Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.239
      1 /*	$NetBSD: lfs_vnops.c,v 1.239 2012/01/02 22:10:45 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.239 2012/01/02 22:10:45 perseant Exp $");
     64 
     65 #ifdef _KERNEL_OPT
     66 #include "opt_compat_netbsd.h"
     67 #include "opt_uvm_page_trkown.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/namei.h>
     73 #include <sys/resourcevar.h>
     74 #include <sys/kernel.h>
     75 #include <sys/file.h>
     76 #include <sys/stat.h>
     77 #include <sys/buf.h>
     78 #include <sys/proc.h>
     79 #include <sys/mount.h>
     80 #include <sys/vnode.h>
     81 #include <sys/pool.h>
     82 #include <sys/signalvar.h>
     83 #include <sys/kauth.h>
     84 #include <sys/syslog.h>
     85 #include <sys/fstrans.h>
     86 
     87 #include <miscfs/fifofs/fifo.h>
     88 #include <miscfs/genfs/genfs.h>
     89 #include <miscfs/specfs/specdev.h>
     90 
     91 #include <ufs/ufs/inode.h>
     92 #include <ufs/ufs/dir.h>
     93 #include <ufs/ufs/ufsmount.h>
     94 #include <ufs/ufs/ufs_extern.h>
     95 
     96 #include <uvm/uvm.h>
     97 #include <uvm/uvm_pmap.h>
     98 #include <uvm/uvm_stat.h>
     99 #include <uvm/uvm_pager.h>
    100 
    101 #include <ufs/lfs/lfs.h>
    102 #include <ufs/lfs/lfs_extern.h>
    103 
    104 extern pid_t lfs_writer_daemon;
    105 int lfs_ignore_lazy_sync = 1;
    106 
    107 /* Global vfs data structures for lfs. */
    108 int (**lfs_vnodeop_p)(void *);
    109 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    110 	{ &vop_default_desc, vn_default_error },
    111 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    112 	{ &vop_create_desc, lfs_create },		/* create */
    113 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    114 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    115 	{ &vop_open_desc, ufs_open },			/* open */
    116 	{ &vop_close_desc, lfs_close },			/* close */
    117 	{ &vop_access_desc, ufs_access },		/* access */
    118 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    119 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    120 	{ &vop_read_desc, lfs_read },			/* read */
    121 	{ &vop_write_desc, lfs_write },			/* write */
    122 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    123 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    124 	{ &vop_poll_desc, ufs_poll },			/* poll */
    125 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    126 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    127 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    128 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    129 	{ &vop_seek_desc, ufs_seek },			/* seek */
    130 	{ &vop_remove_desc, lfs_remove },		/* remove */
    131 	{ &vop_link_desc, lfs_link },			/* link */
    132 	{ &vop_rename_desc, lfs_rename },		/* rename */
    133 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    134 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    135 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    136 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    137 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    138 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    139 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    140 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    141 	{ &vop_lock_desc, ufs_lock },			/* lock */
    142 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    143 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    144 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    145 	{ &vop_print_desc, ufs_print },			/* print */
    146 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    147 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    148 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    149 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    150 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    151 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    152 	{ NULL, NULL }
    153 };
    154 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    155 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    156 
    157 int (**lfs_specop_p)(void *);
    158 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    159 	{ &vop_default_desc, vn_default_error },
    160 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    161 	{ &vop_create_desc, spec_create },		/* create */
    162 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    163 	{ &vop_open_desc, spec_open },			/* open */
    164 	{ &vop_close_desc, lfsspec_close },		/* close */
    165 	{ &vop_access_desc, ufs_access },		/* access */
    166 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    167 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    168 	{ &vop_read_desc, ufsspec_read },		/* read */
    169 	{ &vop_write_desc, ufsspec_write },		/* write */
    170 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    171 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    172 	{ &vop_poll_desc, spec_poll },			/* poll */
    173 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    174 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    175 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    176 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    177 	{ &vop_seek_desc, spec_seek },			/* seek */
    178 	{ &vop_remove_desc, spec_remove },		/* remove */
    179 	{ &vop_link_desc, spec_link },			/* link */
    180 	{ &vop_rename_desc, spec_rename },		/* rename */
    181 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    182 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    183 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    184 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    185 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    186 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    187 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    188 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    189 	{ &vop_lock_desc, ufs_lock },			/* lock */
    190 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    191 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    192 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    193 	{ &vop_print_desc, ufs_print },			/* print */
    194 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    195 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    196 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    197 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    198 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    199 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    200 	{ NULL, NULL }
    201 };
    202 const struct vnodeopv_desc lfs_specop_opv_desc =
    203 	{ &lfs_specop_p, lfs_specop_entries };
    204 
    205 int (**lfs_fifoop_p)(void *);
    206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    207 	{ &vop_default_desc, vn_default_error },
    208 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    209 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    210 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    211 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    212 	{ &vop_close_desc, lfsfifo_close },		/* close */
    213 	{ &vop_access_desc, ufs_access },		/* access */
    214 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    215 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    216 	{ &vop_read_desc, ufsfifo_read },		/* read */
    217 	{ &vop_write_desc, ufsfifo_write },		/* write */
    218 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    219 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    220 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    221 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    222 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    223 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    224 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    225 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    226 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    227 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    228 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    229 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    230 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    231 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    232 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    233 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    234 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    235 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    236 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    237 	{ &vop_lock_desc, ufs_lock },			/* lock */
    238 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    239 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    240 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    241 	{ &vop_print_desc, ufs_print },			/* print */
    242 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    243 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    244 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    245 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    246 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    247 	{ NULL, NULL }
    248 };
    249 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    250 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    251 
    252 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    253 
    254 #define	LFS_READWRITE
    255 #include <ufs/ufs/ufs_readwrite.c>
    256 #undef	LFS_READWRITE
    257 
    258 /*
    259  * Synch an open file.
    260  */
    261 /* ARGSUSED */
    262 int
    263 lfs_fsync(void *v)
    264 {
    265 	struct vop_fsync_args /* {
    266 		struct vnode *a_vp;
    267 		kauth_cred_t a_cred;
    268 		int a_flags;
    269 		off_t offlo;
    270 		off_t offhi;
    271 	} */ *ap = v;
    272 	struct vnode *vp = ap->a_vp;
    273 	int error, wait;
    274 	struct inode *ip = VTOI(vp);
    275 	struct lfs *fs = ip->i_lfs;
    276 
    277 	/* If we're mounted read-only, don't try to sync. */
    278 	if (fs->lfs_ronly)
    279 		return 0;
    280 
    281 	/* If a removed vnode is being cleaned, no need to sync here. */
    282 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    283 		return 0;
    284 
    285 	/*
    286 	 * Trickle sync simply adds this vnode to the pager list, as if
    287 	 * the pagedaemon had requested a pageout.
    288 	 */
    289 	if (ap->a_flags & FSYNC_LAZY) {
    290 		if (lfs_ignore_lazy_sync == 0) {
    291 			mutex_enter(&lfs_lock);
    292 			if (!(ip->i_flags & IN_PAGING)) {
    293 				ip->i_flags |= IN_PAGING;
    294 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    295 						  i_lfs_pchain);
    296 			}
    297 			wakeup(&lfs_writer_daemon);
    298 			mutex_exit(&lfs_lock);
    299 		}
    300 		return 0;
    301 	}
    302 
    303 	/*
    304 	 * If a vnode is bring cleaned, flush it out before we try to
    305 	 * reuse it.  This prevents the cleaner from writing files twice
    306 	 * in the same partial segment, causing an accounting underflow.
    307 	 */
    308 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    309 		lfs_vflush(vp);
    310 	}
    311 
    312 	wait = (ap->a_flags & FSYNC_WAIT);
    313 	do {
    314 		mutex_enter(vp->v_interlock);
    315 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    316 				     round_page(ap->a_offhi),
    317 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    318 		if (error == EAGAIN) {
    319 			mutex_enter(&lfs_lock);
    320 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    321 				hz / 100 + 1, &lfs_lock);
    322 			mutex_exit(&lfs_lock);
    323 		}
    324 	} while (error == EAGAIN);
    325 	if (error)
    326 		return error;
    327 
    328 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    329 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    330 
    331 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    332 		int l = 0;
    333 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    334 				  curlwp->l_cred);
    335 	}
    336 	if (wait && !VPISEMPTY(vp))
    337 		LFS_SET_UINO(ip, IN_MODIFIED);
    338 
    339 	return error;
    340 }
    341 
    342 /*
    343  * Take IN_ADIROP off, then call ufs_inactive.
    344  */
    345 int
    346 lfs_inactive(void *v)
    347 {
    348 	struct vop_inactive_args /* {
    349 		struct vnode *a_vp;
    350 	} */ *ap = v;
    351 
    352 	lfs_unmark_vnode(ap->a_vp);
    353 
    354 	/*
    355 	 * The Ifile is only ever inactivated on unmount.
    356 	 * Streamline this process by not giving it more dirty blocks.
    357 	 */
    358 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    359 		mutex_enter(&lfs_lock);
    360 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    361 		mutex_exit(&lfs_lock);
    362 		VOP_UNLOCK(ap->a_vp);
    363 		return 0;
    364 	}
    365 
    366 #ifdef DEBUG
    367 	/*
    368 	 * This might happen on unmount.
    369 	 * XXX If it happens at any other time, it should be a panic.
    370 	 */
    371 	if (ap->a_vp->v_uflag & VU_DIROP) {
    372 		struct inode *ip = VTOI(ap->a_vp);
    373 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    374 	}
    375 #endif /* DIAGNOSTIC */
    376 
    377 	return ufs_inactive(v);
    378 }
    379 
    380 /*
    381  * These macros are used to bracket UFS directory ops, so that we can
    382  * identify all the pages touched during directory ops which need to
    383  * be ordered and flushed atomically, so that they may be recovered.
    384  *
    385  * Because we have to mark nodes VU_DIROP in order to prevent
    386  * the cache from reclaiming them while a dirop is in progress, we must
    387  * also manage the number of nodes so marked (otherwise we can run out).
    388  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    389  * is decremented during segment write, when VU_DIROP is taken off.
    390  */
    391 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    392 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    393 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    394 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    395 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    396 static int lfs_set_dirop(struct vnode *, struct vnode *);
    397 
    398 static int
    399 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    400 {
    401 	struct lfs *fs;
    402 	int error;
    403 
    404 	KASSERT(VOP_ISLOCKED(dvp));
    405 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    406 
    407 	fs = VTOI(dvp)->i_lfs;
    408 
    409 	ASSERT_NO_SEGLOCK(fs);
    410 	/*
    411 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    412 	 * as an inode block; an overestimate in most cases.
    413 	 */
    414 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    415 		return (error);
    416 
    417     restart:
    418 	mutex_enter(&lfs_lock);
    419 	if (fs->lfs_dirops == 0) {
    420 		mutex_exit(&lfs_lock);
    421 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    422 		mutex_enter(&lfs_lock);
    423 	}
    424 	while (fs->lfs_writer) {
    425 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    426 		    "lfs_sdirop", 0, &lfs_lock);
    427 		if (error == EINTR) {
    428 			mutex_exit(&lfs_lock);
    429 			goto unreserve;
    430 		}
    431 	}
    432 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    433 		wakeup(&lfs_writer_daemon);
    434 		mutex_exit(&lfs_lock);
    435 		preempt();
    436 		goto restart;
    437 	}
    438 
    439 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    440 		mutex_exit(&lfs_lock);
    441 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    442 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    443 		if ((error = mtsleep(&lfs_dirvcount,
    444 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    445 		    &lfs_lock)) != 0) {
    446 			goto unreserve;
    447 		}
    448 		goto restart;
    449 	}
    450 
    451 	++fs->lfs_dirops;
    452 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    453 	mutex_exit(&lfs_lock);
    454 
    455 	/* Hold a reference so SET_ENDOP will be happy */
    456 	vref(dvp);
    457 	if (vp) {
    458 		vref(vp);
    459 		MARK_VNODE(vp);
    460 	}
    461 
    462 	MARK_VNODE(dvp);
    463 	return 0;
    464 
    465   unreserve:
    466 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    467 	return error;
    468 }
    469 
    470 /*
    471  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    472  * in getnewvnode(), if we have a stacked filesystem mounted on top
    473  * of us.
    474  *
    475  * NB: this means we have to clear the new vnodes on error.  Fortunately
    476  * SET_ENDOP is there to do that for us.
    477  */
    478 static int
    479 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    480 {
    481 	int error;
    482 	struct lfs *fs;
    483 
    484 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    485 	ASSERT_NO_SEGLOCK(fs);
    486 	if (fs->lfs_ronly)
    487 		return EROFS;
    488 	if (vpp == NULL) {
    489 		return lfs_set_dirop(dvp, NULL);
    490 	}
    491 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    492 	if (error) {
    493 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    494 		      dvp, error));
    495 		return error;
    496 	}
    497 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    498 		ungetnewvnode(*vpp);
    499 		*vpp = NULL;
    500 		return error;
    501 	}
    502 	return 0;
    503 }
    504 
    505 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    506 	do {								\
    507 		mutex_enter(&lfs_lock);				\
    508 		--(fs)->lfs_dirops;					\
    509 		if (!(fs)->lfs_dirops) {				\
    510 			if ((fs)->lfs_nadirop) {			\
    511 				panic("SET_ENDOP: %s: no dirops but "	\
    512 					" nadirop=%d", (str),		\
    513 					(fs)->lfs_nadirop);		\
    514 			}						\
    515 			wakeup(&(fs)->lfs_writer);			\
    516 			mutex_exit(&lfs_lock);				\
    517 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    518 		} else							\
    519 			mutex_exit(&lfs_lock);				\
    520 	} while(0)
    521 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    522 	do {								\
    523 		UNMARK_VNODE(dvp);					\
    524 		if (nvpp && *nvpp)					\
    525 			UNMARK_VNODE(*nvpp);				\
    526 		/* Check for error return to stem vnode leakage */	\
    527 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    528 			ungetnewvnode(*(nvpp));				\
    529 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    530 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    531 		vrele(dvp);						\
    532 	} while(0)
    533 #define SET_ENDOP_CREATE_AP(ap, str)					\
    534 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    535 			 (ap)->a_vpp, (str))
    536 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    537 	do {								\
    538 		UNMARK_VNODE(dvp);					\
    539 		if (ovp)						\
    540 			UNMARK_VNODE(ovp);				\
    541 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    542 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    543 		vrele(dvp);						\
    544 		if (ovp)						\
    545 			vrele(ovp);					\
    546 	} while(0)
    547 
    548 void
    549 lfs_mark_vnode(struct vnode *vp)
    550 {
    551 	struct inode *ip = VTOI(vp);
    552 	struct lfs *fs = ip->i_lfs;
    553 
    554 	mutex_enter(&lfs_lock);
    555 	if (!(ip->i_flag & IN_ADIROP)) {
    556 		if (!(vp->v_uflag & VU_DIROP)) {
    557 			mutex_enter(vp->v_interlock);
    558 			if (lfs_vref(vp) != 0)
    559 				panic("lfs_mark_vnode: could not vref");
    560 			++lfs_dirvcount;
    561 			++fs->lfs_dirvcount;
    562 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    563 			vp->v_uflag |= VU_DIROP;
    564 		}
    565 		++fs->lfs_nadirop;
    566 		ip->i_flag &= ~IN_CDIROP;
    567 		ip->i_flag |= IN_ADIROP;
    568 	} else
    569 		KASSERT(vp->v_uflag & VU_DIROP);
    570 	mutex_exit(&lfs_lock);
    571 }
    572 
    573 void
    574 lfs_unmark_vnode(struct vnode *vp)
    575 {
    576 	struct inode *ip = VTOI(vp);
    577 
    578 	if (ip && (ip->i_flag & IN_ADIROP)) {
    579 		KASSERT(vp->v_uflag & VU_DIROP);
    580 		mutex_enter(&lfs_lock);
    581 		--ip->i_lfs->lfs_nadirop;
    582 		mutex_exit(&lfs_lock);
    583 		ip->i_flag &= ~IN_ADIROP;
    584 	}
    585 }
    586 
    587 int
    588 lfs_symlink(void *v)
    589 {
    590 	struct vop_symlink_args /* {
    591 		struct vnode *a_dvp;
    592 		struct vnode **a_vpp;
    593 		struct componentname *a_cnp;
    594 		struct vattr *a_vap;
    595 		char *a_target;
    596 	} */ *ap = v;
    597 	int error;
    598 
    599 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    600 		vput(ap->a_dvp);
    601 		return error;
    602 	}
    603 	error = ufs_symlink(ap);
    604 	SET_ENDOP_CREATE_AP(ap, "symlink");
    605 	return (error);
    606 }
    607 
    608 int
    609 lfs_mknod(void *v)
    610 {
    611 	struct vop_mknod_args	/* {
    612 		struct vnode *a_dvp;
    613 		struct vnode **a_vpp;
    614 		struct componentname *a_cnp;
    615 		struct vattr *a_vap;
    616 	} */ *ap = v;
    617 	struct vattr *vap = ap->a_vap;
    618 	struct vnode **vpp = ap->a_vpp;
    619 	struct inode *ip;
    620 	int error;
    621 	struct mount	*mp;
    622 	ino_t		ino;
    623 	struct ufs_lookup_results *ulr;
    624 
    625 	/* XXX should handle this material another way */
    626 	ulr = &VTOI(ap->a_dvp)->i_crap;
    627 	UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    628 
    629 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    630 		vput(ap->a_dvp);
    631 		return error;
    632 	}
    633 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    634 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    635 
    636 	/* Either way we're done with the dirop at this point */
    637 	SET_ENDOP_CREATE_AP(ap, "mknod");
    638 
    639 	if (error)
    640 		return (error);
    641 
    642 	ip = VTOI(*vpp);
    643 	mp  = (*vpp)->v_mount;
    644 	ino = ip->i_number;
    645 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    646 	if (vap->va_rdev != VNOVAL) {
    647 		/*
    648 		 * Want to be able to use this to make badblock
    649 		 * inodes, so don't truncate the dev number.
    650 		 */
    651 #if 0
    652 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    653 					   UFS_MPNEEDSWAP((*vpp)->v_mount));
    654 #else
    655 		ip->i_ffs1_rdev = vap->va_rdev;
    656 #endif
    657 	}
    658 
    659 	/*
    660 	 * Call fsync to write the vnode so that we don't have to deal with
    661 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    662 	 *
    663 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    664 	 * return.  But, that leaves this vnode in limbo, also not good.
    665 	 * Can this ever happen (barring hardware failure)?
    666 	 */
    667 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    668 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    669 		      (unsigned long long)ino);
    670 		/* return (error); */
    671 	}
    672 	/*
    673 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    674 	 * checked to see if it is an alias of an existing entry in
    675 	 * the inode cache.
    676 	 */
    677 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    678 
    679 	VOP_UNLOCK(*vpp);
    680 	(*vpp)->v_type = VNON;
    681 	vgone(*vpp);
    682 	error = VFS_VGET(mp, ino, vpp);
    683 
    684 	if (error != 0) {
    685 		*vpp = NULL;
    686 		return (error);
    687 	}
    688 	return (0);
    689 }
    690 
    691 int
    692 lfs_create(void *v)
    693 {
    694 	struct vop_create_args	/* {
    695 		struct vnode *a_dvp;
    696 		struct vnode **a_vpp;
    697 		struct componentname *a_cnp;
    698 		struct vattr *a_vap;
    699 	} */ *ap = v;
    700 	int error;
    701 
    702 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    703 		vput(ap->a_dvp);
    704 		return error;
    705 	}
    706 	error = ufs_create(ap);
    707 	SET_ENDOP_CREATE_AP(ap, "create");
    708 	return (error);
    709 }
    710 
    711 int
    712 lfs_mkdir(void *v)
    713 {
    714 	struct vop_mkdir_args	/* {
    715 		struct vnode *a_dvp;
    716 		struct vnode **a_vpp;
    717 		struct componentname *a_cnp;
    718 		struct vattr *a_vap;
    719 	} */ *ap = v;
    720 	int error;
    721 
    722 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    723 		vput(ap->a_dvp);
    724 		return error;
    725 	}
    726 	error = ufs_mkdir(ap);
    727 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    728 	return (error);
    729 }
    730 
    731 int
    732 lfs_remove(void *v)
    733 {
    734 	struct vop_remove_args	/* {
    735 		struct vnode *a_dvp;
    736 		struct vnode *a_vp;
    737 		struct componentname *a_cnp;
    738 	} */ *ap = v;
    739 	struct vnode *dvp, *vp;
    740 	struct inode *ip;
    741 	int error;
    742 
    743 	dvp = ap->a_dvp;
    744 	vp = ap->a_vp;
    745 	ip = VTOI(vp);
    746 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    747 		if (dvp == vp)
    748 			vrele(vp);
    749 		else
    750 			vput(vp);
    751 		vput(dvp);
    752 		return error;
    753 	}
    754 	error = ufs_remove(ap);
    755 	if (ip->i_nlink == 0)
    756 		lfs_orphan(ip->i_lfs, ip->i_number);
    757 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    758 	return (error);
    759 }
    760 
    761 int
    762 lfs_rmdir(void *v)
    763 {
    764 	struct vop_rmdir_args	/* {
    765 		struct vnodeop_desc *a_desc;
    766 		struct vnode *a_dvp;
    767 		struct vnode *a_vp;
    768 		struct componentname *a_cnp;
    769 	} */ *ap = v;
    770 	struct vnode *vp;
    771 	struct inode *ip;
    772 	int error;
    773 
    774 	vp = ap->a_vp;
    775 	ip = VTOI(vp);
    776 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    777 		if (ap->a_dvp == vp)
    778 			vrele(ap->a_dvp);
    779 		else
    780 			vput(ap->a_dvp);
    781 		vput(vp);
    782 		return error;
    783 	}
    784 	error = ufs_rmdir(ap);
    785 	if (ip->i_nlink == 0)
    786 		lfs_orphan(ip->i_lfs, ip->i_number);
    787 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    788 	return (error);
    789 }
    790 
    791 int
    792 lfs_link(void *v)
    793 {
    794 	struct vop_link_args	/* {
    795 		struct vnode *a_dvp;
    796 		struct vnode *a_vp;
    797 		struct componentname *a_cnp;
    798 	} */ *ap = v;
    799 	int error;
    800 	struct vnode **vpp = NULL;
    801 
    802 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    803 		vput(ap->a_dvp);
    804 		return error;
    805 	}
    806 	error = ufs_link(ap);
    807 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    808 	return (error);
    809 }
    810 
    811 int
    812 lfs_rename(void *v)
    813 {
    814 	struct vop_rename_args	/* {
    815 		struct vnode *a_fdvp;
    816 		struct vnode *a_fvp;
    817 		struct componentname *a_fcnp;
    818 		struct vnode *a_tdvp;
    819 		struct vnode *a_tvp;
    820 		struct componentname *a_tcnp;
    821 	} */ *ap = v;
    822 	struct vnode *tvp, *fvp, *tdvp, *fdvp;
    823 	struct componentname *tcnp, *fcnp;
    824 	int error;
    825 	struct lfs *fs;
    826 
    827 	fs = VTOI(ap->a_fdvp)->i_lfs;
    828 	tvp = ap->a_tvp;
    829 	tdvp = ap->a_tdvp;
    830 	tcnp = ap->a_tcnp;
    831 	fvp = ap->a_fvp;
    832 	fdvp = ap->a_fdvp;
    833 	fcnp = ap->a_fcnp;
    834 
    835 	/*
    836 	 * Check for cross-device rename.
    837 	 * If it is, we don't want to set dirops, just error out.
    838 	 * (In particular note that MARK_VNODE(tdvp) will DTWT on
    839 	 * a cross-device rename.)
    840 	 *
    841 	 * Copied from ufs_rename.
    842 	 */
    843 	if ((fvp->v_mount != tdvp->v_mount) ||
    844 	    (tvp && (fvp->v_mount != tvp->v_mount))) {
    845 		error = EXDEV;
    846 		goto errout;
    847 	}
    848 
    849 	/*
    850 	 * Check to make sure we're not renaming a vnode onto itself
    851 	 * (deleting a hard link by renaming one name onto another);
    852 	 * if we are we can't recursively call VOP_REMOVE since that
    853 	 * would leave us with an unaccounted-for number of live dirops.
    854 	 *
    855 	 * Inline the relevant section of ufs_rename here, *before*
    856 	 * calling SET_DIROP_REMOVE.
    857 	 */
    858 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
    859 		    (VTOI(tdvp)->i_flags & APPEND))) {
    860 		error = EPERM;
    861 		goto errout;
    862 	}
    863 	if (fvp == tvp) {
    864 		if (fvp->v_type == VDIR) {
    865 			error = EINVAL;
    866 			goto errout;
    867 		}
    868 
    869 		/* Release destination completely. */
    870 		VOP_ABORTOP(tdvp, tcnp);
    871 		vput(tdvp);
    872 		vput(tvp);
    873 
    874 		/* Delete source. */
    875 		vrele(fvp);
    876 		fcnp->cn_flags &= ~(MODMASK);
    877 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
    878 		fcnp->cn_nameiop = DELETE;
    879 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
    880 		if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
    881 			vput(fdvp);
    882 			return (error);
    883 		}
    884 		return (VOP_REMOVE(fdvp, fvp, fcnp));
    885 	}
    886 
    887 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
    888 		goto errout;
    889 	MARK_VNODE(fdvp);
    890 	MARK_VNODE(fvp);
    891 
    892 	error = ufs_rename(ap);
    893 	UNMARK_VNODE(fdvp);
    894 	UNMARK_VNODE(fvp);
    895 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
    896 	return (error);
    897 
    898   errout:
    899 	VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
    900 	if (tdvp == tvp)
    901 		vrele(tdvp);
    902 	else
    903 		vput(tdvp);
    904 	if (tvp)
    905 		vput(tvp);
    906 	VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
    907 	vrele(fdvp);
    908 	vrele(fvp);
    909 	return (error);
    910 }
    911 
    912 /* XXX hack to avoid calling ITIMES in getattr */
    913 int
    914 lfs_getattr(void *v)
    915 {
    916 	struct vop_getattr_args /* {
    917 		struct vnode *a_vp;
    918 		struct vattr *a_vap;
    919 		kauth_cred_t a_cred;
    920 	} */ *ap = v;
    921 	struct vnode *vp = ap->a_vp;
    922 	struct inode *ip = VTOI(vp);
    923 	struct vattr *vap = ap->a_vap;
    924 	struct lfs *fs = ip->i_lfs;
    925 	/*
    926 	 * Copy from inode table
    927 	 */
    928 	vap->va_fsid = ip->i_dev;
    929 	vap->va_fileid = ip->i_number;
    930 	vap->va_mode = ip->i_mode & ~IFMT;
    931 	vap->va_nlink = ip->i_nlink;
    932 	vap->va_uid = ip->i_uid;
    933 	vap->va_gid = ip->i_gid;
    934 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    935 	vap->va_size = vp->v_size;
    936 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    937 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    938 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    939 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    940 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    941 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    942 	vap->va_flags = ip->i_flags;
    943 	vap->va_gen = ip->i_gen;
    944 	/* this doesn't belong here */
    945 	if (vp->v_type == VBLK)
    946 		vap->va_blocksize = BLKDEV_IOSIZE;
    947 	else if (vp->v_type == VCHR)
    948 		vap->va_blocksize = MAXBSIZE;
    949 	else
    950 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    951 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    952 	vap->va_type = vp->v_type;
    953 	vap->va_filerev = ip->i_modrev;
    954 	return (0);
    955 }
    956 
    957 /*
    958  * Check to make sure the inode blocks won't choke the buffer
    959  * cache, then call ufs_setattr as usual.
    960  */
    961 int
    962 lfs_setattr(void *v)
    963 {
    964 	struct vop_setattr_args /* {
    965 		struct vnode *a_vp;
    966 		struct vattr *a_vap;
    967 		kauth_cred_t a_cred;
    968 	} */ *ap = v;
    969 	struct vnode *vp = ap->a_vp;
    970 
    971 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    972 	return ufs_setattr(v);
    973 }
    974 
    975 /*
    976  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
    977  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
    978  */
    979 static int
    980 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
    981 {
    982 	if (fs->lfs_stoplwp != curlwp)
    983 		return EBUSY;
    984 
    985 	fs->lfs_stoplwp = NULL;
    986 	cv_signal(&fs->lfs_stopcv);
    987 
    988 	KASSERT(fs->lfs_nowrap > 0);
    989 	if (fs->lfs_nowrap <= 0) {
    990 		return 0;
    991 	}
    992 
    993 	if (--fs->lfs_nowrap == 0) {
    994 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
    995 		wakeup(&fs->lfs_wrappass);
    996 		lfs_wakeup_cleaner(fs);
    997 	}
    998 	if (waitfor) {
    999 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1000 		    0, &lfs_lock);
   1001 	}
   1002 
   1003 	return 0;
   1004 }
   1005 
   1006 /*
   1007  * Close called
   1008  */
   1009 /* ARGSUSED */
   1010 int
   1011 lfs_close(void *v)
   1012 {
   1013 	struct vop_close_args /* {
   1014 		struct vnode *a_vp;
   1015 		int  a_fflag;
   1016 		kauth_cred_t a_cred;
   1017 	} */ *ap = v;
   1018 	struct vnode *vp = ap->a_vp;
   1019 	struct inode *ip = VTOI(vp);
   1020 	struct lfs *fs = ip->i_lfs;
   1021 
   1022 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1023 	    fs->lfs_stoplwp == curlwp) {
   1024 		mutex_enter(&lfs_lock);
   1025 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1026 		lfs_wrapgo(fs, ip, 0);
   1027 		mutex_exit(&lfs_lock);
   1028 	}
   1029 
   1030 	if (vp == ip->i_lfs->lfs_ivnode &&
   1031 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1032 		return 0;
   1033 
   1034 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1035 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1036 	}
   1037 	return (0);
   1038 }
   1039 
   1040 /*
   1041  * Close wrapper for special devices.
   1042  *
   1043  * Update the times on the inode then do device close.
   1044  */
   1045 int
   1046 lfsspec_close(void *v)
   1047 {
   1048 	struct vop_close_args /* {
   1049 		struct vnode	*a_vp;
   1050 		int		a_fflag;
   1051 		kauth_cred_t	a_cred;
   1052 	} */ *ap = v;
   1053 	struct vnode	*vp;
   1054 	struct inode	*ip;
   1055 
   1056 	vp = ap->a_vp;
   1057 	ip = VTOI(vp);
   1058 	if (vp->v_usecount > 1) {
   1059 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1060 	}
   1061 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1062 }
   1063 
   1064 /*
   1065  * Close wrapper for fifo's.
   1066  *
   1067  * Update the times on the inode then do device close.
   1068  */
   1069 int
   1070 lfsfifo_close(void *v)
   1071 {
   1072 	struct vop_close_args /* {
   1073 		struct vnode	*a_vp;
   1074 		int		a_fflag;
   1075 		kauth_cred_	a_cred;
   1076 	} */ *ap = v;
   1077 	struct vnode	*vp;
   1078 	struct inode	*ip;
   1079 
   1080 	vp = ap->a_vp;
   1081 	ip = VTOI(vp);
   1082 	if (ap->a_vp->v_usecount > 1) {
   1083 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1084 	}
   1085 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1086 }
   1087 
   1088 /*
   1089  * Reclaim an inode so that it can be used for other purposes.
   1090  */
   1091 
   1092 int
   1093 lfs_reclaim(void *v)
   1094 {
   1095 	struct vop_reclaim_args /* {
   1096 		struct vnode *a_vp;
   1097 	} */ *ap = v;
   1098 	struct vnode *vp = ap->a_vp;
   1099 	struct inode *ip = VTOI(vp);
   1100 	struct lfs *fs = ip->i_lfs;
   1101 	int error;
   1102 
   1103 	/*
   1104 	 * The inode must be freed and updated before being removed
   1105 	 * from its hash chain.  Other threads trying to gain a hold
   1106 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1107 	 */
   1108 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1109 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1110 
   1111 	mutex_enter(&lfs_lock);
   1112 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1113 	mutex_exit(&lfs_lock);
   1114 	if ((error = ufs_reclaim(vp)))
   1115 		return (error);
   1116 
   1117 	/*
   1118 	 * Take us off the paging and/or dirop queues if we were on them.
   1119 	 * We shouldn't be on them.
   1120 	 */
   1121 	mutex_enter(&lfs_lock);
   1122 	if (ip->i_flags & IN_PAGING) {
   1123 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1124 		    fs->lfs_fsmnt);
   1125 		ip->i_flags &= ~IN_PAGING;
   1126 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1127 	}
   1128 	if (vp->v_uflag & VU_DIROP) {
   1129 		panic("reclaimed vnode is VU_DIROP");
   1130 		vp->v_uflag &= ~VU_DIROP;
   1131 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1132 	}
   1133 	mutex_exit(&lfs_lock);
   1134 
   1135 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1136 	lfs_deregister_all(vp);
   1137 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1138 	ip->inode_ext.lfs = NULL;
   1139 	genfs_node_destroy(vp);
   1140 	pool_put(&lfs_inode_pool, vp->v_data);
   1141 	vp->v_data = NULL;
   1142 	return (0);
   1143 }
   1144 
   1145 /*
   1146  * Read a block from a storage device.
   1147  * In order to avoid reading blocks that are in the process of being
   1148  * written by the cleaner---and hence are not mutexed by the normal
   1149  * buffer cache / page cache mechanisms---check for collisions before
   1150  * reading.
   1151  *
   1152  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1153  * the active cleaner test.
   1154  *
   1155  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1156  */
   1157 int
   1158 lfs_strategy(void *v)
   1159 {
   1160 	struct vop_strategy_args /* {
   1161 		struct vnode *a_vp;
   1162 		struct buf *a_bp;
   1163 	} */ *ap = v;
   1164 	struct buf	*bp;
   1165 	struct lfs	*fs;
   1166 	struct vnode	*vp;
   1167 	struct inode	*ip;
   1168 	daddr_t		tbn;
   1169 #define MAXLOOP 25
   1170 	int		i, sn, error, slept, loopcount;
   1171 
   1172 	bp = ap->a_bp;
   1173 	vp = ap->a_vp;
   1174 	ip = VTOI(vp);
   1175 	fs = ip->i_lfs;
   1176 
   1177 	/* lfs uses its strategy routine only for read */
   1178 	KASSERT(bp->b_flags & B_READ);
   1179 
   1180 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1181 		panic("lfs_strategy: spec");
   1182 	KASSERT(bp->b_bcount != 0);
   1183 	if (bp->b_blkno == bp->b_lblkno) {
   1184 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1185 				 NULL);
   1186 		if (error) {
   1187 			bp->b_error = error;
   1188 			bp->b_resid = bp->b_bcount;
   1189 			biodone(bp);
   1190 			return (error);
   1191 		}
   1192 		if ((long)bp->b_blkno == -1) /* no valid data */
   1193 			clrbuf(bp);
   1194 	}
   1195 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1196 		bp->b_resid = bp->b_bcount;
   1197 		biodone(bp);
   1198 		return (0);
   1199 	}
   1200 
   1201 	slept = 1;
   1202 	loopcount = 0;
   1203 	mutex_enter(&lfs_lock);
   1204 	while (slept && fs->lfs_seglock) {
   1205 		mutex_exit(&lfs_lock);
   1206 		/*
   1207 		 * Look through list of intervals.
   1208 		 * There will only be intervals to look through
   1209 		 * if the cleaner holds the seglock.
   1210 		 * Since the cleaner is synchronous, we can trust
   1211 		 * the list of intervals to be current.
   1212 		 */
   1213 		tbn = dbtofsb(fs, bp->b_blkno);
   1214 		sn = dtosn(fs, tbn);
   1215 		slept = 0;
   1216 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1217 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1218 			    tbn >= fs->lfs_cleanint[i]) {
   1219 				DLOG((DLOG_CLEAN,
   1220 				      "lfs_strategy: ino %d lbn %" PRId64
   1221 				      " ind %d sn %d fsb %" PRIx32
   1222 				      " given sn %d fsb %" PRIx64 "\n",
   1223 				      ip->i_number, bp->b_lblkno, i,
   1224 				      dtosn(fs, fs->lfs_cleanint[i]),
   1225 				      fs->lfs_cleanint[i], sn, tbn));
   1226 				DLOG((DLOG_CLEAN,
   1227 				      "lfs_strategy: sleeping on ino %d lbn %"
   1228 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1229 				mutex_enter(&lfs_lock);
   1230 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1231 					/*
   1232 					 * Cleaner can't wait for itself.
   1233 					 * Instead, wait for the blocks
   1234 					 * to be written to disk.
   1235 					 * XXX we need pribio in the test
   1236 					 * XXX here.
   1237 					 */
   1238  					mtsleep(&fs->lfs_iocount,
   1239  						(PRIBIO + 1) | PNORELOCK,
   1240 						"clean2", hz/10 + 1,
   1241  						&lfs_lock);
   1242 					slept = 1;
   1243 					++loopcount;
   1244 					break;
   1245 				} else if (fs->lfs_seglock) {
   1246 					mtsleep(&fs->lfs_seglock,
   1247 						(PRIBIO + 1) | PNORELOCK,
   1248 						"clean1", 0,
   1249 						&lfs_lock);
   1250 					slept = 1;
   1251 					break;
   1252 				}
   1253 				mutex_exit(&lfs_lock);
   1254 			}
   1255 		}
   1256 		mutex_enter(&lfs_lock);
   1257 		if (loopcount > MAXLOOP) {
   1258 			printf("lfs_strategy: breaking out of clean2 loop\n");
   1259 			break;
   1260 		}
   1261 	}
   1262 	mutex_exit(&lfs_lock);
   1263 
   1264 	vp = ip->i_devvp;
   1265 	VOP_STRATEGY(vp, bp);
   1266 	return (0);
   1267 }
   1268 
   1269 /*
   1270  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1271  * Technically this is a checkpoint (the on-disk state is valid)
   1272  * even though we are leaving out all the file data.
   1273  */
   1274 int
   1275 lfs_flush_dirops(struct lfs *fs)
   1276 {
   1277 	struct inode *ip, *nip;
   1278 	struct vnode *vp;
   1279 	extern int lfs_dostats;
   1280 	struct segment *sp;
   1281 	int flags = 0;
   1282 	int error = 0;
   1283 
   1284 	ASSERT_MAYBE_SEGLOCK(fs);
   1285 	KASSERT(fs->lfs_nadirop == 0);
   1286 
   1287 	if (fs->lfs_ronly)
   1288 		return EROFS;
   1289 
   1290 	mutex_enter(&lfs_lock);
   1291 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1292 		mutex_exit(&lfs_lock);
   1293 		return 0;
   1294 	} else
   1295 		mutex_exit(&lfs_lock);
   1296 
   1297 	if (lfs_dostats)
   1298 		++lfs_stats.flush_invoked;
   1299 
   1300 	lfs_imtime(fs);
   1301 	lfs_seglock(fs, flags);
   1302 	sp = fs->lfs_sp;
   1303 
   1304 	/*
   1305 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1306 	 * Only write dirops, and don't flush files' pages, only
   1307 	 * blocks from the directories.
   1308 	 *
   1309 	 * We don't need to vref these files because they are
   1310 	 * dirops and so hold an extra reference until the
   1311 	 * segunlock clears them of that status.
   1312 	 *
   1313 	 * We don't need to check for IN_ADIROP because we know that
   1314 	 * no dirops are active.
   1315 	 *
   1316 	 */
   1317 	mutex_enter(&lfs_lock);
   1318 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1319 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1320 		mutex_exit(&lfs_lock);
   1321 		vp = ITOV(ip);
   1322 
   1323 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1324 		KASSERT(vp->v_uflag & VU_DIROP);
   1325 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   1326 
   1327 		/*
   1328 		 * All writes to directories come from dirops; all
   1329 		 * writes to files' direct blocks go through the page
   1330 		 * cache, which we're not touching.  Reads to files
   1331 		 * and/or directories will not be affected by writing
   1332 		 * directory blocks inodes and file inodes.  So we don't
   1333 		 * really need to lock.
   1334 		 */
   1335 		if (vp->v_iflag & VI_XLOCK) {
   1336 			mutex_enter(&lfs_lock);
   1337 			continue;
   1338 		}
   1339 		/* XXX see below
   1340 		 * waslocked = VOP_ISLOCKED(vp);
   1341 		 */
   1342 		if (vp->v_type != VREG &&
   1343 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1344 			error = lfs_writefile(fs, sp, vp);
   1345 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1346 			    !(ip->i_flag & IN_ALLMOD)) {
   1347 			    	mutex_enter(&lfs_lock);
   1348 				LFS_SET_UINO(ip, IN_MODIFIED);
   1349 			    	mutex_exit(&lfs_lock);
   1350 			}
   1351 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1352 				mutex_enter(&lfs_lock);
   1353 				error = EAGAIN;
   1354 				break;
   1355 			}
   1356 		}
   1357 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1358 		error = lfs_writeinode(fs, sp, ip);
   1359 		mutex_enter(&lfs_lock);
   1360 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1361 			error = EAGAIN;
   1362 			break;
   1363 		}
   1364 
   1365 		/*
   1366 		 * We might need to update these inodes again,
   1367 		 * for example, if they have data blocks to write.
   1368 		 * Make sure that after this flush, they are still
   1369 		 * marked IN_MODIFIED so that we don't forget to
   1370 		 * write them.
   1371 		 */
   1372 		/* XXX only for non-directories? --KS */
   1373 		LFS_SET_UINO(ip, IN_MODIFIED);
   1374 	}
   1375 	mutex_exit(&lfs_lock);
   1376 	/* We've written all the dirops there are */
   1377 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1378 	lfs_finalize_fs_seguse(fs);
   1379 	(void) lfs_writeseg(fs, sp);
   1380 	lfs_segunlock(fs);
   1381 
   1382 	return error;
   1383 }
   1384 
   1385 /*
   1386  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1387  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   1388  * has just run, this would be an error).  If we have to skip a vnode
   1389  * for any reason, just skip it; if we have to wait for the cleaner,
   1390  * abort.  The writer daemon will call us again later.
   1391  */
   1392 int
   1393 lfs_flush_pchain(struct lfs *fs)
   1394 {
   1395 	struct inode *ip, *nip;
   1396 	struct vnode *vp;
   1397 	extern int lfs_dostats;
   1398 	struct segment *sp;
   1399 	int error, error2;
   1400 
   1401 	ASSERT_NO_SEGLOCK(fs);
   1402 
   1403 	if (fs->lfs_ronly)
   1404 		return EROFS;
   1405 
   1406 	mutex_enter(&lfs_lock);
   1407 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1408 		mutex_exit(&lfs_lock);
   1409 		return 0;
   1410 	} else
   1411 		mutex_exit(&lfs_lock);
   1412 
   1413 	/* Get dirops out of the way */
   1414 	if ((error = lfs_flush_dirops(fs)) != 0)
   1415 		return error;
   1416 
   1417 	if (lfs_dostats)
   1418 		++lfs_stats.flush_invoked;
   1419 
   1420 	/*
   1421 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1422 	 */
   1423 	lfs_imtime(fs);
   1424 	lfs_seglock(fs, 0);
   1425 	sp = fs->lfs_sp;
   1426 
   1427 	/*
   1428 	 * lfs_writevnodes, optimized to clear pageout requests.
   1429 	 * Only write non-dirop files that are in the pageout queue.
   1430 	 * We're very conservative about what we write; we want to be
   1431 	 * fast and async.
   1432 	 */
   1433 	mutex_enter(&lfs_lock);
   1434     top:
   1435 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1436 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1437 		vp = ITOV(ip);
   1438 
   1439 		if (!(ip->i_flags & IN_PAGING))
   1440 			goto top;
   1441 
   1442 		mutex_enter(vp->v_interlock);
   1443 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   1444 			mutex_exit(vp->v_interlock);
   1445 			continue;
   1446 		}
   1447 		if (vp->v_type != VREG) {
   1448 			mutex_exit(vp->v_interlock);
   1449 			continue;
   1450 		}
   1451 		if (lfs_vref(vp))
   1452 			continue;
   1453 		mutex_exit(&lfs_lock);
   1454 
   1455 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   1456 			lfs_vunref(vp);
   1457 			mutex_enter(&lfs_lock);
   1458 			continue;
   1459 		}
   1460 
   1461 		error = lfs_writefile(fs, sp, vp);
   1462 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1463 		    !(ip->i_flag & IN_ALLMOD)) {
   1464 		    	mutex_enter(&lfs_lock);
   1465 			LFS_SET_UINO(ip, IN_MODIFIED);
   1466 		    	mutex_exit(&lfs_lock);
   1467 		}
   1468 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1469 		error2 = lfs_writeinode(fs, sp, ip);
   1470 
   1471 		VOP_UNLOCK(vp);
   1472 		lfs_vunref(vp);
   1473 
   1474 		if (error == EAGAIN || error2 == EAGAIN) {
   1475 			lfs_writeseg(fs, sp);
   1476 			mutex_enter(&lfs_lock);
   1477 			break;
   1478 		}
   1479 		mutex_enter(&lfs_lock);
   1480 	}
   1481 	mutex_exit(&lfs_lock);
   1482 	(void) lfs_writeseg(fs, sp);
   1483 	lfs_segunlock(fs);
   1484 
   1485 	return 0;
   1486 }
   1487 
   1488 /*
   1489  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1490  */
   1491 int
   1492 lfs_fcntl(void *v)
   1493 {
   1494 	struct vop_fcntl_args /* {
   1495 		struct vnode *a_vp;
   1496 		u_int a_command;
   1497 		void * a_data;
   1498 		int  a_fflag;
   1499 		kauth_cred_t a_cred;
   1500 	} */ *ap = v;
   1501 	struct timeval tv;
   1502 	struct timeval *tvp;
   1503 	BLOCK_INFO *blkiov;
   1504 	CLEANERINFO *cip;
   1505 	SEGUSE *sup;
   1506 	int blkcnt, error, oclean;
   1507 	size_t fh_size;
   1508 	struct lfs_fcntl_markv blkvp;
   1509 	struct lwp *l;
   1510 	fsid_t *fsidp;
   1511 	struct lfs *fs;
   1512 	struct buf *bp;
   1513 	fhandle_t *fhp;
   1514 	daddr_t off;
   1515 
   1516 	/* Only respect LFS fcntls on fs root or Ifile */
   1517 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   1518 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1519 		return ufs_fcntl(v);
   1520 	}
   1521 
   1522 	/* Avoid locking a draining lock */
   1523 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1524 		return ESHUTDOWN;
   1525 	}
   1526 
   1527 	/* LFS control and monitoring fcntls are available only to root */
   1528 	l = curlwp;
   1529 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1530 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   1531 					     NULL)) != 0)
   1532 		return (error);
   1533 
   1534 	fs = VTOI(ap->a_vp)->i_lfs;
   1535 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1536 
   1537 	error = 0;
   1538 	switch ((int)ap->a_command) {
   1539 	    case LFCNSEGWAITALL_COMPAT_50:
   1540 	    case LFCNSEGWAITALL_COMPAT:
   1541 		fsidp = NULL;
   1542 		/* FALLSTHROUGH */
   1543 	    case LFCNSEGWAIT_COMPAT_50:
   1544 	    case LFCNSEGWAIT_COMPAT:
   1545 		{
   1546 			struct timeval50 *tvp50
   1547 				= (struct timeval50 *)ap->a_data;
   1548 			timeval50_to_timeval(tvp50, &tv);
   1549 			tvp = &tv;
   1550 		}
   1551 		goto segwait_common;
   1552 	    case LFCNSEGWAITALL:
   1553 		fsidp = NULL;
   1554 		/* FALLSTHROUGH */
   1555 	    case LFCNSEGWAIT:
   1556 		tvp = (struct timeval *)ap->a_data;
   1557 segwait_common:
   1558 		mutex_enter(&lfs_lock);
   1559 		++fs->lfs_sleepers;
   1560 		mutex_exit(&lfs_lock);
   1561 
   1562 		error = lfs_segwait(fsidp, tvp);
   1563 
   1564 		mutex_enter(&lfs_lock);
   1565 		if (--fs->lfs_sleepers == 0)
   1566 			wakeup(&fs->lfs_sleepers);
   1567 		mutex_exit(&lfs_lock);
   1568 		return error;
   1569 
   1570 	    case LFCNBMAPV:
   1571 	    case LFCNMARKV:
   1572 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1573 
   1574 		blkcnt = blkvp.blkcnt;
   1575 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1576 			return (EINVAL);
   1577 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1578 		if ((error = copyin(blkvp.blkiov, blkiov,
   1579 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1580 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1581 			return error;
   1582 		}
   1583 
   1584 		mutex_enter(&lfs_lock);
   1585 		++fs->lfs_sleepers;
   1586 		mutex_exit(&lfs_lock);
   1587 		if (ap->a_command == LFCNBMAPV)
   1588 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1589 		else /* LFCNMARKV */
   1590 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1591 		if (error == 0)
   1592 			error = copyout(blkiov, blkvp.blkiov,
   1593 					blkcnt * sizeof(BLOCK_INFO));
   1594 		mutex_enter(&lfs_lock);
   1595 		if (--fs->lfs_sleepers == 0)
   1596 			wakeup(&fs->lfs_sleepers);
   1597 		mutex_exit(&lfs_lock);
   1598 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1599 		return error;
   1600 
   1601 	    case LFCNRECLAIM:
   1602 		/*
   1603 		 * Flush dirops and write Ifile, allowing empty segments
   1604 		 * to be immediately reclaimed.
   1605 		 */
   1606 		lfs_writer_enter(fs, "pndirop");
   1607 		off = fs->lfs_offset;
   1608 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1609 		lfs_flush_dirops(fs);
   1610 		LFS_CLEANERINFO(cip, fs, bp);
   1611 		oclean = cip->clean;
   1612 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1613 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1614 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1615 		lfs_segunlock(fs);
   1616 		lfs_writer_leave(fs);
   1617 
   1618 #ifdef DEBUG
   1619 		LFS_CLEANERINFO(cip, fs, bp);
   1620 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1621 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1622 		      fs->lfs_offset - off, cip->clean - oclean,
   1623 		      fs->lfs_activesb));
   1624 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1625 #endif
   1626 
   1627 		return 0;
   1628 
   1629 	    case LFCNIFILEFH_COMPAT:
   1630 		/* Return the filehandle of the Ifile */
   1631 		if ((error = kauth_authorize_system(l->l_cred,
   1632 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   1633 			return (error);
   1634 		fhp = (struct fhandle *)ap->a_data;
   1635 		fhp->fh_fsid = *fsidp;
   1636 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1637 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1638 
   1639 	    case LFCNIFILEFH_COMPAT2:
   1640 	    case LFCNIFILEFH:
   1641 		/* Return the filehandle of the Ifile */
   1642 		fhp = (struct fhandle *)ap->a_data;
   1643 		fhp->fh_fsid = *fsidp;
   1644 		fh_size = sizeof(struct lfs_fhandle) -
   1645 		    offsetof(fhandle_t, fh_fid);
   1646 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1647 
   1648 	    case LFCNREWIND:
   1649 		/* Move lfs_offset to the lowest-numbered segment */
   1650 		return lfs_rewind(fs, *(int *)ap->a_data);
   1651 
   1652 	    case LFCNINVAL:
   1653 		/* Mark a segment SEGUSE_INVAL */
   1654 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1655 		if (sup->su_nbytes > 0) {
   1656 			brelse(bp, 0);
   1657 			lfs_unset_inval_all(fs);
   1658 			return EBUSY;
   1659 		}
   1660 		sup->su_flags |= SEGUSE_INVAL;
   1661 		VOP_BWRITE(bp->b_vp, bp);
   1662 		return 0;
   1663 
   1664 	    case LFCNRESIZE:
   1665 		/* Resize the filesystem */
   1666 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1667 
   1668 	    case LFCNWRAPSTOP:
   1669 	    case LFCNWRAPSTOP_COMPAT:
   1670 		/*
   1671 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1672 		 * the filesystem wraps around.  To support external agents
   1673 		 * (dump, fsck-based regression test) that need to look at
   1674 		 * a snapshot of the filesystem, without necessarily
   1675 		 * requiring that all fs activity stops.
   1676 		 */
   1677 		if (fs->lfs_stoplwp == curlwp)
   1678 			return EALREADY;
   1679 
   1680 		mutex_enter(&lfs_lock);
   1681 		while (fs->lfs_stoplwp != NULL)
   1682 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   1683 		fs->lfs_stoplwp = curlwp;
   1684 		if (fs->lfs_nowrap == 0)
   1685 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1686 		++fs->lfs_nowrap;
   1687 		if (*(int *)ap->a_data == 1
   1688 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1689 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1690 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1691 				"segwrap", 0, &lfs_lock);
   1692 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1693 			if (error) {
   1694 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1695 			}
   1696 		}
   1697 		mutex_exit(&lfs_lock);
   1698 		return 0;
   1699 
   1700 	    case LFCNWRAPGO:
   1701 	    case LFCNWRAPGO_COMPAT:
   1702 		/*
   1703 		 * Having done its work, the agent wakes up the writer.
   1704 		 * If the argument is 1, it sleeps until a new segment
   1705 		 * is selected.
   1706 		 */
   1707 		mutex_enter(&lfs_lock);
   1708 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1709 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1710 				    *((int *)ap->a_data));
   1711 		mutex_exit(&lfs_lock);
   1712 		return error;
   1713 
   1714 	    case LFCNWRAPPASS:
   1715 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1716 			return EALREADY;
   1717 		mutex_enter(&lfs_lock);
   1718 		if (fs->lfs_stoplwp != curlwp) {
   1719 			mutex_exit(&lfs_lock);
   1720 			return EALREADY;
   1721 		}
   1722 		if (fs->lfs_nowrap == 0) {
   1723 			mutex_exit(&lfs_lock);
   1724 			return EBUSY;
   1725 		}
   1726 		fs->lfs_wrappass = 1;
   1727 		wakeup(&fs->lfs_wrappass);
   1728 		/* Wait for the log to wrap, if asked */
   1729 		if (*(int *)ap->a_data) {
   1730 			mutex_enter(ap->a_vp->v_interlock);
   1731 			if (lfs_vref(ap->a_vp) != 0)
   1732 				panic("LFCNWRAPPASS: lfs_vref failed");
   1733 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1734 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1735 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1736 				"segwrap", 0, &lfs_lock);
   1737 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1738 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1739 			lfs_vunref(ap->a_vp);
   1740 		}
   1741 		mutex_exit(&lfs_lock);
   1742 		return error;
   1743 
   1744 	    case LFCNWRAPSTATUS:
   1745 		mutex_enter(&lfs_lock);
   1746 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1747 		mutex_exit(&lfs_lock);
   1748 		return 0;
   1749 
   1750 	    default:
   1751 		return ufs_fcntl(v);
   1752 	}
   1753 	return 0;
   1754 }
   1755 
   1756 int
   1757 lfs_getpages(void *v)
   1758 {
   1759 	struct vop_getpages_args /* {
   1760 		struct vnode *a_vp;
   1761 		voff_t a_offset;
   1762 		struct vm_page **a_m;
   1763 		int *a_count;
   1764 		int a_centeridx;
   1765 		vm_prot_t a_access_type;
   1766 		int a_advice;
   1767 		int a_flags;
   1768 	} */ *ap = v;
   1769 
   1770 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1771 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1772 		return EPERM;
   1773 	}
   1774 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1775 		mutex_enter(&lfs_lock);
   1776 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1777 		mutex_exit(&lfs_lock);
   1778 	}
   1779 
   1780 	/*
   1781 	 * we're relying on the fact that genfs_getpages() always read in
   1782 	 * entire filesystem blocks.
   1783 	 */
   1784 	return genfs_getpages(v);
   1785 }
   1786 
   1787 /*
   1788  * Wait for a page to become unbusy, possibly printing diagnostic messages
   1789  * as well.
   1790  *
   1791  * Called with vp->v_interlock held; return with it held.
   1792  */
   1793 static void
   1794 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   1795 {
   1796 	KASSERT(mutex_owned(vp->v_interlock));
   1797 	if ((pg->flags & PG_BUSY) == 0)
   1798 		return;		/* Nothing to wait for! */
   1799 
   1800 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   1801 	static struct vm_page *lastpg;
   1802 
   1803 	if (label != NULL && pg != lastpg) {
   1804 		if (pg->owner_tag) {
   1805 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   1806 			       curproc->p_pid, curlwp->l_lid, label,
   1807 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   1808 		} else {
   1809 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   1810 			       curproc->p_pid, curlwp->l_lid, label, pg);
   1811 		}
   1812 	}
   1813 	lastpg = pg;
   1814 #endif
   1815 
   1816 	pg->flags |= PG_WANTED;
   1817 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   1818 	mutex_enter(vp->v_interlock);
   1819 }
   1820 
   1821 /*
   1822  * This routine is called by lfs_putpages() when it can't complete the
   1823  * write because a page is busy.  This means that either (1) someone,
   1824  * possibly the pagedaemon, is looking at this page, and will give it up
   1825  * presently; or (2) we ourselves are holding the page busy in the
   1826  * process of being written (either gathered or actually on its way to
   1827  * disk).  We don't need to give up the segment lock, but we might need
   1828  * to call lfs_writeseg() to expedite the page's journey to disk.
   1829  *
   1830  * Called with vp->v_interlock held; return with it held.
   1831  */
   1832 /* #define BUSYWAIT */
   1833 static void
   1834 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   1835 	       int seglocked, const char *label)
   1836 {
   1837 	KASSERT(mutex_owned(vp->v_interlock));
   1838 #ifndef BUSYWAIT
   1839 	struct inode *ip = VTOI(vp);
   1840 	struct segment *sp = fs->lfs_sp;
   1841 	int count = 0;
   1842 
   1843 	if (pg == NULL)
   1844 		return;
   1845 
   1846 	while (pg->flags & PG_BUSY &&
   1847 	    pg->uobject == &vp->v_uobj) {
   1848 		mutex_exit(vp->v_interlock);
   1849 		if (sp->cbpp - sp->bpp > 1) {
   1850 			/* Write gathered pages */
   1851 			lfs_updatemeta(sp);
   1852 			lfs_release_finfo(fs);
   1853 			(void) lfs_writeseg(fs, sp);
   1854 
   1855 			/*
   1856 			 * Reinitialize FIP
   1857 			 */
   1858 			KASSERT(sp->vp == vp);
   1859 			lfs_acquire_finfo(fs, ip->i_number,
   1860 					  ip->i_gen);
   1861 		}
   1862 		++count;
   1863 		mutex_enter(vp->v_interlock);
   1864 		wait_for_page(vp, pg, label);
   1865 	}
   1866 	if (label != NULL && count > 1) {
   1867 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   1868 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   1869 		      count));
   1870 	}
   1871 #else
   1872 	preempt(1);
   1873 #endif
   1874 	KASSERT(mutex_owned(vp->v_interlock));
   1875 }
   1876 
   1877 /*
   1878  * Make sure that for all pages in every block in the given range,
   1879  * either all are dirty or all are clean.  If any of the pages
   1880  * we've seen so far are dirty, put the vnode on the paging chain,
   1881  * and mark it IN_PAGING.
   1882  *
   1883  * If checkfirst != 0, don't check all the pages but return at the
   1884  * first dirty page.
   1885  */
   1886 static int
   1887 check_dirty(struct lfs *fs, struct vnode *vp,
   1888 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1889 	    int flags, int checkfirst, struct vm_page **pgp)
   1890 {
   1891 	int by_list;
   1892 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1893 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1894 	off_t soff = 0; /* XXX: gcc */
   1895 	voff_t off;
   1896 	int i;
   1897 	int nonexistent;
   1898 	int any_dirty;	/* number of dirty pages */
   1899 	int dirty;	/* number of dirty pages in a block */
   1900 	int tdirty;
   1901 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1902 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1903 
   1904 	KASSERT(mutex_owned(vp->v_interlock));
   1905 	ASSERT_MAYBE_SEGLOCK(fs);
   1906   top:
   1907 	by_list = (vp->v_uobj.uo_npages <=
   1908 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1909 		   UVM_PAGE_TREE_PENALTY);
   1910 	any_dirty = 0;
   1911 
   1912 	if (by_list) {
   1913 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1914 	} else {
   1915 		soff = startoffset;
   1916 	}
   1917 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1918 		if (by_list) {
   1919 			/*
   1920 			 * Find the first page in a block.  Skip
   1921 			 * blocks outside our area of interest or beyond
   1922 			 * the end of file.
   1923 			 */
   1924 			KASSERT(curpg == NULL
   1925 			    || (curpg->flags & PG_MARKER) == 0);
   1926 			if (pages_per_block > 1) {
   1927 				while (curpg &&
   1928 				    ((curpg->offset & fs->lfs_bmask) ||
   1929 				    curpg->offset >= vp->v_size ||
   1930 				    curpg->offset >= endoffset)) {
   1931 					curpg = TAILQ_NEXT(curpg, listq.queue);
   1932 					KASSERT(curpg == NULL ||
   1933 					    (curpg->flags & PG_MARKER) == 0);
   1934 				}
   1935 			}
   1936 			if (curpg == NULL)
   1937 				break;
   1938 			soff = curpg->offset;
   1939 		}
   1940 
   1941 		/*
   1942 		 * Mark all pages in extended range busy; find out if any
   1943 		 * of them are dirty.
   1944 		 */
   1945 		nonexistent = dirty = 0;
   1946 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1947 			KASSERT(mutex_owned(vp->v_interlock));
   1948 			if (by_list && pages_per_block <= 1) {
   1949 				pgs[i] = pg = curpg;
   1950 			} else {
   1951 				off = soff + (i << PAGE_SHIFT);
   1952 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1953 				if (pg == NULL) {
   1954 					++nonexistent;
   1955 					continue;
   1956 				}
   1957 			}
   1958 			KASSERT(pg != NULL);
   1959 
   1960 			/*
   1961 			 * If we're holding the segment lock, we can deadlock
   1962 			 * against a process that has our page and is waiting
   1963 			 * for the cleaner, while the cleaner waits for the
   1964 			 * segment lock.  Just bail in that case.
   1965 			 */
   1966 			if ((pg->flags & PG_BUSY) &&
   1967 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1968 				if (i > 0)
   1969 					uvm_page_unbusy(pgs, i);
   1970 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1971 				if (pgp)
   1972 					*pgp = pg;
   1973 				KASSERT(mutex_owned(vp->v_interlock));
   1974 				return -1;
   1975 			}
   1976 
   1977 			while (pg->flags & PG_BUSY) {
   1978 				wait_for_page(vp, pg, NULL);
   1979 				KASSERT(mutex_owned(vp->v_interlock));
   1980 				if (i > 0)
   1981 					uvm_page_unbusy(pgs, i);
   1982 				KASSERT(mutex_owned(vp->v_interlock));
   1983 				goto top;
   1984 			}
   1985 			pg->flags |= PG_BUSY;
   1986 			UVM_PAGE_OWN(pg, "lfs_putpages");
   1987 
   1988 			pmap_page_protect(pg, VM_PROT_NONE);
   1989 			tdirty = (pmap_clear_modify(pg) ||
   1990 				  (pg->flags & PG_CLEAN) == 0);
   1991 			dirty += tdirty;
   1992 		}
   1993 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   1994 			if (by_list) {
   1995 				curpg = TAILQ_NEXT(curpg, listq.queue);
   1996 			} else {
   1997 				soff += fs->lfs_bsize;
   1998 			}
   1999 			continue;
   2000 		}
   2001 
   2002 		any_dirty += dirty;
   2003 		KASSERT(nonexistent == 0);
   2004 		KASSERT(mutex_owned(vp->v_interlock));
   2005 
   2006 		/*
   2007 		 * If any are dirty make all dirty; unbusy them,
   2008 		 * but if we were asked to clean, wire them so that
   2009 		 * the pagedaemon doesn't bother us about them while
   2010 		 * they're on their way to disk.
   2011 		 */
   2012 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2013 			KASSERT(mutex_owned(vp->v_interlock));
   2014 			pg = pgs[i];
   2015 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2016 			KASSERT(pg->flags & PG_BUSY);
   2017 			if (dirty) {
   2018 				pg->flags &= ~PG_CLEAN;
   2019 				if (flags & PGO_FREE) {
   2020 					/*
   2021 					 * Wire the page so that
   2022 					 * pdaemon doesn't see it again.
   2023 					 */
   2024 					mutex_enter(&uvm_pageqlock);
   2025 					uvm_pagewire(pg);
   2026 					mutex_exit(&uvm_pageqlock);
   2027 
   2028 					/* Suspended write flag */
   2029 					pg->flags |= PG_DELWRI;
   2030 				}
   2031 			}
   2032 			if (pg->flags & PG_WANTED)
   2033 				wakeup(pg);
   2034 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2035 			UVM_PAGE_OWN(pg, NULL);
   2036 		}
   2037 
   2038 		if (checkfirst && any_dirty)
   2039 			break;
   2040 
   2041 		if (by_list) {
   2042 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2043 		} else {
   2044 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2045 		}
   2046 	}
   2047 
   2048 	KASSERT(mutex_owned(vp->v_interlock));
   2049 	return any_dirty;
   2050 }
   2051 
   2052 /*
   2053  * lfs_putpages functions like genfs_putpages except that
   2054  *
   2055  * (1) It needs to bounds-check the incoming requests to ensure that
   2056  *     they are block-aligned; if they are not, expand the range and
   2057  *     do the right thing in case, e.g., the requested range is clean
   2058  *     but the expanded range is dirty.
   2059  *
   2060  * (2) It needs to explicitly send blocks to be written when it is done.
   2061  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2062  *     the seglock and let lfs_segunlock wait for us.
   2063  *     XXX There might be a bad situation if we have to flush a vnode while
   2064  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2065  *     XXX case.
   2066  *
   2067  * Assumptions:
   2068  *
   2069  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2070  *     there is a danger that when we expand the page range and busy the
   2071  *     pages we will deadlock.
   2072  *
   2073  * (2) We are called with vp->v_interlock held; we must return with it
   2074  *     released.
   2075  *
   2076  * (3) We don't absolutely have to free pages right away, provided that
   2077  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2078  *     us a request with PGO_FREE, we take the pages out of the paging
   2079  *     queue and wake up the writer, which will handle freeing them for us.
   2080  *
   2081  *     We ensure that for any filesystem block, all pages for that
   2082  *     block are either resident or not, even if those pages are higher
   2083  *     than EOF; that means that we will be getting requests to free
   2084  *     "unused" pages above EOF all the time, and should ignore them.
   2085  *
   2086  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2087  *     into has been set up for us by lfs_writefile.  If not, we will
   2088  *     have to handle allocating and/or freeing an finfo entry.
   2089  *
   2090  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2091  */
   2092 
   2093 /* How many times to loop before we should start to worry */
   2094 #define TOOMANY 4
   2095 
   2096 int
   2097 lfs_putpages(void *v)
   2098 {
   2099 	int error;
   2100 	struct vop_putpages_args /* {
   2101 		struct vnode *a_vp;
   2102 		voff_t a_offlo;
   2103 		voff_t a_offhi;
   2104 		int a_flags;
   2105 	} */ *ap = v;
   2106 	struct vnode *vp;
   2107 	struct inode *ip;
   2108 	struct lfs *fs;
   2109 	struct segment *sp;
   2110 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2111 	off_t off, max_endoffset;
   2112 	bool seglocked, sync, pagedaemon, reclaim;
   2113 	struct vm_page *pg, *busypg;
   2114 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2115 	int oreclaim = 0;
   2116 	int donewriting = 0;
   2117 #ifdef DEBUG
   2118 	int debug_n_again, debug_n_dirtyclean;
   2119 #endif
   2120 
   2121 	vp = ap->a_vp;
   2122 	ip = VTOI(vp);
   2123 	fs = ip->i_lfs;
   2124 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2125 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2126 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2127 
   2128 	KASSERT(mutex_owned(vp->v_interlock));
   2129 
   2130 	/* Putpages does nothing for metadata. */
   2131 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2132 		mutex_exit(vp->v_interlock);
   2133 		return 0;
   2134 	}
   2135 
   2136 	/*
   2137 	 * If there are no pages, don't do anything.
   2138 	 */
   2139 	if (vp->v_uobj.uo_npages == 0) {
   2140 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2141 		    (vp->v_iflag & VI_ONWORKLST) &&
   2142 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2143 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2144 			vn_syncer_remove_from_worklist(vp);
   2145 		}
   2146 		mutex_exit(vp->v_interlock);
   2147 
   2148 		/* Remove us from paging queue, if we were on it */
   2149 		mutex_enter(&lfs_lock);
   2150 		if (ip->i_flags & IN_PAGING) {
   2151 			ip->i_flags &= ~IN_PAGING;
   2152 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2153 		}
   2154 		mutex_exit(&lfs_lock);
   2155 
   2156 		KASSERT(!mutex_owned(vp->v_interlock));
   2157 		return 0;
   2158 	}
   2159 
   2160 	blkeof = blkroundup(fs, ip->i_size);
   2161 
   2162 	/*
   2163 	 * Ignore requests to free pages past EOF but in the same block
   2164 	 * as EOF, unless the vnode is being reclaimed or the request
   2165 	 * is synchronous.  (If the request is sync, it comes from
   2166 	 * lfs_truncate.)
   2167 	 *
   2168 	 * To avoid being flooded with this request, make these pages
   2169 	 * look "active".
   2170 	 */
   2171 	if (!sync && !reclaim &&
   2172 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2173 		origoffset = ap->a_offlo;
   2174 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2175 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2176 			KASSERT(pg != NULL);
   2177 			while (pg->flags & PG_BUSY) {
   2178 				pg->flags |= PG_WANTED;
   2179 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2180 						    "lfsput2", 0);
   2181 				mutex_enter(vp->v_interlock);
   2182 			}
   2183 			mutex_enter(&uvm_pageqlock);
   2184 			uvm_pageactivate(pg);
   2185 			mutex_exit(&uvm_pageqlock);
   2186 		}
   2187 		ap->a_offlo = blkeof;
   2188 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2189 			mutex_exit(vp->v_interlock);
   2190 			return 0;
   2191 		}
   2192 	}
   2193 
   2194 	/*
   2195 	 * Extend page range to start and end at block boundaries.
   2196 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2197 	 */
   2198 	origoffset = ap->a_offlo;
   2199 	origendoffset = ap->a_offhi;
   2200 	startoffset = origoffset & ~(fs->lfs_bmask);
   2201 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2202 					       << fs->lfs_bshift;
   2203 
   2204 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2205 		endoffset = max_endoffset;
   2206 		origendoffset = endoffset;
   2207 	} else {
   2208 		origendoffset = round_page(ap->a_offhi);
   2209 		endoffset = round_page(blkroundup(fs, origendoffset));
   2210 	}
   2211 
   2212 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2213 	if (startoffset == endoffset) {
   2214 		/* Nothing to do, why were we called? */
   2215 		mutex_exit(vp->v_interlock);
   2216 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2217 		      PRId64 "\n", startoffset));
   2218 		return 0;
   2219 	}
   2220 
   2221 	ap->a_offlo = startoffset;
   2222 	ap->a_offhi = endoffset;
   2223 
   2224 	/*
   2225 	 * If not cleaning, just send the pages through genfs_putpages
   2226 	 * to be returned to the pool.
   2227 	 */
   2228 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2229 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2230 		      vp, (int)ip->i_number, ap->a_flags));
   2231 		int r = genfs_putpages(v);
   2232 		KASSERT(!mutex_owned(vp->v_interlock));
   2233 		return r;
   2234 	}
   2235 
   2236 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   2237 	ap->a_flags |= PGO_BUSYFAIL;
   2238 
   2239 	/*
   2240 	 * Likewise, if we are asked to clean but the pages are not
   2241 	 * dirty, we can just free them using genfs_putpages.
   2242 	 */
   2243 #ifdef DEBUG
   2244 	debug_n_dirtyclean = 0;
   2245 #endif
   2246 	do {
   2247 		int r;
   2248 		KASSERT(mutex_owned(vp->v_interlock));
   2249 
   2250 		/* Count the number of dirty pages */
   2251 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2252 				ap->a_flags, 1, NULL);
   2253 		if (r < 0) {
   2254 			/* Pages are busy with another process */
   2255 			mutex_exit(vp->v_interlock);
   2256 			return EDEADLK;
   2257 		}
   2258 		if (r > 0) /* Some pages are dirty */
   2259 			break;
   2260 
   2261 		/*
   2262 		 * Sometimes pages are dirtied between the time that
   2263 		 * we check and the time we try to clean them.
   2264 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2265 		 * so we can write them properly.
   2266 		 */
   2267 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2268 		r = genfs_do_putpages(vp, startoffset, endoffset,
   2269 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   2270 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2271 		if (r != EDEADLK) {
   2272 			KASSERT(!mutex_owned(vp->v_interlock));
   2273  			return r;
   2274 		}
   2275 
   2276 		/* One of the pages was busy.  Start over. */
   2277 		mutex_enter(vp->v_interlock);
   2278 		wait_for_page(vp, busypg, "dirtyclean");
   2279 #ifdef DEBUG
   2280 		++debug_n_dirtyclean;
   2281 #endif
   2282 	} while(1);
   2283 
   2284 #ifdef DEBUG
   2285 	if (debug_n_dirtyclean > TOOMANY)
   2286 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   2287 		      debug_n_dirtyclean));
   2288 #endif
   2289 
   2290 	/*
   2291 	 * Dirty and asked to clean.
   2292 	 *
   2293 	 * Pagedaemon can't actually write LFS pages; wake up
   2294 	 * the writer to take care of that.  The writer will
   2295 	 * notice the pager inode queue and act on that.
   2296 	 *
   2297 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   2298 	 * get a nasty deadlock with lfs_flush_pchain().
   2299 	 */
   2300 	if (pagedaemon) {
   2301 		mutex_exit(vp->v_interlock);
   2302 		mutex_enter(&lfs_lock);
   2303 		if (!(ip->i_flags & IN_PAGING)) {
   2304 			ip->i_flags |= IN_PAGING;
   2305 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2306 		}
   2307 		wakeup(&lfs_writer_daemon);
   2308 		mutex_exit(&lfs_lock);
   2309 		preempt();
   2310 		KASSERT(!mutex_owned(vp->v_interlock));
   2311 		return EWOULDBLOCK;
   2312 	}
   2313 
   2314 	/*
   2315 	 * If this is a file created in a recent dirop, we can't flush its
   2316 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2317 	 * filesystem (taking care of any other pending dirops while we're
   2318 	 * at it).
   2319 	 */
   2320 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2321 	    (vp->v_uflag & VU_DIROP)) {
   2322 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   2323 
   2324  		lfs_writer_enter(fs, "ppdirop");
   2325 
   2326 		/* Note if we hold the vnode locked */
   2327 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   2328 		{
   2329 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   2330 		} else {
   2331 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   2332 		}
   2333 		mutex_exit(vp->v_interlock);
   2334 
   2335 		mutex_enter(&lfs_lock);
   2336 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2337 		mutex_exit(&lfs_lock);
   2338 
   2339 		mutex_enter(vp->v_interlock);
   2340 		lfs_writer_leave(fs);
   2341 
   2342 		/* The flush will have cleaned out this vnode as well,
   2343 		   no need to do more to it. */
   2344 	}
   2345 
   2346 	/*
   2347 	 * This is it.	We are going to write some pages.  From here on
   2348 	 * down it's all just mechanics.
   2349 	 *
   2350 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2351 	 */
   2352 	ap->a_flags &= ~PGO_SYNCIO;
   2353 
   2354 	/*
   2355 	 * If we've already got the seglock, flush the node and return.
   2356 	 * The FIP has already been set up for us by lfs_writefile,
   2357 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2358 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2359 	 * what we have, and correct FIP and segment header accounting.
   2360 	 */
   2361   get_seglock:
   2362 	/*
   2363 	 * If we are not called with the segment locked, lock it.
   2364 	 * Account for a new FIP in the segment header, and set sp->vp.
   2365 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2366 	 */
   2367 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2368 	if (!seglocked) {
   2369 		mutex_exit(vp->v_interlock);
   2370 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2371 		if (error != 0) {
   2372 			KASSERT(!mutex_owned(vp->v_interlock));
   2373  			return error;
   2374 		}
   2375 		mutex_enter(vp->v_interlock);
   2376 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2377 	}
   2378 	sp = fs->lfs_sp;
   2379 	KASSERT(sp->vp == NULL);
   2380 	sp->vp = vp;
   2381 
   2382 	/* Note segments written by reclaim; only for debugging */
   2383 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   2384 		sp->seg_flags |= SEGM_RECLAIM;
   2385 		fs->lfs_reclino = ip->i_number;
   2386 	}
   2387 
   2388 	/*
   2389 	 * Ensure that the partial segment is marked SS_DIROP if this
   2390 	 * vnode is a DIROP.
   2391 	 */
   2392 	if (!seglocked && vp->v_uflag & VU_DIROP)
   2393 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2394 
   2395 	/*
   2396 	 * Loop over genfs_putpages until all pages are gathered.
   2397 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2398 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2399 	 * well, since more pages might have been dirtied in our absence.
   2400 	 */
   2401 #ifdef DEBUG
   2402 	debug_n_again = 0;
   2403 #endif
   2404 	do {
   2405 		busypg = NULL;
   2406 		KASSERT(mutex_owned(vp->v_interlock));
   2407 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2408 				ap->a_flags, 0, &busypg) < 0) {
   2409 			mutex_exit(vp->v_interlock);
   2410 			/* XXX why? --ks */
   2411 			mutex_enter(vp->v_interlock);
   2412 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   2413 			if (!seglocked) {
   2414 				mutex_exit(vp->v_interlock);
   2415 				lfs_release_finfo(fs);
   2416 				lfs_segunlock(fs);
   2417 				mutex_enter(vp->v_interlock);
   2418 			}
   2419 			sp->vp = NULL;
   2420 			goto get_seglock;
   2421 		}
   2422 
   2423 		busypg = NULL;
   2424 		KASSERT(!mutex_owned(&uvm_pageqlock));
   2425 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   2426 		ap->a_flags &= ~PGO_RECLAIM;
   2427 		error = genfs_do_putpages(vp, startoffset, endoffset,
   2428 					   ap->a_flags, &busypg);
   2429 		ap->a_flags |= oreclaim;
   2430 
   2431 		if (error == EDEADLK || error == EAGAIN) {
   2432 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2433 			      " %d ino %d off %x (seg %d)\n", error,
   2434 			      ip->i_number, fs->lfs_offset,
   2435 			      dtosn(fs, fs->lfs_offset)));
   2436 
   2437 			if (oreclaim) {
   2438 				mutex_enter(vp->v_interlock);
   2439 				write_and_wait(fs, vp, busypg, seglocked, "again");
   2440 				mutex_exit(vp->v_interlock);
   2441 			} else {
   2442 				if ((sp->seg_flags & SEGM_SINGLE) &&
   2443 				    fs->lfs_curseg != fs->lfs_startseg)
   2444 					donewriting = 1;
   2445 			}
   2446 		} else if (error) {
   2447 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2448 			      " %d ino %d off %x (seg %d)\n", error,
   2449 			      (int)ip->i_number, fs->lfs_offset,
   2450 			      dtosn(fs, fs->lfs_offset)));
   2451 		}
   2452 		/* genfs_do_putpages loses the interlock */
   2453 #ifdef DEBUG
   2454 		++debug_n_again;
   2455 #endif
   2456 		if (oreclaim && error == EAGAIN) {
   2457 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   2458 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   2459 			mutex_enter(vp->v_interlock);
   2460 		}
   2461 		if (error == EDEADLK)
   2462 			mutex_enter(vp->v_interlock);
   2463 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   2464 #ifdef DEBUG
   2465 	if (debug_n_again > TOOMANY)
   2466 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   2467 #endif
   2468 
   2469 	KASSERT(sp != NULL && sp->vp == vp);
   2470 	if (!seglocked && !donewriting) {
   2471 		sp->vp = NULL;
   2472 
   2473 		/* Write indirect blocks as well */
   2474 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2475 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2476 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2477 
   2478 		KASSERT(sp->vp == NULL);
   2479 		sp->vp = vp;
   2480 	}
   2481 
   2482 	/*
   2483 	 * Blocks are now gathered into a segment waiting to be written.
   2484 	 * All that's left to do is update metadata, and write them.
   2485 	 */
   2486 	lfs_updatemeta(sp);
   2487 	KASSERT(sp->vp == vp);
   2488 	sp->vp = NULL;
   2489 
   2490 	/*
   2491 	 * If we were called from lfs_writefile, we don't need to clean up
   2492 	 * the FIP or unlock the segment lock.	We're done.
   2493 	 */
   2494 	if (seglocked) {
   2495 		KASSERT(!mutex_owned(vp->v_interlock));
   2496 		return error;
   2497 	}
   2498 
   2499 	/* Clean up FIP and send it to disk. */
   2500 	lfs_release_finfo(fs);
   2501 	lfs_writeseg(fs, fs->lfs_sp);
   2502 
   2503 	/*
   2504 	 * Remove us from paging queue if we wrote all our pages.
   2505 	 */
   2506 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2507 		mutex_enter(&lfs_lock);
   2508 		if (ip->i_flags & IN_PAGING) {
   2509 			ip->i_flags &= ~IN_PAGING;
   2510 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2511 		}
   2512 		mutex_exit(&lfs_lock);
   2513 	}
   2514 
   2515 	/*
   2516 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2517 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2518 	 * will not be true if we stop using malloc/copy.
   2519 	 */
   2520 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2521 	lfs_segunlock(fs);
   2522 
   2523 	/*
   2524 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2525 	 * take care of this, but there is a slight possibility that
   2526 	 * aiodoned might not have got around to our buffers yet.
   2527 	 */
   2528 	if (sync) {
   2529 		mutex_enter(vp->v_interlock);
   2530 		while (vp->v_numoutput > 0) {
   2531 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2532 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2533 			cv_wait(&vp->v_cv, vp->v_interlock);
   2534 		}
   2535 		mutex_exit(vp->v_interlock);
   2536 	}
   2537 	KASSERT(!mutex_owned(vp->v_interlock));
   2538 	return error;
   2539 }
   2540 
   2541 /*
   2542  * Return the last logical file offset that should be written for this file
   2543  * if we're doing a write that ends at "size".	If writing, we need to know
   2544  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2545  * to know about entire blocks.
   2546  */
   2547 void
   2548 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2549 {
   2550 	struct inode *ip = VTOI(vp);
   2551 	struct lfs *fs = ip->i_lfs;
   2552 	daddr_t olbn, nlbn;
   2553 
   2554 	olbn = lblkno(fs, ip->i_size);
   2555 	nlbn = lblkno(fs, size);
   2556 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   2557 		*eobp = fragroundup(fs, size);
   2558 	} else {
   2559 		*eobp = blkroundup(fs, size);
   2560 	}
   2561 }
   2562 
   2563 #ifdef DEBUG
   2564 void lfs_dump_vop(void *);
   2565 
   2566 void
   2567 lfs_dump_vop(void *v)
   2568 {
   2569 	struct vop_putpages_args /* {
   2570 		struct vnode *a_vp;
   2571 		voff_t a_offlo;
   2572 		voff_t a_offhi;
   2573 		int a_flags;
   2574 	} */ *ap = v;
   2575 
   2576 #ifdef DDB
   2577 	vfs_vnode_print(ap->a_vp, 0, printf);
   2578 #endif
   2579 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2580 }
   2581 #endif
   2582 
   2583 int
   2584 lfs_mmap(void *v)
   2585 {
   2586 	struct vop_mmap_args /* {
   2587 		const struct vnodeop_desc *a_desc;
   2588 		struct vnode *a_vp;
   2589 		vm_prot_t a_prot;
   2590 		kauth_cred_t a_cred;
   2591 	} */ *ap = v;
   2592 
   2593 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2594 		return EOPNOTSUPP;
   2595 	return ufs_mmap(v);
   2596 }
   2597