lfs_vnops.c revision 1.237 1 /* $NetBSD: lfs_vnops.c,v 1.237 2011/07/12 16:59:48 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.237 2011/07/12 16:59:48 dholland Exp $");
64
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #endif
68
69 #include <sys/param.h>
70 #include <sys/systm.h>
71 #include <sys/namei.h>
72 #include <sys/resourcevar.h>
73 #include <sys/kernel.h>
74 #include <sys/file.h>
75 #include <sys/stat.h>
76 #include <sys/buf.h>
77 #include <sys/proc.h>
78 #include <sys/mount.h>
79 #include <sys/vnode.h>
80 #include <sys/pool.h>
81 #include <sys/signalvar.h>
82 #include <sys/kauth.h>
83 #include <sys/syslog.h>
84 #include <sys/fstrans.h>
85
86 #include <miscfs/fifofs/fifo.h>
87 #include <miscfs/genfs/genfs.h>
88 #include <miscfs/specfs/specdev.h>
89
90 #include <ufs/ufs/inode.h>
91 #include <ufs/ufs/dir.h>
92 #include <ufs/ufs/ufsmount.h>
93 #include <ufs/ufs/ufs_extern.h>
94
95 #include <uvm/uvm.h>
96 #include <uvm/uvm_pmap.h>
97 #include <uvm/uvm_stat.h>
98 #include <uvm/uvm_pager.h>
99
100 #include <ufs/lfs/lfs.h>
101 #include <ufs/lfs/lfs_extern.h>
102
103 extern pid_t lfs_writer_daemon;
104 int lfs_ignore_lazy_sync = 1;
105
106 /* Global vfs data structures for lfs. */
107 int (**lfs_vnodeop_p)(void *);
108 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
109 { &vop_default_desc, vn_default_error },
110 { &vop_lookup_desc, ufs_lookup }, /* lookup */
111 { &vop_create_desc, lfs_create }, /* create */
112 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
113 { &vop_mknod_desc, lfs_mknod }, /* mknod */
114 { &vop_open_desc, ufs_open }, /* open */
115 { &vop_close_desc, lfs_close }, /* close */
116 { &vop_access_desc, ufs_access }, /* access */
117 { &vop_getattr_desc, lfs_getattr }, /* getattr */
118 { &vop_setattr_desc, lfs_setattr }, /* setattr */
119 { &vop_read_desc, lfs_read }, /* read */
120 { &vop_write_desc, lfs_write }, /* write */
121 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
122 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
123 { &vop_poll_desc, ufs_poll }, /* poll */
124 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
125 { &vop_revoke_desc, ufs_revoke }, /* revoke */
126 { &vop_mmap_desc, lfs_mmap }, /* mmap */
127 { &vop_fsync_desc, lfs_fsync }, /* fsync */
128 { &vop_seek_desc, ufs_seek }, /* seek */
129 { &vop_remove_desc, lfs_remove }, /* remove */
130 { &vop_link_desc, lfs_link }, /* link */
131 { &vop_rename_desc, lfs_rename }, /* rename */
132 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
133 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
134 { &vop_symlink_desc, lfs_symlink }, /* symlink */
135 { &vop_readdir_desc, ufs_readdir }, /* readdir */
136 { &vop_readlink_desc, ufs_readlink }, /* readlink */
137 { &vop_abortop_desc, ufs_abortop }, /* abortop */
138 { &vop_inactive_desc, lfs_inactive }, /* inactive */
139 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
140 { &vop_lock_desc, ufs_lock }, /* lock */
141 { &vop_unlock_desc, ufs_unlock }, /* unlock */
142 { &vop_bmap_desc, ufs_bmap }, /* bmap */
143 { &vop_strategy_desc, lfs_strategy }, /* strategy */
144 { &vop_print_desc, ufs_print }, /* print */
145 { &vop_islocked_desc, ufs_islocked }, /* islocked */
146 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
147 { &vop_advlock_desc, ufs_advlock }, /* advlock */
148 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
149 { &vop_getpages_desc, lfs_getpages }, /* getpages */
150 { &vop_putpages_desc, lfs_putpages }, /* putpages */
151 { NULL, NULL }
152 };
153 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
154 { &lfs_vnodeop_p, lfs_vnodeop_entries };
155
156 int (**lfs_specop_p)(void *);
157 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
158 { &vop_default_desc, vn_default_error },
159 { &vop_lookup_desc, spec_lookup }, /* lookup */
160 { &vop_create_desc, spec_create }, /* create */
161 { &vop_mknod_desc, spec_mknod }, /* mknod */
162 { &vop_open_desc, spec_open }, /* open */
163 { &vop_close_desc, lfsspec_close }, /* close */
164 { &vop_access_desc, ufs_access }, /* access */
165 { &vop_getattr_desc, lfs_getattr }, /* getattr */
166 { &vop_setattr_desc, lfs_setattr }, /* setattr */
167 { &vop_read_desc, ufsspec_read }, /* read */
168 { &vop_write_desc, ufsspec_write }, /* write */
169 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
170 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
171 { &vop_poll_desc, spec_poll }, /* poll */
172 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
173 { &vop_revoke_desc, spec_revoke }, /* revoke */
174 { &vop_mmap_desc, spec_mmap }, /* mmap */
175 { &vop_fsync_desc, spec_fsync }, /* fsync */
176 { &vop_seek_desc, spec_seek }, /* seek */
177 { &vop_remove_desc, spec_remove }, /* remove */
178 { &vop_link_desc, spec_link }, /* link */
179 { &vop_rename_desc, spec_rename }, /* rename */
180 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
181 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
182 { &vop_symlink_desc, spec_symlink }, /* symlink */
183 { &vop_readdir_desc, spec_readdir }, /* readdir */
184 { &vop_readlink_desc, spec_readlink }, /* readlink */
185 { &vop_abortop_desc, spec_abortop }, /* abortop */
186 { &vop_inactive_desc, lfs_inactive }, /* inactive */
187 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
188 { &vop_lock_desc, ufs_lock }, /* lock */
189 { &vop_unlock_desc, ufs_unlock }, /* unlock */
190 { &vop_bmap_desc, spec_bmap }, /* bmap */
191 { &vop_strategy_desc, spec_strategy }, /* strategy */
192 { &vop_print_desc, ufs_print }, /* print */
193 { &vop_islocked_desc, ufs_islocked }, /* islocked */
194 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
195 { &vop_advlock_desc, spec_advlock }, /* advlock */
196 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
197 { &vop_getpages_desc, spec_getpages }, /* getpages */
198 { &vop_putpages_desc, spec_putpages }, /* putpages */
199 { NULL, NULL }
200 };
201 const struct vnodeopv_desc lfs_specop_opv_desc =
202 { &lfs_specop_p, lfs_specop_entries };
203
204 int (**lfs_fifoop_p)(void *);
205 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
206 { &vop_default_desc, vn_default_error },
207 { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
208 { &vop_create_desc, vn_fifo_bypass }, /* create */
209 { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
210 { &vop_open_desc, vn_fifo_bypass }, /* open */
211 { &vop_close_desc, lfsfifo_close }, /* close */
212 { &vop_access_desc, ufs_access }, /* access */
213 { &vop_getattr_desc, lfs_getattr }, /* getattr */
214 { &vop_setattr_desc, lfs_setattr }, /* setattr */
215 { &vop_read_desc, ufsfifo_read }, /* read */
216 { &vop_write_desc, ufsfifo_write }, /* write */
217 { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
218 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
219 { &vop_poll_desc, vn_fifo_bypass }, /* poll */
220 { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
221 { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
222 { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
223 { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
224 { &vop_seek_desc, vn_fifo_bypass }, /* seek */
225 { &vop_remove_desc, vn_fifo_bypass }, /* remove */
226 { &vop_link_desc, vn_fifo_bypass }, /* link */
227 { &vop_rename_desc, vn_fifo_bypass }, /* rename */
228 { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
229 { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
230 { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
231 { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
232 { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
233 { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
234 { &vop_inactive_desc, lfs_inactive }, /* inactive */
235 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
236 { &vop_lock_desc, ufs_lock }, /* lock */
237 { &vop_unlock_desc, ufs_unlock }, /* unlock */
238 { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
239 { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
240 { &vop_print_desc, ufs_print }, /* print */
241 { &vop_islocked_desc, ufs_islocked }, /* islocked */
242 { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
243 { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
244 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
245 { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
246 { NULL, NULL }
247 };
248 const struct vnodeopv_desc lfs_fifoop_opv_desc =
249 { &lfs_fifoop_p, lfs_fifoop_entries };
250
251 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
252
253 #define LFS_READWRITE
254 #include <ufs/ufs/ufs_readwrite.c>
255 #undef LFS_READWRITE
256
257 /*
258 * Synch an open file.
259 */
260 /* ARGSUSED */
261 int
262 lfs_fsync(void *v)
263 {
264 struct vop_fsync_args /* {
265 struct vnode *a_vp;
266 kauth_cred_t a_cred;
267 int a_flags;
268 off_t offlo;
269 off_t offhi;
270 } */ *ap = v;
271 struct vnode *vp = ap->a_vp;
272 int error, wait;
273 struct inode *ip = VTOI(vp);
274 struct lfs *fs = ip->i_lfs;
275
276 /* If we're mounted read-only, don't try to sync. */
277 if (fs->lfs_ronly)
278 return 0;
279
280 /* If a removed vnode is being cleaned, no need to sync here. */
281 if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
282 return 0;
283
284 /*
285 * Trickle sync simply adds this vnode to the pager list, as if
286 * the pagedaemon had requested a pageout.
287 */
288 if (ap->a_flags & FSYNC_LAZY) {
289 if (lfs_ignore_lazy_sync == 0) {
290 mutex_enter(&lfs_lock);
291 if (!(ip->i_flags & IN_PAGING)) {
292 ip->i_flags |= IN_PAGING;
293 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
294 i_lfs_pchain);
295 }
296 wakeup(&lfs_writer_daemon);
297 mutex_exit(&lfs_lock);
298 }
299 return 0;
300 }
301
302 /*
303 * If a vnode is bring cleaned, flush it out before we try to
304 * reuse it. This prevents the cleaner from writing files twice
305 * in the same partial segment, causing an accounting underflow.
306 */
307 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
308 lfs_vflush(vp);
309 }
310
311 wait = (ap->a_flags & FSYNC_WAIT);
312 do {
313 mutex_enter(vp->v_interlock);
314 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
315 round_page(ap->a_offhi),
316 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
317 if (error == EAGAIN) {
318 mutex_enter(&lfs_lock);
319 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
320 hz / 100 + 1, &lfs_lock);
321 mutex_exit(&lfs_lock);
322 }
323 } while (error == EAGAIN);
324 if (error)
325 return error;
326
327 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
328 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
329
330 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
331 int l = 0;
332 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
333 curlwp->l_cred);
334 }
335 if (wait && !VPISEMPTY(vp))
336 LFS_SET_UINO(ip, IN_MODIFIED);
337
338 return error;
339 }
340
341 /*
342 * Take IN_ADIROP off, then call ufs_inactive.
343 */
344 int
345 lfs_inactive(void *v)
346 {
347 struct vop_inactive_args /* {
348 struct vnode *a_vp;
349 } */ *ap = v;
350
351 lfs_unmark_vnode(ap->a_vp);
352
353 /*
354 * The Ifile is only ever inactivated on unmount.
355 * Streamline this process by not giving it more dirty blocks.
356 */
357 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
358 mutex_enter(&lfs_lock);
359 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
360 mutex_exit(&lfs_lock);
361 VOP_UNLOCK(ap->a_vp);
362 return 0;
363 }
364
365 return ufs_inactive(v);
366 }
367
368 /*
369 * These macros are used to bracket UFS directory ops, so that we can
370 * identify all the pages touched during directory ops which need to
371 * be ordered and flushed atomically, so that they may be recovered.
372 *
373 * Because we have to mark nodes VU_DIROP in order to prevent
374 * the cache from reclaiming them while a dirop is in progress, we must
375 * also manage the number of nodes so marked (otherwise we can run out).
376 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
377 * is decremented during segment write, when VU_DIROP is taken off.
378 */
379 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
380 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
381 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
382 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
383 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
384 static int lfs_set_dirop(struct vnode *, struct vnode *);
385
386 static int
387 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
388 {
389 struct lfs *fs;
390 int error;
391
392 KASSERT(VOP_ISLOCKED(dvp));
393 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
394
395 fs = VTOI(dvp)->i_lfs;
396
397 ASSERT_NO_SEGLOCK(fs);
398 /*
399 * LFS_NRESERVE calculates direct and indirect blocks as well
400 * as an inode block; an overestimate in most cases.
401 */
402 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
403 return (error);
404
405 restart:
406 mutex_enter(&lfs_lock);
407 if (fs->lfs_dirops == 0) {
408 mutex_exit(&lfs_lock);
409 lfs_check(dvp, LFS_UNUSED_LBN, 0);
410 mutex_enter(&lfs_lock);
411 }
412 while (fs->lfs_writer) {
413 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
414 "lfs_sdirop", 0, &lfs_lock);
415 if (error == EINTR) {
416 mutex_exit(&lfs_lock);
417 goto unreserve;
418 }
419 }
420 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
421 wakeup(&lfs_writer_daemon);
422 mutex_exit(&lfs_lock);
423 preempt();
424 goto restart;
425 }
426
427 if (lfs_dirvcount > LFS_MAX_DIROP) {
428 mutex_exit(&lfs_lock);
429 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
430 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
431 if ((error = mtsleep(&lfs_dirvcount,
432 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
433 &lfs_lock)) != 0) {
434 goto unreserve;
435 }
436 goto restart;
437 }
438
439 ++fs->lfs_dirops;
440 fs->lfs_doifile = 1;
441 mutex_exit(&lfs_lock);
442
443 /* Hold a reference so SET_ENDOP will be happy */
444 vref(dvp);
445 if (vp) {
446 vref(vp);
447 MARK_VNODE(vp);
448 }
449
450 MARK_VNODE(dvp);
451 return 0;
452
453 unreserve:
454 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
455 return error;
456 }
457
458 /*
459 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
460 * in getnewvnode(), if we have a stacked filesystem mounted on top
461 * of us.
462 *
463 * NB: this means we have to clear the new vnodes on error. Fortunately
464 * SET_ENDOP is there to do that for us.
465 */
466 static int
467 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
468 {
469 int error;
470 struct lfs *fs;
471
472 fs = VFSTOUFS(dvp->v_mount)->um_lfs;
473 ASSERT_NO_SEGLOCK(fs);
474 if (fs->lfs_ronly)
475 return EROFS;
476 if (vpp == NULL) {
477 return lfs_set_dirop(dvp, NULL);
478 }
479 error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
480 if (error) {
481 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
482 dvp, error));
483 return error;
484 }
485 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
486 ungetnewvnode(*vpp);
487 *vpp = NULL;
488 return error;
489 }
490 return 0;
491 }
492
493 #define SET_ENDOP_BASE(fs, dvp, str) \
494 do { \
495 mutex_enter(&lfs_lock); \
496 --(fs)->lfs_dirops; \
497 if (!(fs)->lfs_dirops) { \
498 if ((fs)->lfs_nadirop) { \
499 panic("SET_ENDOP: %s: no dirops but " \
500 " nadirop=%d", (str), \
501 (fs)->lfs_nadirop); \
502 } \
503 wakeup(&(fs)->lfs_writer); \
504 mutex_exit(&lfs_lock); \
505 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
506 } else \
507 mutex_exit(&lfs_lock); \
508 } while(0)
509 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
510 do { \
511 UNMARK_VNODE(dvp); \
512 if (nvpp && *nvpp) \
513 UNMARK_VNODE(*nvpp); \
514 /* Check for error return to stem vnode leakage */ \
515 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
516 ungetnewvnode(*(nvpp)); \
517 SET_ENDOP_BASE((fs), (dvp), (str)); \
518 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
519 vrele(dvp); \
520 } while(0)
521 #define SET_ENDOP_CREATE_AP(ap, str) \
522 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
523 (ap)->a_vpp, (str))
524 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
525 do { \
526 UNMARK_VNODE(dvp); \
527 if (ovp) \
528 UNMARK_VNODE(ovp); \
529 SET_ENDOP_BASE((fs), (dvp), (str)); \
530 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
531 vrele(dvp); \
532 if (ovp) \
533 vrele(ovp); \
534 } while(0)
535
536 void
537 lfs_mark_vnode(struct vnode *vp)
538 {
539 struct inode *ip = VTOI(vp);
540 struct lfs *fs = ip->i_lfs;
541
542 mutex_enter(&lfs_lock);
543 if (!(ip->i_flag & IN_ADIROP)) {
544 if (!(vp->v_uflag & VU_DIROP)) {
545 mutex_enter(vp->v_interlock);
546 (void)lfs_vref(vp);
547 ++lfs_dirvcount;
548 ++fs->lfs_dirvcount;
549 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
550 vp->v_uflag |= VU_DIROP;
551 }
552 ++fs->lfs_nadirop;
553 ip->i_flag |= IN_ADIROP;
554 } else
555 KASSERT(vp->v_uflag & VU_DIROP);
556 mutex_exit(&lfs_lock);
557 }
558
559 void
560 lfs_unmark_vnode(struct vnode *vp)
561 {
562 struct inode *ip = VTOI(vp);
563
564 if (ip && (ip->i_flag & IN_ADIROP)) {
565 KASSERT(vp->v_uflag & VU_DIROP);
566 mutex_enter(&lfs_lock);
567 --ip->i_lfs->lfs_nadirop;
568 mutex_exit(&lfs_lock);
569 ip->i_flag &= ~IN_ADIROP;
570 }
571 }
572
573 int
574 lfs_symlink(void *v)
575 {
576 struct vop_symlink_args /* {
577 struct vnode *a_dvp;
578 struct vnode **a_vpp;
579 struct componentname *a_cnp;
580 struct vattr *a_vap;
581 char *a_target;
582 } */ *ap = v;
583 int error;
584
585 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
586 vput(ap->a_dvp);
587 return error;
588 }
589 error = ufs_symlink(ap);
590 SET_ENDOP_CREATE_AP(ap, "symlink");
591 return (error);
592 }
593
594 int
595 lfs_mknod(void *v)
596 {
597 struct vop_mknod_args /* {
598 struct vnode *a_dvp;
599 struct vnode **a_vpp;
600 struct componentname *a_cnp;
601 struct vattr *a_vap;
602 } */ *ap = v;
603 struct vattr *vap = ap->a_vap;
604 struct vnode **vpp = ap->a_vpp;
605 struct inode *ip;
606 int error;
607 struct mount *mp;
608 ino_t ino;
609 struct ufs_lookup_results *ulr;
610
611 /* XXX should handle this material another way */
612 ulr = &VTOI(ap->a_dvp)->i_crap;
613 UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
614
615 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
616 vput(ap->a_dvp);
617 return error;
618 }
619 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
620 ap->a_dvp, ulr, vpp, ap->a_cnp);
621
622 /* Either way we're done with the dirop at this point */
623 SET_ENDOP_CREATE_AP(ap, "mknod");
624
625 if (error)
626 return (error);
627
628 ip = VTOI(*vpp);
629 mp = (*vpp)->v_mount;
630 ino = ip->i_number;
631 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
632 if (vap->va_rdev != VNOVAL) {
633 /*
634 * Want to be able to use this to make badblock
635 * inodes, so don't truncate the dev number.
636 */
637 #if 0
638 ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
639 UFS_MPNEEDSWAP((*vpp)->v_mount));
640 #else
641 ip->i_ffs1_rdev = vap->va_rdev;
642 #endif
643 }
644
645 /*
646 * Call fsync to write the vnode so that we don't have to deal with
647 * flushing it when it's marked VU_DIROP|VI_XLOCK.
648 *
649 * XXX KS - If we can't flush we also can't call vgone(), so must
650 * return. But, that leaves this vnode in limbo, also not good.
651 * Can this ever happen (barring hardware failure)?
652 */
653 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
654 panic("lfs_mknod: couldn't fsync (ino %llu)",
655 (unsigned long long)ino);
656 /* return (error); */
657 }
658 /*
659 * Remove vnode so that it will be reloaded by VFS_VGET and
660 * checked to see if it is an alias of an existing entry in
661 * the inode cache.
662 */
663 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
664
665 VOP_UNLOCK(*vpp);
666 (*vpp)->v_type = VNON;
667 vgone(*vpp);
668 error = VFS_VGET(mp, ino, vpp);
669
670 if (error != 0) {
671 *vpp = NULL;
672 return (error);
673 }
674 return (0);
675 }
676
677 int
678 lfs_create(void *v)
679 {
680 struct vop_create_args /* {
681 struct vnode *a_dvp;
682 struct vnode **a_vpp;
683 struct componentname *a_cnp;
684 struct vattr *a_vap;
685 } */ *ap = v;
686 int error;
687
688 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
689 vput(ap->a_dvp);
690 return error;
691 }
692 error = ufs_create(ap);
693 SET_ENDOP_CREATE_AP(ap, "create");
694 return (error);
695 }
696
697 int
698 lfs_mkdir(void *v)
699 {
700 struct vop_mkdir_args /* {
701 struct vnode *a_dvp;
702 struct vnode **a_vpp;
703 struct componentname *a_cnp;
704 struct vattr *a_vap;
705 } */ *ap = v;
706 int error;
707
708 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
709 vput(ap->a_dvp);
710 return error;
711 }
712 error = ufs_mkdir(ap);
713 SET_ENDOP_CREATE_AP(ap, "mkdir");
714 return (error);
715 }
716
717 int
718 lfs_remove(void *v)
719 {
720 struct vop_remove_args /* {
721 struct vnode *a_dvp;
722 struct vnode *a_vp;
723 struct componentname *a_cnp;
724 } */ *ap = v;
725 struct vnode *dvp, *vp;
726 struct inode *ip;
727 int error;
728
729 dvp = ap->a_dvp;
730 vp = ap->a_vp;
731 ip = VTOI(vp);
732 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
733 if (dvp == vp)
734 vrele(vp);
735 else
736 vput(vp);
737 vput(dvp);
738 return error;
739 }
740 error = ufs_remove(ap);
741 if (ip->i_nlink == 0)
742 lfs_orphan(ip->i_lfs, ip->i_number);
743 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
744 return (error);
745 }
746
747 int
748 lfs_rmdir(void *v)
749 {
750 struct vop_rmdir_args /* {
751 struct vnodeop_desc *a_desc;
752 struct vnode *a_dvp;
753 struct vnode *a_vp;
754 struct componentname *a_cnp;
755 } */ *ap = v;
756 struct vnode *vp;
757 struct inode *ip;
758 int error;
759
760 vp = ap->a_vp;
761 ip = VTOI(vp);
762 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
763 if (ap->a_dvp == vp)
764 vrele(ap->a_dvp);
765 else
766 vput(ap->a_dvp);
767 vput(vp);
768 return error;
769 }
770 error = ufs_rmdir(ap);
771 if (ip->i_nlink == 0)
772 lfs_orphan(ip->i_lfs, ip->i_number);
773 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
774 return (error);
775 }
776
777 int
778 lfs_link(void *v)
779 {
780 struct vop_link_args /* {
781 struct vnode *a_dvp;
782 struct vnode *a_vp;
783 struct componentname *a_cnp;
784 } */ *ap = v;
785 int error;
786 struct vnode **vpp = NULL;
787
788 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
789 vput(ap->a_dvp);
790 return error;
791 }
792 error = ufs_link(ap);
793 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
794 return (error);
795 }
796
797 int
798 lfs_rename(void *v)
799 {
800 struct vop_rename_args /* {
801 struct vnode *a_fdvp;
802 struct vnode *a_fvp;
803 struct componentname *a_fcnp;
804 struct vnode *a_tdvp;
805 struct vnode *a_tvp;
806 struct componentname *a_tcnp;
807 } */ *ap = v;
808 struct vnode *tvp, *fvp, *tdvp, *fdvp;
809 struct componentname *tcnp, *fcnp;
810 int error;
811 struct lfs *fs;
812
813 fs = VTOI(ap->a_fdvp)->i_lfs;
814 tvp = ap->a_tvp;
815 tdvp = ap->a_tdvp;
816 tcnp = ap->a_tcnp;
817 fvp = ap->a_fvp;
818 fdvp = ap->a_fdvp;
819 fcnp = ap->a_fcnp;
820
821 /*
822 * Check for cross-device rename.
823 * If it is, we don't want to set dirops, just error out.
824 * (In particular note that MARK_VNODE(tdvp) will DTWT on
825 * a cross-device rename.)
826 *
827 * Copied from ufs_rename.
828 */
829 if ((fvp->v_mount != tdvp->v_mount) ||
830 (tvp && (fvp->v_mount != tvp->v_mount))) {
831 error = EXDEV;
832 goto errout;
833 }
834
835 /*
836 * Check to make sure we're not renaming a vnode onto itself
837 * (deleting a hard link by renaming one name onto another);
838 * if we are we can't recursively call VOP_REMOVE since that
839 * would leave us with an unaccounted-for number of live dirops.
840 *
841 * Inline the relevant section of ufs_rename here, *before*
842 * calling SET_DIROP_REMOVE.
843 */
844 if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
845 (VTOI(tdvp)->i_flags & APPEND))) {
846 error = EPERM;
847 goto errout;
848 }
849 if (fvp == tvp) {
850 if (fvp->v_type == VDIR) {
851 error = EINVAL;
852 goto errout;
853 }
854
855 /* Release destination completely. */
856 VOP_ABORTOP(tdvp, tcnp);
857 vput(tdvp);
858 vput(tvp);
859
860 /* Delete source. */
861 vrele(fvp);
862 fcnp->cn_flags &= ~(MODMASK);
863 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
864 fcnp->cn_nameiop = DELETE;
865 vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
866 if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
867 vput(fdvp);
868 return (error);
869 }
870 return (VOP_REMOVE(fdvp, fvp, fcnp));
871 }
872
873 if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
874 goto errout;
875 MARK_VNODE(fdvp);
876 MARK_VNODE(fvp);
877
878 error = ufs_rename(ap);
879 UNMARK_VNODE(fdvp);
880 UNMARK_VNODE(fvp);
881 SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
882 return (error);
883
884 errout:
885 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
886 if (tdvp == tvp)
887 vrele(tdvp);
888 else
889 vput(tdvp);
890 if (tvp)
891 vput(tvp);
892 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
893 vrele(fdvp);
894 vrele(fvp);
895 return (error);
896 }
897
898 /* XXX hack to avoid calling ITIMES in getattr */
899 int
900 lfs_getattr(void *v)
901 {
902 struct vop_getattr_args /* {
903 struct vnode *a_vp;
904 struct vattr *a_vap;
905 kauth_cred_t a_cred;
906 } */ *ap = v;
907 struct vnode *vp = ap->a_vp;
908 struct inode *ip = VTOI(vp);
909 struct vattr *vap = ap->a_vap;
910 struct lfs *fs = ip->i_lfs;
911 /*
912 * Copy from inode table
913 */
914 vap->va_fsid = ip->i_dev;
915 vap->va_fileid = ip->i_number;
916 vap->va_mode = ip->i_mode & ~IFMT;
917 vap->va_nlink = ip->i_nlink;
918 vap->va_uid = ip->i_uid;
919 vap->va_gid = ip->i_gid;
920 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
921 vap->va_size = vp->v_size;
922 vap->va_atime.tv_sec = ip->i_ffs1_atime;
923 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
924 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
925 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
926 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
927 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
928 vap->va_flags = ip->i_flags;
929 vap->va_gen = ip->i_gen;
930 /* this doesn't belong here */
931 if (vp->v_type == VBLK)
932 vap->va_blocksize = BLKDEV_IOSIZE;
933 else if (vp->v_type == VCHR)
934 vap->va_blocksize = MAXBSIZE;
935 else
936 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
937 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
938 vap->va_type = vp->v_type;
939 vap->va_filerev = ip->i_modrev;
940 return (0);
941 }
942
943 /*
944 * Check to make sure the inode blocks won't choke the buffer
945 * cache, then call ufs_setattr as usual.
946 */
947 int
948 lfs_setattr(void *v)
949 {
950 struct vop_setattr_args /* {
951 struct vnode *a_vp;
952 struct vattr *a_vap;
953 kauth_cred_t a_cred;
954 } */ *ap = v;
955 struct vnode *vp = ap->a_vp;
956
957 lfs_check(vp, LFS_UNUSED_LBN, 0);
958 return ufs_setattr(v);
959 }
960
961 /*
962 * Release the block we hold on lfs_newseg wrapping. Called on file close,
963 * or explicitly from LFCNWRAPGO. Called with the interlock held.
964 */
965 static int
966 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
967 {
968 if (fs->lfs_stoplwp != curlwp)
969 return EBUSY;
970
971 fs->lfs_stoplwp = NULL;
972 cv_signal(&fs->lfs_stopcv);
973
974 KASSERT(fs->lfs_nowrap > 0);
975 if (fs->lfs_nowrap <= 0) {
976 return 0;
977 }
978
979 if (--fs->lfs_nowrap == 0) {
980 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
981 wakeup(&fs->lfs_wrappass);
982 lfs_wakeup_cleaner(fs);
983 }
984 if (waitfor) {
985 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
986 0, &lfs_lock);
987 }
988
989 return 0;
990 }
991
992 /*
993 * Close called
994 */
995 /* ARGSUSED */
996 int
997 lfs_close(void *v)
998 {
999 struct vop_close_args /* {
1000 struct vnode *a_vp;
1001 int a_fflag;
1002 kauth_cred_t a_cred;
1003 } */ *ap = v;
1004 struct vnode *vp = ap->a_vp;
1005 struct inode *ip = VTOI(vp);
1006 struct lfs *fs = ip->i_lfs;
1007
1008 if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1009 fs->lfs_stoplwp == curlwp) {
1010 mutex_enter(&lfs_lock);
1011 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1012 lfs_wrapgo(fs, ip, 0);
1013 mutex_exit(&lfs_lock);
1014 }
1015
1016 if (vp == ip->i_lfs->lfs_ivnode &&
1017 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1018 return 0;
1019
1020 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1021 LFS_ITIMES(ip, NULL, NULL, NULL);
1022 }
1023 return (0);
1024 }
1025
1026 /*
1027 * Close wrapper for special devices.
1028 *
1029 * Update the times on the inode then do device close.
1030 */
1031 int
1032 lfsspec_close(void *v)
1033 {
1034 struct vop_close_args /* {
1035 struct vnode *a_vp;
1036 int a_fflag;
1037 kauth_cred_t a_cred;
1038 } */ *ap = v;
1039 struct vnode *vp;
1040 struct inode *ip;
1041
1042 vp = ap->a_vp;
1043 ip = VTOI(vp);
1044 if (vp->v_usecount > 1) {
1045 LFS_ITIMES(ip, NULL, NULL, NULL);
1046 }
1047 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1048 }
1049
1050 /*
1051 * Close wrapper for fifo's.
1052 *
1053 * Update the times on the inode then do device close.
1054 */
1055 int
1056 lfsfifo_close(void *v)
1057 {
1058 struct vop_close_args /* {
1059 struct vnode *a_vp;
1060 int a_fflag;
1061 kauth_cred_ a_cred;
1062 } */ *ap = v;
1063 struct vnode *vp;
1064 struct inode *ip;
1065
1066 vp = ap->a_vp;
1067 ip = VTOI(vp);
1068 if (ap->a_vp->v_usecount > 1) {
1069 LFS_ITIMES(ip, NULL, NULL, NULL);
1070 }
1071 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1072 }
1073
1074 /*
1075 * Reclaim an inode so that it can be used for other purposes.
1076 */
1077
1078 int
1079 lfs_reclaim(void *v)
1080 {
1081 struct vop_reclaim_args /* {
1082 struct vnode *a_vp;
1083 } */ *ap = v;
1084 struct vnode *vp = ap->a_vp;
1085 struct inode *ip = VTOI(vp);
1086 struct lfs *fs = ip->i_lfs;
1087 int error;
1088
1089 /*
1090 * The inode must be freed and updated before being removed
1091 * from its hash chain. Other threads trying to gain a hold
1092 * on the inode will be stalled because it is locked (VI_XLOCK).
1093 */
1094 if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1095 lfs_vfree(vp, ip->i_number, ip->i_omode);
1096
1097 mutex_enter(&lfs_lock);
1098 LFS_CLR_UINO(ip, IN_ALLMOD);
1099 mutex_exit(&lfs_lock);
1100 if ((error = ufs_reclaim(vp)))
1101 return (error);
1102
1103 /*
1104 * Take us off the paging and/or dirop queues if we were on them.
1105 * We shouldn't be on them.
1106 */
1107 mutex_enter(&lfs_lock);
1108 if (ip->i_flags & IN_PAGING) {
1109 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1110 fs->lfs_fsmnt);
1111 ip->i_flags &= ~IN_PAGING;
1112 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1113 }
1114 if (vp->v_uflag & VU_DIROP) {
1115 panic("reclaimed vnode is VU_DIROP");
1116 vp->v_uflag &= ~VU_DIROP;
1117 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1118 }
1119 mutex_exit(&lfs_lock);
1120
1121 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1122 lfs_deregister_all(vp);
1123 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1124 ip->inode_ext.lfs = NULL;
1125 genfs_node_destroy(vp);
1126 pool_put(&lfs_inode_pool, vp->v_data);
1127 vp->v_data = NULL;
1128 return (0);
1129 }
1130
1131 /*
1132 * Read a block from a storage device.
1133 * In order to avoid reading blocks that are in the process of being
1134 * written by the cleaner---and hence are not mutexed by the normal
1135 * buffer cache / page cache mechanisms---check for collisions before
1136 * reading.
1137 *
1138 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1139 * the active cleaner test.
1140 *
1141 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1142 */
1143 int
1144 lfs_strategy(void *v)
1145 {
1146 struct vop_strategy_args /* {
1147 struct vnode *a_vp;
1148 struct buf *a_bp;
1149 } */ *ap = v;
1150 struct buf *bp;
1151 struct lfs *fs;
1152 struct vnode *vp;
1153 struct inode *ip;
1154 daddr_t tbn;
1155 int i, sn, error, slept;
1156
1157 bp = ap->a_bp;
1158 vp = ap->a_vp;
1159 ip = VTOI(vp);
1160 fs = ip->i_lfs;
1161
1162 /* lfs uses its strategy routine only for read */
1163 KASSERT(bp->b_flags & B_READ);
1164
1165 if (vp->v_type == VBLK || vp->v_type == VCHR)
1166 panic("lfs_strategy: spec");
1167 KASSERT(bp->b_bcount != 0);
1168 if (bp->b_blkno == bp->b_lblkno) {
1169 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1170 NULL);
1171 if (error) {
1172 bp->b_error = error;
1173 bp->b_resid = bp->b_bcount;
1174 biodone(bp);
1175 return (error);
1176 }
1177 if ((long)bp->b_blkno == -1) /* no valid data */
1178 clrbuf(bp);
1179 }
1180 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1181 bp->b_resid = bp->b_bcount;
1182 biodone(bp);
1183 return (0);
1184 }
1185
1186 slept = 1;
1187 mutex_enter(&lfs_lock);
1188 while (slept && fs->lfs_seglock) {
1189 mutex_exit(&lfs_lock);
1190 /*
1191 * Look through list of intervals.
1192 * There will only be intervals to look through
1193 * if the cleaner holds the seglock.
1194 * Since the cleaner is synchronous, we can trust
1195 * the list of intervals to be current.
1196 */
1197 tbn = dbtofsb(fs, bp->b_blkno);
1198 sn = dtosn(fs, tbn);
1199 slept = 0;
1200 for (i = 0; i < fs->lfs_cleanind; i++) {
1201 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1202 tbn >= fs->lfs_cleanint[i]) {
1203 DLOG((DLOG_CLEAN,
1204 "lfs_strategy: ino %d lbn %" PRId64
1205 " ind %d sn %d fsb %" PRIx32
1206 " given sn %d fsb %" PRIx64 "\n",
1207 ip->i_number, bp->b_lblkno, i,
1208 dtosn(fs, fs->lfs_cleanint[i]),
1209 fs->lfs_cleanint[i], sn, tbn));
1210 DLOG((DLOG_CLEAN,
1211 "lfs_strategy: sleeping on ino %d lbn %"
1212 PRId64 "\n", ip->i_number, bp->b_lblkno));
1213 mutex_enter(&lfs_lock);
1214 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1215 /* Cleaner can't wait for itself */
1216 mtsleep(&fs->lfs_iocount,
1217 (PRIBIO + 1) | PNORELOCK,
1218 "clean2", 0,
1219 &lfs_lock);
1220 slept = 1;
1221 break;
1222 } else if (fs->lfs_seglock) {
1223 mtsleep(&fs->lfs_seglock,
1224 (PRIBIO + 1) | PNORELOCK,
1225 "clean1", 0,
1226 &lfs_lock);
1227 slept = 1;
1228 break;
1229 }
1230 mutex_exit(&lfs_lock);
1231 }
1232 }
1233 mutex_enter(&lfs_lock);
1234 }
1235 mutex_exit(&lfs_lock);
1236
1237 vp = ip->i_devvp;
1238 VOP_STRATEGY(vp, bp);
1239 return (0);
1240 }
1241
1242 void
1243 lfs_flush_dirops(struct lfs *fs)
1244 {
1245 struct inode *ip, *nip;
1246 struct vnode *vp;
1247 extern int lfs_dostats;
1248 struct segment *sp;
1249
1250 ASSERT_MAYBE_SEGLOCK(fs);
1251 KASSERT(fs->lfs_nadirop == 0);
1252
1253 if (fs->lfs_ronly)
1254 return;
1255
1256 mutex_enter(&lfs_lock);
1257 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1258 mutex_exit(&lfs_lock);
1259 return;
1260 } else
1261 mutex_exit(&lfs_lock);
1262
1263 if (lfs_dostats)
1264 ++lfs_stats.flush_invoked;
1265
1266 /*
1267 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1268 * Technically this is a checkpoint (the on-disk state is valid)
1269 * even though we are leaving out all the file data.
1270 */
1271 lfs_imtime(fs);
1272 lfs_seglock(fs, SEGM_CKP);
1273 sp = fs->lfs_sp;
1274
1275 /*
1276 * lfs_writevnodes, optimized to get dirops out of the way.
1277 * Only write dirops, and don't flush files' pages, only
1278 * blocks from the directories.
1279 *
1280 * We don't need to vref these files because they are
1281 * dirops and so hold an extra reference until the
1282 * segunlock clears them of that status.
1283 *
1284 * We don't need to check for IN_ADIROP because we know that
1285 * no dirops are active.
1286 *
1287 */
1288 mutex_enter(&lfs_lock);
1289 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1290 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1291 mutex_exit(&lfs_lock);
1292 vp = ITOV(ip);
1293
1294 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1295
1296 /*
1297 * All writes to directories come from dirops; all
1298 * writes to files' direct blocks go through the page
1299 * cache, which we're not touching. Reads to files
1300 * and/or directories will not be affected by writing
1301 * directory blocks inodes and file inodes. So we don't
1302 * really need to lock. If we don't lock, though,
1303 * make sure that we don't clear IN_MODIFIED
1304 * unnecessarily.
1305 */
1306 if (vp->v_iflag & VI_XLOCK) {
1307 mutex_enter(&lfs_lock);
1308 continue;
1309 }
1310 /* XXX see below
1311 * waslocked = VOP_ISLOCKED(vp);
1312 */
1313 if (vp->v_type != VREG &&
1314 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1315 lfs_writefile(fs, sp, vp);
1316 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1317 !(ip->i_flag & IN_ALLMOD)) {
1318 mutex_enter(&lfs_lock);
1319 LFS_SET_UINO(ip, IN_MODIFIED);
1320 mutex_exit(&lfs_lock);
1321 }
1322 }
1323 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1324 (void) lfs_writeinode(fs, sp, ip);
1325 mutex_enter(&lfs_lock);
1326 /*
1327 * XXX
1328 * LK_EXCLOTHER is dead -- what is intended here?
1329 * if (waslocked == LK_EXCLOTHER)
1330 * LFS_SET_UINO(ip, IN_MODIFIED);
1331 */
1332 }
1333 mutex_exit(&lfs_lock);
1334 /* We've written all the dirops there are */
1335 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1336 lfs_finalize_fs_seguse(fs);
1337 (void) lfs_writeseg(fs, sp);
1338 lfs_segunlock(fs);
1339 }
1340
1341 /*
1342 * Flush all vnodes for which the pagedaemon has requested pageouts.
1343 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1344 * has just run, this would be an error). If we have to skip a vnode
1345 * for any reason, just skip it; if we have to wait for the cleaner,
1346 * abort. The writer daemon will call us again later.
1347 */
1348 void
1349 lfs_flush_pchain(struct lfs *fs)
1350 {
1351 struct inode *ip, *nip;
1352 struct vnode *vp;
1353 extern int lfs_dostats;
1354 struct segment *sp;
1355 int error;
1356
1357 ASSERT_NO_SEGLOCK(fs);
1358
1359 if (fs->lfs_ronly)
1360 return;
1361
1362 mutex_enter(&lfs_lock);
1363 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1364 mutex_exit(&lfs_lock);
1365 return;
1366 } else
1367 mutex_exit(&lfs_lock);
1368
1369 /* Get dirops out of the way */
1370 lfs_flush_dirops(fs);
1371
1372 if (lfs_dostats)
1373 ++lfs_stats.flush_invoked;
1374
1375 /*
1376 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1377 */
1378 lfs_imtime(fs);
1379 lfs_seglock(fs, 0);
1380 sp = fs->lfs_sp;
1381
1382 /*
1383 * lfs_writevnodes, optimized to clear pageout requests.
1384 * Only write non-dirop files that are in the pageout queue.
1385 * We're very conservative about what we write; we want to be
1386 * fast and async.
1387 */
1388 mutex_enter(&lfs_lock);
1389 top:
1390 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1391 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1392 vp = ITOV(ip);
1393
1394 if (!(ip->i_flags & IN_PAGING))
1395 goto top;
1396
1397 mutex_enter(vp->v_interlock);
1398 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1399 mutex_exit(vp->v_interlock);
1400 continue;
1401 }
1402 if (vp->v_type != VREG) {
1403 mutex_exit(vp->v_interlock);
1404 continue;
1405 }
1406 if (lfs_vref(vp))
1407 continue;
1408 mutex_exit(&lfs_lock);
1409
1410 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1411 lfs_vunref(vp);
1412 mutex_enter(&lfs_lock);
1413 continue;
1414 }
1415
1416 error = lfs_writefile(fs, sp, vp);
1417 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1418 !(ip->i_flag & IN_ALLMOD)) {
1419 mutex_enter(&lfs_lock);
1420 LFS_SET_UINO(ip, IN_MODIFIED);
1421 mutex_exit(&lfs_lock);
1422 }
1423 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1424 (void) lfs_writeinode(fs, sp, ip);
1425
1426 VOP_UNLOCK(vp);
1427 lfs_vunref(vp);
1428
1429 if (error == EAGAIN) {
1430 lfs_writeseg(fs, sp);
1431 mutex_enter(&lfs_lock);
1432 break;
1433 }
1434 mutex_enter(&lfs_lock);
1435 }
1436 mutex_exit(&lfs_lock);
1437 (void) lfs_writeseg(fs, sp);
1438 lfs_segunlock(fs);
1439 }
1440
1441 /*
1442 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1443 */
1444 int
1445 lfs_fcntl(void *v)
1446 {
1447 struct vop_fcntl_args /* {
1448 struct vnode *a_vp;
1449 u_int a_command;
1450 void * a_data;
1451 int a_fflag;
1452 kauth_cred_t a_cred;
1453 } */ *ap = v;
1454 struct timeval tv;
1455 struct timeval *tvp;
1456 BLOCK_INFO *blkiov;
1457 CLEANERINFO *cip;
1458 SEGUSE *sup;
1459 int blkcnt, error, oclean;
1460 size_t fh_size;
1461 struct lfs_fcntl_markv blkvp;
1462 struct lwp *l;
1463 fsid_t *fsidp;
1464 struct lfs *fs;
1465 struct buf *bp;
1466 fhandle_t *fhp;
1467 daddr_t off;
1468
1469 /* Only respect LFS fcntls on fs root or Ifile */
1470 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1471 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1472 return ufs_fcntl(v);
1473 }
1474
1475 /* Avoid locking a draining lock */
1476 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1477 return ESHUTDOWN;
1478 }
1479
1480 /* LFS control and monitoring fcntls are available only to root */
1481 l = curlwp;
1482 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1483 (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
1484 NULL)) != 0)
1485 return (error);
1486
1487 fs = VTOI(ap->a_vp)->i_lfs;
1488 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1489
1490 error = 0;
1491 switch ((int)ap->a_command) {
1492 case LFCNSEGWAITALL_COMPAT_50:
1493 case LFCNSEGWAITALL_COMPAT:
1494 fsidp = NULL;
1495 /* FALLSTHROUGH */
1496 case LFCNSEGWAIT_COMPAT_50:
1497 case LFCNSEGWAIT_COMPAT:
1498 {
1499 struct timeval50 *tvp50
1500 = (struct timeval50 *)ap->a_data;
1501 timeval50_to_timeval(tvp50, &tv);
1502 tvp = &tv;
1503 }
1504 goto segwait_common;
1505 case LFCNSEGWAITALL:
1506 fsidp = NULL;
1507 /* FALLSTHROUGH */
1508 case LFCNSEGWAIT:
1509 tvp = (struct timeval *)ap->a_data;
1510 segwait_common:
1511 mutex_enter(&lfs_lock);
1512 ++fs->lfs_sleepers;
1513 mutex_exit(&lfs_lock);
1514
1515 error = lfs_segwait(fsidp, tvp);
1516
1517 mutex_enter(&lfs_lock);
1518 if (--fs->lfs_sleepers == 0)
1519 wakeup(&fs->lfs_sleepers);
1520 mutex_exit(&lfs_lock);
1521 return error;
1522
1523 case LFCNBMAPV:
1524 case LFCNMARKV:
1525 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1526
1527 blkcnt = blkvp.blkcnt;
1528 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1529 return (EINVAL);
1530 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1531 if ((error = copyin(blkvp.blkiov, blkiov,
1532 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1533 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1534 return error;
1535 }
1536
1537 mutex_enter(&lfs_lock);
1538 ++fs->lfs_sleepers;
1539 mutex_exit(&lfs_lock);
1540 if (ap->a_command == LFCNBMAPV)
1541 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1542 else /* LFCNMARKV */
1543 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1544 if (error == 0)
1545 error = copyout(blkiov, blkvp.blkiov,
1546 blkcnt * sizeof(BLOCK_INFO));
1547 mutex_enter(&lfs_lock);
1548 if (--fs->lfs_sleepers == 0)
1549 wakeup(&fs->lfs_sleepers);
1550 mutex_exit(&lfs_lock);
1551 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1552 return error;
1553
1554 case LFCNRECLAIM:
1555 /*
1556 * Flush dirops and write Ifile, allowing empty segments
1557 * to be immediately reclaimed.
1558 */
1559 lfs_writer_enter(fs, "pndirop");
1560 off = fs->lfs_offset;
1561 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1562 lfs_flush_dirops(fs);
1563 LFS_CLEANERINFO(cip, fs, bp);
1564 oclean = cip->clean;
1565 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1566 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1567 fs->lfs_sp->seg_flags |= SEGM_PROT;
1568 lfs_segunlock(fs);
1569 lfs_writer_leave(fs);
1570
1571 #ifdef DEBUG
1572 LFS_CLEANERINFO(cip, fs, bp);
1573 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1574 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1575 fs->lfs_offset - off, cip->clean - oclean,
1576 fs->lfs_activesb));
1577 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1578 #endif
1579
1580 return 0;
1581
1582 case LFCNIFILEFH_COMPAT:
1583 /* Return the filehandle of the Ifile */
1584 if ((error = kauth_authorize_system(l->l_cred,
1585 KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1586 return (error);
1587 fhp = (struct fhandle *)ap->a_data;
1588 fhp->fh_fsid = *fsidp;
1589 fh_size = 16; /* former VFS_MAXFIDSIZ */
1590 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1591
1592 case LFCNIFILEFH_COMPAT2:
1593 case LFCNIFILEFH:
1594 /* Return the filehandle of the Ifile */
1595 fhp = (struct fhandle *)ap->a_data;
1596 fhp->fh_fsid = *fsidp;
1597 fh_size = sizeof(struct lfs_fhandle) -
1598 offsetof(fhandle_t, fh_fid);
1599 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1600
1601 case LFCNREWIND:
1602 /* Move lfs_offset to the lowest-numbered segment */
1603 return lfs_rewind(fs, *(int *)ap->a_data);
1604
1605 case LFCNINVAL:
1606 /* Mark a segment SEGUSE_INVAL */
1607 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1608 if (sup->su_nbytes > 0) {
1609 brelse(bp, 0);
1610 lfs_unset_inval_all(fs);
1611 return EBUSY;
1612 }
1613 sup->su_flags |= SEGUSE_INVAL;
1614 VOP_BWRITE(bp->b_vp, bp);
1615 return 0;
1616
1617 case LFCNRESIZE:
1618 /* Resize the filesystem */
1619 return lfs_resize_fs(fs, *(int *)ap->a_data);
1620
1621 case LFCNWRAPSTOP:
1622 case LFCNWRAPSTOP_COMPAT:
1623 /*
1624 * Hold lfs_newseg at segment 0; if requested, sleep until
1625 * the filesystem wraps around. To support external agents
1626 * (dump, fsck-based regression test) that need to look at
1627 * a snapshot of the filesystem, without necessarily
1628 * requiring that all fs activity stops.
1629 */
1630 if (fs->lfs_stoplwp == curlwp)
1631 return EALREADY;
1632
1633 mutex_enter(&lfs_lock);
1634 while (fs->lfs_stoplwp != NULL)
1635 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1636 fs->lfs_stoplwp = curlwp;
1637 if (fs->lfs_nowrap == 0)
1638 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1639 ++fs->lfs_nowrap;
1640 if (*(int *)ap->a_data == 1
1641 || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1642 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1643 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1644 "segwrap", 0, &lfs_lock);
1645 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1646 if (error) {
1647 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1648 }
1649 }
1650 mutex_exit(&lfs_lock);
1651 return 0;
1652
1653 case LFCNWRAPGO:
1654 case LFCNWRAPGO_COMPAT:
1655 /*
1656 * Having done its work, the agent wakes up the writer.
1657 * If the argument is 1, it sleeps until a new segment
1658 * is selected.
1659 */
1660 mutex_enter(&lfs_lock);
1661 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1662 ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1663 *((int *)ap->a_data));
1664 mutex_exit(&lfs_lock);
1665 return error;
1666
1667 case LFCNWRAPPASS:
1668 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1669 return EALREADY;
1670 mutex_enter(&lfs_lock);
1671 if (fs->lfs_stoplwp != curlwp) {
1672 mutex_exit(&lfs_lock);
1673 return EALREADY;
1674 }
1675 if (fs->lfs_nowrap == 0) {
1676 mutex_exit(&lfs_lock);
1677 return EBUSY;
1678 }
1679 fs->lfs_wrappass = 1;
1680 wakeup(&fs->lfs_wrappass);
1681 /* Wait for the log to wrap, if asked */
1682 if (*(int *)ap->a_data) {
1683 mutex_enter(ap->a_vp->v_interlock);
1684 lfs_vref(ap->a_vp);
1685 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1686 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1687 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1688 "segwrap", 0, &lfs_lock);
1689 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1690 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1691 lfs_vunref(ap->a_vp);
1692 }
1693 mutex_exit(&lfs_lock);
1694 return error;
1695
1696 case LFCNWRAPSTATUS:
1697 mutex_enter(&lfs_lock);
1698 *(int *)ap->a_data = fs->lfs_wrapstatus;
1699 mutex_exit(&lfs_lock);
1700 return 0;
1701
1702 default:
1703 return ufs_fcntl(v);
1704 }
1705 return 0;
1706 }
1707
1708 int
1709 lfs_getpages(void *v)
1710 {
1711 struct vop_getpages_args /* {
1712 struct vnode *a_vp;
1713 voff_t a_offset;
1714 struct vm_page **a_m;
1715 int *a_count;
1716 int a_centeridx;
1717 vm_prot_t a_access_type;
1718 int a_advice;
1719 int a_flags;
1720 } */ *ap = v;
1721
1722 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1723 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1724 return EPERM;
1725 }
1726 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1727 mutex_enter(&lfs_lock);
1728 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1729 mutex_exit(&lfs_lock);
1730 }
1731
1732 /*
1733 * we're relying on the fact that genfs_getpages() always read in
1734 * entire filesystem blocks.
1735 */
1736 return genfs_getpages(v);
1737 }
1738
1739 /*
1740 * Wait for a page to become unbusy, possibly printing diagnostic messages
1741 * as well.
1742 *
1743 * Called with vp->v_interlock held; return with it held.
1744 */
1745 static void
1746 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1747 {
1748 if ((pg->flags & PG_BUSY) == 0)
1749 return; /* Nothing to wait for! */
1750
1751 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1752 static struct vm_page *lastpg;
1753
1754 if (label != NULL && pg != lastpg) {
1755 if (pg->owner_tag) {
1756 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1757 curproc->p_pid, curlwp->l_lid, label,
1758 pg, pg->owner, pg->lowner, pg->owner_tag);
1759 } else {
1760 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1761 curproc->p_pid, curlwp->l_lid, label, pg);
1762 }
1763 }
1764 lastpg = pg;
1765 #endif
1766
1767 pg->flags |= PG_WANTED;
1768 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1769 mutex_enter(vp->v_interlock);
1770 }
1771
1772 /*
1773 * This routine is called by lfs_putpages() when it can't complete the
1774 * write because a page is busy. This means that either (1) someone,
1775 * possibly the pagedaemon, is looking at this page, and will give it up
1776 * presently; or (2) we ourselves are holding the page busy in the
1777 * process of being written (either gathered or actually on its way to
1778 * disk). We don't need to give up the segment lock, but we might need
1779 * to call lfs_writeseg() to expedite the page's journey to disk.
1780 *
1781 * Called with vp->v_interlock held; return with it held.
1782 */
1783 /* #define BUSYWAIT */
1784 static void
1785 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1786 int seglocked, const char *label)
1787 {
1788 #ifndef BUSYWAIT
1789 struct inode *ip = VTOI(vp);
1790 struct segment *sp = fs->lfs_sp;
1791 int count = 0;
1792
1793 if (pg == NULL)
1794 return;
1795
1796 while (pg->flags & PG_BUSY &&
1797 pg->uobject == &vp->v_uobj) {
1798 mutex_exit(vp->v_interlock);
1799 if (sp->cbpp - sp->bpp > 1) {
1800 /* Write gathered pages */
1801 lfs_updatemeta(sp);
1802 lfs_release_finfo(fs);
1803 (void) lfs_writeseg(fs, sp);
1804
1805 /*
1806 * Reinitialize FIP
1807 */
1808 KASSERT(sp->vp == vp);
1809 lfs_acquire_finfo(fs, ip->i_number,
1810 ip->i_gen);
1811 }
1812 ++count;
1813 mutex_enter(vp->v_interlock);
1814 wait_for_page(vp, pg, label);
1815 }
1816 if (label != NULL && count > 1)
1817 printf("lfs_putpages[%d]: %s: %sn = %d\n", curproc->p_pid,
1818 label, (count > 0 ? "looping, " : ""), count);
1819 #else
1820 preempt(1);
1821 #endif
1822 }
1823
1824 /*
1825 * Make sure that for all pages in every block in the given range,
1826 * either all are dirty or all are clean. If any of the pages
1827 * we've seen so far are dirty, put the vnode on the paging chain,
1828 * and mark it IN_PAGING.
1829 *
1830 * If checkfirst != 0, don't check all the pages but return at the
1831 * first dirty page.
1832 */
1833 static int
1834 check_dirty(struct lfs *fs, struct vnode *vp,
1835 off_t startoffset, off_t endoffset, off_t blkeof,
1836 int flags, int checkfirst, struct vm_page **pgp)
1837 {
1838 int by_list;
1839 struct vm_page *curpg = NULL; /* XXX: gcc */
1840 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1841 off_t soff = 0; /* XXX: gcc */
1842 voff_t off;
1843 int i;
1844 int nonexistent;
1845 int any_dirty; /* number of dirty pages */
1846 int dirty; /* number of dirty pages in a block */
1847 int tdirty;
1848 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1849 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1850
1851 ASSERT_MAYBE_SEGLOCK(fs);
1852 top:
1853 by_list = (vp->v_uobj.uo_npages <=
1854 ((endoffset - startoffset) >> PAGE_SHIFT) *
1855 UVM_PAGE_TREE_PENALTY);
1856 any_dirty = 0;
1857
1858 if (by_list) {
1859 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1860 } else {
1861 soff = startoffset;
1862 }
1863 while (by_list || soff < MIN(blkeof, endoffset)) {
1864 if (by_list) {
1865 /*
1866 * Find the first page in a block. Skip
1867 * blocks outside our area of interest or beyond
1868 * the end of file.
1869 */
1870 KASSERT(curpg == NULL
1871 || (curpg->flags & PG_MARKER) == 0);
1872 if (pages_per_block > 1) {
1873 while (curpg &&
1874 ((curpg->offset & fs->lfs_bmask) ||
1875 curpg->offset >= vp->v_size ||
1876 curpg->offset >= endoffset)) {
1877 curpg = TAILQ_NEXT(curpg, listq.queue);
1878 KASSERT(curpg == NULL ||
1879 (curpg->flags & PG_MARKER) == 0);
1880 }
1881 }
1882 if (curpg == NULL)
1883 break;
1884 soff = curpg->offset;
1885 }
1886
1887 /*
1888 * Mark all pages in extended range busy; find out if any
1889 * of them are dirty.
1890 */
1891 nonexistent = dirty = 0;
1892 for (i = 0; i == 0 || i < pages_per_block; i++) {
1893 if (by_list && pages_per_block <= 1) {
1894 pgs[i] = pg = curpg;
1895 } else {
1896 off = soff + (i << PAGE_SHIFT);
1897 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1898 if (pg == NULL) {
1899 ++nonexistent;
1900 continue;
1901 }
1902 }
1903 KASSERT(pg != NULL);
1904
1905 /*
1906 * If we're holding the segment lock, we can deadlock
1907 * against a process that has our page and is waiting
1908 * for the cleaner, while the cleaner waits for the
1909 * segment lock. Just bail in that case.
1910 */
1911 if ((pg->flags & PG_BUSY) &&
1912 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1913 if (i > 0)
1914 uvm_page_unbusy(pgs, i);
1915 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1916 if (pgp)
1917 *pgp = pg;
1918 return -1;
1919 }
1920
1921 while (pg->flags & PG_BUSY) {
1922 wait_for_page(vp, pg, NULL);
1923 if (i > 0)
1924 uvm_page_unbusy(pgs, i);
1925 goto top;
1926 }
1927 pg->flags |= PG_BUSY;
1928 UVM_PAGE_OWN(pg, "lfs_putpages");
1929
1930 pmap_page_protect(pg, VM_PROT_NONE);
1931 tdirty = (pmap_clear_modify(pg) ||
1932 (pg->flags & PG_CLEAN) == 0);
1933 dirty += tdirty;
1934 }
1935 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1936 if (by_list) {
1937 curpg = TAILQ_NEXT(curpg, listq.queue);
1938 } else {
1939 soff += fs->lfs_bsize;
1940 }
1941 continue;
1942 }
1943
1944 any_dirty += dirty;
1945 KASSERT(nonexistent == 0);
1946
1947 /*
1948 * If any are dirty make all dirty; unbusy them,
1949 * but if we were asked to clean, wire them so that
1950 * the pagedaemon doesn't bother us about them while
1951 * they're on their way to disk.
1952 */
1953 for (i = 0; i == 0 || i < pages_per_block; i++) {
1954 pg = pgs[i];
1955 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1956 if (dirty) {
1957 pg->flags &= ~PG_CLEAN;
1958 if (flags & PGO_FREE) {
1959 /*
1960 * Wire the page so that
1961 * pdaemon doesn't see it again.
1962 */
1963 mutex_enter(&uvm_pageqlock);
1964 uvm_pagewire(pg);
1965 mutex_exit(&uvm_pageqlock);
1966
1967 /* Suspended write flag */
1968 pg->flags |= PG_DELWRI;
1969 }
1970 }
1971 if (pg->flags & PG_WANTED)
1972 wakeup(pg);
1973 pg->flags &= ~(PG_WANTED|PG_BUSY);
1974 UVM_PAGE_OWN(pg, NULL);
1975 }
1976
1977 if (checkfirst && any_dirty)
1978 break;
1979
1980 if (by_list) {
1981 curpg = TAILQ_NEXT(curpg, listq.queue);
1982 } else {
1983 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1984 }
1985 }
1986
1987 return any_dirty;
1988 }
1989
1990 /*
1991 * lfs_putpages functions like genfs_putpages except that
1992 *
1993 * (1) It needs to bounds-check the incoming requests to ensure that
1994 * they are block-aligned; if they are not, expand the range and
1995 * do the right thing in case, e.g., the requested range is clean
1996 * but the expanded range is dirty.
1997 *
1998 * (2) It needs to explicitly send blocks to be written when it is done.
1999 * If VOP_PUTPAGES is called without the seglock held, we simply take
2000 * the seglock and let lfs_segunlock wait for us.
2001 * XXX There might be a bad situation if we have to flush a vnode while
2002 * XXX lfs_markv is in operation. As of this writing we panic in this
2003 * XXX case.
2004 *
2005 * Assumptions:
2006 *
2007 * (1) The caller does not hold any pages in this vnode busy. If it does,
2008 * there is a danger that when we expand the page range and busy the
2009 * pages we will deadlock.
2010 *
2011 * (2) We are called with vp->v_interlock held; we must return with it
2012 * released.
2013 *
2014 * (3) We don't absolutely have to free pages right away, provided that
2015 * the request does not have PGO_SYNCIO. When the pagedaemon gives
2016 * us a request with PGO_FREE, we take the pages out of the paging
2017 * queue and wake up the writer, which will handle freeing them for us.
2018 *
2019 * We ensure that for any filesystem block, all pages for that
2020 * block are either resident or not, even if those pages are higher
2021 * than EOF; that means that we will be getting requests to free
2022 * "unused" pages above EOF all the time, and should ignore them.
2023 *
2024 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2025 * into has been set up for us by lfs_writefile. If not, we will
2026 * have to handle allocating and/or freeing an finfo entry.
2027 *
2028 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2029 */
2030
2031 /* How many times to loop before we should start to worry */
2032 #define TOOMANY 4
2033
2034 int
2035 lfs_putpages(void *v)
2036 {
2037 int error;
2038 struct vop_putpages_args /* {
2039 struct vnode *a_vp;
2040 voff_t a_offlo;
2041 voff_t a_offhi;
2042 int a_flags;
2043 } */ *ap = v;
2044 struct vnode *vp;
2045 struct inode *ip;
2046 struct lfs *fs;
2047 struct segment *sp;
2048 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2049 off_t off, max_endoffset;
2050 bool seglocked, sync, pagedaemon;
2051 struct vm_page *pg, *busypg;
2052 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2053 #ifdef DEBUG
2054 int debug_n_again, debug_n_dirtyclean;
2055 #endif
2056
2057 vp = ap->a_vp;
2058 ip = VTOI(vp);
2059 fs = ip->i_lfs;
2060 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2061 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2062
2063 /* Putpages does nothing for metadata. */
2064 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2065 mutex_exit(vp->v_interlock);
2066 return 0;
2067 }
2068
2069 /*
2070 * If there are no pages, don't do anything.
2071 */
2072 if (vp->v_uobj.uo_npages == 0) {
2073 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2074 (vp->v_iflag & VI_ONWORKLST) &&
2075 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2076 vp->v_iflag &= ~VI_WRMAPDIRTY;
2077 vn_syncer_remove_from_worklist(vp);
2078 }
2079 mutex_exit(vp->v_interlock);
2080
2081 /* Remove us from paging queue, if we were on it */
2082 mutex_enter(&lfs_lock);
2083 if (ip->i_flags & IN_PAGING) {
2084 ip->i_flags &= ~IN_PAGING;
2085 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2086 }
2087 mutex_exit(&lfs_lock);
2088 return 0;
2089 }
2090
2091 blkeof = blkroundup(fs, ip->i_size);
2092
2093 /*
2094 * Ignore requests to free pages past EOF but in the same block
2095 * as EOF, unless the request is synchronous. (If the request is
2096 * sync, it comes from lfs_truncate.)
2097 * XXXUBC Make these pages look "active" so the pagedaemon won't
2098 * XXXUBC bother us with them again.
2099 */
2100 if (!sync && ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2101 origoffset = ap->a_offlo;
2102 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2103 pg = uvm_pagelookup(&vp->v_uobj, off);
2104 KASSERT(pg != NULL);
2105 while (pg->flags & PG_BUSY) {
2106 pg->flags |= PG_WANTED;
2107 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2108 "lfsput2", 0);
2109 mutex_enter(vp->v_interlock);
2110 }
2111 mutex_enter(&uvm_pageqlock);
2112 uvm_pageactivate(pg);
2113 mutex_exit(&uvm_pageqlock);
2114 }
2115 ap->a_offlo = blkeof;
2116 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2117 mutex_exit(vp->v_interlock);
2118 return 0;
2119 }
2120 }
2121
2122 /*
2123 * Extend page range to start and end at block boundaries.
2124 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2125 */
2126 origoffset = ap->a_offlo;
2127 origendoffset = ap->a_offhi;
2128 startoffset = origoffset & ~(fs->lfs_bmask);
2129 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2130 << fs->lfs_bshift;
2131
2132 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2133 endoffset = max_endoffset;
2134 origendoffset = endoffset;
2135 } else {
2136 origendoffset = round_page(ap->a_offhi);
2137 endoffset = round_page(blkroundup(fs, origendoffset));
2138 }
2139
2140 KASSERT(startoffset > 0 || endoffset >= startoffset);
2141 if (startoffset == endoffset) {
2142 /* Nothing to do, why were we called? */
2143 mutex_exit(vp->v_interlock);
2144 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2145 PRId64 "\n", startoffset));
2146 return 0;
2147 }
2148
2149 ap->a_offlo = startoffset;
2150 ap->a_offhi = endoffset;
2151
2152 /*
2153 * If not cleaning, just send the pages through genfs_putpages
2154 * to be returned to the pool.
2155 */
2156 if (!(ap->a_flags & PGO_CLEANIT))
2157 return genfs_putpages(v);
2158
2159 /* Set PGO_BUSYFAIL to avoid deadlocks */
2160 ap->a_flags |= PGO_BUSYFAIL;
2161
2162 /*
2163 * Likewise, if we are asked to clean but the pages are not
2164 * dirty, we can just free them using genfs_putpages.
2165 */
2166 #ifdef DEBUG
2167 debug_n_dirtyclean = 0;
2168 #endif
2169 do {
2170 int r;
2171
2172 /* Count the number of dirty pages */
2173 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2174 ap->a_flags, 1, NULL);
2175 if (r < 0) {
2176 /* Pages are busy with another process */
2177 mutex_exit(vp->v_interlock);
2178 return EDEADLK;
2179 }
2180 if (r > 0) /* Some pages are dirty */
2181 break;
2182
2183 /*
2184 * Sometimes pages are dirtied between the time that
2185 * we check and the time we try to clean them.
2186 * Instruct lfs_gop_write to return EDEADLK in this case
2187 * so we can write them properly.
2188 */
2189 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2190 r = genfs_do_putpages(vp, startoffset, endoffset,
2191 ap->a_flags & ~PGO_SYNCIO, &busypg);
2192 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2193 if (r != EDEADLK)
2194 return r;
2195
2196 /* One of the pages was busy. Start over. */
2197 mutex_enter(vp->v_interlock);
2198 wait_for_page(vp, busypg, "dirtyclean");
2199 #ifdef DEBUG
2200 ++debug_n_dirtyclean;
2201 #endif
2202 } while(1);
2203
2204 #ifdef DEBUG
2205 if (debug_n_dirtyclean > TOOMANY)
2206 printf("lfs_putpages: dirtyclean: looping, n = %d\n",
2207 debug_n_dirtyclean);
2208 #endif
2209
2210 /*
2211 * Dirty and asked to clean.
2212 *
2213 * Pagedaemon can't actually write LFS pages; wake up
2214 * the writer to take care of that. The writer will
2215 * notice the pager inode queue and act on that.
2216 *
2217 * XXX We must drop the vp->interlock before taking the lfs_lock or we
2218 * get a nasty deadlock with lfs_flush_pchain().
2219 */
2220 if (pagedaemon) {
2221 mutex_exit(vp->v_interlock);
2222 mutex_enter(&lfs_lock);
2223 if (!(ip->i_flags & IN_PAGING)) {
2224 ip->i_flags |= IN_PAGING;
2225 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2226 }
2227 wakeup(&lfs_writer_daemon);
2228 mutex_exit(&lfs_lock);
2229 preempt();
2230 return EWOULDBLOCK;
2231 }
2232
2233 /*
2234 * If this is a file created in a recent dirop, we can't flush its
2235 * inode until the dirop is complete. Drain dirops, then flush the
2236 * filesystem (taking care of any other pending dirops while we're
2237 * at it).
2238 */
2239 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2240 (vp->v_uflag & VU_DIROP)) {
2241 int locked;
2242
2243 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2244 /* XXX VOP_ISLOCKED() may not be used for lock decisions. */
2245 locked = (VOP_ISLOCKED(vp) == LK_EXCLUSIVE);
2246 mutex_exit(vp->v_interlock);
2247 lfs_writer_enter(fs, "ppdirop");
2248 if (locked)
2249 VOP_UNLOCK(vp); /* XXX why? */
2250
2251 mutex_enter(&lfs_lock);
2252 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2253 mutex_exit(&lfs_lock);
2254
2255 if (locked)
2256 VOP_LOCK(vp, LK_EXCLUSIVE);
2257 mutex_enter(vp->v_interlock);
2258 lfs_writer_leave(fs);
2259
2260 /* XXX the flush should have taken care of this one too! */
2261 }
2262
2263 /*
2264 * This is it. We are going to write some pages. From here on
2265 * down it's all just mechanics.
2266 *
2267 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2268 */
2269 ap->a_flags &= ~PGO_SYNCIO;
2270
2271 /*
2272 * If we've already got the seglock, flush the node and return.
2273 * The FIP has already been set up for us by lfs_writefile,
2274 * and FIP cleanup and lfs_updatemeta will also be done there,
2275 * unless genfs_putpages returns EDEADLK; then we must flush
2276 * what we have, and correct FIP and segment header accounting.
2277 */
2278 get_seglock:
2279 /*
2280 * If we are not called with the segment locked, lock it.
2281 * Account for a new FIP in the segment header, and set sp->vp.
2282 * (This should duplicate the setup at the top of lfs_writefile().)
2283 */
2284 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2285 if (!seglocked) {
2286 mutex_exit(vp->v_interlock);
2287 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2288 if (error != 0)
2289 return error;
2290 mutex_enter(vp->v_interlock);
2291 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2292 }
2293 sp = fs->lfs_sp;
2294 KASSERT(sp->vp == NULL);
2295 sp->vp = vp;
2296
2297 /*
2298 * Ensure that the partial segment is marked SS_DIROP if this
2299 * vnode is a DIROP.
2300 */
2301 if (!seglocked && vp->v_uflag & VU_DIROP)
2302 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2303
2304 /*
2305 * Loop over genfs_putpages until all pages are gathered.
2306 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2307 * Whenever we lose the interlock we have to rerun check_dirty, as
2308 * well, since more pages might have been dirtied in our absence.
2309 */
2310 #ifdef DEBUG
2311 debug_n_again = 0;
2312 #endif
2313 do {
2314 busypg = NULL;
2315 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2316 ap->a_flags, 0, &busypg) < 0) {
2317 mutex_exit(vp->v_interlock);
2318
2319 mutex_enter(vp->v_interlock);
2320 write_and_wait(fs, vp, busypg, seglocked, NULL);
2321 if (!seglocked) {
2322 mutex_exit(vp->v_interlock);
2323 lfs_release_finfo(fs);
2324 lfs_segunlock(fs);
2325 mutex_enter(vp->v_interlock);
2326 }
2327 sp->vp = NULL;
2328 goto get_seglock;
2329 }
2330
2331 busypg = NULL;
2332 error = genfs_do_putpages(vp, startoffset, endoffset,
2333 ap->a_flags, &busypg);
2334
2335 if (error == EDEADLK || error == EAGAIN) {
2336 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2337 " %d ino %d off %x (seg %d)\n", error,
2338 ip->i_number, fs->lfs_offset,
2339 dtosn(fs, fs->lfs_offset)));
2340
2341 mutex_enter(vp->v_interlock);
2342 write_and_wait(fs, vp, busypg, seglocked, "again");
2343 }
2344 #ifdef DEBUG
2345 ++debug_n_again;
2346 #endif
2347 } while (error == EDEADLK);
2348 #ifdef DEBUG
2349 if (debug_n_again > TOOMANY)
2350 printf("lfs_putpages: again: looping, n = %d\n", debug_n_again);
2351 #endif
2352
2353 KASSERT(sp != NULL && sp->vp == vp);
2354 if (!seglocked) {
2355 sp->vp = NULL;
2356
2357 /* Write indirect blocks as well */
2358 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2359 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2360 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2361
2362 KASSERT(sp->vp == NULL);
2363 sp->vp = vp;
2364 }
2365
2366 /*
2367 * Blocks are now gathered into a segment waiting to be written.
2368 * All that's left to do is update metadata, and write them.
2369 */
2370 lfs_updatemeta(sp);
2371 KASSERT(sp->vp == vp);
2372 sp->vp = NULL;
2373
2374 /*
2375 * If we were called from lfs_writefile, we don't need to clean up
2376 * the FIP or unlock the segment lock. We're done.
2377 */
2378 if (seglocked)
2379 return error;
2380
2381 /* Clean up FIP and send it to disk. */
2382 lfs_release_finfo(fs);
2383 lfs_writeseg(fs, fs->lfs_sp);
2384
2385 /*
2386 * Remove us from paging queue if we wrote all our pages.
2387 */
2388 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2389 mutex_enter(&lfs_lock);
2390 if (ip->i_flags & IN_PAGING) {
2391 ip->i_flags &= ~IN_PAGING;
2392 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2393 }
2394 mutex_exit(&lfs_lock);
2395 }
2396
2397 /*
2398 * XXX - with the malloc/copy writeseg, the pages are freed by now
2399 * even if we don't wait (e.g. if we hold a nested lock). This
2400 * will not be true if we stop using malloc/copy.
2401 */
2402 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2403 lfs_segunlock(fs);
2404
2405 /*
2406 * Wait for v_numoutput to drop to zero. The seglock should
2407 * take care of this, but there is a slight possibility that
2408 * aiodoned might not have got around to our buffers yet.
2409 */
2410 if (sync) {
2411 mutex_enter(vp->v_interlock);
2412 while (vp->v_numoutput > 0) {
2413 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2414 " num %d\n", ip->i_number, vp->v_numoutput));
2415 cv_wait(&vp->v_cv, vp->v_interlock);
2416 }
2417 mutex_exit(vp->v_interlock);
2418 }
2419 return error;
2420 }
2421
2422 /*
2423 * Return the last logical file offset that should be written for this file
2424 * if we're doing a write that ends at "size". If writing, we need to know
2425 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2426 * to know about entire blocks.
2427 */
2428 void
2429 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2430 {
2431 struct inode *ip = VTOI(vp);
2432 struct lfs *fs = ip->i_lfs;
2433 daddr_t olbn, nlbn;
2434
2435 olbn = lblkno(fs, ip->i_size);
2436 nlbn = lblkno(fs, size);
2437 if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
2438 *eobp = fragroundup(fs, size);
2439 } else {
2440 *eobp = blkroundup(fs, size);
2441 }
2442 }
2443
2444 #ifdef DEBUG
2445 void lfs_dump_vop(void *);
2446
2447 void
2448 lfs_dump_vop(void *v)
2449 {
2450 struct vop_putpages_args /* {
2451 struct vnode *a_vp;
2452 voff_t a_offlo;
2453 voff_t a_offhi;
2454 int a_flags;
2455 } */ *ap = v;
2456
2457 #ifdef DDB
2458 vfs_vnode_print(ap->a_vp, 0, printf);
2459 #endif
2460 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2461 }
2462 #endif
2463
2464 int
2465 lfs_mmap(void *v)
2466 {
2467 struct vop_mmap_args /* {
2468 const struct vnodeop_desc *a_desc;
2469 struct vnode *a_vp;
2470 vm_prot_t a_prot;
2471 kauth_cred_t a_cred;
2472 } */ *ap = v;
2473
2474 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2475 return EOPNOTSUPP;
2476 return ufs_mmap(v);
2477 }
2478