248 const struct vnodeopv_desc lfs_fifoop_opv_desc =
249 { &lfs_fifoop_p, lfs_fifoop_entries };
250
251 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
252
253 #define LFS_READWRITE
254 #include <ufs/ufs/ufs_readwrite.c>
255 #undef LFS_READWRITE
256
257 /*
258 * Synch an open file.
259 */
260 /* ARGSUSED */
261 int
262 lfs_fsync(void *v)
263 {
264 struct vop_fsync_args /* {
265 struct vnode *a_vp;
266 kauth_cred_t a_cred;
267 int a_flags;
268 off_t offlo;
269 off_t offhi;
270 } */ *ap = v;
271 struct vnode *vp = ap->a_vp;
272 int error, wait;
273 struct inode *ip = VTOI(vp);
274 struct lfs *fs = ip->i_lfs;
275
276 /* If we're mounted read-only, don't try to sync. */
277 if (fs->lfs_ronly)
278 return 0;
279
280 /* If a removed vnode is being cleaned, no need to sync here. */
281 if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
282 return 0;
283
284 /*
285 * Trickle sync simply adds this vnode to the pager list, as if
286 * the pagedaemon had requested a pageout.
287 */
288 if (ap->a_flags & FSYNC_LAZY) {
289 if (lfs_ignore_lazy_sync == 0) {
290 mutex_enter(&lfs_lock);
291 if (!(ip->i_flags & IN_PAGING)) {
292 ip->i_flags |= IN_PAGING;
293 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
294 i_lfs_pchain);
295 }
296 wakeup(&lfs_writer_daemon);
297 mutex_exit(&lfs_lock);
298 }
299 return 0;
300 }
301
302 /*
303 * If a vnode is bring cleaned, flush it out before we try to
304 * reuse it. This prevents the cleaner from writing files twice
305 * in the same partial segment, causing an accounting underflow.
306 */
307 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
308 lfs_vflush(vp);
309 }
310
311 wait = (ap->a_flags & FSYNC_WAIT);
312 do {
313 mutex_enter(vp->v_interlock);
314 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 round_page(ap->a_offhi),
316 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 if (error == EAGAIN) {
318 mutex_enter(&lfs_lock);
319 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
320 hz / 100 + 1, &lfs_lock);
321 mutex_exit(&lfs_lock);
322 }
323 } while (error == EAGAIN);
324 if (error)
325 return error;
326
327 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
328 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
329
330 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
331 int l = 0;
332 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
333 curlwp->l_cred);
334 }
335 if (wait && !VPISEMPTY(vp))
336 LFS_SET_UINO(ip, IN_MODIFIED);
337
338 return error;
339 }
340
341 /*
342 * Take IN_ADIROP off, then call ufs_inactive.
343 */
344 int
345 lfs_inactive(void *v)
346 {
347 struct vop_inactive_args /* {
348 struct vnode *a_vp;
349 } */ *ap = v;
350
351 lfs_unmark_vnode(ap->a_vp);
352
353 /*
354 * The Ifile is only ever inactivated on unmount.
355 * Streamline this process by not giving it more dirty blocks.
356 */
357 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
358 mutex_enter(&lfs_lock);
359 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
360 mutex_exit(&lfs_lock);
361 VOP_UNLOCK(ap->a_vp);
362 return 0;
363 }
364
365 return ufs_inactive(v);
366 }
367
368 /*
369 * These macros are used to bracket UFS directory ops, so that we can
370 * identify all the pages touched during directory ops which need to
371 * be ordered and flushed atomically, so that they may be recovered.
372 *
373 * Because we have to mark nodes VU_DIROP in order to prevent
374 * the cache from reclaiming them while a dirop is in progress, we must
375 * also manage the number of nodes so marked (otherwise we can run out).
376 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
377 * is decremented during segment write, when VU_DIROP is taken off.
378 */
379 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
380 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
381 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
382 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
383 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
384 static int lfs_set_dirop(struct vnode *, struct vnode *);
385
386 static int
387 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
388 {
389 struct lfs *fs;
390 int error;
391
392 KASSERT(VOP_ISLOCKED(dvp));
393 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
394
395 fs = VTOI(dvp)->i_lfs;
396
397 ASSERT_NO_SEGLOCK(fs);
398 /*
399 * LFS_NRESERVE calculates direct and indirect blocks as well
400 * as an inode block; an overestimate in most cases.
401 */
402 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
403 return (error);
404
405 restart:
406 mutex_enter(&lfs_lock);
407 if (fs->lfs_dirops == 0) {
408 mutex_exit(&lfs_lock);
409 lfs_check(dvp, LFS_UNUSED_LBN, 0);
410 mutex_enter(&lfs_lock);
411 }
412 while (fs->lfs_writer) {
413 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
414 "lfs_sdirop", 0, &lfs_lock);
415 if (error == EINTR) {
416 mutex_exit(&lfs_lock);
417 goto unreserve;
418 }
419 }
420 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
421 wakeup(&lfs_writer_daemon);
422 mutex_exit(&lfs_lock);
423 preempt();
424 goto restart;
425 }
426
427 if (lfs_dirvcount > LFS_MAX_DIROP) {
428 mutex_exit(&lfs_lock);
429 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
430 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
431 if ((error = mtsleep(&lfs_dirvcount,
432 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
433 &lfs_lock)) != 0) {
434 goto unreserve;
435 }
436 goto restart;
437 }
438
439 ++fs->lfs_dirops;
440 fs->lfs_doifile = 1;
441 mutex_exit(&lfs_lock);
442
443 /* Hold a reference so SET_ENDOP will be happy */
444 vref(dvp);
445 if (vp) {
446 vref(vp);
447 MARK_VNODE(vp);
448 }
449
450 MARK_VNODE(dvp);
451 return 0;
452
453 unreserve:
454 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
455 return error;
456 }
457
458 /*
459 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
460 * in getnewvnode(), if we have a stacked filesystem mounted on top
461 * of us.
462 *
463 * NB: this means we have to clear the new vnodes on error. Fortunately
464 * SET_ENDOP is there to do that for us.
465 */
466 static int
467 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
468 {
469 int error;
470 struct lfs *fs;
471
472 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
473 ASSERT_NO_SEGLOCK(fs);
474 if (fs->lfs_ronly)
475 return EROFS;
476 if (vpp == NULL) {
477 return lfs_set_dirop(dvp, NULL);
478 }
479 error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
480 if (error) {
481 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
482 dvp, error));
483 return error;
484 }
485 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
486 ungetnewvnode(*vpp);
487 *vpp = NULL;
488 return error;
489 }
490 return 0;
491 }
492
493 #define SET_ENDOP_BASE(fs, dvp, str) \
494 do { \
495 mutex_enter(&lfs_lock); \
496 --(fs)->lfs_dirops; \
497 if (!(fs)->lfs_dirops) { \
498 if ((fs)->lfs_nadirop) { \
499 panic("SET_ENDOP: %s: no dirops but " \
500 " nadirop=%d", (str), \
501 (fs)->lfs_nadirop); \
502 } \
503 wakeup(&(fs)->lfs_writer); \
504 mutex_exit(&lfs_lock); \
505 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
506 } else \
507 mutex_exit(&lfs_lock); \
508 } while(0)
509 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
510 do { \
511 UNMARK_VNODE(dvp); \
512 if (nvpp && *nvpp) \
513 UNMARK_VNODE(*nvpp); \
514 /* Check for error return to stem vnode leakage */ \
515 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
516 ungetnewvnode(*(nvpp)); \
517 SET_ENDOP_BASE((fs), (dvp), (str)); \
518 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
519 vrele(dvp); \
520 } while(0)
521 #define SET_ENDOP_CREATE_AP(ap, str) \
522 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
523 (ap)->a_vpp, (str))
524 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
525 do { \
526 UNMARK_VNODE(dvp); \
527 if (ovp) \
528 UNMARK_VNODE(ovp); \
529 SET_ENDOP_BASE((fs), (dvp), (str)); \
530 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
531 vrele(dvp); \
532 if (ovp) \
533 vrele(ovp); \
534 } while(0)
535
536 void
537 lfs_mark_vnode(struct vnode *vp)
538 {
539 struct inode *ip = VTOI(vp);
540 struct lfs *fs = ip->i_lfs;
541
542 mutex_enter(&lfs_lock);
543 if (!(ip->i_flag & IN_ADIROP)) {
544 if (!(vp->v_uflag & VU_DIROP)) {
545 mutex_enter(vp->v_interlock);
546 (void)lfs_vref(vp);
547 ++lfs_dirvcount;
548 ++fs->lfs_dirvcount;
549 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
550 vp->v_uflag |= VU_DIROP;
551 }
552 ++fs->lfs_nadirop;
553 ip->i_flag |= IN_ADIROP;
554 } else
555 KASSERT(vp->v_uflag & VU_DIROP);
556 mutex_exit(&lfs_lock);
557 }
558
559 void
560 lfs_unmark_vnode(struct vnode *vp)
561 {
562 struct inode *ip = VTOI(vp);
563
564 if (ip && (ip->i_flag & IN_ADIROP)) {
565 KASSERT(vp->v_uflag & VU_DIROP);
566 mutex_enter(&lfs_lock);
567 --ip->i_lfs->lfs_nadirop;
568 mutex_exit(&lfs_lock);
569 ip->i_flag &= ~IN_ADIROP;
570 }
571 }
572
573 int
574 lfs_symlink(void *v)
575 {
576 struct vop_symlink_args /* {
577 struct vnode *a_dvp;
578 struct vnode **a_vpp;
579 struct componentname *a_cnp;
580 struct vattr *a_vap;
581 char *a_target;
582 } */ *ap = v;
583 int error;
584
585 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
586 vput(ap->a_dvp);
587 return error;
588 }
589 error = ufs_symlink(ap);
590 SET_ENDOP_CREATE_AP(ap, "symlink");
591 return (error);
592 }
593
594 int
595 lfs_mknod(void *v)
596 {
597 struct vop_mknod_args /* {
598 struct vnode *a_dvp;
599 struct vnode **a_vpp;
600 struct componentname *a_cnp;
601 struct vattr *a_vap;
602 } */ *ap = v;
603 struct vattr *vap = ap->a_vap;
604 struct vnode **vpp = ap->a_vpp;
605 struct inode *ip;
606 int error;
607 struct mount *mp;
608 ino_t ino;
609
610 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
611 vput(ap->a_dvp);
612 return error;
613 }
614 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
615 ap->a_dvp, vpp, ap->a_cnp);
616
617 /* Either way we're done with the dirop at this point */
618 SET_ENDOP_CREATE_AP(ap, "mknod");
619
620 if (error)
621 return (error);
622
623 ip = VTOI(*vpp);
624 mp = (*vpp)->v_mount;
625 ino = ip->i_number;
626 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
627 if (vap->va_rdev != VNOVAL) {
628 /*
629 * Want to be able to use this to make badblock
630 * inodes, so don't truncate the dev number.
631 */
632 #if 0
633 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
634 UFS_MPNEEDSWAP((*vpp)->v_mount));
635 #else
636 ip->i_ffs1_rdev = vap->va_rdev;
637 #endif
638 }
639
640 /*
641 * Call fsync to write the vnode so that we don't have to deal with
642 * flushing it when it's marked VU_DIROP|VI_XLOCK.
643 *
644 * XXX KS - If we can't flush we also can't call vgone(), so must
645 * return. But, that leaves this vnode in limbo, also not good.
646 * Can this ever happen (barring hardware failure)?
647 */
648 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
649 panic("lfs_mknod: couldn't fsync (ino %llu)",
650 (unsigned long long)ino);
651 /* return (error); */
652 }
653 /*
654 * Remove vnode so that it will be reloaded by VFS_VGET and
655 * checked to see if it is an alias of an existing entry in
656 * the inode cache.
657 */
658 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
659
660 VOP_UNLOCK(*vpp);
661 (*vpp)->v_type = VNON;
662 vgone(*vpp);
663 error = VFS_VGET(mp, ino, vpp);
664
665 if (error != 0) {
666 *vpp = NULL;
667 return (error);
668 }
669 return (0);
670 }
671
672 int
673 lfs_create(void *v)
674 {
675 struct vop_create_args /* {
676 struct vnode *a_dvp;
677 struct vnode **a_vpp;
678 struct componentname *a_cnp;
679 struct vattr *a_vap;
680 } */ *ap = v;
681 int error;
682
683 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
684 vput(ap->a_dvp);
685 return error;
686 }
687 error = ufs_create(ap);
688 SET_ENDOP_CREATE_AP(ap, "create");
689 return (error);
690 }
691
692 int
693 lfs_mkdir(void *v)
694 {
695 struct vop_mkdir_args /* {
696 struct vnode *a_dvp;
697 struct vnode **a_vpp;
698 struct componentname *a_cnp;
699 struct vattr *a_vap;
700 } */ *ap = v;
701 int error;
702
703 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
704 vput(ap->a_dvp);
705 return error;
706 }
707 error = ufs_mkdir(ap);
708 SET_ENDOP_CREATE_AP(ap, "mkdir");
709 return (error);
710 }
711
712 int
713 lfs_remove(void *v)
714 {
715 struct vop_remove_args /* {
716 struct vnode *a_dvp;
717 struct vnode *a_vp;
718 struct componentname *a_cnp;
719 } */ *ap = v;
720 struct vnode *dvp, *vp;
721 struct inode *ip;
722 int error;
723
724 dvp = ap->a_dvp;
725 vp = ap->a_vp;
726 ip = VTOI(vp);
727 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
728 if (dvp == vp)
729 vrele(vp);
730 else
731 vput(vp);
732 vput(dvp);
733 return error;
734 }
735 error = ufs_remove(ap);
736 if (ip->i_nlink == 0)
737 lfs_orphan(ip->i_lfs, ip->i_number);
738 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
739 return (error);
740 }
741
742 int
743 lfs_rmdir(void *v)
744 {
745 struct vop_rmdir_args /* {
746 struct vnodeop_desc *a_desc;
747 struct vnode *a_dvp;
748 struct vnode *a_vp;
749 struct componentname *a_cnp;
750 } */ *ap = v;
751 struct vnode *vp;
752 struct inode *ip;
753 int error;
754
755 vp = ap->a_vp;
756 ip = VTOI(vp);
757 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
758 if (ap->a_dvp == vp)
759 vrele(ap->a_dvp);
760 else
761 vput(ap->a_dvp);
762 vput(vp);
763 return error;
764 }
765 error = ufs_rmdir(ap);
766 if (ip->i_nlink == 0)
767 lfs_orphan(ip->i_lfs, ip->i_number);
768 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
769 return (error);
770 }
771
772 int
773 lfs_link(void *v)
774 {
775 struct vop_link_args /* {
776 struct vnode *a_dvp;
777 struct vnode *a_vp;
778 struct componentname *a_cnp;
779 } */ *ap = v;
780 int error;
781 struct vnode **vpp = NULL;
782
783 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
784 vput(ap->a_dvp);
785 return error;
786 }
787 error = ufs_link(ap);
788 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
789 return (error);
790 }
791
792 int
793 lfs_rename(void *v)
794 {
795 struct vop_rename_args /* {
796 struct vnode *a_fdvp;
797 struct vnode *a_fvp;
798 struct componentname *a_fcnp;
799 struct vnode *a_tdvp;
800 struct vnode *a_tvp;
801 struct componentname *a_tcnp;
802 } */ *ap = v;
803 struct vnode *tvp, *fvp, *tdvp, *fdvp;
804 struct componentname *tcnp, *fcnp;
805 int error;
806 struct lfs *fs;
807
808 fs = VTOI(ap->a_fdvp)->i_lfs;
809 tvp = ap->a_tvp;
810 tdvp = ap->a_tdvp;
811 tcnp = ap->a_tcnp;
812 fvp = ap->a_fvp;
813 fdvp = ap->a_fdvp;
814 fcnp = ap->a_fcnp;
815
816 /*
817 * Check for cross-device rename.
818 * If it is, we don't want to set dirops, just error out.
819 * (In particular note that MARK_VNODE(tdvp) will DTWT on
820 * a cross-device rename.)
821 *
822 * Copied from ufs_rename.
823 */
824 if ((fvp->v_mount != tdvp->v_mount) ||
825 (tvp && (fvp->v_mount != tvp->v_mount))) {
826 error = EXDEV;
827 goto errout;
828 }
829
830 /*
831 * Check to make sure we're not renaming a vnode onto itself
832 * (deleting a hard link by renaming one name onto another);
833 * if we are we can't recursively call VOP_REMOVE since that
834 * would leave us with an unaccounted-for number of live dirops.
835 *
836 * Inline the relevant section of ufs_rename here, *before*
837 * calling SET_DIROP_REMOVE.
838 */
839 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
840 (VTOI(tdvp)->i_flags & APPEND))) {
841 error = EPERM;
842 goto errout;
843 }
844 if (fvp == tvp) {
845 if (fvp->v_type == VDIR) {
846 error = EINVAL;
847 goto errout;
848 }
849
850 /* Release destination completely. */
851 VOP_ABORTOP(tdvp, tcnp);
852 vput(tdvp);
853 vput(tvp);
854
855 /* Delete source. */
856 vrele(fvp);
857 fcnp->cn_flags &= ~(MODMASK);
858 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
859 fcnp->cn_nameiop = DELETE;
860 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
861 if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
862 vput(fdvp);
863 return (error);
864 }
865 return (VOP_REMOVE(fdvp, fvp, fcnp));
866 }
867
868 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
869 goto errout;
870 MARK_VNODE(fdvp);
871 MARK_VNODE(fvp);
872
873 error = ufs_rename(ap);
874 UNMARK_VNODE(fdvp);
875 UNMARK_VNODE(fvp);
876 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
877 return (error);
878
879 errout:
880 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
881 if (tdvp == tvp)
882 vrele(tdvp);
883 else
884 vput(tdvp);
885 if (tvp)
886 vput(tvp);
887 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
888 vrele(fdvp);
889 vrele(fvp);
890 return (error);
891 }
892
893 /* XXX hack to avoid calling ITIMES in getattr */
894 int
895 lfs_getattr(void *v)
896 {
897 struct vop_getattr_args /* {
898 struct vnode *a_vp;
899 struct vattr *a_vap;
900 kauth_cred_t a_cred;
901 } */ *ap = v;
902 struct vnode *vp = ap->a_vp;
903 struct inode *ip = VTOI(vp);
904 struct vattr *vap = ap->a_vap;
905 struct lfs *fs = ip->i_lfs;
906 /*
907 * Copy from inode table
908 */
909 vap->va_fsid = ip->i_dev;
910 vap->va_fileid = ip->i_number;
911 vap->va_mode = ip->i_mode & ~IFMT;
912 vap->va_nlink = ip->i_nlink;
913 vap->va_uid = ip->i_uid;
914 vap->va_gid = ip->i_gid;
915 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
916 vap->va_size = vp->v_size;
917 vap->va_atime.tv_sec = ip->i_ffs1_atime;
918 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
919 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
920 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
921 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
922 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
923 vap->va_flags = ip->i_flags;
924 vap->va_gen = ip->i_gen;
925 /* this doesn't belong here */
926 if (vp->v_type == VBLK)
927 vap->va_blocksize = BLKDEV_IOSIZE;
928 else if (vp->v_type == VCHR)
929 vap->va_blocksize = MAXBSIZE;
930 else
931 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
932 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
933 vap->va_type = vp->v_type;
934 vap->va_filerev = ip->i_modrev;
935 return (0);
936 }
937
938 /*
939 * Check to make sure the inode blocks won't choke the buffer
940 * cache, then call ufs_setattr as usual.
941 */
942 int
943 lfs_setattr(void *v)
944 {
945 struct vop_setattr_args /* {
946 struct vnode *a_vp;
947 struct vattr *a_vap;
948 kauth_cred_t a_cred;
949 } */ *ap = v;
950 struct vnode *vp = ap->a_vp;
951
952 lfs_check(vp, LFS_UNUSED_LBN, 0);
953 return ufs_setattr(v);
954 }
955
956 /*
957 * Release the block we hold on lfs_newseg wrapping. Called on file close,
958 * or explicitly from LFCNWRAPGO. Called with the interlock held.
959 */
960 static int
961 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
962 {
963 if (fs->lfs_stoplwp != curlwp)
964 return EBUSY;
965
966 fs->lfs_stoplwp = NULL;
967 cv_signal(&fs->lfs_stopcv);
968
969 KASSERT(fs->lfs_nowrap > 0);
970 if (fs->lfs_nowrap <= 0) {
971 return 0;
972 }
973
974 if (--fs->lfs_nowrap == 0) {
975 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
976 wakeup(&fs->lfs_wrappass);
977 lfs_wakeup_cleaner(fs);
978 }
979 if (waitfor) {
980 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
981 0, &lfs_lock);
982 }
983
984 return 0;
985 }
986
987 /*
988 * Close called
989 */
990 /* ARGSUSED */
991 int
992 lfs_close(void *v)
993 {
994 struct vop_close_args /* {
995 struct vnode *a_vp;
996 int a_fflag;
997 kauth_cred_t a_cred;
998 } */ *ap = v;
999 struct vnode *vp = ap->a_vp;
1000 struct inode *ip = VTOI(vp);
1001 struct lfs *fs = ip->i_lfs;
1002
1003 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1004 fs->lfs_stoplwp == curlwp) {
1005 mutex_enter(&lfs_lock);
1006 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1007 lfs_wrapgo(fs, ip, 0);
1008 mutex_exit(&lfs_lock);
1009 }
1010
1011 if (vp == ip->i_lfs->lfs_ivnode &&
1012 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1013 return 0;
1014
1015 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1016 LFS_ITIMES(ip, NULL, NULL, NULL);
1017 }
1018 return (0);
1019 }
1020
1021 /*
1022 * Close wrapper for special devices.
1023 *
1024 * Update the times on the inode then do device close.
1025 */
1026 int
1027 lfsspec_close(void *v)
1028 {
1029 struct vop_close_args /* {
1030 struct vnode *a_vp;
1031 int a_fflag;
1032 kauth_cred_t a_cred;
1033 } */ *ap = v;
1034 struct vnode *vp;
1035 struct inode *ip;
1036
1037 vp = ap->a_vp;
1038 ip = VTOI(vp);
1039 if (vp->v_usecount > 1) {
1040 LFS_ITIMES(ip, NULL, NULL, NULL);
1041 }
1042 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1043 }
1044
1045 /*
1046 * Close wrapper for fifo's.
1047 *
1048 * Update the times on the inode then do device close.
1049 */
1050 int
1051 lfsfifo_close(void *v)
1052 {
1053 struct vop_close_args /* {
1054 struct vnode *a_vp;
1055 int a_fflag;
1056 kauth_cred_ a_cred;
1057 } */ *ap = v;
1058 struct vnode *vp;
1059 struct inode *ip;
1060
1061 vp = ap->a_vp;
1062 ip = VTOI(vp);
1063 if (ap->a_vp->v_usecount > 1) {
1064 LFS_ITIMES(ip, NULL, NULL, NULL);
1065 }
1066 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1067 }
1068
1069 /*
1070 * Reclaim an inode so that it can be used for other purposes.
1071 */
1072
1073 int
1074 lfs_reclaim(void *v)
1075 {
1076 struct vop_reclaim_args /* {
1077 struct vnode *a_vp;
1078 } */ *ap = v;
1079 struct vnode *vp = ap->a_vp;
1080 struct inode *ip = VTOI(vp);
1081 struct lfs *fs = ip->i_lfs;
1082 int error;
1083
1084 /*
1085 * The inode must be freed and updated before being removed
1086 * from its hash chain. Other threads trying to gain a hold
1087 * on the inode will be stalled because it is locked (VI_XLOCK).
1088 */
1089 if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1090 lfs_vfree(vp, ip->i_number, ip->i_omode);
1091
1092 mutex_enter(&lfs_lock);
1093 LFS_CLR_UINO(ip, IN_ALLMOD);
1094 mutex_exit(&lfs_lock);
1095 if ((error = ufs_reclaim(vp)))
1096 return (error);
1097
1098 /*
1099 * Take us off the paging and/or dirop queues if we were on them.
1100 * We shouldn't be on them.
1101 */
1102 mutex_enter(&lfs_lock);
1103 if (ip->i_flags & IN_PAGING) {
1104 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1105 fs->lfs_fsmnt);
1106 ip->i_flags &= ~IN_PAGING;
1107 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1108 }
1109 if (vp->v_uflag & VU_DIROP) {
1110 panic("reclaimed vnode is VU_DIROP");
1111 vp->v_uflag &= ~VU_DIROP;
1112 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1113 }
1114 mutex_exit(&lfs_lock);
1115
1116 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1117 lfs_deregister_all(vp);
1118 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1119 ip->inode_ext.lfs = NULL;
1120 genfs_node_destroy(vp);
1121 pool_put(&lfs_inode_pool, vp->v_data);
1122 vp->v_data = NULL;
1123 return (0);
1124 }
1125
1126 /*
1127 * Read a block from a storage device.
1128 * In order to avoid reading blocks that are in the process of being
1129 * written by the cleaner---and hence are not mutexed by the normal
1130 * buffer cache / page cache mechanisms---check for collisions before
1131 * reading.
1132 *
1133 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1134 * the active cleaner test.
1135 *
1136 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1137 */
1138 int
1139 lfs_strategy(void *v)
1140 {
1141 struct vop_strategy_args /* {
1142 struct vnode *a_vp;
1143 struct buf *a_bp;
1144 } */ *ap = v;
1145 struct buf *bp;
1146 struct lfs *fs;
1147 struct vnode *vp;
1148 struct inode *ip;
1149 daddr_t tbn;
1150 int i, sn, error, slept;
1151
1152 bp = ap->a_bp;
1153 vp = ap->a_vp;
1154 ip = VTOI(vp);
1155 fs = ip->i_lfs;
1156
1157 /* lfs uses its strategy routine only for read */
1158 KASSERT(bp->b_flags & B_READ);
1159
1160 if (vp->v_type == VBLK || vp->v_type == VCHR)
1161 panic("lfs_strategy: spec");
1162 KASSERT(bp->b_bcount != 0);
1163 if (bp->b_blkno == bp->b_lblkno) {
1164 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1165 NULL);
1166 if (error) {
1167 bp->b_error = error;
1168 bp->b_resid = bp->b_bcount;
1169 biodone(bp);
1170 return (error);
1171 }
1172 if ((long)bp->b_blkno == -1) /* no valid data */
1173 clrbuf(bp);
1174 }
1175 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1176 bp->b_resid = bp->b_bcount;
1177 biodone(bp);
1178 return (0);
1179 }
1180
1181 slept = 1;
1182 mutex_enter(&lfs_lock);
1183 while (slept && fs->lfs_seglock) {
1184 mutex_exit(&lfs_lock);
1185 /*
1186 * Look through list of intervals.
1187 * There will only be intervals to look through
1188 * if the cleaner holds the seglock.
1189 * Since the cleaner is synchronous, we can trust
1190 * the list of intervals to be current.
1191 */
1192 tbn = dbtofsb(fs, bp->b_blkno);
1193 sn = dtosn(fs, tbn);
1194 slept = 0;
1195 for (i = 0; i < fs->lfs_cleanind; i++) {
1196 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1197 tbn >= fs->lfs_cleanint[i]) {
1198 DLOG((DLOG_CLEAN,
1199 "lfs_strategy: ino %d lbn %" PRId64
1200 " ind %d sn %d fsb %" PRIx32
1201 " given sn %d fsb %" PRIx64 "\n",
1202 ip->i_number, bp->b_lblkno, i,
1203 dtosn(fs, fs->lfs_cleanint[i]),
1204 fs->lfs_cleanint[i], sn, tbn));
1205 DLOG((DLOG_CLEAN,
1206 "lfs_strategy: sleeping on ino %d lbn %"
1207 PRId64 "\n", ip->i_number, bp->b_lblkno));
1208 mutex_enter(&lfs_lock);
1209 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1210 /* Cleaner can't wait for itself */
1211 mtsleep(&fs->lfs_iocount,
1212 (PRIBIO + 1) | PNORELOCK,
1213 "clean2", 0,
1214 &lfs_lock);
1215 slept = 1;
1216 break;
1217 } else if (fs->lfs_seglock) {
1218 mtsleep(&fs->lfs_seglock,
1219 (PRIBIO + 1) | PNORELOCK,
1220 "clean1", 0,
1221 &lfs_lock);
1222 slept = 1;
1223 break;
1224 }
1225 mutex_exit(&lfs_lock);
1226 }
1227 }
1228 mutex_enter(&lfs_lock);
1229 }
1230 mutex_exit(&lfs_lock);
1231
1232 vp = ip->i_devvp;
1233 VOP_STRATEGY(vp, bp);
1234 return (0);
1235 }
1236
1237 void
1238 lfs_flush_dirops(struct lfs *fs)
1239 {
1240 struct inode *ip, *nip;
1241 struct vnode *vp;
1242 extern int lfs_dostats;
1243 struct segment *sp;
1244
1245 ASSERT_MAYBE_SEGLOCK(fs);
1246 KASSERT(fs->lfs_nadirop == 0);
1247
1248 if (fs->lfs_ronly)
1249 return;
1250
1251 mutex_enter(&lfs_lock);
1252 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1253 mutex_exit(&lfs_lock);
1254 return;
1255 } else
1256 mutex_exit(&lfs_lock);
1257
1258 if (lfs_dostats)
1259 ++lfs_stats.flush_invoked;
1260
1261 /*
1262 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1263 * Technically this is a checkpoint (the on-disk state is valid)
1264 * even though we are leaving out all the file data.
1265 */
1266 lfs_imtime(fs);
1267 lfs_seglock(fs, SEGM_CKP);
1268 sp = fs->lfs_sp;
1269
1270 /*
1271 * lfs_writevnodes, optimized to get dirops out of the way.
1272 * Only write dirops, and don't flush files' pages, only
1273 * blocks from the directories.
1274 *
1275 * We don't need to vref these files because they are
1276 * dirops and so hold an extra reference until the
1277 * segunlock clears them of that status.
1278 *
1279 * We don't need to check for IN_ADIROP because we know that
1280 * no dirops are active.
1281 *
1282 */
1283 mutex_enter(&lfs_lock);
1284 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1285 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1286 mutex_exit(&lfs_lock);
1287 vp = ITOV(ip);
1288
1289 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1290
1291 /*
1292 * All writes to directories come from dirops; all
1293 * writes to files' direct blocks go through the page
1294 * cache, which we're not touching. Reads to files
1295 * and/or directories will not be affected by writing
1296 * directory blocks inodes and file inodes. So we don't
1297 * really need to lock. If we don't lock, though,
1298 * make sure that we don't clear IN_MODIFIED
1299 * unnecessarily.
1300 */
1301 if (vp->v_iflag & VI_XLOCK) {
1302 mutex_enter(&lfs_lock);
1303 continue;
1304 }
1305 /* XXX see below
1306 * waslocked = VOP_ISLOCKED(vp);
1307 */
1308 if (vp->v_type != VREG &&
1309 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1310 lfs_writefile(fs, sp, vp);
1311 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1312 !(ip->i_flag & IN_ALLMOD)) {
1313 mutex_enter(&lfs_lock);
1314 LFS_SET_UINO(ip, IN_MODIFIED);
1315 mutex_exit(&lfs_lock);
1316 }
1317 }
1318 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1319 (void) lfs_writeinode(fs, sp, ip);
1320 mutex_enter(&lfs_lock);
1321 /*
1322 * XXX
1323 * LK_EXCLOTHER is dead -- what is intended here?
1324 * if (waslocked == LK_EXCLOTHER)
1325 * LFS_SET_UINO(ip, IN_MODIFIED);
1326 */
1327 }
1328 mutex_exit(&lfs_lock);
1329 /* We've written all the dirops there are */
1330 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1331 lfs_finalize_fs_seguse(fs);
1332 (void) lfs_writeseg(fs, sp);
1333 lfs_segunlock(fs);
1334 }
1335
1336 /*
1337 * Flush all vnodes for which the pagedaemon has requested pageouts.
1338 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1339 * has just run, this would be an error). If we have to skip a vnode
1340 * for any reason, just skip it; if we have to wait for the cleaner,
1341 * abort. The writer daemon will call us again later.
1342 */
1343 void
1344 lfs_flush_pchain(struct lfs *fs)
1345 {
1346 struct inode *ip, *nip;
1347 struct vnode *vp;
1348 extern int lfs_dostats;
1349 struct segment *sp;
1350 int error;
1351
1352 ASSERT_NO_SEGLOCK(fs);
1353
1354 if (fs->lfs_ronly)
1355 return;
1356
1357 mutex_enter(&lfs_lock);
1358 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1359 mutex_exit(&lfs_lock);
1360 return;
1361 } else
1362 mutex_exit(&lfs_lock);
1363
1364 /* Get dirops out of the way */
1365 lfs_flush_dirops(fs);
1366
1367 if (lfs_dostats)
1368 ++lfs_stats.flush_invoked;
1369
1370 /*
1371 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1372 */
1373 lfs_imtime(fs);
1374 lfs_seglock(fs, 0);
1375 sp = fs->lfs_sp;
1376
1377 /*
1378 * lfs_writevnodes, optimized to clear pageout requests.
1379 * Only write non-dirop files that are in the pageout queue.
1380 * We're very conservative about what we write; we want to be
1381 * fast and async.
1382 */
1383 mutex_enter(&lfs_lock);
1384 top:
1385 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1386 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1387 vp = ITOV(ip);
1388
1389 if (!(ip->i_flags & IN_PAGING))
1390 goto top;
1391
1392 mutex_enter(vp->v_interlock);
1393 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1394 mutex_exit(vp->v_interlock);
1395 continue;
1396 }
1397 if (vp->v_type != VREG) {
1398 mutex_exit(vp->v_interlock);
1399 continue;
1400 }
1401 if (lfs_vref(vp))
1402 continue;
1403 mutex_exit(&lfs_lock);
1404
1405 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1406 lfs_vunref(vp);
1407 mutex_enter(&lfs_lock);
1408 continue;
1409 }
1410
1411 error = lfs_writefile(fs, sp, vp);
1412 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1413 !(ip->i_flag & IN_ALLMOD)) {
1414 mutex_enter(&lfs_lock);
1415 LFS_SET_UINO(ip, IN_MODIFIED);
1416 mutex_exit(&lfs_lock);
1417 }
1418 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1419 (void) lfs_writeinode(fs, sp, ip);
1420
1421 VOP_UNLOCK(vp);
1422 lfs_vunref(vp);
1423
1424 if (error == EAGAIN) {
1425 lfs_writeseg(fs, sp);
1426 mutex_enter(&lfs_lock);
1427 break;
1428 }
1429 mutex_enter(&lfs_lock);
1430 }
1431 mutex_exit(&lfs_lock);
1432 (void) lfs_writeseg(fs, sp);
1433 lfs_segunlock(fs);
1434 }
1435
1436 /*
1437 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1438 */
1439 int
1440 lfs_fcntl(void *v)
1441 {
1442 struct vop_fcntl_args /* {
1443 struct vnode *a_vp;
1444 u_int a_command;
1445 void * a_data;
1446 int a_fflag;
1447 kauth_cred_t a_cred;
1448 } */ *ap = v;
1449 struct timeval tv;
1450 struct timeval *tvp;
1451 BLOCK_INFO *blkiov;
1452 CLEANERINFO *cip;
1453 SEGUSE *sup;
1454 int blkcnt, error, oclean;
1455 size_t fh_size;
1456 struct lfs_fcntl_markv blkvp;
1457 struct lwp *l;
1458 fsid_t *fsidp;
1459 struct lfs *fs;
1460 struct buf *bp;
1461 fhandle_t *fhp;
1462 daddr_t off;
1463
1464 /* Only respect LFS fcntls on fs root or Ifile */
1465 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1466 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1467 return ufs_fcntl(v);
1468 }
1469
1470 /* Avoid locking a draining lock */
1471 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1472 return ESHUTDOWN;
1473 }
1474
1475 /* LFS control and monitoring fcntls are available only to root */
1476 l = curlwp;
1477 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1478 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1479 NULL)) != 0)
1480 return (error);
1481
1482 fs = VTOI(ap->a_vp)->i_lfs;
1483 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1484
1485 error = 0;
1486 switch ((int)ap->a_command) {
1487 case LFCNSEGWAITALL_COMPAT_50:
1488 case LFCNSEGWAITALL_COMPAT:
1489 fsidp = NULL;
1490 /* FALLSTHROUGH */
1491 case LFCNSEGWAIT_COMPAT_50:
1492 case LFCNSEGWAIT_COMPAT:
1493 {
1494 struct timeval50 *tvp50
1495 = (struct timeval50 *)ap->a_data;
1496 timeval50_to_timeval(tvp50, &tv);
1497 tvp = &tv;
1498 }
1499 goto segwait_common;
1500 case LFCNSEGWAITALL:
1501 fsidp = NULL;
1502 /* FALLSTHROUGH */
1503 case LFCNSEGWAIT:
1504 tvp = (struct timeval *)ap->a_data;
1505 segwait_common:
1506 mutex_enter(&lfs_lock);
1507 ++fs->lfs_sleepers;
1508 mutex_exit(&lfs_lock);
1509
1510 error = lfs_segwait(fsidp, tvp);
1511
1512 mutex_enter(&lfs_lock);
1513 if (--fs->lfs_sleepers == 0)
1514 wakeup(&fs->lfs_sleepers);
1515 mutex_exit(&lfs_lock);
1516 return error;
1517
1518 case LFCNBMAPV:
1519 case LFCNMARKV:
1520 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1521
1522 blkcnt = blkvp.blkcnt;
1523 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1524 return (EINVAL);
1525 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1526 if ((error = copyin(blkvp.blkiov, blkiov,
1527 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1528 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1529 return error;
1530 }
1531
1532 mutex_enter(&lfs_lock);
1533 ++fs->lfs_sleepers;
1534 mutex_exit(&lfs_lock);
1535 if (ap->a_command == LFCNBMAPV)
1536 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1537 else /* LFCNMARKV */
1538 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1539 if (error == 0)
1540 error = copyout(blkiov, blkvp.blkiov,
1541 blkcnt * sizeof(BLOCK_INFO));
1542 mutex_enter(&lfs_lock);
1543 if (--fs->lfs_sleepers == 0)
1544 wakeup(&fs->lfs_sleepers);
1545 mutex_exit(&lfs_lock);
1546 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1547 return error;
1548
1549 case LFCNRECLAIM:
1550 /*
1551 * Flush dirops and write Ifile, allowing empty segments
1552 * to be immediately reclaimed.
1553 */
1554 lfs_writer_enter(fs, "pndirop");
1555 off = fs->lfs_offset;
1556 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1557 lfs_flush_dirops(fs);
1558 LFS_CLEANERINFO(cip, fs, bp);
1559 oclean = cip->clean;
1560 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1561 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1562 fs->lfs_sp->seg_flags |= SEGM_PROT;
1563 lfs_segunlock(fs);
1564 lfs_writer_leave(fs);
1565
1566 #ifdef DEBUG
1567 LFS_CLEANERINFO(cip, fs, bp);
1568 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1569 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1570 fs->lfs_offset - off, cip->clean - oclean,
1571 fs->lfs_activesb));
1572 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1573 #endif
1574
1575 return 0;
1576
1577 case LFCNIFILEFH_COMPAT:
1578 /* Return the filehandle of the Ifile */
1579 if ((error = kauth_authorize_system(l->l_cred,
1580 KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1581 return (error);
1582 fhp = (struct fhandle *)ap->a_data;
1583 fhp->fh_fsid = *fsidp;
1584 fh_size = 16; /* former VFS_MAXFIDSIZ */
1585 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1586
1587 case LFCNIFILEFH_COMPAT2:
1588 case LFCNIFILEFH:
1589 /* Return the filehandle of the Ifile */
1590 fhp = (struct fhandle *)ap->a_data;
1591 fhp->fh_fsid = *fsidp;
1592 fh_size = sizeof(struct lfs_fhandle) -
1593 offsetof(fhandle_t, fh_fid);
1594 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1595
1596 case LFCNREWIND:
1597 /* Move lfs_offset to the lowest-numbered segment */
1598 return lfs_rewind(fs, *(int *)ap->a_data);
1599
1600 case LFCNINVAL:
1601 /* Mark a segment SEGUSE_INVAL */
1602 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1603 if (sup->su_nbytes > 0) {
1604 brelse(bp, 0);
1605 lfs_unset_inval_all(fs);
1606 return EBUSY;
1607 }
1608 sup->su_flags |= SEGUSE_INVAL;
1609 VOP_BWRITE(bp);
1610 return 0;
1611
1612 case LFCNRESIZE:
1613 /* Resize the filesystem */
1614 return lfs_resize_fs(fs, *(int *)ap->a_data);
1615
1616 case LFCNWRAPSTOP:
1617 case LFCNWRAPSTOP_COMPAT:
1618 /*
1619 * Hold lfs_newseg at segment 0; if requested, sleep until
1620 * the filesystem wraps around. To support external agents
1621 * (dump, fsck-based regression test) that need to look at
1622 * a snapshot of the filesystem, without necessarily
1623 * requiring that all fs activity stops.
1624 */
1625 if (fs->lfs_stoplwp == curlwp)
1626 return EALREADY;
1627
1628 mutex_enter(&lfs_lock);
1629 while (fs->lfs_stoplwp != NULL)
1630 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1631 fs->lfs_stoplwp = curlwp;
1632 if (fs->lfs_nowrap == 0)
1633 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1634 ++fs->lfs_nowrap;
1635 if (*(int *)ap->a_data == 1
1636 || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1637 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1638 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1639 "segwrap", 0, &lfs_lock);
1640 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1641 if (error) {
1642 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1643 }
1644 }
1645 mutex_exit(&lfs_lock);
1646 return 0;
1647
1648 case LFCNWRAPGO:
1649 case LFCNWRAPGO_COMPAT:
1650 /*
1651 * Having done its work, the agent wakes up the writer.
1652 * If the argument is 1, it sleeps until a new segment
1653 * is selected.
1654 */
1655 mutex_enter(&lfs_lock);
1656 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1657 ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1658 *((int *)ap->a_data));
1659 mutex_exit(&lfs_lock);
1660 return error;
1661
1662 case LFCNWRAPPASS:
1663 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1664 return EALREADY;
1665 mutex_enter(&lfs_lock);
1666 if (fs->lfs_stoplwp != curlwp) {
1667 mutex_exit(&lfs_lock);
1668 return EALREADY;
1669 }
1670 if (fs->lfs_nowrap == 0) {
1671 mutex_exit(&lfs_lock);
1672 return EBUSY;
1673 }
1674 fs->lfs_wrappass = 1;
1675 wakeup(&fs->lfs_wrappass);
1676 /* Wait for the log to wrap, if asked */
1677 if (*(int *)ap->a_data) {
1678 mutex_enter(ap->a_vp->v_interlock);
1679 lfs_vref(ap->a_vp);
1680 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1681 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1682 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1683 "segwrap", 0, &lfs_lock);
1684 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1685 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1686 lfs_vunref(ap->a_vp);
1687 }
1688 mutex_exit(&lfs_lock);
1689 return error;
1690
1691 case LFCNWRAPSTATUS:
1692 mutex_enter(&lfs_lock);
1693 *(int *)ap->a_data = fs->lfs_wrapstatus;
1694 mutex_exit(&lfs_lock);
1695 return 0;
1696
1697 default:
1698 return ufs_fcntl(v);
1699 }
1700 return 0;
1701 }
1702
1703 int
1704 lfs_getpages(void *v)
1705 {
1706 struct vop_getpages_args /* {
1707 struct vnode *a_vp;
1708 voff_t a_offset;
1709 struct vm_page **a_m;
1710 int *a_count;
1711 int a_centeridx;
1712 vm_prot_t a_access_type;
1713 int a_advice;
1714 int a_flags;
1715 } */ *ap = v;
1716
1717 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1718 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1719 return EPERM;
1720 }
1721 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1722 mutex_enter(&lfs_lock);
1723 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1724 mutex_exit(&lfs_lock);
1725 }
1726
1727 /*
1728 * we're relying on the fact that genfs_getpages() always read in
1729 * entire filesystem blocks.
1730 */
1731 return genfs_getpages(v);
1732 }
1733
1734 /*
1735 * Wait for a page to become unbusy, possibly printing diagnostic messages
1736 * as well.
1737 *
1738 * Called with vp->v_interlock held; return with it held.
1739 */
1740 static void
1741 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1742 {
1743 if ((pg->flags & PG_BUSY) == 0)
1744 return; /* Nothing to wait for! */
1745
1746 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1747 static struct vm_page *lastpg;
1748
1749 if (label != NULL && pg != lastpg) {
1750 if (pg->owner_tag) {
1751 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1752 curproc->p_pid, curlwp->l_lid, label,
1753 pg, pg->owner, pg->lowner, pg->owner_tag);
1754 } else {
1755 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1756 curproc->p_pid, curlwp->l_lid, label, pg);
1757 }
1758 }
1759 lastpg = pg;
1760 #endif
1761
1762 pg->flags |= PG_WANTED;
1763 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1764 mutex_enter(vp->v_interlock);
1765 }
1766
1767 /*
1768 * This routine is called by lfs_putpages() when it can't complete the
1769 * write because a page is busy. This means that either (1) someone,
1770 * possibly the pagedaemon, is looking at this page, and will give it up
1771 * presently; or (2) we ourselves are holding the page busy in the
1772 * process of being written (either gathered or actually on its way to
1773 * disk). We don't need to give up the segment lock, but we might need
1774 * to call lfs_writeseg() to expedite the page's journey to disk.
1775 *
1776 * Called with vp->v_interlock held; return with it held.
1777 */
1778 /* #define BUSYWAIT */
1779 static void
1780 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1781 int seglocked, const char *label)
1782 {
1783 #ifndef BUSYWAIT
1784 struct inode *ip = VTOI(vp);
1785 struct segment *sp = fs->lfs_sp;
1786 int count = 0;
1787
1788 if (pg == NULL)
1789 return;
1790
1791 while (pg->flags & PG_BUSY &&
1792 pg->uobject == &vp->v_uobj) {
1793 mutex_exit(vp->v_interlock);
1794 if (sp->cbpp - sp->bpp > 1) {
1795 /* Write gathered pages */
1796 lfs_updatemeta(sp);
1797 lfs_release_finfo(fs);
1798 (void) lfs_writeseg(fs, sp);
1799
1800 /*
1801 * Reinitialize FIP
1802 */
1803 KASSERT(sp->vp == vp);
1804 lfs_acquire_finfo(fs, ip->i_number,
1805 ip->i_gen);
1806 }
1807 ++count;
1808 mutex_enter(vp->v_interlock);
1809 wait_for_page(vp, pg, label);
1810 }
1811 if (label != NULL && count > 1)
1812 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1813 label, (count > 0 ? "looping, " : ""), count);
1814 #else
1815 preempt(1);
1816 #endif
1817 }
1818
1819 /*
1820 * Make sure that for all pages in every block in the given range,
1821 * either all are dirty or all are clean. If any of the pages
1822 * we've seen so far are dirty, put the vnode on the paging chain,
1823 * and mark it IN_PAGING.
1824 *
1825 * If checkfirst != 0, don't check all the pages but return at the
1826 * first dirty page.
1827 */
1828 static int
1829 check_dirty(struct lfs *fs, struct vnode *vp,
1830 off_t startoffset, off_t endoffset, off_t blkeof,
1831 int flags, int checkfirst, struct vm_page **pgp)
1832 {
1833 int by_list;
1834 struct vm_page *curpg = NULL; /* XXX: gcc */
1835 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1836 off_t soff = 0; /* XXX: gcc */
1837 voff_t off;
1838 int i;
1839 int nonexistent;
1840 int any_dirty; /* number of dirty pages */
1841 int dirty; /* number of dirty pages in a block */
1842 int tdirty;
1843 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1844 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1845
1846 ASSERT_MAYBE_SEGLOCK(fs);
1847 top:
1848 by_list = (vp->v_uobj.uo_npages <=
1849 ((endoffset - startoffset) >> PAGE_SHIFT) *
1850 UVM_PAGE_TREE_PENALTY);
1851 any_dirty = 0;
1852
1853 if (by_list) {
1854 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1855 } else {
1856 soff = startoffset;
1857 }
1858 while (by_list || soff < MIN(blkeof, endoffset)) {
1859 if (by_list) {
1860 /*
1861 * Find the first page in a block. Skip
1862 * blocks outside our area of interest or beyond
1863 * the end of file.
1864 */
1865 KASSERT(curpg == NULL
1866 || (curpg->flags & PG_MARKER) == 0);
1867 if (pages_per_block > 1) {
1868 while (curpg &&
1869 ((curpg->offset & fs->lfs_bmask) ||
1870 curpg->offset >= vp->v_size ||
1871 curpg->offset >= endoffset)) {
1872 curpg = TAILQ_NEXT(curpg, listq.queue);
1873 KASSERT(curpg == NULL ||
1874 (curpg->flags & PG_MARKER) == 0);
1875 }
1876 }
1877 if (curpg == NULL)
1878 break;
1879 soff = curpg->offset;
1880 }
1881
1882 /*
1883 * Mark all pages in extended range busy; find out if any
1884 * of them are dirty.
1885 */
1886 nonexistent = dirty = 0;
1887 for (i = 0; i == 0 || i < pages_per_block; i++) {
1888 if (by_list && pages_per_block <= 1) {
1889 pgs[i] = pg = curpg;
1890 } else {
1891 off = soff + (i << PAGE_SHIFT);
1892 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1893 if (pg == NULL) {
1894 ++nonexistent;
1895 continue;
1896 }
1897 }
1898 KASSERT(pg != NULL);
1899
1900 /*
1901 * If we're holding the segment lock, we can deadlock
1902 * against a process that has our page and is waiting
1903 * for the cleaner, while the cleaner waits for the
1904 * segment lock. Just bail in that case.
1905 */
1906 if ((pg->flags & PG_BUSY) &&
1907 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1908 if (i > 0)
1909 uvm_page_unbusy(pgs, i);
1910 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1911 if (pgp)
1912 *pgp = pg;
1913 return -1;
1914 }
1915
1916 while (pg->flags & PG_BUSY) {
1917 wait_for_page(vp, pg, NULL);
1918 if (i > 0)
1919 uvm_page_unbusy(pgs, i);
1920 goto top;
1921 }
1922 pg->flags |= PG_BUSY;
1923 UVM_PAGE_OWN(pg, "lfs_putpages");
1924
1925 pmap_page_protect(pg, VM_PROT_NONE);
1926 tdirty = (pmap_clear_modify(pg) ||
1927 (pg->flags & PG_CLEAN) == 0);
1928 dirty += tdirty;
1929 }
1930 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1931 if (by_list) {
1932 curpg = TAILQ_NEXT(curpg, listq.queue);
1933 } else {
1934 soff += fs->lfs_bsize;
1935 }
1936 continue;
1937 }
1938
1939 any_dirty += dirty;
1940 KASSERT(nonexistent == 0);
1941
1942 /*
1943 * If any are dirty make all dirty; unbusy them,
1944 * but if we were asked to clean, wire them so that
1945 * the pagedaemon doesn't bother us about them while
1946 * they're on their way to disk.
1947 */
1948 for (i = 0; i == 0 || i < pages_per_block; i++) {
1949 pg = pgs[i];
1950 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1951 if (dirty) {
1952 pg->flags &= ~PG_CLEAN;
1953 if (flags & PGO_FREE) {
1954 /*
1955 * Wire the page so that
1956 * pdaemon doesn't see it again.
1957 */
1958 mutex_enter(&uvm_pageqlock);
1959 uvm_pagewire(pg);
1960 mutex_exit(&uvm_pageqlock);
1961
1962 /* Suspended write flag */
1963 pg->flags |= PG_DELWRI;
1964 }
1965 }
1966 if (pg->flags & PG_WANTED)
1967 wakeup(pg);
1968 pg->flags &= ~(PG_WANTED|PG_BUSY);
1969 UVM_PAGE_OWN(pg, NULL);
1970 }
1971
1972 if (checkfirst && any_dirty)
1973 break;
1974
1975 if (by_list) {
1976 curpg = TAILQ_NEXT(curpg, listq.queue);
1977 } else {
1978 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1979 }
1980 }
1981
1982 return any_dirty;
1983 }
1984
1985 /*
1986 * lfs_putpages functions like genfs_putpages except that
1987 *
1988 * (1) It needs to bounds-check the incoming requests to ensure that
1989 * they are block-aligned; if they are not, expand the range and
1990 * do the right thing in case, e.g., the requested range is clean
1991 * but the expanded range is dirty.
1992 *
1993 * (2) It needs to explicitly send blocks to be written when it is done.
1994 * If VOP_PUTPAGES is called without the seglock held, we simply take
1995 * the seglock and let lfs_segunlock wait for us.
1996 * XXX There might be a bad situation if we have to flush a vnode while
1997 * XXX lfs_markv is in operation. As of this writing we panic in this
1998 * XXX case.
1999 *
2000 * Assumptions:
2001 *
2002 * (1) The caller does not hold any pages in this vnode busy. If it does,
2003 * there is a danger that when we expand the page range and busy the
2004 * pages we will deadlock.
2005 *
2006 * (2) We are called with vp->v_interlock held; we must return with it
2007 * released.
2008 *
2009 * (3) We don't absolutely have to free pages right away, provided that
2010 * the request does not have PGO_SYNCIO. When the pagedaemon gives
2011 * us a request with PGO_FREE, we take the pages out of the paging
2012 * queue and wake up the writer, which will handle freeing them for us.
2013 *
2014 * We ensure that for any filesystem block, all pages for that
2015 * block are either resident or not, even if those pages are higher
2016 * than EOF; that means that we will be getting requests to free
2017 * "unused" pages above EOF all the time, and should ignore them.
2018 *
2019 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2020 * into has been set up for us by lfs_writefile. If not, we will
2021 * have to handle allocating and/or freeing an finfo entry.
2022 *
2023 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2024 */
2025
2026 /* How many times to loop before we should start to worry */
2027 #define TOOMANY 4
2028
2029 int
2030 lfs_putpages(void *v)
2031 {
2032 int error;
2033 struct vop_putpages_args /* {
2034 struct vnode *a_vp;
2035 voff_t a_offlo;
2036 voff_t a_offhi;
2037 int a_flags;
2038 } */ *ap = v;
2039 struct vnode *vp;
2040 struct inode *ip;
2041 struct lfs *fs;
2042 struct segment *sp;
2043 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2044 off_t off, max_endoffset;
2045 bool seglocked, sync, pagedaemon;
2046 struct vm_page *pg, *busypg;
2047 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2048 #ifdef DEBUG
2049 int debug_n_again, debug_n_dirtyclean;
2050 #endif
2051
2052 vp = ap->a_vp;
2053 ip = VTOI(vp);
2054 fs = ip->i_lfs;
2055 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2056 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2057
2058 /* Putpages does nothing for metadata. */
2059 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2060 mutex_exit(vp->v_interlock);
2061 return 0;
2062 }
2063
2064 /*
2065 * If there are no pages, don't do anything.
2066 */
2067 if (vp->v_uobj.uo_npages == 0) {
2068 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2069 (vp->v_iflag & VI_ONWORKLST) &&
2070 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2071 vp->v_iflag &= ~VI_WRMAPDIRTY;
2072 vn_syncer_remove_from_worklist(vp);
2073 }
2074 mutex_exit(vp->v_interlock);
2075
2076 /* Remove us from paging queue, if we were on it */
2077 mutex_enter(&lfs_lock);
2078 if (ip->i_flags & IN_PAGING) {
2079 ip->i_flags &= ~IN_PAGING;
2080 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2081 }
2082 mutex_exit(&lfs_lock);
2083 return 0;
2084 }
2085
2086 blkeof = blkroundup(fs, ip->i_size);
2087
2088 /*
2089 * Ignore requests to free pages past EOF but in the same block
2090 * as EOF, unless the request is synchronous. (If the request is
2091 * sync, it comes from lfs_truncate.)
2092 * XXXUBC Make these pages look "active" so the pagedaemon won't
2093 * XXXUBC bother us with them again.
2094 */
2095 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2096 origoffset = ap->a_offlo;
2097 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2098 pg = uvm_pagelookup(&vp->v_uobj, off);
2099 KASSERT(pg != NULL);
2100 while (pg->flags & PG_BUSY) {
2101 pg->flags |= PG_WANTED;
2102 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2103 "lfsput2", 0);
2104 mutex_enter(vp->v_interlock);
2105 }
2106 mutex_enter(&uvm_pageqlock);
2107 uvm_pageactivate(pg);
2108 mutex_exit(&uvm_pageqlock);
2109 }
2110 ap->a_offlo = blkeof;
2111 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2112 mutex_exit(vp->v_interlock);
2113 return 0;
2114 }
2115 }
2116
2117 /*
2118 * Extend page range to start and end at block boundaries.
2119 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2120 */
2121 origoffset = ap->a_offlo;
2122 origendoffset = ap->a_offhi;
2123 startoffset = origoffset & ~(fs->lfs_bmask);
2124 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2125 << fs->lfs_bshift;
2126
2127 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2128 endoffset = max_endoffset;
2129 origendoffset = endoffset;
2130 } else {
2131 origendoffset = round_page(ap->a_offhi);
2132 endoffset = round_page(blkroundup(fs, origendoffset));
2133 }
2134
2135 KASSERT(startoffset > 0 || endoffset >= startoffset);
2136 if (startoffset == endoffset) {
2137 /* Nothing to do, why were we called? */
2138 mutex_exit(vp->v_interlock);
2139 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2140 PRId64 "\n", startoffset));
2141 return 0;
2142 }
2143
2144 ap->a_offlo = startoffset;
2145 ap->a_offhi = endoffset;
2146
2147 /*
2148 * If not cleaning, just send the pages through genfs_putpages
2149 * to be returned to the pool.
2150 */
2151 if (!(ap->a_flags & PGO_CLEANIT))
2152 return genfs_putpages(v);
2153
2154 /* Set PGO_BUSYFAIL to avoid deadlocks */
2155 ap->a_flags |= PGO_BUSYFAIL;
2156
2157 /*
2158 * Likewise, if we are asked to clean but the pages are not
2159 * dirty, we can just free them using genfs_putpages.
2160 */
2161 #ifdef DEBUG
2162 debug_n_dirtyclean = 0;
2163 #endif
2164 do {
2165 int r;
2166
2167 /* Count the number of dirty pages */
2168 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2169 ap->a_flags, 1, NULL);
2170 if (r < 0) {
2171 /* Pages are busy with another process */
2172 mutex_exit(vp->v_interlock);
2173 return EDEADLK;
2174 }
2175 if (r > 0) /* Some pages are dirty */
2176 break;
2177
2178 /*
2179 * Sometimes pages are dirtied between the time that
2180 * we check and the time we try to clean them.
2181 * Instruct lfs_gop_write to return EDEADLK in this case
2182 * so we can write them properly.
2183 */
2184 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2185 r = genfs_do_putpages(vp, startoffset, endoffset,
2186 ap->a_flags & ~PGO_SYNCIO, &busypg);
2187 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2188 if (r != EDEADLK)
2189 return r;
2190
2191 /* One of the pages was busy. Start over. */
2192 mutex_enter(vp->v_interlock);
2193 wait_for_page(vp, busypg, "dirtyclean");
2194 #ifdef DEBUG
2195 ++debug_n_dirtyclean;
2196 #endif
2197 } while(1);
2198
2199 #ifdef DEBUG
2200 if (debug_n_dirtyclean > TOOMANY)
2201 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2202 debug_n_dirtyclean);
2203 #endif
2204
2205 /*
2206 * Dirty and asked to clean.
2207 *
2208 * Pagedaemon can't actually write LFS pages; wake up
2209 * the writer to take care of that. The writer will
2210 * notice the pager inode queue and act on that.
2211 *
2212 * XXX We must drop the vp->interlock before taking the lfs_lock or we
2213 * get a nasty deadlock with lfs_flush_pchain().
2214 */
2215 if (pagedaemon) {
2216 mutex_exit(vp->v_interlock);
2217 mutex_enter(&lfs_lock);
2218 if (!(ip->i_flags & IN_PAGING)) {
2219 ip->i_flags |= IN_PAGING;
2220 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2221 }
2222 wakeup(&lfs_writer_daemon);
2223 mutex_exit(&lfs_lock);
2224 preempt();
2225 return EWOULDBLOCK;
2226 }
2227
2228 /*
2229 * If this is a file created in a recent dirop, we can't flush its
2230 * inode until the dirop is complete. Drain dirops, then flush the
2231 * filesystem (taking care of any other pending dirops while we're
2232 * at it).
2233 */
2234 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2235 (vp->v_uflag & VU_DIROP)) {
2236 int locked;
2237
2238 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2239 /* XXX VOP_ISLOCKED() may not be used for lock decisions. */
2240 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2241 mutex_exit(vp->v_interlock);
2242 lfs_writer_enter(fs, "ppdirop");
2243 if (locked)
2244 VOP_UNLOCK(vp); /* XXX why? */
2245
2246 mutex_enter(&lfs_lock);
2247 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2248 mutex_exit(&lfs_lock);
2249
2250 if (locked)
2251 VOP_LOCK(vp, LK_EXCLUSIVE);
2252 mutex_enter(vp->v_interlock);
2253 lfs_writer_leave(fs);
2254
2255 /* XXX the flush should have taken care of this one too! */
2256 }
2257
2258 /*
2259 * This is it. We are going to write some pages. From here on
2260 * down it's all just mechanics.
2261 *
2262 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2263 */
2264 ap->a_flags &= ~PGO_SYNCIO;
2265
2266 /*
2267 * If we've already got the seglock, flush the node and return.
2268 * The FIP has already been set up for us by lfs_writefile,
2269 * and FIP cleanup and lfs_updatemeta will also be done there,
2270 * unless genfs_putpages returns EDEADLK; then we must flush
2271 * what we have, and correct FIP and segment header accounting.
2272 */
2273 get_seglock:
2274 /*
2275 * If we are not called with the segment locked, lock it.
2276 * Account for a new FIP in the segment header, and set sp->vp.
2277 * (This should duplicate the setup at the top of lfs_writefile().)
2278 */
2279 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2280 if (!seglocked) {
2281 mutex_exit(vp->v_interlock);
2282 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2283 if (error != 0)
2284 return error;
2285 mutex_enter(vp->v_interlock);
2286 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2287 }
2288 sp = fs->lfs_sp;
2289 KASSERT(sp->vp == NULL);
2290 sp->vp = vp;
2291
2292 /*
2293 * Ensure that the partial segment is marked SS_DIROP if this
2294 * vnode is a DIROP.
2295 */
2296 if (!seglocked && vp->v_uflag & VU_DIROP)
2297 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2298
2299 /*
2300 * Loop over genfs_putpages until all pages are gathered.
2301 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2302 * Whenever we lose the interlock we have to rerun check_dirty, as
2303 * well, since more pages might have been dirtied in our absence.
2304 */
2305 #ifdef DEBUG
2306 debug_n_again = 0;
2307 #endif
2308 do {
2309 busypg = NULL;
2310 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2311 ap->a_flags, 0, &busypg) < 0) {
2312 mutex_exit(vp->v_interlock);
2313
2314 mutex_enter(vp->v_interlock);
2315 write_and_wait(fs, vp, busypg, seglocked, NULL);
2316 if (!seglocked) {
2317 mutex_exit(vp->v_interlock);
2318 lfs_release_finfo(fs);
2319 lfs_segunlock(fs);
2320 mutex_enter(vp->v_interlock);
2321 }
2322 sp->vp = NULL;
2323 goto get_seglock;
2324 }
2325
2326 busypg = NULL;
2327 error = genfs_do_putpages(vp, startoffset, endoffset,
2328 ap->a_flags, &busypg);
2329
2330 if (error == EDEADLK || error == EAGAIN) {
2331 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2332 " %d ino %d off %x (seg %d)\n", error,
2333 ip->i_number, fs->lfs_offset,
2334 dtosn(fs, fs->lfs_offset)));
2335
2336 mutex_enter(vp->v_interlock);
2337 write_and_wait(fs, vp, busypg, seglocked, "again");
2338 }
2339 #ifdef DEBUG
2340 ++debug_n_again;
2341 #endif
2342 } while (error == EDEADLK);
2343 #ifdef DEBUG
2344 if (debug_n_again > TOOMANY)
2345 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2346 #endif
2347
2348 KASSERT(sp != NULL && sp->vp == vp);
2349 if (!seglocked) {
2350 sp->vp = NULL;
2351
2352 /* Write indirect blocks as well */
2353 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2354 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2355 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2356
2357 KASSERT(sp->vp == NULL);
2358 sp->vp = vp;
2359 }
2360
2361 /*
2362 * Blocks are now gathered into a segment waiting to be written.
2363 * All that's left to do is update metadata, and write them.
2364 */
2365 lfs_updatemeta(sp);
2366 KASSERT(sp->vp == vp);
2367 sp->vp = NULL;
2368
2369 /*
2370 * If we were called from lfs_writefile, we don't need to clean up
2371 * the FIP or unlock the segment lock. We're done.
2372 */
2373 if (seglocked)
2374 return error;
2375
2376 /* Clean up FIP and send it to disk. */
2377 lfs_release_finfo(fs);
2378 lfs_writeseg(fs, fs->lfs_sp);
2379
2380 /*
2381 * Remove us from paging queue if we wrote all our pages.
2382 */
2383 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2384 mutex_enter(&lfs_lock);
2385 if (ip->i_flags & IN_PAGING) {
2386 ip->i_flags &= ~IN_PAGING;
2387 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2388 }
2389 mutex_exit(&lfs_lock);
2390 }
2391
2392 /*
2393 * XXX - with the malloc/copy writeseg, the pages are freed by now
2394 * even if we don't wait (e.g. if we hold a nested lock). This
2395 * will not be true if we stop using malloc/copy.
2396 */
2397 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2398 lfs_segunlock(fs);
2399
2400 /*
2401 * Wait for v_numoutput to drop to zero. The seglock should
2402 * take care of this, but there is a slight possibility that
2403 * aiodoned might not have got around to our buffers yet.
2404 */
2405 if (sync) {
2406 mutex_enter(vp->v_interlock);
2407 while (vp->v_numoutput > 0) {
2408 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2409 " num %d\n", ip->i_number, vp->v_numoutput));
2410 cv_wait(&vp->v_cv, vp->v_interlock);
2411 }
2412 mutex_exit(vp->v_interlock);
2413 }
2414 return error;
2415 }
2416
2417 /*
2418 * Return the last logical file offset that should be written for this file
2419 * if we're doing a write that ends at "size". If writing, we need to know
2420 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2421 * to know about entire blocks.
2422 */
2423 void
2424 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2425 {
2426 struct inode *ip = VTOI(vp);
2427 struct lfs *fs = ip->i_lfs;
2428 daddr_t olbn, nlbn;
2429
2430 olbn = lblkno(fs, ip->i_size);
2431 nlbn = lblkno(fs, size);
2432 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2433 *eobp = fragroundup(fs, size);
2434 } else {
2435 *eobp = blkroundup(fs, size);
2436 }
2437 }
2438
2439 #ifdef DEBUG
2440 void lfs_dump_vop(void *);
2441
2442 void
2443 lfs_dump_vop(void *v)
2444 {
2445 struct vop_putpages_args /* {
2446 struct vnode *a_vp;
2447 voff_t a_offlo;
2448 voff_t a_offhi;
2449 int a_flags;
2450 } */ *ap = v;
2451
2452 #ifdef DDB
2453 vfs_vnode_print(ap->a_vp, 0, printf);
2454 #endif
2455 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2456 }
2457 #endif
2458
2459 int
2460 lfs_mmap(void *v)
2461 {
2462 struct vop_mmap_args /* {
2463 const struct vnodeop_desc *a_desc;
2464 struct vnode *a_vp;
2465 vm_prot_t a_prot;
2466 kauth_cred_t a_cred;
2467 } */ *ap = v;
2468
2469 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2470 return EOPNOTSUPP;
2471 return ufs_mmap(v);
2472 }
2473