Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.240
      1 /*	$NetBSD: lfs_vnops.c,v 1.240 2012/02/16 02:47:55 perseant Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.240 2012/02/16 02:47:55 perseant Exp $");
     64 
     65 #ifdef _KERNEL_OPT
     66 #include "opt_compat_netbsd.h"
     67 #include "opt_uvm_page_trkown.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/namei.h>
     73 #include <sys/resourcevar.h>
     74 #include <sys/kernel.h>
     75 #include <sys/file.h>
     76 #include <sys/stat.h>
     77 #include <sys/buf.h>
     78 #include <sys/proc.h>
     79 #include <sys/mount.h>
     80 #include <sys/vnode.h>
     81 #include <sys/pool.h>
     82 #include <sys/signalvar.h>
     83 #include <sys/kauth.h>
     84 #include <sys/syslog.h>
     85 #include <sys/fstrans.h>
     86 
     87 #include <miscfs/fifofs/fifo.h>
     88 #include <miscfs/genfs/genfs.h>
     89 #include <miscfs/specfs/specdev.h>
     90 
     91 #include <ufs/ufs/inode.h>
     92 #include <ufs/ufs/dir.h>
     93 #include <ufs/ufs/ufsmount.h>
     94 #include <ufs/ufs/ufs_bswap.h>
     95 #include <ufs/ufs/ufs_extern.h>
     96 
     97 #include <uvm/uvm.h>
     98 #include <uvm/uvm_pmap.h>
     99 #include <uvm/uvm_stat.h>
    100 #include <uvm/uvm_pager.h>
    101 
    102 #include <ufs/lfs/lfs.h>
    103 #include <ufs/lfs/lfs_extern.h>
    104 
    105 extern pid_t lfs_writer_daemon;
    106 int lfs_ignore_lazy_sync = 1;
    107 
    108 /* Global vfs data structures for lfs. */
    109 int (**lfs_vnodeop_p)(void *);
    110 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    111 	{ &vop_default_desc, vn_default_error },
    112 	{ &vop_lookup_desc, ufs_lookup },		/* lookup */
    113 	{ &vop_create_desc, lfs_create },		/* create */
    114 	{ &vop_whiteout_desc, ufs_whiteout },		/* whiteout */
    115 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    116 	{ &vop_open_desc, ufs_open },			/* open */
    117 	{ &vop_close_desc, lfs_close },			/* close */
    118 	{ &vop_access_desc, ufs_access },		/* access */
    119 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    120 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    121 	{ &vop_read_desc, lfs_read },			/* read */
    122 	{ &vop_write_desc, lfs_write },			/* write */
    123 	{ &vop_ioctl_desc, ufs_ioctl },			/* ioctl */
    124 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    125 	{ &vop_poll_desc, ufs_poll },			/* poll */
    126 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    127 	{ &vop_revoke_desc, ufs_revoke },		/* revoke */
    128 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    129 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    130 	{ &vop_seek_desc, ufs_seek },			/* seek */
    131 	{ &vop_remove_desc, lfs_remove },		/* remove */
    132 	{ &vop_link_desc, lfs_link },			/* link */
    133 	{ &vop_rename_desc, lfs_rename },		/* rename */
    134 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    135 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    136 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    137 	{ &vop_readdir_desc, ufs_readdir },		/* readdir */
    138 	{ &vop_readlink_desc, ufs_readlink },		/* readlink */
    139 	{ &vop_abortop_desc, ufs_abortop },		/* abortop */
    140 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    141 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    142 	{ &vop_lock_desc, ufs_lock },			/* lock */
    143 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    144 	{ &vop_bmap_desc, ufs_bmap },			/* bmap */
    145 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    146 	{ &vop_print_desc, ufs_print },			/* print */
    147 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    148 	{ &vop_pathconf_desc, ufs_pathconf },		/* pathconf */
    149 	{ &vop_advlock_desc, ufs_advlock },		/* advlock */
    150 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    151 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    152 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    153 	{ NULL, NULL }
    154 };
    155 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    156 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    157 
    158 int (**lfs_specop_p)(void *);
    159 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    160 	{ &vop_default_desc, vn_default_error },
    161 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    162 	{ &vop_create_desc, spec_create },		/* create */
    163 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    164 	{ &vop_open_desc, spec_open },			/* open */
    165 	{ &vop_close_desc, lfsspec_close },		/* close */
    166 	{ &vop_access_desc, ufs_access },		/* access */
    167 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    168 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    169 	{ &vop_read_desc, ufsspec_read },		/* read */
    170 	{ &vop_write_desc, ufsspec_write },		/* write */
    171 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    172 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    173 	{ &vop_poll_desc, spec_poll },			/* poll */
    174 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    175 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    176 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    177 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    178 	{ &vop_seek_desc, spec_seek },			/* seek */
    179 	{ &vop_remove_desc, spec_remove },		/* remove */
    180 	{ &vop_link_desc, spec_link },			/* link */
    181 	{ &vop_rename_desc, spec_rename },		/* rename */
    182 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    183 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    184 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    185 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    186 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    187 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    188 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    189 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    190 	{ &vop_lock_desc, ufs_lock },			/* lock */
    191 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    192 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    193 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    194 	{ &vop_print_desc, ufs_print },			/* print */
    195 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    196 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    197 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    198 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    199 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    200 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    201 	{ NULL, NULL }
    202 };
    203 const struct vnodeopv_desc lfs_specop_opv_desc =
    204 	{ &lfs_specop_p, lfs_specop_entries };
    205 
    206 int (**lfs_fifoop_p)(void *);
    207 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    208 	{ &vop_default_desc, vn_default_error },
    209 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    210 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    211 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    212 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    213 	{ &vop_close_desc, lfsfifo_close },		/* close */
    214 	{ &vop_access_desc, ufs_access },		/* access */
    215 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    216 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    217 	{ &vop_read_desc, ufsfifo_read },		/* read */
    218 	{ &vop_write_desc, ufsfifo_write },		/* write */
    219 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    220 	{ &vop_fcntl_desc, ufs_fcntl },			/* fcntl */
    221 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    222 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    223 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    224 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    225 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    226 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    227 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    228 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    229 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    230 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    231 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    232 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    233 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    234 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    235 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    236 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    237 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    238 	{ &vop_lock_desc, ufs_lock },			/* lock */
    239 	{ &vop_unlock_desc, ufs_unlock },		/* unlock */
    240 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    241 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    242 	{ &vop_print_desc, ufs_print },			/* print */
    243 	{ &vop_islocked_desc, ufs_islocked },		/* islocked */
    244 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    245 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    246 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    247 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    248 	{ NULL, NULL }
    249 };
    250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    251 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    252 
    253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    254 
    255 #define	LFS_READWRITE
    256 #include <ufs/ufs/ufs_readwrite.c>
    257 #undef	LFS_READWRITE
    258 
    259 /*
    260  * Synch an open file.
    261  */
    262 /* ARGSUSED */
    263 int
    264 lfs_fsync(void *v)
    265 {
    266 	struct vop_fsync_args /* {
    267 		struct vnode *a_vp;
    268 		kauth_cred_t a_cred;
    269 		int a_flags;
    270 		off_t offlo;
    271 		off_t offhi;
    272 	} */ *ap = v;
    273 	struct vnode *vp = ap->a_vp;
    274 	int error, wait;
    275 	struct inode *ip = VTOI(vp);
    276 	struct lfs *fs = ip->i_lfs;
    277 
    278 	/* If we're mounted read-only, don't try to sync. */
    279 	if (fs->lfs_ronly)
    280 		return 0;
    281 
    282 	/* If a removed vnode is being cleaned, no need to sync here. */
    283 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    284 		return 0;
    285 
    286 	/*
    287 	 * Trickle sync simply adds this vnode to the pager list, as if
    288 	 * the pagedaemon had requested a pageout.
    289 	 */
    290 	if (ap->a_flags & FSYNC_LAZY) {
    291 		if (lfs_ignore_lazy_sync == 0) {
    292 			mutex_enter(&lfs_lock);
    293 			if (!(ip->i_flags & IN_PAGING)) {
    294 				ip->i_flags |= IN_PAGING;
    295 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    296 						  i_lfs_pchain);
    297 			}
    298 			wakeup(&lfs_writer_daemon);
    299 			mutex_exit(&lfs_lock);
    300 		}
    301 		return 0;
    302 	}
    303 
    304 	/*
    305 	 * If a vnode is bring cleaned, flush it out before we try to
    306 	 * reuse it.  This prevents the cleaner from writing files twice
    307 	 * in the same partial segment, causing an accounting underflow.
    308 	 */
    309 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    310 		lfs_vflush(vp);
    311 	}
    312 
    313 	wait = (ap->a_flags & FSYNC_WAIT);
    314 	do {
    315 		mutex_enter(vp->v_interlock);
    316 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    317 				     round_page(ap->a_offhi),
    318 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    319 		if (error == EAGAIN) {
    320 			mutex_enter(&lfs_lock);
    321 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    322 				hz / 100 + 1, &lfs_lock);
    323 			mutex_exit(&lfs_lock);
    324 		}
    325 	} while (error == EAGAIN);
    326 	if (error)
    327 		return error;
    328 
    329 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    330 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    331 
    332 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    333 		int l = 0;
    334 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    335 				  curlwp->l_cred);
    336 	}
    337 	if (wait && !VPISEMPTY(vp))
    338 		LFS_SET_UINO(ip, IN_MODIFIED);
    339 
    340 	return error;
    341 }
    342 
    343 /*
    344  * Take IN_ADIROP off, then call ufs_inactive.
    345  */
    346 int
    347 lfs_inactive(void *v)
    348 {
    349 	struct vop_inactive_args /* {
    350 		struct vnode *a_vp;
    351 	} */ *ap = v;
    352 
    353 	lfs_unmark_vnode(ap->a_vp);
    354 
    355 	/*
    356 	 * The Ifile is only ever inactivated on unmount.
    357 	 * Streamline this process by not giving it more dirty blocks.
    358 	 */
    359 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    360 		mutex_enter(&lfs_lock);
    361 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    362 		mutex_exit(&lfs_lock);
    363 		VOP_UNLOCK(ap->a_vp);
    364 		return 0;
    365 	}
    366 
    367 #ifdef DEBUG
    368 	/*
    369 	 * This might happen on unmount.
    370 	 * XXX If it happens at any other time, it should be a panic.
    371 	 */
    372 	if (ap->a_vp->v_uflag & VU_DIROP) {
    373 		struct inode *ip = VTOI(ap->a_vp);
    374 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    375 	}
    376 #endif /* DIAGNOSTIC */
    377 
    378 	return ufs_inactive(v);
    379 }
    380 
    381 /*
    382  * These macros are used to bracket UFS directory ops, so that we can
    383  * identify all the pages touched during directory ops which need to
    384  * be ordered and flushed atomically, so that they may be recovered.
    385  *
    386  * Because we have to mark nodes VU_DIROP in order to prevent
    387  * the cache from reclaiming them while a dirop is in progress, we must
    388  * also manage the number of nodes so marked (otherwise we can run out).
    389  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    390  * is decremented during segment write, when VU_DIROP is taken off.
    391  */
    392 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    393 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    394 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    395 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    396 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    397 static int lfs_set_dirop(struct vnode *, struct vnode *);
    398 
    399 static int
    400 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    401 {
    402 	struct lfs *fs;
    403 	int error;
    404 
    405 	KASSERT(VOP_ISLOCKED(dvp));
    406 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    407 
    408 	fs = VTOI(dvp)->i_lfs;
    409 
    410 	ASSERT_NO_SEGLOCK(fs);
    411 	/*
    412 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    413 	 * as an inode block; an overestimate in most cases.
    414 	 */
    415 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    416 		return (error);
    417 
    418     restart:
    419 	mutex_enter(&lfs_lock);
    420 	if (fs->lfs_dirops == 0) {
    421 		mutex_exit(&lfs_lock);
    422 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    423 		mutex_enter(&lfs_lock);
    424 	}
    425 	while (fs->lfs_writer) {
    426 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    427 		    "lfs_sdirop", 0, &lfs_lock);
    428 		if (error == EINTR) {
    429 			mutex_exit(&lfs_lock);
    430 			goto unreserve;
    431 		}
    432 	}
    433 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    434 		wakeup(&lfs_writer_daemon);
    435 		mutex_exit(&lfs_lock);
    436 		preempt();
    437 		goto restart;
    438 	}
    439 
    440 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    441 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    442 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    443 		if ((error = mtsleep(&lfs_dirvcount,
    444 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    445 		    &lfs_lock)) != 0) {
    446 			goto unreserve;
    447 		}
    448 		goto restart;
    449 	}
    450 
    451 	++fs->lfs_dirops;
    452 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    453 	mutex_exit(&lfs_lock);
    454 
    455 	/* Hold a reference so SET_ENDOP will be happy */
    456 	vref(dvp);
    457 	if (vp) {
    458 		vref(vp);
    459 		MARK_VNODE(vp);
    460 	}
    461 
    462 	MARK_VNODE(dvp);
    463 	return 0;
    464 
    465   unreserve:
    466 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    467 	return error;
    468 }
    469 
    470 /*
    471  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    472  * in getnewvnode(), if we have a stacked filesystem mounted on top
    473  * of us.
    474  *
    475  * NB: this means we have to clear the new vnodes on error.  Fortunately
    476  * SET_ENDOP is there to do that for us.
    477  */
    478 static int
    479 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    480 {
    481 	int error;
    482 	struct lfs *fs;
    483 
    484 	fs = VFSTOUFS(dvp->v_mount)->um_lfs;
    485 	ASSERT_NO_SEGLOCK(fs);
    486 	if (fs->lfs_ronly)
    487 		return EROFS;
    488 	if (vpp == NULL) {
    489 		return lfs_set_dirop(dvp, NULL);
    490 	}
    491 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    492 	if (error) {
    493 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    494 		      dvp, error));
    495 		return error;
    496 	}
    497 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    498 		ungetnewvnode(*vpp);
    499 		*vpp = NULL;
    500 		return error;
    501 	}
    502 	return 0;
    503 }
    504 
    505 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    506 	do {								\
    507 		mutex_enter(&lfs_lock);				\
    508 		--(fs)->lfs_dirops;					\
    509 		if (!(fs)->lfs_dirops) {				\
    510 			if ((fs)->lfs_nadirop) {			\
    511 				panic("SET_ENDOP: %s: no dirops but "	\
    512 					" nadirop=%d", (str),		\
    513 					(fs)->lfs_nadirop);		\
    514 			}						\
    515 			wakeup(&(fs)->lfs_writer);			\
    516 			mutex_exit(&lfs_lock);				\
    517 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    518 		} else							\
    519 			mutex_exit(&lfs_lock);				\
    520 	} while(0)
    521 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    522 	do {								\
    523 		UNMARK_VNODE(dvp);					\
    524 		if (nvpp && *nvpp)					\
    525 			UNMARK_VNODE(*nvpp);				\
    526 		/* Check for error return to stem vnode leakage */	\
    527 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    528 			ungetnewvnode(*(nvpp));				\
    529 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    530 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    531 		vrele(dvp);						\
    532 	} while(0)
    533 #define SET_ENDOP_CREATE_AP(ap, str)					\
    534 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    535 			 (ap)->a_vpp, (str))
    536 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    537 	do {								\
    538 		UNMARK_VNODE(dvp);					\
    539 		if (ovp)						\
    540 			UNMARK_VNODE(ovp);				\
    541 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    542 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    543 		vrele(dvp);						\
    544 		if (ovp)						\
    545 			vrele(ovp);					\
    546 	} while(0)
    547 
    548 void
    549 lfs_mark_vnode(struct vnode *vp)
    550 {
    551 	struct inode *ip = VTOI(vp);
    552 	struct lfs *fs = ip->i_lfs;
    553 
    554 	mutex_enter(&lfs_lock);
    555 	if (!(ip->i_flag & IN_ADIROP)) {
    556 		if (!(vp->v_uflag & VU_DIROP)) {
    557 			mutex_exit(&lfs_lock);
    558 			mutex_enter(vp->v_interlock);
    559 			if (lfs_vref(vp) != 0)
    560 				panic("lfs_mark_vnode: could not vref");
    561 			mutex_enter(&lfs_lock);
    562 			++lfs_dirvcount;
    563 			++fs->lfs_dirvcount;
    564 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    565 			vp->v_uflag |= VU_DIROP;
    566 		}
    567 		++fs->lfs_nadirop;
    568 		ip->i_flag &= ~IN_CDIROP;
    569 		ip->i_flag |= IN_ADIROP;
    570 	} else
    571 		KASSERT(vp->v_uflag & VU_DIROP);
    572 	mutex_exit(&lfs_lock);
    573 }
    574 
    575 void
    576 lfs_unmark_vnode(struct vnode *vp)
    577 {
    578 	struct inode *ip = VTOI(vp);
    579 
    580 	mutex_enter(&lfs_lock);
    581 	if (ip && (ip->i_flag & IN_ADIROP)) {
    582 		KASSERT(vp->v_uflag & VU_DIROP);
    583 		--ip->i_lfs->lfs_nadirop;
    584 		ip->i_flag &= ~IN_ADIROP;
    585 	}
    586 	mutex_exit(&lfs_lock);
    587 }
    588 
    589 int
    590 lfs_symlink(void *v)
    591 {
    592 	struct vop_symlink_args /* {
    593 		struct vnode *a_dvp;
    594 		struct vnode **a_vpp;
    595 		struct componentname *a_cnp;
    596 		struct vattr *a_vap;
    597 		char *a_target;
    598 	} */ *ap = v;
    599 	int error;
    600 
    601 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    602 		vput(ap->a_dvp);
    603 		return error;
    604 	}
    605 	error = ufs_symlink(ap);
    606 	SET_ENDOP_CREATE_AP(ap, "symlink");
    607 	return (error);
    608 }
    609 
    610 int
    611 lfs_mknod(void *v)
    612 {
    613 	struct vop_mknod_args	/* {
    614 		struct vnode *a_dvp;
    615 		struct vnode **a_vpp;
    616 		struct componentname *a_cnp;
    617 		struct vattr *a_vap;
    618 	} */ *ap = v;
    619 	struct vattr *vap = ap->a_vap;
    620 	struct vnode **vpp = ap->a_vpp;
    621 	struct inode *ip;
    622 	int error;
    623 	struct mount	*mp;
    624 	ino_t		ino;
    625 	struct ufs_lookup_results *ulr;
    626 
    627 	/* XXX should handle this material another way */
    628 	ulr = &VTOI(ap->a_dvp)->i_crap;
    629 	UFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    630 
    631 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    632 		vput(ap->a_dvp);
    633 		return error;
    634 	}
    635 	error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    636 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    637 
    638 	/* Either way we're done with the dirop at this point */
    639 	SET_ENDOP_CREATE_AP(ap, "mknod");
    640 
    641 	if (error)
    642 		return (error);
    643 
    644 	ip = VTOI(*vpp);
    645 	mp  = (*vpp)->v_mount;
    646 	ino = ip->i_number;
    647 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    648 	if (vap->va_rdev != VNOVAL) {
    649 		/*
    650 		 * Want to be able to use this to make badblock
    651 		 * inodes, so don't truncate the dev number.
    652 		 */
    653 #if 0
    654 		ip->i_ffs1_rdev = ufs_rw32(vap->va_rdev,
    655 					   UFS_MPNEEDSWAP((*vpp)->v_mount));
    656 #else
    657 		ip->i_ffs1_rdev = vap->va_rdev;
    658 #endif
    659 	}
    660 
    661 	/*
    662 	 * Call fsync to write the vnode so that we don't have to deal with
    663 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    664 	 *
    665 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    666 	 * return.  But, that leaves this vnode in limbo, also not good.
    667 	 * Can this ever happen (barring hardware failure)?
    668 	 */
    669 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    670 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    671 		      (unsigned long long)ino);
    672 		/* return (error); */
    673 	}
    674 	/*
    675 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    676 	 * checked to see if it is an alias of an existing entry in
    677 	 * the inode cache.
    678 	 */
    679 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    680 
    681 	VOP_UNLOCK(*vpp);
    682 	(*vpp)->v_type = VNON;
    683 	vgone(*vpp);
    684 	error = VFS_VGET(mp, ino, vpp);
    685 
    686 	if (error != 0) {
    687 		*vpp = NULL;
    688 		return (error);
    689 	}
    690 	return (0);
    691 }
    692 
    693 int
    694 lfs_create(void *v)
    695 {
    696 	struct vop_create_args	/* {
    697 		struct vnode *a_dvp;
    698 		struct vnode **a_vpp;
    699 		struct componentname *a_cnp;
    700 		struct vattr *a_vap;
    701 	} */ *ap = v;
    702 	int error;
    703 
    704 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    705 		vput(ap->a_dvp);
    706 		return error;
    707 	}
    708 	error = ufs_create(ap);
    709 	SET_ENDOP_CREATE_AP(ap, "create");
    710 	return (error);
    711 }
    712 
    713 int
    714 lfs_mkdir(void *v)
    715 {
    716 	struct vop_mkdir_args	/* {
    717 		struct vnode *a_dvp;
    718 		struct vnode **a_vpp;
    719 		struct componentname *a_cnp;
    720 		struct vattr *a_vap;
    721 	} */ *ap = v;
    722 	int error;
    723 
    724 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    725 		vput(ap->a_dvp);
    726 		return error;
    727 	}
    728 	error = ufs_mkdir(ap);
    729 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    730 	return (error);
    731 }
    732 
    733 int
    734 lfs_remove(void *v)
    735 {
    736 	struct vop_remove_args	/* {
    737 		struct vnode *a_dvp;
    738 		struct vnode *a_vp;
    739 		struct componentname *a_cnp;
    740 	} */ *ap = v;
    741 	struct vnode *dvp, *vp;
    742 	struct inode *ip;
    743 	int error;
    744 
    745 	dvp = ap->a_dvp;
    746 	vp = ap->a_vp;
    747 	ip = VTOI(vp);
    748 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    749 		if (dvp == vp)
    750 			vrele(vp);
    751 		else
    752 			vput(vp);
    753 		vput(dvp);
    754 		return error;
    755 	}
    756 	error = ufs_remove(ap);
    757 	if (ip->i_nlink == 0)
    758 		lfs_orphan(ip->i_lfs, ip->i_number);
    759 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    760 	return (error);
    761 }
    762 
    763 int
    764 lfs_rmdir(void *v)
    765 {
    766 	struct vop_rmdir_args	/* {
    767 		struct vnodeop_desc *a_desc;
    768 		struct vnode *a_dvp;
    769 		struct vnode *a_vp;
    770 		struct componentname *a_cnp;
    771 	} */ *ap = v;
    772 	struct vnode *vp;
    773 	struct inode *ip;
    774 	int error;
    775 
    776 	vp = ap->a_vp;
    777 	ip = VTOI(vp);
    778 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    779 		if (ap->a_dvp == vp)
    780 			vrele(ap->a_dvp);
    781 		else
    782 			vput(ap->a_dvp);
    783 		vput(vp);
    784 		return error;
    785 	}
    786 	error = ufs_rmdir(ap);
    787 	if (ip->i_nlink == 0)
    788 		lfs_orphan(ip->i_lfs, ip->i_number);
    789 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    790 	return (error);
    791 }
    792 
    793 int
    794 lfs_link(void *v)
    795 {
    796 	struct vop_link_args	/* {
    797 		struct vnode *a_dvp;
    798 		struct vnode *a_vp;
    799 		struct componentname *a_cnp;
    800 	} */ *ap = v;
    801 	int error;
    802 	struct vnode **vpp = NULL;
    803 
    804 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    805 		vput(ap->a_dvp);
    806 		return error;
    807 	}
    808 	error = ufs_link(ap);
    809 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    810 	return (error);
    811 }
    812 
    813 /* XXX following lifted from ufs_lookup.c */
    814 #define	FSFMT(vp)	(((vp)->v_mount->mnt_iflag & IMNT_DTYPE) == 0)
    815 
    816 /*
    817  * Check if either entry referred to by FROM_ULR is within the range
    818  * of entries named by TO_ULR.
    819  */
    820 static int
    821 ulr_overlap(const struct ufs_lookup_results *from_ulr,
    822 	    const struct ufs_lookup_results *to_ulr)
    823 {
    824 	doff_t from_start, from_prevstart;
    825 	doff_t to_start, to_end;
    826 
    827 	/*
    828 	 * FROM is a DELETE result; offset points to the entry to
    829 	 * remove and subtracting count gives the previous entry.
    830 	 */
    831 	from_start = from_ulr->ulr_offset - from_ulr->ulr_count;
    832 	from_prevstart = from_ulr->ulr_offset;
    833 
    834 	/*
    835 	 * TO is a RENAME (thus non-DELETE) result; offset points
    836 	 * to the beginning of a region to write in, and adding
    837 	 * count gives the end of the region.
    838 	 */
    839 	to_start = to_ulr->ulr_offset;
    840 	to_end = to_ulr->ulr_offset + to_ulr->ulr_count;
    841 
    842 	if (from_prevstart >= to_start && from_prevstart < to_end) {
    843 		return 1;
    844 	}
    845 	if (from_start >= to_start && from_start < to_end) {
    846 		return 1;
    847 	}
    848 	return 0;
    849 }
    850 
    851 /*
    852  * A virgin directory (no blushing please).
    853  */
    854 static const struct dirtemplate mastertemplate = {
    855 	0,	12,		DT_DIR,	1,	".",
    856 	0,	DIRBLKSIZ - 12,	DT_DIR,	2,	".."
    857 };
    858 
    859 /*
    860  * Wrapper for relookup that also updates the supplemental results.
    861  */
    862 static int
    863 do_relookup(struct vnode *dvp, struct ufs_lookup_results *ulr,
    864 	    struct vnode **vp, struct componentname *cnp)
    865 {
    866 	int error;
    867 
    868 	error = relookup(dvp, vp, cnp, 0);
    869 	if (error) {
    870 		return error;
    871 	}
    872 	/* update the supplemental reasults */
    873 	*ulr = VTOI(dvp)->i_crap;
    874 	UFS_CHECK_CRAPCOUNTER(VTOI(dvp));
    875 	return 0;
    876 }
    877 
    878 /*
    879  * Lock and relookup a sequence of two directories and two children.
    880  *
    881  */
    882 static int
    883 lock_vnode_sequence(struct vnode *d1, struct ufs_lookup_results *ulr1,
    884 		    struct vnode **v1_ret, struct componentname *cn1,
    885 		    int v1_missing_ok,
    886 		    int overlap_error,
    887 		    struct vnode *d2, struct ufs_lookup_results *ulr2,
    888 		    struct vnode **v2_ret, struct componentname *cn2,
    889 		    int v2_missing_ok)
    890 {
    891 	struct vnode *v1, *v2;
    892 	int error;
    893 
    894 	KASSERT(d1 != d2);
    895 
    896 	vn_lock(d1, LK_EXCLUSIVE | LK_RETRY);
    897 	if (VTOI(d1)->i_size == 0) {
    898 		/* d1 has been rmdir'd */
    899 		VOP_UNLOCK(d1);
    900 		return ENOENT;
    901 	}
    902 	error = do_relookup(d1, ulr1, &v1, cn1);
    903 	if (v1_missing_ok) {
    904 		if (error == ENOENT) {
    905 			/*
    906 			 * Note: currently if the name doesn't exist,
    907 			 * relookup succeeds (it intercepts the
    908 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
    909 			 * to NULL. Therefore, we will never get
    910 			 * ENOENT and this branch is not needed.
    911 			 * However, in a saner future the EJUSTRETURN
    912 			 * garbage will go away, so let's DTRT.
    913 			 */
    914 			v1 = NULL;
    915 			error = 0;
    916 		}
    917 	} else {
    918 		if (error == 0 && v1 == NULL) {
    919 			/* This is what relookup sets if v1 disappeared. */
    920 			error = ENOENT;
    921 		}
    922 	}
    923 	if (error) {
    924 		VOP_UNLOCK(d1);
    925 		return error;
    926 	}
    927 	if (v1 && v1 == d2) {
    928 		VOP_UNLOCK(d1);
    929 		VOP_UNLOCK(v1);
    930 		vrele(v1);
    931 		return overlap_error;
    932 	}
    933 
    934 	/*
    935 	 * The right way to do this is to do lookups without locking
    936 	 * the results, and lock the results afterwards; then at the
    937 	 * end we can avoid trying to lock v2 if v2 == v1.
    938 	 *
    939 	 * However, for the reasons described in the fdvp == tdvp case
    940 	 * in rename below, we can't do that safely. So, in the case
    941 	 * where v1 is not a directory, unlock it and lock it again
    942 	 * afterwards. This is safe in locking order because a
    943 	 * non-directory can't be above anything else in the tree. If
    944 	 * v1 *is* a directory, that's not true, but then because d1
    945 	 * != d2, v1 != v2.
    946 	 */
    947 	if (v1 && v1->v_type != VDIR) {
    948 		VOP_UNLOCK(v1);
    949 	}
    950 	vn_lock(d2, LK_EXCLUSIVE | LK_RETRY);
    951 	if (VTOI(d2)->i_size == 0) {
    952 		/* d2 has been rmdir'd */
    953 		VOP_UNLOCK(d2);
    954 		if (v1 && v1->v_type == VDIR) {
    955 			VOP_UNLOCK(v1);
    956 		}
    957 		VOP_UNLOCK(d1);
    958 		if (v1) {
    959 			vrele(v1);
    960 		}
    961 		return ENOENT;
    962 	}
    963 	error = do_relookup(d2, ulr2, &v2, cn2);
    964 	if (v2_missing_ok) {
    965 		if (error == ENOENT) {
    966 			/* as above */
    967 			v2 = NULL;
    968 			error = 0;
    969 		}
    970 	} else {
    971 		if (error == 0 && v2 == NULL) {
    972 			/* This is what relookup sets if v2 disappeared. */
    973 			error = ENOENT;
    974 		}
    975 	}
    976 	if (error) {
    977 		VOP_UNLOCK(d2);
    978 		if (v1 && v1->v_type == VDIR) {
    979 			VOP_UNLOCK(v1);
    980 		}
    981 		VOP_UNLOCK(d1);
    982 		if (v1) {
    983 			vrele(v1);
    984 		}
    985 		return error;
    986 	}
    987 	if (v1 && v1->v_type != VDIR && v1 != v2) {
    988 		vn_lock(v1, LK_EXCLUSIVE | LK_RETRY);
    989 	}
    990 	*v1_ret = v1;
    991 	*v2_ret = v2;
    992 	return 0;
    993 }
    994 
    995 int
    996 lfs_rename(void *v)
    997 {
    998 	struct vop_rename_args	/* {
    999 		struct vnode *a_fdvp;
   1000 		struct vnode *a_fvp;
   1001 		struct componentname *a_fcnp;
   1002 		struct vnode *a_tdvp;
   1003 		struct vnode *a_tvp;
   1004 		struct componentname *a_tcnp;
   1005 	} */ *ap = v;
   1006 	struct vnode		*tvp, *tdvp, *fvp, *fdvp;
   1007 	struct componentname *tcnp, *fcnp;
   1008 	struct inode		*ip, *txp, *fxp, *tdp, *fdp;
   1009 	struct mount		*mp;
   1010 	struct direct		*newdir;
   1011 	int			doingdirectory, error, marked;
   1012 	ino_t			oldparent, newparent;
   1013 
   1014 	struct ufs_lookup_results from_ulr, to_ulr;
   1015 	struct lfs *fs = VTOI(ap->a_fvp)->i_lfs;
   1016 
   1017 	tvp = ap->a_tvp;
   1018 	tdvp = ap->a_tdvp;
   1019 	fvp = ap->a_fvp;
   1020 	fdvp = ap->a_fdvp;
   1021 	tcnp = ap->a_tcnp;
   1022 	fcnp = ap->a_fcnp;
   1023 	doingdirectory = error = 0;
   1024 	oldparent = newparent = 0;
   1025 	marked = 0;
   1026 
   1027 	/* save the supplemental lookup results as they currently exist */
   1028 	from_ulr = VTOI(fdvp)->i_crap;
   1029 	to_ulr = VTOI(tdvp)->i_crap;
   1030 	UFS_CHECK_CRAPCOUNTER(VTOI(fdvp));
   1031 	UFS_CHECK_CRAPCOUNTER(VTOI(tdvp));
   1032 
   1033 	/*
   1034 	 * Owing to VFS oddities we are currently called with tdvp/tvp
   1035 	 * locked and not fdvp/fvp. In a sane world we'd be passed
   1036 	 * tdvp and fdvp only, unlocked, and two name strings. Pretend
   1037 	 * we have a sane world and unlock tdvp and tvp.
   1038 	 */
   1039 	VOP_UNLOCK(tdvp);
   1040 	if (tvp && tvp != tdvp) {
   1041 		VOP_UNLOCK(tvp);
   1042 	}
   1043 
   1044 	/* Also pretend we have a sane world and vrele fvp/tvp. */
   1045 	vrele(fvp);
   1046 	fvp = NULL;
   1047 	if (tvp) {
   1048 		vrele(tvp);
   1049 		tvp = NULL;
   1050 	}
   1051 
   1052 	/*
   1053 	 * Check for cross-device rename.
   1054 	 */
   1055 	if (fdvp->v_mount != tdvp->v_mount) {
   1056 		error = EXDEV;
   1057 		goto abort;
   1058 	}
   1059 
   1060 	/*
   1061 	 * Reject "." and ".."
   1062 	 */
   1063 	if ((fcnp->cn_flags & ISDOTDOT) || (tcnp->cn_flags & ISDOTDOT) ||
   1064 	    (fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1065 	    (tcnp->cn_namelen == 1 && tcnp->cn_nameptr[0] == '.')) {
   1066 		error = EINVAL;
   1067 		goto abort;
   1068 	}
   1069 
   1070 	/*
   1071 	 * Get locks.
   1072 	 */
   1073 
   1074 	/* paranoia */
   1075 	fcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1076 	tcnp->cn_flags |= LOCKPARENT|LOCKLEAF;
   1077 
   1078 	if (fdvp == tdvp) {
   1079 		/* One directory. Lock it and relookup both children. */
   1080 		vn_lock(fdvp, LK_EXCLUSIVE | LK_RETRY);
   1081 
   1082 		if (VTOI(fdvp)->i_size == 0) {
   1083 			/* directory has been rmdir'd */
   1084 			VOP_UNLOCK(fdvp);
   1085 			error = ENOENT;
   1086 			goto abort;
   1087 		}
   1088 
   1089 		error = do_relookup(fdvp, &from_ulr, &fvp, fcnp);
   1090 		if (error == 0 && fvp == NULL) {
   1091 			/* relookup may produce this if fvp disappears */
   1092 			error = ENOENT;
   1093 		}
   1094 		if (error) {
   1095 			VOP_UNLOCK(fdvp);
   1096 			goto abort;
   1097 		}
   1098 
   1099 		/*
   1100 		 * The right way to do this is to look up both children
   1101 		 * without locking either, and then lock both unless they
   1102 		 * turn out to be the same. However, due to deep-seated
   1103 		 * VFS-level issues all lookups lock the child regardless
   1104 		 * of whether LOCKLEAF is set (if LOCKLEAF is not set,
   1105 		 * the child is locked during lookup and then unlocked)
   1106 		 * so it is not safe to look up tvp while fvp is locked.
   1107 		 *
   1108 		 * Unlocking fvp here temporarily is more or less safe,
   1109 		 * because with the directory locked there's not much
   1110 		 * that can happen to it. However, ideally it wouldn't
   1111 		 * be necessary. XXX.
   1112 		 */
   1113 		VOP_UNLOCK(fvp);
   1114 		/* remember fdvp == tdvp so tdvp is locked */
   1115 		error = do_relookup(tdvp, &to_ulr, &tvp, tcnp);
   1116 		if (error && error != ENOENT) {
   1117 			VOP_UNLOCK(fdvp);
   1118 			goto abort;
   1119 		}
   1120 		if (error == ENOENT) {
   1121 			/*
   1122 			 * Note: currently if the name doesn't exist,
   1123 			 * relookup succeeds (it intercepts the
   1124 			 * EJUSTRETURN from VOP_LOOKUP) and sets tvp
   1125 			 * to NULL. Therefore, we will never get
   1126 			 * ENOENT and this branch is not needed.
   1127 			 * However, in a saner future the EJUSTRETURN
   1128 			 * garbage will go away, so let's DTRT.
   1129 			 */
   1130 			tvp = NULL;
   1131 		}
   1132 
   1133 		/* tvp is locked; lock fvp if necessary */
   1134 		if (!tvp || tvp != fvp) {
   1135 			vn_lock(fvp, LK_EXCLUSIVE | LK_RETRY);
   1136 		}
   1137 	} else {
   1138 		int found_fdvp;
   1139 		struct vnode *illegal_fvp;
   1140 
   1141 		/*
   1142 		 * The source must not be above the destination. (If
   1143 		 * it were, the rename would detach a section of the
   1144 		 * tree.)
   1145 		 *
   1146 		 * Look up the tree from tdvp to see if we find fdvp,
   1147 		 * and if so, return the immediate child of fdvp we're
   1148 		 * under; that must not turn out to be the same as
   1149 		 * fvp.
   1150 	 *
   1151 		 * The per-volume rename lock guarantees that the
   1152 		 * result of this check remains true until we finish
   1153 		 * looking up and locking.
   1154 	 */
   1155 		error = ufs_parentcheck(fdvp, tdvp, fcnp->cn_cred,
   1156 					&found_fdvp, &illegal_fvp);
   1157 		if (error) {
   1158 			goto abort;
   1159 		}
   1160 
   1161 		/* Must lock in tree order. */
   1162 
   1163 		if (found_fdvp) {
   1164 			/* fdvp -> fvp -> tdvp -> tvp */
   1165 			error = lock_vnode_sequence(fdvp, &from_ulr,
   1166 						    &fvp, fcnp, 0,
   1167 						    EINVAL,
   1168 						    tdvp, &to_ulr,
   1169 						    &tvp, tcnp, 1);
   1170 		} else {
   1171 			/* tdvp -> tvp -> fdvp -> fvp */
   1172 			error = lock_vnode_sequence(tdvp, &to_ulr,
   1173 						    &tvp, tcnp, 1,
   1174 						    ENOTEMPTY,
   1175 						    fdvp, &from_ulr,
   1176 						    &fvp, fcnp, 0);
   1177 		}
   1178 		if (error) {
   1179 			if (illegal_fvp) {
   1180 				vrele(illegal_fvp);
   1181 			}
   1182 			goto abort;
   1183 		}
   1184 		KASSERT(fvp != NULL);
   1185 
   1186 		if (illegal_fvp && fvp == illegal_fvp) {
   1187 			vrele(illegal_fvp);
   1188 			error = EINVAL;
   1189 			goto abort_withlocks;
   1190 		}
   1191 
   1192 		if (illegal_fvp) {
   1193 			vrele(illegal_fvp);
   1194 		}
   1195 	}
   1196 
   1197 	KASSERT(fdvp && VOP_ISLOCKED(fdvp));
   1198 	KASSERT(fvp && VOP_ISLOCKED(fvp));
   1199 	KASSERT(tdvp && VOP_ISLOCKED(tdvp));
   1200 	KASSERT(tvp == NULL || VOP_ISLOCKED(tvp));
   1201 
   1202 	/* --- everything is now locked --- */
   1203 
   1204 	if (tvp && ((VTOI(tvp)->i_flags & (IMMUTABLE | APPEND)) ||
   1205 		    (VTOI(tdvp)->i_flags & APPEND))) {
   1206 		error = EPERM;
   1207 		goto abort_withlocks;
   1208 	}
   1209 
   1210 	/*
   1211 	 * Check if just deleting a link name.
   1212 	 */
   1213 	if (fvp == tvp) {
   1214 		if (fvp->v_type == VDIR) {
   1215 			error = EINVAL;
   1216 			goto abort_withlocks;
   1217 		}
   1218 
   1219 		/* Release destination completely. Leave fdvp locked. */
   1220 		VOP_ABORTOP(tdvp, tcnp);
   1221 		if (fdvp != tdvp) {
   1222 			VOP_UNLOCK(tdvp);
   1223 		}
   1224 		VOP_UNLOCK(tvp);
   1225 		vrele(tdvp);
   1226 		vrele(tvp);
   1227 
   1228 		/* Delete source. */
   1229 		/* XXX: do we really need to relookup again? */
   1230 
   1231 		/*
   1232 		 * fdvp is still locked, but we just unlocked fvp
   1233 		 * (because fvp == tvp) so just decref fvp
   1234 		 */
   1235 		vrele(fvp);
   1236 		fcnp->cn_flags &= ~(MODMASK);
   1237 		fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
   1238 		fcnp->cn_nameiop = DELETE;
   1239 		if ((error = relookup(fdvp, &fvp, fcnp, 0))) {
   1240 			vput(fdvp);
   1241 			return (error);
   1242 		}
   1243 		return (VOP_REMOVE(fdvp, fvp, fcnp));
   1244 	}
   1245 
   1246 	/* The tiny bit of actual LFS code in this function */
   1247 	if ((error = SET_DIROP_REMOVE(tdvp, tvp)) != 0)
   1248 		goto abort_withlocks;
   1249 	MARK_VNODE(fdvp);
   1250 	MARK_VNODE(fvp);
   1251 	marked = 1;
   1252 
   1253 	fdp = VTOI(fdvp);
   1254 	ip = VTOI(fvp);
   1255 	if ((nlink_t) ip->i_nlink >= LINK_MAX) {
   1256 		error = EMLINK;
   1257 		goto abort_withlocks;
   1258 	}
   1259 	if ((ip->i_flags & (IMMUTABLE | APPEND)) ||
   1260 		(fdp->i_flags & APPEND)) {
   1261 		error = EPERM;
   1262 		goto abort_withlocks;
   1263 	}
   1264 	if ((ip->i_mode & IFMT) == IFDIR) {
   1265 		/*
   1266 		 * Avoid ".", "..", and aliases of "." for obvious reasons.
   1267 		 */
   1268 		if ((fcnp->cn_namelen == 1 && fcnp->cn_nameptr[0] == '.') ||
   1269 		    fdp == ip ||
   1270 		    (fcnp->cn_flags & ISDOTDOT) ||
   1271 		    (tcnp->cn_flags & ISDOTDOT) ||
   1272 		    (ip->i_flag & IN_RENAME)) {
   1273 			error = EINVAL;
   1274 			goto abort_withlocks;
   1275 		}
   1276 		ip->i_flag |= IN_RENAME;
   1277 		doingdirectory = 1;
   1278 	}
   1279 	oldparent = fdp->i_number;
   1280 	VN_KNOTE(fdvp, NOTE_WRITE);		/* XXXLUKEM/XXX: right place? */
   1281 
   1282 	/*
   1283 	 * Both the directory
   1284 	 * and target vnodes are locked.
   1285 	 */
   1286 	tdp = VTOI(tdvp);
   1287 	txp = NULL;
   1288 	if (tvp)
   1289 		txp = VTOI(tvp);
   1290 
   1291 	mp = fdvp->v_mount;
   1292 	fstrans_start(mp, FSTRANS_SHARED);
   1293 
   1294 	if (oldparent != tdp->i_number)
   1295 		newparent = tdp->i_number;
   1296 
   1297 	/*
   1298 	 * If ".." must be changed (ie the directory gets a new
   1299 	 * parent) the user must have write permission in the source
   1300 	 * so as to be able to change "..".
   1301 	 */
   1302 	if (doingdirectory && newparent) {
   1303 		error = VOP_ACCESS(fvp, VWRITE, tcnp->cn_cred);
   1304 		if (error)
   1305 			goto out;
   1306 	}
   1307 
   1308 	KASSERT(fdvp != tvp);
   1309 
   1310 	if (newparent) {
   1311 		/* Check for the rename("foo/foo", "foo") case. */
   1312 		if (fdvp == tvp) {
   1313 			error = doingdirectory ? ENOTEMPTY : EISDIR;
   1314 			goto out;
   1315 		}
   1316 	}
   1317 
   1318 	fxp = VTOI(fvp);
   1319 	fdp = VTOI(fdvp);
   1320 
   1321 	error = UFS_WAPBL_BEGIN(fdvp->v_mount);
   1322 	if (error)
   1323 		goto out2;
   1324 
   1325 	/*
   1326 	 * 1) Bump link count while we're moving stuff
   1327 	 *    around.  If we crash somewhere before
   1328 	 *    completing our work, the link count
   1329 	 *    may be wrong, but correctable.
   1330 	 */
   1331 	ip->i_nlink++;
   1332 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1333 	ip->i_flag |= IN_CHANGE;
   1334 	if ((error = UFS_UPDATE(fvp, NULL, NULL, UPDATE_DIROP)) != 0) {
   1335 		goto bad;
   1336 	}
   1337 
   1338 	/*
   1339 	 * 2) If target doesn't exist, link the target
   1340 	 *    to the source and unlink the source.
   1341 	 *    Otherwise, rewrite the target directory
   1342 	 *    entry to reference the source inode and
   1343 	 *    expunge the original entry's existence.
   1344 	 */
   1345 	if (txp == NULL) {
   1346 		if (tdp->i_dev != ip->i_dev)
   1347 			panic("rename: EXDEV");
   1348 		/*
   1349 		 * Account for ".." in new directory.
   1350 		 * When source and destination have the same
   1351 		 * parent we don't fool with the link count.
   1352 		 */
   1353 		if (doingdirectory && newparent) {
   1354 			if ((nlink_t)tdp->i_nlink >= LINK_MAX) {
   1355 				error = EMLINK;
   1356 				goto bad;
   1357 			}
   1358 			tdp->i_nlink++;
   1359 			DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1360 			tdp->i_flag |= IN_CHANGE;
   1361 			if ((error = UFS_UPDATE(tdvp, NULL, NULL,
   1362 			    UPDATE_DIROP)) != 0) {
   1363 				tdp->i_nlink--;
   1364 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1365 				tdp->i_flag |= IN_CHANGE;
   1366 				goto bad;
   1367 			}
   1368 		}
   1369 		newdir = pool_cache_get(ufs_direct_cache, PR_WAITOK);
   1370 		ufs_makedirentry(ip, tcnp, newdir);
   1371 		error = ufs_direnter(tdvp, &to_ulr,
   1372 				     NULL, newdir, tcnp, NULL);
   1373 		pool_cache_put(ufs_direct_cache, newdir);
   1374 		if (error != 0) {
   1375 			if (doingdirectory && newparent) {
   1376 				tdp->i_nlink--;
   1377 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1378 				tdp->i_flag |= IN_CHANGE;
   1379 				(void)UFS_UPDATE(tdvp, NULL, NULL,
   1380 						 UPDATE_WAIT | UPDATE_DIROP);
   1381 			}
   1382 			goto bad;
   1383 		}
   1384 		VN_KNOTE(tdvp, NOTE_WRITE);
   1385 	} else {
   1386 		if (txp->i_dev != tdp->i_dev || txp->i_dev != ip->i_dev)
   1387 			panic("rename: EXDEV");
   1388 		/*
   1389 		 * Short circuit rename(foo, foo).
   1390 		 */
   1391 		if (txp->i_number == ip->i_number)
   1392 			panic("rename: same file");
   1393 		/*
   1394 		 * If the parent directory is "sticky", then the user must
   1395 		 * own the parent directory, or the destination of the rename,
   1396 		 * otherwise the destination may not be changed (except by
   1397 		 * root). This implements append-only directories.
   1398 		 */
   1399 		if ((tdp->i_mode & S_ISTXT) &&
   1400 		    kauth_authorize_generic(tcnp->cn_cred,
   1401 		     KAUTH_GENERIC_ISSUSER, NULL) != 0 &&
   1402 		    kauth_cred_geteuid(tcnp->cn_cred) != tdp->i_uid &&
   1403 		    txp->i_uid != kauth_cred_geteuid(tcnp->cn_cred)) {
   1404 			error = EPERM;
   1405 			goto bad;
   1406 		}
   1407 		/*
   1408 		 * Target must be empty if a directory and have no links
   1409 		 * to it. Also, ensure source and target are compatible
   1410 		 * (both directories, or both not directories).
   1411 		 */
   1412 		if ((txp->i_mode & IFMT) == IFDIR) {
   1413 			if (txp->i_nlink > 2 ||
   1414 			    !ufs_dirempty(txp, tdp->i_number, tcnp->cn_cred)) {
   1415 				error = ENOTEMPTY;
   1416 				goto bad;
   1417 			}
   1418 			if (!doingdirectory) {
   1419 				error = ENOTDIR;
   1420 				goto bad;
   1421 			}
   1422 			cache_purge(tdvp);
   1423 		} else if (doingdirectory) {
   1424 			error = EISDIR;
   1425 			goto bad;
   1426 		}
   1427 		if ((error = ufs_dirrewrite(tdp, to_ulr.ulr_offset,
   1428 		    txp, ip->i_number,
   1429 		    IFTODT(ip->i_mode), doingdirectory && newparent ?
   1430 		    newparent : doingdirectory, IN_CHANGE | IN_UPDATE)) != 0)
   1431 			goto bad;
   1432 		if (doingdirectory) {
   1433 			/*
   1434 			 * Truncate inode. The only stuff left in the directory
   1435 			 * is "." and "..". The "." reference is inconsequential
   1436 			 * since we are quashing it. We have removed the "."
   1437 			 * reference and the reference in the parent directory,
   1438 			 * but there may be other hard links.
   1439 			 */
   1440 			if (!newparent) {
   1441 				tdp->i_nlink--;
   1442 				DIP_ASSIGN(tdp, nlink, tdp->i_nlink);
   1443 				tdp->i_flag |= IN_CHANGE;
   1444 				UFS_WAPBL_UPDATE(tdvp, NULL, NULL, 0);
   1445 			}
   1446 			txp->i_nlink--;
   1447 			DIP_ASSIGN(txp, nlink, txp->i_nlink);
   1448 			txp->i_flag |= IN_CHANGE;
   1449 			if ((error = UFS_TRUNCATE(tvp, (off_t)0, IO_SYNC,
   1450 			    tcnp->cn_cred)))
   1451 				goto bad;
   1452 		}
   1453 		VN_KNOTE(tdvp, NOTE_WRITE);
   1454 		VN_KNOTE(tvp, NOTE_DELETE);
   1455 	}
   1456 
   1457 	/*
   1458 	 * Handle case where the directory entry we need to remove,
   1459 	 * which is/was at from_ulr.ulr_offset, or the one before it,
   1460 	 * which is/was at from_ulr.ulr_offset - from_ulr.ulr_count,
   1461 	 * may have been moved when the directory insertion above
   1462 	 * performed compaction.
   1463 	 */
   1464 	if (tdp->i_number == fdp->i_number &&
   1465 	    ulr_overlap(&from_ulr, &to_ulr)) {
   1466 
   1467 		struct buf *bp;
   1468 		struct direct *ep;
   1469 		struct ufsmount *ump = fdp->i_ump;
   1470 		doff_t curpos;
   1471 		doff_t endsearch;	/* offset to end directory search */
   1472 		uint32_t prev_reclen;
   1473 		int dirblksiz = ump->um_dirblksiz;
   1474 		const int needswap = UFS_MPNEEDSWAP(ump);
   1475 		u_long bmask;
   1476 		int namlen, entryoffsetinblock;
   1477 		char *dirbuf;
   1478 
   1479 		bmask = fdvp->v_mount->mnt_stat.f_iosize - 1;
   1480 
   1481 		/*
   1482 		 * The fcnp entry will be somewhere between the start of
   1483 		 * compaction (to_ulr.ulr_offset) and the original location
   1484 		 * (from_ulr.ulr_offset).
   1485 		 */
   1486 		curpos = to_ulr.ulr_offset;
   1487 		endsearch = from_ulr.ulr_offset + from_ulr.ulr_reclen;
   1488 		entryoffsetinblock = 0;
   1489 
   1490 		/*
   1491 		 * Get the directory block containing the start of
   1492 		 * compaction.
   1493 		 */
   1494 		error = ufs_blkatoff(fdvp, (off_t)to_ulr.ulr_offset, &dirbuf,
   1495 		    &bp, false);
   1496 		if (error)
   1497 			goto bad;
   1498 
   1499 		/*
   1500 		 * Keep existing ulr_count (length of previous record)
   1501 		 * for the case where compaction did not include the
   1502 		 * previous entry but started at the from-entry.
   1503 		 */
   1504 		prev_reclen = from_ulr.ulr_count;
   1505 
   1506 		while (curpos < endsearch) {
   1507 			uint32_t reclen;
   1508 
   1509 			/*
   1510 			 * If necessary, get the next directory block.
   1511 			 *
   1512 			 * dholland 7/13/11 to the best of my understanding
   1513 			 * this should never happen; compaction occurs only
   1514 			 * within single blocks. I think.
   1515 			 */
   1516 			if ((curpos & bmask) == 0) {
   1517 				if (bp != NULL)
   1518 					brelse(bp, 0);
   1519 				error = ufs_blkatoff(fdvp, (off_t)curpos,
   1520 				    &dirbuf, &bp, false);
   1521 				if (error)
   1522 					goto bad;
   1523 				entryoffsetinblock = 0;
   1524 			}
   1525 
   1526 			KASSERT(bp != NULL);
   1527 			ep = (struct direct *)(dirbuf + entryoffsetinblock);
   1528 			reclen = ufs_rw16(ep->d_reclen, needswap);
   1529 
   1530 #if (BYTE_ORDER == LITTLE_ENDIAN)
   1531 			if (FSFMT(fdvp) && needswap == 0)
   1532 				namlen = ep->d_type;
   1533 			else
   1534 				namlen = ep->d_namlen;
   1535 #else
   1536 			if (FSFMT(fdvp) && needswap != 0)
   1537 				namlen = ep->d_type;
   1538 			else
   1539 				namlen = ep->d_namlen;
   1540 #endif
   1541 			if ((ep->d_ino != 0) &&
   1542 			    (ufs_rw32(ep->d_ino, needswap) != WINO) &&
   1543 			    (namlen == fcnp->cn_namelen) &&
   1544 			    memcmp(ep->d_name, fcnp->cn_nameptr, namlen) == 0) {
   1545 				from_ulr.ulr_reclen = reclen;
   1546 				break;
   1547 			}
   1548 			curpos += reclen;
   1549 			entryoffsetinblock += reclen;
   1550 			prev_reclen = reclen;
   1551 		}
   1552 
   1553 		from_ulr.ulr_offset = curpos;
   1554 		from_ulr.ulr_count = prev_reclen;
   1555 
   1556 		KASSERT(curpos <= endsearch);
   1557 
   1558 		/*
   1559 		 * If ulr_offset points to start of a directory block,
   1560 		 * clear ulr_count so ufs_dirremove() doesn't try to
   1561 		 * merge free space over a directory block boundary.
   1562 		 */
   1563 		if ((from_ulr.ulr_offset & (dirblksiz - 1)) == 0)
   1564 			from_ulr.ulr_count = 0;
   1565 
   1566 		brelse(bp, 0);
   1567 	}
   1568 
   1569 	/*
   1570 	 * 3) Unlink the source.
   1571 	 */
   1572 
   1573 #if 0
   1574 	/*
   1575 	 * Ensure that the directory entry still exists and has not
   1576 	 * changed while the new name has been entered. If the source is
   1577 	 * a file then the entry may have been unlinked or renamed. In
   1578 	 * either case there is no further work to be done. If the source
   1579 	 * is a directory then it cannot have been rmdir'ed; The IRENAME
   1580 	 * flag ensures that it cannot be moved by another rename or removed
   1581 	 * by a rmdir.
   1582 	 */
   1583 #endif
   1584 	KASSERT(fxp == ip);
   1585 
   1586 	/*
   1587 	 * If the source is a directory with a new parent, the link
   1588 	 * count of the old parent directory must be decremented and
   1589 	 * ".." set to point to the new parent.
   1590 	 */
   1591 	if (doingdirectory && newparent) {
   1592 		KASSERT(fdp != NULL);
   1593 		ufs_dirrewrite(fxp, mastertemplate.dot_reclen,
   1594 			       fdp, newparent, DT_DIR, 0, IN_CHANGE);
   1595 		cache_purge(fdvp);
   1596 	}
   1597 	error = ufs_dirremove(fdvp, &from_ulr,
   1598 			      fxp, fcnp->cn_flags, 0);
   1599 	fxp->i_flag &= ~IN_RENAME;
   1600 
   1601 	VN_KNOTE(fvp, NOTE_RENAME);
   1602 	goto done;
   1603 
   1604  out:
   1605 	goto out2;
   1606 
   1607 	/* exit routines from steps 1 & 2 */
   1608  bad:
   1609 	if (doingdirectory)
   1610 		ip->i_flag &= ~IN_RENAME;
   1611 	ip->i_nlink--;
   1612 	DIP_ASSIGN(ip, nlink, ip->i_nlink);
   1613 	ip->i_flag |= IN_CHANGE;
   1614 	ip->i_flag &= ~IN_RENAME;
   1615 	UFS_WAPBL_UPDATE(fvp, NULL, NULL, 0);
   1616  done:
   1617 	UFS_WAPBL_END(fdvp->v_mount);
   1618  out2:
   1619 	/*
   1620 	 * clear IN_RENAME - some exit paths happen too early to go
   1621 	 * through the cleanup done in the "bad" case above, so we
   1622 	 * always do this mini-cleanup here.
   1623 	 */
   1624 	ip->i_flag &= ~IN_RENAME;
   1625 
   1626 	VOP_UNLOCK(fdvp);
   1627 	if (tdvp != fdvp) {
   1628 		VOP_UNLOCK(tdvp);
   1629 	}
   1630 	VOP_UNLOCK(fvp);
   1631 	if (tvp && tvp != fvp) {
   1632 		VOP_UNLOCK(tvp);
   1633 	}
   1634 
   1635 	vrele(fdvp);
   1636 	vrele(tdvp);
   1637 	vrele(fvp);
   1638 	if (tvp) {
   1639 		vrele(tvp);
   1640 	}
   1641 
   1642 	fstrans_done(mp);
   1643 	if (marked) {
   1644 	UNMARK_VNODE(fdvp);
   1645 	UNMARK_VNODE(fvp);
   1646 	SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1647 	}
   1648 	return (error);
   1649 
   1650  abort_withlocks:
   1651 	VOP_UNLOCK(fdvp);
   1652 	if (tdvp != fdvp) {
   1653 		VOP_UNLOCK(tdvp);
   1654 	}
   1655 	VOP_UNLOCK(fvp);
   1656 	if (tvp && tvp != fvp) {
   1657 		VOP_UNLOCK(tvp);
   1658 	}
   1659 
   1660  abort:
   1661 	VOP_ABORTOP(fdvp, fcnp); /* XXX, why not in NFS? */
   1662 	VOP_ABORTOP(tdvp, tcnp); /* XXX, why not in NFS? */
   1663 		vrele(tdvp);
   1664 	if (tvp) {
   1665 		vrele(tvp);
   1666 	}
   1667 	vrele(fdvp);
   1668 	if (fvp) {
   1669 	vrele(fvp);
   1670 	}
   1671 	if (marked) {
   1672 		UNMARK_VNODE(fdvp);
   1673 		UNMARK_VNODE(fvp);
   1674 		SET_ENDOP_REMOVE(fs, tdvp, tvp, "rename");
   1675 	}
   1676 	return (error);
   1677 }
   1678 
   1679 /* XXX hack to avoid calling ITIMES in getattr */
   1680 int
   1681 lfs_getattr(void *v)
   1682 {
   1683 	struct vop_getattr_args /* {
   1684 		struct vnode *a_vp;
   1685 		struct vattr *a_vap;
   1686 		kauth_cred_t a_cred;
   1687 	} */ *ap = v;
   1688 	struct vnode *vp = ap->a_vp;
   1689 	struct inode *ip = VTOI(vp);
   1690 	struct vattr *vap = ap->a_vap;
   1691 	struct lfs *fs = ip->i_lfs;
   1692 	/*
   1693 	 * Copy from inode table
   1694 	 */
   1695 	vap->va_fsid = ip->i_dev;
   1696 	vap->va_fileid = ip->i_number;
   1697 	vap->va_mode = ip->i_mode & ~IFMT;
   1698 	vap->va_nlink = ip->i_nlink;
   1699 	vap->va_uid = ip->i_uid;
   1700 	vap->va_gid = ip->i_gid;
   1701 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
   1702 	vap->va_size = vp->v_size;
   1703 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
   1704 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
   1705 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
   1706 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
   1707 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
   1708 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
   1709 	vap->va_flags = ip->i_flags;
   1710 	vap->va_gen = ip->i_gen;
   1711 	/* this doesn't belong here */
   1712 	if (vp->v_type == VBLK)
   1713 		vap->va_blocksize = BLKDEV_IOSIZE;
   1714 	else if (vp->v_type == VCHR)
   1715 		vap->va_blocksize = MAXBSIZE;
   1716 	else
   1717 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
   1718 	vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
   1719 	vap->va_type = vp->v_type;
   1720 	vap->va_filerev = ip->i_modrev;
   1721 	return (0);
   1722 }
   1723 
   1724 /*
   1725  * Check to make sure the inode blocks won't choke the buffer
   1726  * cache, then call ufs_setattr as usual.
   1727  */
   1728 int
   1729 lfs_setattr(void *v)
   1730 {
   1731 	struct vop_setattr_args /* {
   1732 		struct vnode *a_vp;
   1733 		struct vattr *a_vap;
   1734 		kauth_cred_t a_cred;
   1735 	} */ *ap = v;
   1736 	struct vnode *vp = ap->a_vp;
   1737 
   1738 	lfs_check(vp, LFS_UNUSED_LBN, 0);
   1739 	return ufs_setattr(v);
   1740 }
   1741 
   1742 /*
   1743  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
   1744  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
   1745  */
   1746 static int
   1747 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
   1748 {
   1749 	if (fs->lfs_stoplwp != curlwp)
   1750 		return EBUSY;
   1751 
   1752 	fs->lfs_stoplwp = NULL;
   1753 	cv_signal(&fs->lfs_stopcv);
   1754 
   1755 	KASSERT(fs->lfs_nowrap > 0);
   1756 	if (fs->lfs_nowrap <= 0) {
   1757 		return 0;
   1758 	}
   1759 
   1760 	if (--fs->lfs_nowrap == 0) {
   1761 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
   1762 		wakeup(&fs->lfs_wrappass);
   1763 		lfs_wakeup_cleaner(fs);
   1764 	}
   1765 	if (waitfor) {
   1766 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1767 		    0, &lfs_lock);
   1768 	}
   1769 
   1770 	return 0;
   1771 }
   1772 
   1773 /*
   1774  * Close called
   1775  */
   1776 /* ARGSUSED */
   1777 int
   1778 lfs_close(void *v)
   1779 {
   1780 	struct vop_close_args /* {
   1781 		struct vnode *a_vp;
   1782 		int  a_fflag;
   1783 		kauth_cred_t a_cred;
   1784 	} */ *ap = v;
   1785 	struct vnode *vp = ap->a_vp;
   1786 	struct inode *ip = VTOI(vp);
   1787 	struct lfs *fs = ip->i_lfs;
   1788 
   1789 	if ((ip->i_number == ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1790 	    fs->lfs_stoplwp == curlwp) {
   1791 		mutex_enter(&lfs_lock);
   1792 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1793 		lfs_wrapgo(fs, ip, 0);
   1794 		mutex_exit(&lfs_lock);
   1795 	}
   1796 
   1797 	if (vp == ip->i_lfs->lfs_ivnode &&
   1798 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1799 		return 0;
   1800 
   1801 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1802 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1803 	}
   1804 	return (0);
   1805 }
   1806 
   1807 /*
   1808  * Close wrapper for special devices.
   1809  *
   1810  * Update the times on the inode then do device close.
   1811  */
   1812 int
   1813 lfsspec_close(void *v)
   1814 {
   1815 	struct vop_close_args /* {
   1816 		struct vnode	*a_vp;
   1817 		int		a_fflag;
   1818 		kauth_cred_t	a_cred;
   1819 	} */ *ap = v;
   1820 	struct vnode	*vp;
   1821 	struct inode	*ip;
   1822 
   1823 	vp = ap->a_vp;
   1824 	ip = VTOI(vp);
   1825 	if (vp->v_usecount > 1) {
   1826 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1827 	}
   1828 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1829 }
   1830 
   1831 /*
   1832  * Close wrapper for fifo's.
   1833  *
   1834  * Update the times on the inode then do device close.
   1835  */
   1836 int
   1837 lfsfifo_close(void *v)
   1838 {
   1839 	struct vop_close_args /* {
   1840 		struct vnode	*a_vp;
   1841 		int		a_fflag;
   1842 		kauth_cred_	a_cred;
   1843 	} */ *ap = v;
   1844 	struct vnode	*vp;
   1845 	struct inode	*ip;
   1846 
   1847 	vp = ap->a_vp;
   1848 	ip = VTOI(vp);
   1849 	if (ap->a_vp->v_usecount > 1) {
   1850 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1851 	}
   1852 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1853 }
   1854 
   1855 /*
   1856  * Reclaim an inode so that it can be used for other purposes.
   1857  */
   1858 
   1859 int
   1860 lfs_reclaim(void *v)
   1861 {
   1862 	struct vop_reclaim_args /* {
   1863 		struct vnode *a_vp;
   1864 	} */ *ap = v;
   1865 	struct vnode *vp = ap->a_vp;
   1866 	struct inode *ip = VTOI(vp);
   1867 	struct lfs *fs = ip->i_lfs;
   1868 	int error;
   1869 
   1870 	/*
   1871 	 * The inode must be freed and updated before being removed
   1872 	 * from its hash chain.  Other threads trying to gain a hold
   1873 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1874 	 */
   1875 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1876 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1877 
   1878 	mutex_enter(&lfs_lock);
   1879 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1880 	mutex_exit(&lfs_lock);
   1881 	if ((error = ufs_reclaim(vp)))
   1882 		return (error);
   1883 
   1884 	/*
   1885 	 * Take us off the paging and/or dirop queues if we were on them.
   1886 	 * We shouldn't be on them.
   1887 	 */
   1888 	mutex_enter(&lfs_lock);
   1889 	if (ip->i_flags & IN_PAGING) {
   1890 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1891 		    fs->lfs_fsmnt);
   1892 		ip->i_flags &= ~IN_PAGING;
   1893 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1894 	}
   1895 	if (vp->v_uflag & VU_DIROP) {
   1896 		panic("reclaimed vnode is VU_DIROP");
   1897 		vp->v_uflag &= ~VU_DIROP;
   1898 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1899 	}
   1900 	mutex_exit(&lfs_lock);
   1901 
   1902 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1903 	lfs_deregister_all(vp);
   1904 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1905 	ip->inode_ext.lfs = NULL;
   1906 	genfs_node_destroy(vp);
   1907 	pool_put(&lfs_inode_pool, vp->v_data);
   1908 	vp->v_data = NULL;
   1909 	return (0);
   1910 }
   1911 
   1912 /*
   1913  * Read a block from a storage device.
   1914  * In order to avoid reading blocks that are in the process of being
   1915  * written by the cleaner---and hence are not mutexed by the normal
   1916  * buffer cache / page cache mechanisms---check for collisions before
   1917  * reading.
   1918  *
   1919  * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
   1920  * the active cleaner test.
   1921  *
   1922  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1923  */
   1924 int
   1925 lfs_strategy(void *v)
   1926 {
   1927 	struct vop_strategy_args /* {
   1928 		struct vnode *a_vp;
   1929 		struct buf *a_bp;
   1930 	} */ *ap = v;
   1931 	struct buf	*bp;
   1932 	struct lfs	*fs;
   1933 	struct vnode	*vp;
   1934 	struct inode	*ip;
   1935 	daddr_t		tbn;
   1936 #define MAXLOOP 25
   1937 	int		i, sn, error, slept, loopcount;
   1938 
   1939 	bp = ap->a_bp;
   1940 	vp = ap->a_vp;
   1941 	ip = VTOI(vp);
   1942 	fs = ip->i_lfs;
   1943 
   1944 	/* lfs uses its strategy routine only for read */
   1945 	KASSERT(bp->b_flags & B_READ);
   1946 
   1947 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1948 		panic("lfs_strategy: spec");
   1949 	KASSERT(bp->b_bcount != 0);
   1950 	if (bp->b_blkno == bp->b_lblkno) {
   1951 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1952 				 NULL);
   1953 		if (error) {
   1954 			bp->b_error = error;
   1955 			bp->b_resid = bp->b_bcount;
   1956 			biodone(bp);
   1957 			return (error);
   1958 		}
   1959 		if ((long)bp->b_blkno == -1) /* no valid data */
   1960 			clrbuf(bp);
   1961 	}
   1962 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1963 		bp->b_resid = bp->b_bcount;
   1964 		biodone(bp);
   1965 		return (0);
   1966 	}
   1967 
   1968 	slept = 1;
   1969 	loopcount = 0;
   1970 	mutex_enter(&lfs_lock);
   1971 	while (slept && fs->lfs_seglock) {
   1972 		mutex_exit(&lfs_lock);
   1973 		/*
   1974 		 * Look through list of intervals.
   1975 		 * There will only be intervals to look through
   1976 		 * if the cleaner holds the seglock.
   1977 		 * Since the cleaner is synchronous, we can trust
   1978 		 * the list of intervals to be current.
   1979 		 */
   1980 		tbn = dbtofsb(fs, bp->b_blkno);
   1981 		sn = dtosn(fs, tbn);
   1982 		slept = 0;
   1983 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1984 			if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
   1985 			    tbn >= fs->lfs_cleanint[i]) {
   1986 				DLOG((DLOG_CLEAN,
   1987 				      "lfs_strategy: ino %d lbn %" PRId64
   1988 				      " ind %d sn %d fsb %" PRIx32
   1989 				      " given sn %d fsb %" PRIx64 "\n",
   1990 				      ip->i_number, bp->b_lblkno, i,
   1991 				      dtosn(fs, fs->lfs_cleanint[i]),
   1992 				      fs->lfs_cleanint[i], sn, tbn));
   1993 				DLOG((DLOG_CLEAN,
   1994 				      "lfs_strategy: sleeping on ino %d lbn %"
   1995 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1996 				mutex_enter(&lfs_lock);
   1997 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1998 					/*
   1999 					 * Cleaner can't wait for itself.
   2000 					 * Instead, wait for the blocks
   2001 					 * to be written to disk.
   2002 					 * XXX we need pribio in the test
   2003 					 * XXX here.
   2004 					 */
   2005  					mtsleep(&fs->lfs_iocount,
   2006  						(PRIBIO + 1) | PNORELOCK,
   2007 						"clean2", hz/10 + 1,
   2008  						&lfs_lock);
   2009 					slept = 1;
   2010 					++loopcount;
   2011 					break;
   2012 				} else if (fs->lfs_seglock) {
   2013 					mtsleep(&fs->lfs_seglock,
   2014 						(PRIBIO + 1) | PNORELOCK,
   2015 						"clean1", 0,
   2016 						&lfs_lock);
   2017 					slept = 1;
   2018 					break;
   2019 				}
   2020 				mutex_exit(&lfs_lock);
   2021 			}
   2022 		}
   2023 		mutex_enter(&lfs_lock);
   2024 		if (loopcount > MAXLOOP) {
   2025 			printf("lfs_strategy: breaking out of clean2 loop\n");
   2026 			break;
   2027 		}
   2028 	}
   2029 	mutex_exit(&lfs_lock);
   2030 
   2031 	vp = ip->i_devvp;
   2032 	VOP_STRATEGY(vp, bp);
   2033 	return (0);
   2034 }
   2035 
   2036 /*
   2037  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   2038  * Technically this is a checkpoint (the on-disk state is valid)
   2039  * even though we are leaving out all the file data.
   2040  */
   2041 int
   2042 lfs_flush_dirops(struct lfs *fs)
   2043 {
   2044 	struct inode *ip, *nip;
   2045 	struct vnode *vp;
   2046 	extern int lfs_dostats;
   2047 	struct segment *sp;
   2048 	int flags = 0;
   2049 	int error = 0;
   2050 
   2051 	ASSERT_MAYBE_SEGLOCK(fs);
   2052 	KASSERT(fs->lfs_nadirop == 0);
   2053 
   2054 	if (fs->lfs_ronly)
   2055 		return EROFS;
   2056 
   2057 	mutex_enter(&lfs_lock);
   2058 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   2059 		mutex_exit(&lfs_lock);
   2060 		return 0;
   2061 	} else
   2062 		mutex_exit(&lfs_lock);
   2063 
   2064 	if (lfs_dostats)
   2065 		++lfs_stats.flush_invoked;
   2066 
   2067 	lfs_imtime(fs);
   2068 	lfs_seglock(fs, flags);
   2069 	sp = fs->lfs_sp;
   2070 
   2071 	/*
   2072 	 * lfs_writevnodes, optimized to get dirops out of the way.
   2073 	 * Only write dirops, and don't flush files' pages, only
   2074 	 * blocks from the directories.
   2075 	 *
   2076 	 * We don't need to vref these files because they are
   2077 	 * dirops and so hold an extra reference until the
   2078 	 * segunlock clears them of that status.
   2079 	 *
   2080 	 * We don't need to check for IN_ADIROP because we know that
   2081 	 * no dirops are active.
   2082 	 *
   2083 	 */
   2084 	mutex_enter(&lfs_lock);
   2085 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   2086 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   2087 		mutex_exit(&lfs_lock);
   2088 		vp = ITOV(ip);
   2089 
   2090 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   2091 		KASSERT(vp->v_uflag & VU_DIROP);
   2092 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   2093 
   2094 		/*
   2095 		 * All writes to directories come from dirops; all
   2096 		 * writes to files' direct blocks go through the page
   2097 		 * cache, which we're not touching.  Reads to files
   2098 		 * and/or directories will not be affected by writing
   2099 		 * directory blocks inodes and file inodes.  So we don't
   2100 		 * really need to lock.
   2101 		 */
   2102 		if (vp->v_iflag & VI_XLOCK) {
   2103 			mutex_enter(&lfs_lock);
   2104 			continue;
   2105 		}
   2106 		/* XXX see below
   2107 		 * waslocked = VOP_ISLOCKED(vp);
   2108 		 */
   2109 		if (vp->v_type != VREG &&
   2110 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   2111 			error = lfs_writefile(fs, sp, vp);
   2112 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2113 			    !(ip->i_flag & IN_ALLMOD)) {
   2114 			    	mutex_enter(&lfs_lock);
   2115 				LFS_SET_UINO(ip, IN_MODIFIED);
   2116 			    	mutex_exit(&lfs_lock);
   2117 			}
   2118 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2119 				mutex_enter(&lfs_lock);
   2120 				error = EAGAIN;
   2121 				break;
   2122 			}
   2123 		}
   2124 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2125 		error = lfs_writeinode(fs, sp, ip);
   2126 		mutex_enter(&lfs_lock);
   2127 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   2128 			error = EAGAIN;
   2129 			break;
   2130 		}
   2131 
   2132 		/*
   2133 		 * We might need to update these inodes again,
   2134 		 * for example, if they have data blocks to write.
   2135 		 * Make sure that after this flush, they are still
   2136 		 * marked IN_MODIFIED so that we don't forget to
   2137 		 * write them.
   2138 		 */
   2139 		/* XXX only for non-directories? --KS */
   2140 		LFS_SET_UINO(ip, IN_MODIFIED);
   2141 	}
   2142 	mutex_exit(&lfs_lock);
   2143 	/* We've written all the dirops there are */
   2144 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   2145 	lfs_finalize_fs_seguse(fs);
   2146 	(void) lfs_writeseg(fs, sp);
   2147 	lfs_segunlock(fs);
   2148 
   2149 	return error;
   2150 }
   2151 
   2152 /*
   2153  * Flush all vnodes for which the pagedaemon has requested pageouts.
   2154  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   2155  * has just run, this would be an error).  If we have to skip a vnode
   2156  * for any reason, just skip it; if we have to wait for the cleaner,
   2157  * abort.  The writer daemon will call us again later.
   2158  */
   2159 int
   2160 lfs_flush_pchain(struct lfs *fs)
   2161 {
   2162 	struct inode *ip, *nip;
   2163 	struct vnode *vp;
   2164 	extern int lfs_dostats;
   2165 	struct segment *sp;
   2166 	int error, error2;
   2167 
   2168 	ASSERT_NO_SEGLOCK(fs);
   2169 
   2170 	if (fs->lfs_ronly)
   2171 		return EROFS;
   2172 
   2173 	mutex_enter(&lfs_lock);
   2174 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   2175 		mutex_exit(&lfs_lock);
   2176 		return 0;
   2177 	} else
   2178 		mutex_exit(&lfs_lock);
   2179 
   2180 	/* Get dirops out of the way */
   2181 	if ((error = lfs_flush_dirops(fs)) != 0)
   2182 		return error;
   2183 
   2184 	if (lfs_dostats)
   2185 		++lfs_stats.flush_invoked;
   2186 
   2187 	/*
   2188 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   2189 	 */
   2190 	lfs_imtime(fs);
   2191 	lfs_seglock(fs, 0);
   2192 	sp = fs->lfs_sp;
   2193 
   2194 	/*
   2195 	 * lfs_writevnodes, optimized to clear pageout requests.
   2196 	 * Only write non-dirop files that are in the pageout queue.
   2197 	 * We're very conservative about what we write; we want to be
   2198 	 * fast and async.
   2199 	 */
   2200 	mutex_enter(&lfs_lock);
   2201     top:
   2202 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   2203 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   2204 		vp = ITOV(ip);
   2205 
   2206 		if (!(ip->i_flags & IN_PAGING))
   2207 			goto top;
   2208 
   2209 		mutex_enter(vp->v_interlock);
   2210 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   2211 			mutex_exit(vp->v_interlock);
   2212 			continue;
   2213 		}
   2214 		if (vp->v_type != VREG) {
   2215 			mutex_exit(vp->v_interlock);
   2216 			continue;
   2217 		}
   2218 		if (lfs_vref(vp))
   2219 			continue;
   2220 		mutex_exit(&lfs_lock);
   2221 
   2222 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   2223 			lfs_vunref(vp);
   2224 			mutex_enter(&lfs_lock);
   2225 			continue;
   2226 		}
   2227 
   2228 		error = lfs_writefile(fs, sp, vp);
   2229 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   2230 		    !(ip->i_flag & IN_ALLMOD)) {
   2231 		    	mutex_enter(&lfs_lock);
   2232 			LFS_SET_UINO(ip, IN_MODIFIED);
   2233 		    	mutex_exit(&lfs_lock);
   2234 		}
   2235 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   2236 		error2 = lfs_writeinode(fs, sp, ip);
   2237 
   2238 		VOP_UNLOCK(vp);
   2239 		lfs_vunref(vp);
   2240 
   2241 		if (error == EAGAIN || error2 == EAGAIN) {
   2242 			lfs_writeseg(fs, sp);
   2243 			mutex_enter(&lfs_lock);
   2244 			break;
   2245 		}
   2246 		mutex_enter(&lfs_lock);
   2247 	}
   2248 	mutex_exit(&lfs_lock);
   2249 	(void) lfs_writeseg(fs, sp);
   2250 	lfs_segunlock(fs);
   2251 
   2252 	return 0;
   2253 }
   2254 
   2255 /*
   2256  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   2257  */
   2258 int
   2259 lfs_fcntl(void *v)
   2260 {
   2261 	struct vop_fcntl_args /* {
   2262 		struct vnode *a_vp;
   2263 		u_int a_command;
   2264 		void * a_data;
   2265 		int  a_fflag;
   2266 		kauth_cred_t a_cred;
   2267 	} */ *ap = v;
   2268 	struct timeval tv;
   2269 	struct timeval *tvp;
   2270 	BLOCK_INFO *blkiov;
   2271 	CLEANERINFO *cip;
   2272 	SEGUSE *sup;
   2273 	int blkcnt, error, oclean;
   2274 	size_t fh_size;
   2275 	struct lfs_fcntl_markv blkvp;
   2276 	struct lwp *l;
   2277 	fsid_t *fsidp;
   2278 	struct lfs *fs;
   2279 	struct buf *bp;
   2280 	fhandle_t *fhp;
   2281 	daddr_t off;
   2282 
   2283 	/* Only respect LFS fcntls on fs root or Ifile */
   2284 	if (VTOI(ap->a_vp)->i_number != ROOTINO &&
   2285 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   2286 		return ufs_fcntl(v);
   2287 	}
   2288 
   2289 	/* Avoid locking a draining lock */
   2290 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   2291 		return ESHUTDOWN;
   2292 	}
   2293 
   2294 	/* LFS control and monitoring fcntls are available only to root */
   2295 	l = curlwp;
   2296 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   2297 	    (error = kauth_authorize_generic(l->l_cred, KAUTH_GENERIC_ISSUSER,
   2298 					     NULL)) != 0)
   2299 		return (error);
   2300 
   2301 	fs = VTOI(ap->a_vp)->i_lfs;
   2302 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   2303 
   2304 	error = 0;
   2305 	switch ((int)ap->a_command) {
   2306 	    case LFCNSEGWAITALL_COMPAT_50:
   2307 	    case LFCNSEGWAITALL_COMPAT:
   2308 		fsidp = NULL;
   2309 		/* FALLSTHROUGH */
   2310 	    case LFCNSEGWAIT_COMPAT_50:
   2311 	    case LFCNSEGWAIT_COMPAT:
   2312 		{
   2313 			struct timeval50 *tvp50
   2314 				= (struct timeval50 *)ap->a_data;
   2315 			timeval50_to_timeval(tvp50, &tv);
   2316 			tvp = &tv;
   2317 		}
   2318 		goto segwait_common;
   2319 	    case LFCNSEGWAITALL:
   2320 		fsidp = NULL;
   2321 		/* FALLSTHROUGH */
   2322 	    case LFCNSEGWAIT:
   2323 		tvp = (struct timeval *)ap->a_data;
   2324 segwait_common:
   2325 		mutex_enter(&lfs_lock);
   2326 		++fs->lfs_sleepers;
   2327 		mutex_exit(&lfs_lock);
   2328 
   2329 		error = lfs_segwait(fsidp, tvp);
   2330 
   2331 		mutex_enter(&lfs_lock);
   2332 		if (--fs->lfs_sleepers == 0)
   2333 			wakeup(&fs->lfs_sleepers);
   2334 		mutex_exit(&lfs_lock);
   2335 		return error;
   2336 
   2337 	    case LFCNBMAPV:
   2338 	    case LFCNMARKV:
   2339 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   2340 
   2341 		blkcnt = blkvp.blkcnt;
   2342 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   2343 			return (EINVAL);
   2344 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   2345 		if ((error = copyin(blkvp.blkiov, blkiov,
   2346 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   2347 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2348 			return error;
   2349 		}
   2350 
   2351 		mutex_enter(&lfs_lock);
   2352 		++fs->lfs_sleepers;
   2353 		mutex_exit(&lfs_lock);
   2354 		if (ap->a_command == LFCNBMAPV)
   2355 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   2356 		else /* LFCNMARKV */
   2357 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   2358 		if (error == 0)
   2359 			error = copyout(blkiov, blkvp.blkiov,
   2360 					blkcnt * sizeof(BLOCK_INFO));
   2361 		mutex_enter(&lfs_lock);
   2362 		if (--fs->lfs_sleepers == 0)
   2363 			wakeup(&fs->lfs_sleepers);
   2364 		mutex_exit(&lfs_lock);
   2365 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   2366 		return error;
   2367 
   2368 	    case LFCNRECLAIM:
   2369 		/*
   2370 		 * Flush dirops and write Ifile, allowing empty segments
   2371 		 * to be immediately reclaimed.
   2372 		 */
   2373 		lfs_writer_enter(fs, "pndirop");
   2374 		off = fs->lfs_offset;
   2375 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   2376 		lfs_flush_dirops(fs);
   2377 		LFS_CLEANERINFO(cip, fs, bp);
   2378 		oclean = cip->clean;
   2379 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   2380 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   2381 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   2382 		lfs_segunlock(fs);
   2383 		lfs_writer_leave(fs);
   2384 
   2385 #ifdef DEBUG
   2386 		LFS_CLEANERINFO(cip, fs, bp);
   2387 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   2388 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   2389 		      fs->lfs_offset - off, cip->clean - oclean,
   2390 		      fs->lfs_activesb));
   2391 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   2392 #endif
   2393 
   2394 		return 0;
   2395 
   2396 	    case LFCNIFILEFH_COMPAT:
   2397 		/* Return the filehandle of the Ifile */
   2398 		if ((error = kauth_authorize_system(l->l_cred,
   2399 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   2400 			return (error);
   2401 		fhp = (struct fhandle *)ap->a_data;
   2402 		fhp->fh_fsid = *fsidp;
   2403 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   2404 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2405 
   2406 	    case LFCNIFILEFH_COMPAT2:
   2407 	    case LFCNIFILEFH:
   2408 		/* Return the filehandle of the Ifile */
   2409 		fhp = (struct fhandle *)ap->a_data;
   2410 		fhp->fh_fsid = *fsidp;
   2411 		fh_size = sizeof(struct lfs_fhandle) -
   2412 		    offsetof(fhandle_t, fh_fid);
   2413 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   2414 
   2415 	    case LFCNREWIND:
   2416 		/* Move lfs_offset to the lowest-numbered segment */
   2417 		return lfs_rewind(fs, *(int *)ap->a_data);
   2418 
   2419 	    case LFCNINVAL:
   2420 		/* Mark a segment SEGUSE_INVAL */
   2421 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   2422 		if (sup->su_nbytes > 0) {
   2423 			brelse(bp, 0);
   2424 			lfs_unset_inval_all(fs);
   2425 			return EBUSY;
   2426 		}
   2427 		sup->su_flags |= SEGUSE_INVAL;
   2428 		VOP_BWRITE(bp->b_vp, bp);
   2429 		return 0;
   2430 
   2431 	    case LFCNRESIZE:
   2432 		/* Resize the filesystem */
   2433 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   2434 
   2435 	    case LFCNWRAPSTOP:
   2436 	    case LFCNWRAPSTOP_COMPAT:
   2437 		/*
   2438 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   2439 		 * the filesystem wraps around.  To support external agents
   2440 		 * (dump, fsck-based regression test) that need to look at
   2441 		 * a snapshot of the filesystem, without necessarily
   2442 		 * requiring that all fs activity stops.
   2443 		 */
   2444 		if (fs->lfs_stoplwp == curlwp)
   2445 			return EALREADY;
   2446 
   2447 		mutex_enter(&lfs_lock);
   2448 		while (fs->lfs_stoplwp != NULL)
   2449 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   2450 		fs->lfs_stoplwp = curlwp;
   2451 		if (fs->lfs_nowrap == 0)
   2452 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   2453 		++fs->lfs_nowrap;
   2454 		if (*(int *)ap->a_data == 1
   2455 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   2456 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   2457 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2458 				"segwrap", 0, &lfs_lock);
   2459 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   2460 			if (error) {
   2461 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   2462 			}
   2463 		}
   2464 		mutex_exit(&lfs_lock);
   2465 		return 0;
   2466 
   2467 	    case LFCNWRAPGO:
   2468 	    case LFCNWRAPGO_COMPAT:
   2469 		/*
   2470 		 * Having done its work, the agent wakes up the writer.
   2471 		 * If the argument is 1, it sleeps until a new segment
   2472 		 * is selected.
   2473 		 */
   2474 		mutex_enter(&lfs_lock);
   2475 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   2476 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   2477 				    *((int *)ap->a_data));
   2478 		mutex_exit(&lfs_lock);
   2479 		return error;
   2480 
   2481 	    case LFCNWRAPPASS:
   2482 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   2483 			return EALREADY;
   2484 		mutex_enter(&lfs_lock);
   2485 		if (fs->lfs_stoplwp != curlwp) {
   2486 			mutex_exit(&lfs_lock);
   2487 			return EALREADY;
   2488 		}
   2489 		if (fs->lfs_nowrap == 0) {
   2490 			mutex_exit(&lfs_lock);
   2491 			return EBUSY;
   2492 		}
   2493 		fs->lfs_wrappass = 1;
   2494 		wakeup(&fs->lfs_wrappass);
   2495 		/* Wait for the log to wrap, if asked */
   2496 		if (*(int *)ap->a_data) {
   2497 			mutex_enter(ap->a_vp->v_interlock);
   2498 			if (lfs_vref(ap->a_vp) != 0)
   2499 				panic("LFCNWRAPPASS: lfs_vref failed");
   2500 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   2501 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   2502 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   2503 				"segwrap", 0, &lfs_lock);
   2504 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   2505 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   2506 			lfs_vunref(ap->a_vp);
   2507 		}
   2508 		mutex_exit(&lfs_lock);
   2509 		return error;
   2510 
   2511 	    case LFCNWRAPSTATUS:
   2512 		mutex_enter(&lfs_lock);
   2513 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   2514 		mutex_exit(&lfs_lock);
   2515 		return 0;
   2516 
   2517 	    default:
   2518 		return ufs_fcntl(v);
   2519 	}
   2520 	return 0;
   2521 }
   2522 
   2523 int
   2524 lfs_getpages(void *v)
   2525 {
   2526 	struct vop_getpages_args /* {
   2527 		struct vnode *a_vp;
   2528 		voff_t a_offset;
   2529 		struct vm_page **a_m;
   2530 		int *a_count;
   2531 		int a_centeridx;
   2532 		vm_prot_t a_access_type;
   2533 		int a_advice;
   2534 		int a_flags;
   2535 	} */ *ap = v;
   2536 
   2537 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   2538 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   2539 		return EPERM;
   2540 	}
   2541 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   2542 		mutex_enter(&lfs_lock);
   2543 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   2544 		mutex_exit(&lfs_lock);
   2545 	}
   2546 
   2547 	/*
   2548 	 * we're relying on the fact that genfs_getpages() always read in
   2549 	 * entire filesystem blocks.
   2550 	 */
   2551 	return genfs_getpages(v);
   2552 }
   2553 
   2554 /*
   2555  * Wait for a page to become unbusy, possibly printing diagnostic messages
   2556  * as well.
   2557  *
   2558  * Called with vp->v_interlock held; return with it held.
   2559  */
   2560 static void
   2561 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   2562 {
   2563 	KASSERT(mutex_owned(vp->v_interlock));
   2564 	if ((pg->flags & PG_BUSY) == 0)
   2565 		return;		/* Nothing to wait for! */
   2566 
   2567 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   2568 	static struct vm_page *lastpg;
   2569 
   2570 	if (label != NULL && pg != lastpg) {
   2571 		if (pg->owner_tag) {
   2572 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   2573 			       curproc->p_pid, curlwp->l_lid, label,
   2574 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   2575 		} else {
   2576 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   2577 			       curproc->p_pid, curlwp->l_lid, label, pg);
   2578 		}
   2579 	}
   2580 	lastpg = pg;
   2581 #endif
   2582 
   2583 	pg->flags |= PG_WANTED;
   2584 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   2585 	mutex_enter(vp->v_interlock);
   2586 }
   2587 
   2588 /*
   2589  * This routine is called by lfs_putpages() when it can't complete the
   2590  * write because a page is busy.  This means that either (1) someone,
   2591  * possibly the pagedaemon, is looking at this page, and will give it up
   2592  * presently; or (2) we ourselves are holding the page busy in the
   2593  * process of being written (either gathered or actually on its way to
   2594  * disk).  We don't need to give up the segment lock, but we might need
   2595  * to call lfs_writeseg() to expedite the page's journey to disk.
   2596  *
   2597  * Called with vp->v_interlock held; return with it held.
   2598  */
   2599 /* #define BUSYWAIT */
   2600 static void
   2601 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   2602 	       int seglocked, const char *label)
   2603 {
   2604 	KASSERT(mutex_owned(vp->v_interlock));
   2605 #ifndef BUSYWAIT
   2606 	struct inode *ip = VTOI(vp);
   2607 	struct segment *sp = fs->lfs_sp;
   2608 	int count = 0;
   2609 
   2610 	if (pg == NULL)
   2611 		return;
   2612 
   2613 	while (pg->flags & PG_BUSY &&
   2614 	    pg->uobject == &vp->v_uobj) {
   2615 		mutex_exit(vp->v_interlock);
   2616 		if (sp->cbpp - sp->bpp > 1) {
   2617 			/* Write gathered pages */
   2618 			lfs_updatemeta(sp);
   2619 			lfs_release_finfo(fs);
   2620 			(void) lfs_writeseg(fs, sp);
   2621 
   2622 			/*
   2623 			 * Reinitialize FIP
   2624 			 */
   2625 			KASSERT(sp->vp == vp);
   2626 			lfs_acquire_finfo(fs, ip->i_number,
   2627 					  ip->i_gen);
   2628 		}
   2629 		++count;
   2630 		mutex_enter(vp->v_interlock);
   2631 		wait_for_page(vp, pg, label);
   2632 	}
   2633 	if (label != NULL && count > 1) {
   2634 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   2635 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   2636 		      count));
   2637 	}
   2638 #else
   2639 	preempt(1);
   2640 #endif
   2641 	KASSERT(mutex_owned(vp->v_interlock));
   2642 }
   2643 
   2644 /*
   2645  * Make sure that for all pages in every block in the given range,
   2646  * either all are dirty or all are clean.  If any of the pages
   2647  * we've seen so far are dirty, put the vnode on the paging chain,
   2648  * and mark it IN_PAGING.
   2649  *
   2650  * If checkfirst != 0, don't check all the pages but return at the
   2651  * first dirty page.
   2652  */
   2653 static int
   2654 check_dirty(struct lfs *fs, struct vnode *vp,
   2655 	    off_t startoffset, off_t endoffset, off_t blkeof,
   2656 	    int flags, int checkfirst, struct vm_page **pgp)
   2657 {
   2658 	int by_list;
   2659 	struct vm_page *curpg = NULL; /* XXX: gcc */
   2660 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   2661 	off_t soff = 0; /* XXX: gcc */
   2662 	voff_t off;
   2663 	int i;
   2664 	int nonexistent;
   2665 	int any_dirty;	/* number of dirty pages */
   2666 	int dirty;	/* number of dirty pages in a block */
   2667 	int tdirty;
   2668 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   2669 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2670 
   2671 	KASSERT(mutex_owned(vp->v_interlock));
   2672 	ASSERT_MAYBE_SEGLOCK(fs);
   2673   top:
   2674 	by_list = (vp->v_uobj.uo_npages <=
   2675 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   2676 		   UVM_PAGE_TREE_PENALTY);
   2677 	any_dirty = 0;
   2678 
   2679 	if (by_list) {
   2680 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   2681 	} else {
   2682 		soff = startoffset;
   2683 	}
   2684 	while (by_list || soff < MIN(blkeof, endoffset)) {
   2685 		if (by_list) {
   2686 			/*
   2687 			 * Find the first page in a block.  Skip
   2688 			 * blocks outside our area of interest or beyond
   2689 			 * the end of file.
   2690 			 */
   2691 			KASSERT(curpg == NULL
   2692 			    || (curpg->flags & PG_MARKER) == 0);
   2693 			if (pages_per_block > 1) {
   2694 				while (curpg &&
   2695 				    ((curpg->offset & fs->lfs_bmask) ||
   2696 				    curpg->offset >= vp->v_size ||
   2697 				    curpg->offset >= endoffset)) {
   2698 					curpg = TAILQ_NEXT(curpg, listq.queue);
   2699 					KASSERT(curpg == NULL ||
   2700 					    (curpg->flags & PG_MARKER) == 0);
   2701 				}
   2702 			}
   2703 			if (curpg == NULL)
   2704 				break;
   2705 			soff = curpg->offset;
   2706 		}
   2707 
   2708 		/*
   2709 		 * Mark all pages in extended range busy; find out if any
   2710 		 * of them are dirty.
   2711 		 */
   2712 		nonexistent = dirty = 0;
   2713 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2714 			KASSERT(mutex_owned(vp->v_interlock));
   2715 			if (by_list && pages_per_block <= 1) {
   2716 				pgs[i] = pg = curpg;
   2717 			} else {
   2718 				off = soff + (i << PAGE_SHIFT);
   2719 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   2720 				if (pg == NULL) {
   2721 					++nonexistent;
   2722 					continue;
   2723 				}
   2724 			}
   2725 			KASSERT(pg != NULL);
   2726 
   2727 			/*
   2728 			 * If we're holding the segment lock, we can deadlock
   2729 			 * against a process that has our page and is waiting
   2730 			 * for the cleaner, while the cleaner waits for the
   2731 			 * segment lock.  Just bail in that case.
   2732 			 */
   2733 			if ((pg->flags & PG_BUSY) &&
   2734 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   2735 				if (i > 0)
   2736 					uvm_page_unbusy(pgs, i);
   2737 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   2738 				if (pgp)
   2739 					*pgp = pg;
   2740 				KASSERT(mutex_owned(vp->v_interlock));
   2741 				return -1;
   2742 			}
   2743 
   2744 			while (pg->flags & PG_BUSY) {
   2745 				wait_for_page(vp, pg, NULL);
   2746 				KASSERT(mutex_owned(vp->v_interlock));
   2747 				if (i > 0)
   2748 					uvm_page_unbusy(pgs, i);
   2749 				KASSERT(mutex_owned(vp->v_interlock));
   2750 				goto top;
   2751 			}
   2752 			pg->flags |= PG_BUSY;
   2753 			UVM_PAGE_OWN(pg, "lfs_putpages");
   2754 
   2755 			pmap_page_protect(pg, VM_PROT_NONE);
   2756 			tdirty = (pmap_clear_modify(pg) ||
   2757 				  (pg->flags & PG_CLEAN) == 0);
   2758 			dirty += tdirty;
   2759 		}
   2760 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   2761 			if (by_list) {
   2762 				curpg = TAILQ_NEXT(curpg, listq.queue);
   2763 			} else {
   2764 				soff += fs->lfs_bsize;
   2765 			}
   2766 			continue;
   2767 		}
   2768 
   2769 		any_dirty += dirty;
   2770 		KASSERT(nonexistent == 0);
   2771 		KASSERT(mutex_owned(vp->v_interlock));
   2772 
   2773 		/*
   2774 		 * If any are dirty make all dirty; unbusy them,
   2775 		 * but if we were asked to clean, wire them so that
   2776 		 * the pagedaemon doesn't bother us about them while
   2777 		 * they're on their way to disk.
   2778 		 */
   2779 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2780 			KASSERT(mutex_owned(vp->v_interlock));
   2781 			pg = pgs[i];
   2782 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2783 			KASSERT(pg->flags & PG_BUSY);
   2784 			if (dirty) {
   2785 				pg->flags &= ~PG_CLEAN;
   2786 				if (flags & PGO_FREE) {
   2787 					/*
   2788 					 * Wire the page so that
   2789 					 * pdaemon doesn't see it again.
   2790 					 */
   2791 					mutex_enter(&uvm_pageqlock);
   2792 					uvm_pagewire(pg);
   2793 					mutex_exit(&uvm_pageqlock);
   2794 
   2795 					/* Suspended write flag */
   2796 					pg->flags |= PG_DELWRI;
   2797 				}
   2798 			}
   2799 			if (pg->flags & PG_WANTED)
   2800 				wakeup(pg);
   2801 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2802 			UVM_PAGE_OWN(pg, NULL);
   2803 		}
   2804 
   2805 		if (checkfirst && any_dirty)
   2806 			break;
   2807 
   2808 		if (by_list) {
   2809 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2810 		} else {
   2811 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2812 		}
   2813 	}
   2814 
   2815 	KASSERT(mutex_owned(vp->v_interlock));
   2816 	return any_dirty;
   2817 }
   2818 
   2819 /*
   2820  * lfs_putpages functions like genfs_putpages except that
   2821  *
   2822  * (1) It needs to bounds-check the incoming requests to ensure that
   2823  *     they are block-aligned; if they are not, expand the range and
   2824  *     do the right thing in case, e.g., the requested range is clean
   2825  *     but the expanded range is dirty.
   2826  *
   2827  * (2) It needs to explicitly send blocks to be written when it is done.
   2828  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2829  *     the seglock and let lfs_segunlock wait for us.
   2830  *     XXX There might be a bad situation if we have to flush a vnode while
   2831  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2832  *     XXX case.
   2833  *
   2834  * Assumptions:
   2835  *
   2836  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2837  *     there is a danger that when we expand the page range and busy the
   2838  *     pages we will deadlock.
   2839  *
   2840  * (2) We are called with vp->v_interlock held; we must return with it
   2841  *     released.
   2842  *
   2843  * (3) We don't absolutely have to free pages right away, provided that
   2844  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2845  *     us a request with PGO_FREE, we take the pages out of the paging
   2846  *     queue and wake up the writer, which will handle freeing them for us.
   2847  *
   2848  *     We ensure that for any filesystem block, all pages for that
   2849  *     block are either resident or not, even if those pages are higher
   2850  *     than EOF; that means that we will be getting requests to free
   2851  *     "unused" pages above EOF all the time, and should ignore them.
   2852  *
   2853  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2854  *     into has been set up for us by lfs_writefile.  If not, we will
   2855  *     have to handle allocating and/or freeing an finfo entry.
   2856  *
   2857  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2858  */
   2859 
   2860 /* How many times to loop before we should start to worry */
   2861 #define TOOMANY 4
   2862 
   2863 int
   2864 lfs_putpages(void *v)
   2865 {
   2866 	int error;
   2867 	struct vop_putpages_args /* {
   2868 		struct vnode *a_vp;
   2869 		voff_t a_offlo;
   2870 		voff_t a_offhi;
   2871 		int a_flags;
   2872 	} */ *ap = v;
   2873 	struct vnode *vp;
   2874 	struct inode *ip;
   2875 	struct lfs *fs;
   2876 	struct segment *sp;
   2877 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2878 	off_t off, max_endoffset;
   2879 	bool seglocked, sync, pagedaemon, reclaim;
   2880 	struct vm_page *pg, *busypg;
   2881 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2882 	int oreclaim = 0;
   2883 	int donewriting = 0;
   2884 #ifdef DEBUG
   2885 	int debug_n_again, debug_n_dirtyclean;
   2886 #endif
   2887 
   2888 	vp = ap->a_vp;
   2889 	ip = VTOI(vp);
   2890 	fs = ip->i_lfs;
   2891 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2892 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2893 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2894 
   2895 	KASSERT(mutex_owned(vp->v_interlock));
   2896 
   2897 	/* Putpages does nothing for metadata. */
   2898 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2899 		mutex_exit(vp->v_interlock);
   2900 		return 0;
   2901 	}
   2902 
   2903 	/*
   2904 	 * If there are no pages, don't do anything.
   2905 	 */
   2906 	if (vp->v_uobj.uo_npages == 0) {
   2907 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2908 		    (vp->v_iflag & VI_ONWORKLST) &&
   2909 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2910 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2911 			vn_syncer_remove_from_worklist(vp);
   2912 		}
   2913 		mutex_exit(vp->v_interlock);
   2914 
   2915 		/* Remove us from paging queue, if we were on it */
   2916 		mutex_enter(&lfs_lock);
   2917 		if (ip->i_flags & IN_PAGING) {
   2918 			ip->i_flags &= ~IN_PAGING;
   2919 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2920 		}
   2921 		mutex_exit(&lfs_lock);
   2922 
   2923 		KASSERT(!mutex_owned(vp->v_interlock));
   2924 		return 0;
   2925 	}
   2926 
   2927 	blkeof = blkroundup(fs, ip->i_size);
   2928 
   2929 	/*
   2930 	 * Ignore requests to free pages past EOF but in the same block
   2931 	 * as EOF, unless the vnode is being reclaimed or the request
   2932 	 * is synchronous.  (If the request is sync, it comes from
   2933 	 * lfs_truncate.)
   2934 	 *
   2935 	 * To avoid being flooded with this request, make these pages
   2936 	 * look "active".
   2937 	 */
   2938 	if (!sync && !reclaim &&
   2939 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2940 		origoffset = ap->a_offlo;
   2941 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2942 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2943 			KASSERT(pg != NULL);
   2944 			while (pg->flags & PG_BUSY) {
   2945 				pg->flags |= PG_WANTED;
   2946 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2947 						    "lfsput2", 0);
   2948 				mutex_enter(vp->v_interlock);
   2949 			}
   2950 			mutex_enter(&uvm_pageqlock);
   2951 			uvm_pageactivate(pg);
   2952 			mutex_exit(&uvm_pageqlock);
   2953 		}
   2954 		ap->a_offlo = blkeof;
   2955 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2956 			mutex_exit(vp->v_interlock);
   2957 			return 0;
   2958 		}
   2959 	}
   2960 
   2961 	/*
   2962 	 * Extend page range to start and end at block boundaries.
   2963 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2964 	 */
   2965 	origoffset = ap->a_offlo;
   2966 	origendoffset = ap->a_offhi;
   2967 	startoffset = origoffset & ~(fs->lfs_bmask);
   2968 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2969 					       << fs->lfs_bshift;
   2970 
   2971 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2972 		endoffset = max_endoffset;
   2973 		origendoffset = endoffset;
   2974 	} else {
   2975 		origendoffset = round_page(ap->a_offhi);
   2976 		endoffset = round_page(blkroundup(fs, origendoffset));
   2977 	}
   2978 
   2979 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2980 	if (startoffset == endoffset) {
   2981 		/* Nothing to do, why were we called? */
   2982 		mutex_exit(vp->v_interlock);
   2983 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2984 		      PRId64 "\n", startoffset));
   2985 		return 0;
   2986 	}
   2987 
   2988 	ap->a_offlo = startoffset;
   2989 	ap->a_offhi = endoffset;
   2990 
   2991 	/*
   2992 	 * If not cleaning, just send the pages through genfs_putpages
   2993 	 * to be returned to the pool.
   2994 	 */
   2995 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2996 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2997 		      vp, (int)ip->i_number, ap->a_flags));
   2998 		int r = genfs_putpages(v);
   2999 		KASSERT(!mutex_owned(vp->v_interlock));
   3000 		return r;
   3001 	}
   3002 
   3003 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   3004 	ap->a_flags |= PGO_BUSYFAIL;
   3005 
   3006 	/*
   3007 	 * Likewise, if we are asked to clean but the pages are not
   3008 	 * dirty, we can just free them using genfs_putpages.
   3009 	 */
   3010 #ifdef DEBUG
   3011 	debug_n_dirtyclean = 0;
   3012 #endif
   3013 	do {
   3014 		int r;
   3015 		KASSERT(mutex_owned(vp->v_interlock));
   3016 
   3017 		/* Count the number of dirty pages */
   3018 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3019 				ap->a_flags, 1, NULL);
   3020 		if (r < 0) {
   3021 			/* Pages are busy with another process */
   3022 			mutex_exit(vp->v_interlock);
   3023 			return EDEADLK;
   3024 		}
   3025 		if (r > 0) /* Some pages are dirty */
   3026 			break;
   3027 
   3028 		/*
   3029 		 * Sometimes pages are dirtied between the time that
   3030 		 * we check and the time we try to clean them.
   3031 		 * Instruct lfs_gop_write to return EDEADLK in this case
   3032 		 * so we can write them properly.
   3033 		 */
   3034 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   3035 		r = genfs_do_putpages(vp, startoffset, endoffset,
   3036 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   3037 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   3038 		if (r != EDEADLK) {
   3039 			KASSERT(!mutex_owned(vp->v_interlock));
   3040  			return r;
   3041 		}
   3042 
   3043 		/* One of the pages was busy.  Start over. */
   3044 		mutex_enter(vp->v_interlock);
   3045 		wait_for_page(vp, busypg, "dirtyclean");
   3046 #ifdef DEBUG
   3047 		++debug_n_dirtyclean;
   3048 #endif
   3049 	} while(1);
   3050 
   3051 #ifdef DEBUG
   3052 	if (debug_n_dirtyclean > TOOMANY)
   3053 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   3054 		      debug_n_dirtyclean));
   3055 #endif
   3056 
   3057 	/*
   3058 	 * Dirty and asked to clean.
   3059 	 *
   3060 	 * Pagedaemon can't actually write LFS pages; wake up
   3061 	 * the writer to take care of that.  The writer will
   3062 	 * notice the pager inode queue and act on that.
   3063 	 *
   3064 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   3065 	 * get a nasty deadlock with lfs_flush_pchain().
   3066 	 */
   3067 	if (pagedaemon) {
   3068 		mutex_exit(vp->v_interlock);
   3069 		mutex_enter(&lfs_lock);
   3070 		if (!(ip->i_flags & IN_PAGING)) {
   3071 			ip->i_flags |= IN_PAGING;
   3072 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3073 		}
   3074 		wakeup(&lfs_writer_daemon);
   3075 		mutex_exit(&lfs_lock);
   3076 		preempt();
   3077 		KASSERT(!mutex_owned(vp->v_interlock));
   3078 		return EWOULDBLOCK;
   3079 	}
   3080 
   3081 	/*
   3082 	 * If this is a file created in a recent dirop, we can't flush its
   3083 	 * inode until the dirop is complete.  Drain dirops, then flush the
   3084 	 * filesystem (taking care of any other pending dirops while we're
   3085 	 * at it).
   3086 	 */
   3087 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   3088 	    (vp->v_uflag & VU_DIROP)) {
   3089 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   3090 
   3091  		lfs_writer_enter(fs, "ppdirop");
   3092 
   3093 		/* Note if we hold the vnode locked */
   3094 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   3095 		{
   3096 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   3097 		} else {
   3098 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   3099 		}
   3100 		mutex_exit(vp->v_interlock);
   3101 
   3102 		mutex_enter(&lfs_lock);
   3103 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   3104 		mutex_exit(&lfs_lock);
   3105 
   3106 		mutex_enter(vp->v_interlock);
   3107 		lfs_writer_leave(fs);
   3108 
   3109 		/* The flush will have cleaned out this vnode as well,
   3110 		   no need to do more to it. */
   3111 	}
   3112 
   3113 	/*
   3114 	 * This is it.	We are going to write some pages.  From here on
   3115 	 * down it's all just mechanics.
   3116 	 *
   3117 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   3118 	 */
   3119 	ap->a_flags &= ~PGO_SYNCIO;
   3120 
   3121 	/*
   3122 	 * If we've already got the seglock, flush the node and return.
   3123 	 * The FIP has already been set up for us by lfs_writefile,
   3124 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   3125 	 * unless genfs_putpages returns EDEADLK; then we must flush
   3126 	 * what we have, and correct FIP and segment header accounting.
   3127 	 */
   3128   get_seglock:
   3129 	/*
   3130 	 * If we are not called with the segment locked, lock it.
   3131 	 * Account for a new FIP in the segment header, and set sp->vp.
   3132 	 * (This should duplicate the setup at the top of lfs_writefile().)
   3133 	 */
   3134 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   3135 	if (!seglocked) {
   3136 		mutex_exit(vp->v_interlock);
   3137 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   3138 		if (error != 0) {
   3139 			KASSERT(!mutex_owned(vp->v_interlock));
   3140  			return error;
   3141 		}
   3142 		mutex_enter(vp->v_interlock);
   3143 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   3144 	}
   3145 	sp = fs->lfs_sp;
   3146 	KASSERT(sp->vp == NULL);
   3147 	sp->vp = vp;
   3148 
   3149 	/* Note segments written by reclaim; only for debugging */
   3150 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   3151 		sp->seg_flags |= SEGM_RECLAIM;
   3152 		fs->lfs_reclino = ip->i_number;
   3153 	}
   3154 
   3155 	/*
   3156 	 * Ensure that the partial segment is marked SS_DIROP if this
   3157 	 * vnode is a DIROP.
   3158 	 */
   3159 	if (!seglocked && vp->v_uflag & VU_DIROP)
   3160 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   3161 
   3162 	/*
   3163 	 * Loop over genfs_putpages until all pages are gathered.
   3164 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   3165 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   3166 	 * well, since more pages might have been dirtied in our absence.
   3167 	 */
   3168 #ifdef DEBUG
   3169 	debug_n_again = 0;
   3170 #endif
   3171 	do {
   3172 		busypg = NULL;
   3173 		KASSERT(mutex_owned(vp->v_interlock));
   3174 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   3175 				ap->a_flags, 0, &busypg) < 0) {
   3176 			mutex_exit(vp->v_interlock);
   3177 			/* XXX why? --ks */
   3178 			mutex_enter(vp->v_interlock);
   3179 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   3180 			if (!seglocked) {
   3181 				mutex_exit(vp->v_interlock);
   3182 				lfs_release_finfo(fs);
   3183 				lfs_segunlock(fs);
   3184 				mutex_enter(vp->v_interlock);
   3185 			}
   3186 			sp->vp = NULL;
   3187 			goto get_seglock;
   3188 		}
   3189 
   3190 		busypg = NULL;
   3191 		KASSERT(!mutex_owned(&uvm_pageqlock));
   3192 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   3193 		ap->a_flags &= ~PGO_RECLAIM;
   3194 		error = genfs_do_putpages(vp, startoffset, endoffset,
   3195 					   ap->a_flags, &busypg);
   3196 		ap->a_flags |= oreclaim;
   3197 
   3198 		if (error == EDEADLK || error == EAGAIN) {
   3199 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3200 			      " %d ino %d off %x (seg %d)\n", error,
   3201 			      ip->i_number, fs->lfs_offset,
   3202 			      dtosn(fs, fs->lfs_offset)));
   3203 
   3204 			if (oreclaim) {
   3205 				mutex_enter(vp->v_interlock);
   3206 				write_and_wait(fs, vp, busypg, seglocked, "again");
   3207 				mutex_exit(vp->v_interlock);
   3208 			} else {
   3209 				if ((sp->seg_flags & SEGM_SINGLE) &&
   3210 				    fs->lfs_curseg != fs->lfs_startseg)
   3211 					donewriting = 1;
   3212 			}
   3213 		} else if (error) {
   3214 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   3215 			      " %d ino %d off %x (seg %d)\n", error,
   3216 			      (int)ip->i_number, fs->lfs_offset,
   3217 			      dtosn(fs, fs->lfs_offset)));
   3218 		}
   3219 		/* genfs_do_putpages loses the interlock */
   3220 #ifdef DEBUG
   3221 		++debug_n_again;
   3222 #endif
   3223 		if (oreclaim && error == EAGAIN) {
   3224 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   3225 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   3226 			mutex_enter(vp->v_interlock);
   3227 		}
   3228 		if (error == EDEADLK)
   3229 			mutex_enter(vp->v_interlock);
   3230 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   3231 #ifdef DEBUG
   3232 	if (debug_n_again > TOOMANY)
   3233 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   3234 #endif
   3235 
   3236 	KASSERT(sp != NULL && sp->vp == vp);
   3237 	if (!seglocked && !donewriting) {
   3238 		sp->vp = NULL;
   3239 
   3240 		/* Write indirect blocks as well */
   3241 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   3242 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   3243 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   3244 
   3245 		KASSERT(sp->vp == NULL);
   3246 		sp->vp = vp;
   3247 	}
   3248 
   3249 	/*
   3250 	 * Blocks are now gathered into a segment waiting to be written.
   3251 	 * All that's left to do is update metadata, and write them.
   3252 	 */
   3253 	lfs_updatemeta(sp);
   3254 	KASSERT(sp->vp == vp);
   3255 	sp->vp = NULL;
   3256 
   3257 	/*
   3258 	 * If we were called from lfs_writefile, we don't need to clean up
   3259 	 * the FIP or unlock the segment lock.	We're done.
   3260 	 */
   3261 	if (seglocked) {
   3262 		KASSERT(!mutex_owned(vp->v_interlock));
   3263 		return error;
   3264 	}
   3265 
   3266 	/* Clean up FIP and send it to disk. */
   3267 	lfs_release_finfo(fs);
   3268 	lfs_writeseg(fs, fs->lfs_sp);
   3269 
   3270 	/*
   3271 	 * Remove us from paging queue if we wrote all our pages.
   3272 	 */
   3273 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   3274 		mutex_enter(&lfs_lock);
   3275 		if (ip->i_flags & IN_PAGING) {
   3276 			ip->i_flags &= ~IN_PAGING;
   3277 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   3278 		}
   3279 		mutex_exit(&lfs_lock);
   3280 	}
   3281 
   3282 	/*
   3283 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   3284 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   3285 	 * will not be true if we stop using malloc/copy.
   3286 	 */
   3287 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   3288 	lfs_segunlock(fs);
   3289 
   3290 	/*
   3291 	 * Wait for v_numoutput to drop to zero.  The seglock should
   3292 	 * take care of this, but there is a slight possibility that
   3293 	 * aiodoned might not have got around to our buffers yet.
   3294 	 */
   3295 	if (sync) {
   3296 		mutex_enter(vp->v_interlock);
   3297 		while (vp->v_numoutput > 0) {
   3298 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   3299 			      " num %d\n", ip->i_number, vp->v_numoutput));
   3300 			cv_wait(&vp->v_cv, vp->v_interlock);
   3301 		}
   3302 		mutex_exit(vp->v_interlock);
   3303 	}
   3304 	KASSERT(!mutex_owned(vp->v_interlock));
   3305 	return error;
   3306 }
   3307 
   3308 /*
   3309  * Return the last logical file offset that should be written for this file
   3310  * if we're doing a write that ends at "size".	If writing, we need to know
   3311  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   3312  * to know about entire blocks.
   3313  */
   3314 void
   3315 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   3316 {
   3317 	struct inode *ip = VTOI(vp);
   3318 	struct lfs *fs = ip->i_lfs;
   3319 	daddr_t olbn, nlbn;
   3320 
   3321 	olbn = lblkno(fs, ip->i_size);
   3322 	nlbn = lblkno(fs, size);
   3323 	if (!(flags & GOP_SIZE_MEM) && nlbn < NDADDR && olbn <= nlbn) {
   3324 		*eobp = fragroundup(fs, size);
   3325 	} else {
   3326 		*eobp = blkroundup(fs, size);
   3327 	}
   3328 }
   3329 
   3330 #ifdef DEBUG
   3331 void lfs_dump_vop(void *);
   3332 
   3333 void
   3334 lfs_dump_vop(void *v)
   3335 {
   3336 	struct vop_putpages_args /* {
   3337 		struct vnode *a_vp;
   3338 		voff_t a_offlo;
   3339 		voff_t a_offhi;
   3340 		int a_flags;
   3341 	} */ *ap = v;
   3342 
   3343 #ifdef DDB
   3344 	vfs_vnode_print(ap->a_vp, 0, printf);
   3345 #endif
   3346 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   3347 }
   3348 #endif
   3349 
   3350 int
   3351 lfs_mmap(void *v)
   3352 {
   3353 	struct vop_mmap_args /* {
   3354 		const struct vnodeop_desc *a_desc;
   3355 		struct vnode *a_vp;
   3356 		vm_prot_t a_prot;
   3357 		kauth_cred_t a_cred;
   3358 	} */ *ap = v;
   3359 
   3360 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   3361 		return EOPNOTSUPP;
   3362 	return ufs_mmap(v);
   3363 }
   3364