lfs_vnops.c revision 1.246 1 /* $NetBSD: lfs_vnops.c,v 1.246 2013/06/08 02:11:11 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.246 2013/06/08 02:11:11 dholland Exp $");
64
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #include "opt_uvm_page_trkown.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/namei.h>
73 #include <sys/resourcevar.h>
74 #include <sys/kernel.h>
75 #include <sys/file.h>
76 #include <sys/stat.h>
77 #include <sys/buf.h>
78 #include <sys/proc.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/pool.h>
82 #include <sys/signalvar.h>
83 #include <sys/kauth.h>
84 #include <sys/syslog.h>
85 #include <sys/fstrans.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/lfs/ulfs_inode.h>
92 #include <ufs/lfs/ulfs_dir.h>
93 #include <ufs/lfs/ulfsmount.h>
94 #include <ufs/lfs/ulfs_bswap.h>
95 #include <ufs/lfs/ulfs_extern.h>
96
97 #include <uvm/uvm.h>
98 #include <uvm/uvm_pmap.h>
99 #include <uvm/uvm_stat.h>
100 #include <uvm/uvm_pager.h>
101
102 #include <ufs/lfs/lfs.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 extern pid_t lfs_writer_daemon;
106 int lfs_ignore_lazy_sync = 1;
107
108 /* Global vfs data structures for lfs. */
109 int (**lfs_vnodeop_p)(void *);
110 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
111 { &vop_default_desc, vn_default_error },
112 { &vop_lookup_desc, ulfs_lookup }, /* lookup */
113 { &vop_create_desc, lfs_create }, /* create */
114 { &vop_whiteout_desc, ulfs_whiteout }, /* whiteout */
115 { &vop_mknod_desc, lfs_mknod }, /* mknod */
116 { &vop_open_desc, ulfs_open }, /* open */
117 { &vop_close_desc, lfs_close }, /* close */
118 { &vop_access_desc, ulfs_access }, /* access */
119 { &vop_getattr_desc, lfs_getattr }, /* getattr */
120 { &vop_setattr_desc, lfs_setattr }, /* setattr */
121 { &vop_read_desc, lfs_read }, /* read */
122 { &vop_write_desc, lfs_write }, /* write */
123 { &vop_ioctl_desc, ulfs_ioctl }, /* ioctl */
124 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
125 { &vop_poll_desc, ulfs_poll }, /* poll */
126 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
127 { &vop_revoke_desc, ulfs_revoke }, /* revoke */
128 { &vop_mmap_desc, lfs_mmap }, /* mmap */
129 { &vop_fsync_desc, lfs_fsync }, /* fsync */
130 { &vop_seek_desc, ulfs_seek }, /* seek */
131 { &vop_remove_desc, lfs_remove }, /* remove */
132 { &vop_link_desc, lfs_link }, /* link */
133 { &vop_rename_desc, lfs_rename }, /* rename */
134 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
135 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
136 { &vop_symlink_desc, lfs_symlink }, /* symlink */
137 { &vop_readdir_desc, ulfs_readdir }, /* readdir */
138 { &vop_readlink_desc, ulfs_readlink }, /* readlink */
139 { &vop_abortop_desc, ulfs_abortop }, /* abortop */
140 { &vop_inactive_desc, lfs_inactive }, /* inactive */
141 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
142 { &vop_lock_desc, ulfs_lock }, /* lock */
143 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
144 { &vop_bmap_desc, ulfs_bmap }, /* bmap */
145 { &vop_strategy_desc, lfs_strategy }, /* strategy */
146 { &vop_print_desc, ulfs_print }, /* print */
147 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
148 { &vop_pathconf_desc, ulfs_pathconf }, /* pathconf */
149 { &vop_advlock_desc, ulfs_advlock }, /* advlock */
150 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
151 { &vop_getpages_desc, lfs_getpages }, /* getpages */
152 { &vop_putpages_desc, lfs_putpages }, /* putpages */
153 { NULL, NULL }
154 };
155 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
156 { &lfs_vnodeop_p, lfs_vnodeop_entries };
157
158 int (**lfs_specop_p)(void *);
159 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
160 { &vop_default_desc, vn_default_error },
161 { &vop_lookup_desc, spec_lookup }, /* lookup */
162 { &vop_create_desc, spec_create }, /* create */
163 { &vop_mknod_desc, spec_mknod }, /* mknod */
164 { &vop_open_desc, spec_open }, /* open */
165 { &vop_close_desc, lfsspec_close }, /* close */
166 { &vop_access_desc, ulfs_access }, /* access */
167 { &vop_getattr_desc, lfs_getattr }, /* getattr */
168 { &vop_setattr_desc, lfs_setattr }, /* setattr */
169 { &vop_read_desc, ulfsspec_read }, /* read */
170 { &vop_write_desc, ulfsspec_write }, /* write */
171 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
172 { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
173 { &vop_poll_desc, spec_poll }, /* poll */
174 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
175 { &vop_revoke_desc, spec_revoke }, /* revoke */
176 { &vop_mmap_desc, spec_mmap }, /* mmap */
177 { &vop_fsync_desc, spec_fsync }, /* fsync */
178 { &vop_seek_desc, spec_seek }, /* seek */
179 { &vop_remove_desc, spec_remove }, /* remove */
180 { &vop_link_desc, spec_link }, /* link */
181 { &vop_rename_desc, spec_rename }, /* rename */
182 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
183 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
184 { &vop_symlink_desc, spec_symlink }, /* symlink */
185 { &vop_readdir_desc, spec_readdir }, /* readdir */
186 { &vop_readlink_desc, spec_readlink }, /* readlink */
187 { &vop_abortop_desc, spec_abortop }, /* abortop */
188 { &vop_inactive_desc, lfs_inactive }, /* inactive */
189 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
190 { &vop_lock_desc, ulfs_lock }, /* lock */
191 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
192 { &vop_bmap_desc, spec_bmap }, /* bmap */
193 { &vop_strategy_desc, spec_strategy }, /* strategy */
194 { &vop_print_desc, ulfs_print }, /* print */
195 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
196 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
197 { &vop_advlock_desc, spec_advlock }, /* advlock */
198 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
199 { &vop_getpages_desc, spec_getpages }, /* getpages */
200 { &vop_putpages_desc, spec_putpages }, /* putpages */
201 { NULL, NULL }
202 };
203 const struct vnodeopv_desc lfs_specop_opv_desc =
204 { &lfs_specop_p, lfs_specop_entries };
205
206 int (**lfs_fifoop_p)(void *);
207 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
208 { &vop_default_desc, vn_default_error },
209 { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
210 { &vop_create_desc, vn_fifo_bypass }, /* create */
211 { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
212 { &vop_open_desc, vn_fifo_bypass }, /* open */
213 { &vop_close_desc, lfsfifo_close }, /* close */
214 { &vop_access_desc, ulfs_access }, /* access */
215 { &vop_getattr_desc, lfs_getattr }, /* getattr */
216 { &vop_setattr_desc, lfs_setattr }, /* setattr */
217 { &vop_read_desc, ulfsfifo_read }, /* read */
218 { &vop_write_desc, ulfsfifo_write }, /* write */
219 { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
220 { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
221 { &vop_poll_desc, vn_fifo_bypass }, /* poll */
222 { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
223 { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
224 { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
225 { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
226 { &vop_seek_desc, vn_fifo_bypass }, /* seek */
227 { &vop_remove_desc, vn_fifo_bypass }, /* remove */
228 { &vop_link_desc, vn_fifo_bypass }, /* link */
229 { &vop_rename_desc, vn_fifo_bypass }, /* rename */
230 { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
231 { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
232 { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
233 { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
234 { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
235 { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
236 { &vop_inactive_desc, lfs_inactive }, /* inactive */
237 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
238 { &vop_lock_desc, ulfs_lock }, /* lock */
239 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
240 { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
241 { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
242 { &vop_print_desc, ulfs_print }, /* print */
243 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
244 { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
245 { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
246 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
247 { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
248 { NULL, NULL }
249 };
250 const struct vnodeopv_desc lfs_fifoop_opv_desc =
251 { &lfs_fifoop_p, lfs_fifoop_entries };
252
253 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
254
255 #define LFS_READWRITE
256 #include <ufs/lfs/ulfs_readwrite.c>
257 #undef LFS_READWRITE
258
259 /*
260 * Synch an open file.
261 */
262 /* ARGSUSED */
263 int
264 lfs_fsync(void *v)
265 {
266 struct vop_fsync_args /* {
267 struct vnode *a_vp;
268 kauth_cred_t a_cred;
269 int a_flags;
270 off_t offlo;
271 off_t offhi;
272 } */ *ap = v;
273 struct vnode *vp = ap->a_vp;
274 int error, wait;
275 struct inode *ip = VTOI(vp);
276 struct lfs *fs = ip->i_lfs;
277
278 /* If we're mounted read-only, don't try to sync. */
279 if (fs->lfs_ronly)
280 return 0;
281
282 /* If a removed vnode is being cleaned, no need to sync here. */
283 if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
284 return 0;
285
286 /*
287 * Trickle sync simply adds this vnode to the pager list, as if
288 * the pagedaemon had requested a pageout.
289 */
290 if (ap->a_flags & FSYNC_LAZY) {
291 if (lfs_ignore_lazy_sync == 0) {
292 mutex_enter(&lfs_lock);
293 if (!(ip->i_flags & IN_PAGING)) {
294 ip->i_flags |= IN_PAGING;
295 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
296 i_lfs_pchain);
297 }
298 wakeup(&lfs_writer_daemon);
299 mutex_exit(&lfs_lock);
300 }
301 return 0;
302 }
303
304 /*
305 * If a vnode is bring cleaned, flush it out before we try to
306 * reuse it. This prevents the cleaner from writing files twice
307 * in the same partial segment, causing an accounting underflow.
308 */
309 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
310 lfs_vflush(vp);
311 }
312
313 wait = (ap->a_flags & FSYNC_WAIT);
314 do {
315 mutex_enter(vp->v_interlock);
316 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
317 round_page(ap->a_offhi),
318 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
319 if (error == EAGAIN) {
320 mutex_enter(&lfs_lock);
321 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
322 hz / 100 + 1, &lfs_lock);
323 mutex_exit(&lfs_lock);
324 }
325 } while (error == EAGAIN);
326 if (error)
327 return error;
328
329 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
330 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
331
332 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
333 int l = 0;
334 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
335 curlwp->l_cred);
336 }
337 if (wait && !VPISEMPTY(vp))
338 LFS_SET_UINO(ip, IN_MODIFIED);
339
340 return error;
341 }
342
343 /*
344 * Take IN_ADIROP off, then call ulfs_inactive.
345 */
346 int
347 lfs_inactive(void *v)
348 {
349 struct vop_inactive_args /* {
350 struct vnode *a_vp;
351 } */ *ap = v;
352
353 lfs_unmark_vnode(ap->a_vp);
354
355 /*
356 * The Ifile is only ever inactivated on unmount.
357 * Streamline this process by not giving it more dirty blocks.
358 */
359 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
360 mutex_enter(&lfs_lock);
361 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
362 mutex_exit(&lfs_lock);
363 VOP_UNLOCK(ap->a_vp);
364 return 0;
365 }
366
367 #ifdef DEBUG
368 /*
369 * This might happen on unmount.
370 * XXX If it happens at any other time, it should be a panic.
371 */
372 if (ap->a_vp->v_uflag & VU_DIROP) {
373 struct inode *ip = VTOI(ap->a_vp);
374 printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
375 }
376 #endif /* DIAGNOSTIC */
377
378 return ulfs_inactive(v);
379 }
380
381 /*
382 * These macros are used to bracket ULFS directory ops, so that we can
383 * identify all the pages touched during directory ops which need to
384 * be ordered and flushed atomically, so that they may be recovered.
385 *
386 * Because we have to mark nodes VU_DIROP in order to prevent
387 * the cache from reclaiming them while a dirop is in progress, we must
388 * also manage the number of nodes so marked (otherwise we can run out).
389 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
390 * is decremented during segment write, when VU_DIROP is taken off.
391 */
392 #define MARK_VNODE(vp) lfs_mark_vnode(vp)
393 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
394 #define SET_DIROP_CREATE(dvp, vpp) lfs_set_dirop_create((dvp), (vpp))
395 #define SET_DIROP_REMOVE(dvp, vp) lfs_set_dirop((dvp), (vp))
396 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
397 static int lfs_set_dirop(struct vnode *, struct vnode *);
398
399 static int
400 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
401 {
402 struct lfs *fs;
403 int error;
404
405 KASSERT(VOP_ISLOCKED(dvp));
406 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
407
408 fs = VTOI(dvp)->i_lfs;
409
410 ASSERT_NO_SEGLOCK(fs);
411 /*
412 * LFS_NRESERVE calculates direct and indirect blocks as well
413 * as an inode block; an overestimate in most cases.
414 */
415 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
416 return (error);
417
418 restart:
419 mutex_enter(&lfs_lock);
420 if (fs->lfs_dirops == 0) {
421 mutex_exit(&lfs_lock);
422 lfs_check(dvp, LFS_UNUSED_LBN, 0);
423 mutex_enter(&lfs_lock);
424 }
425 while (fs->lfs_writer) {
426 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
427 "lfs_sdirop", 0, &lfs_lock);
428 if (error == EINTR) {
429 mutex_exit(&lfs_lock);
430 goto unreserve;
431 }
432 }
433 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
434 wakeup(&lfs_writer_daemon);
435 mutex_exit(&lfs_lock);
436 preempt();
437 goto restart;
438 }
439
440 if (lfs_dirvcount > LFS_MAX_DIROP) {
441 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
442 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
443 if ((error = mtsleep(&lfs_dirvcount,
444 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
445 &lfs_lock)) != 0) {
446 goto unreserve;
447 }
448 goto restart;
449 }
450
451 ++fs->lfs_dirops;
452 /* fs->lfs_doifile = 1; */ /* XXX why? --ks */
453 mutex_exit(&lfs_lock);
454
455 /* Hold a reference so SET_ENDOP will be happy */
456 vref(dvp);
457 if (vp) {
458 vref(vp);
459 MARK_VNODE(vp);
460 }
461
462 MARK_VNODE(dvp);
463 return 0;
464
465 unreserve:
466 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
467 return error;
468 }
469
470 /*
471 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
472 * in getnewvnode(), if we have a stacked filesystem mounted on top
473 * of us.
474 *
475 * NB: this means we have to clear the new vnodes on error. Fortunately
476 * SET_ENDOP is there to do that for us.
477 */
478 static int
479 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
480 {
481 int error;
482 struct lfs *fs;
483
484 fs = VFSTOULFS(dvp->v_mount)->um_lfs;
485 ASSERT_NO_SEGLOCK(fs);
486 if (fs->lfs_ronly)
487 return EROFS;
488 if (vpp == NULL) {
489 return lfs_set_dirop(dvp, NULL);
490 }
491 error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
492 if (error) {
493 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
494 dvp, error));
495 return error;
496 }
497 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
498 ungetnewvnode(*vpp);
499 *vpp = NULL;
500 return error;
501 }
502 return 0;
503 }
504
505 #define SET_ENDOP_BASE(fs, dvp, str) \
506 do { \
507 mutex_enter(&lfs_lock); \
508 --(fs)->lfs_dirops; \
509 if (!(fs)->lfs_dirops) { \
510 if ((fs)->lfs_nadirop) { \
511 panic("SET_ENDOP: %s: no dirops but " \
512 " nadirop=%d", (str), \
513 (fs)->lfs_nadirop); \
514 } \
515 wakeup(&(fs)->lfs_writer); \
516 mutex_exit(&lfs_lock); \
517 lfs_check((dvp), LFS_UNUSED_LBN, 0); \
518 } else \
519 mutex_exit(&lfs_lock); \
520 } while(0)
521 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str) \
522 do { \
523 UNMARK_VNODE(dvp); \
524 if (nvpp && *nvpp) \
525 UNMARK_VNODE(*nvpp); \
526 /* Check for error return to stem vnode leakage */ \
527 if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP)) \
528 ungetnewvnode(*(nvpp)); \
529 SET_ENDOP_BASE((fs), (dvp), (str)); \
530 lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs)); \
531 vrele(dvp); \
532 } while(0)
533 #define SET_ENDOP_CREATE_AP(ap, str) \
534 SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp, \
535 (ap)->a_vpp, (str))
536 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str) \
537 do { \
538 UNMARK_VNODE(dvp); \
539 if (ovp) \
540 UNMARK_VNODE(ovp); \
541 SET_ENDOP_BASE((fs), (dvp), (str)); \
542 lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs)); \
543 vrele(dvp); \
544 if (ovp) \
545 vrele(ovp); \
546 } while(0)
547
548 void
549 lfs_mark_vnode(struct vnode *vp)
550 {
551 struct inode *ip = VTOI(vp);
552 struct lfs *fs = ip->i_lfs;
553
554 mutex_enter(&lfs_lock);
555 if (!(ip->i_flag & IN_ADIROP)) {
556 if (!(vp->v_uflag & VU_DIROP)) {
557 mutex_exit(&lfs_lock);
558 mutex_enter(vp->v_interlock);
559 if (lfs_vref(vp) != 0)
560 panic("lfs_mark_vnode: could not vref");
561 mutex_enter(&lfs_lock);
562 ++lfs_dirvcount;
563 ++fs->lfs_dirvcount;
564 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
565 vp->v_uflag |= VU_DIROP;
566 }
567 ++fs->lfs_nadirop;
568 ip->i_flag &= ~IN_CDIROP;
569 ip->i_flag |= IN_ADIROP;
570 } else
571 KASSERT(vp->v_uflag & VU_DIROP);
572 mutex_exit(&lfs_lock);
573 }
574
575 void
576 lfs_unmark_vnode(struct vnode *vp)
577 {
578 struct inode *ip = VTOI(vp);
579
580 mutex_enter(&lfs_lock);
581 if (ip && (ip->i_flag & IN_ADIROP)) {
582 KASSERT(vp->v_uflag & VU_DIROP);
583 --ip->i_lfs->lfs_nadirop;
584 ip->i_flag &= ~IN_ADIROP;
585 }
586 mutex_exit(&lfs_lock);
587 }
588
589 int
590 lfs_symlink(void *v)
591 {
592 struct vop_symlink_args /* {
593 struct vnode *a_dvp;
594 struct vnode **a_vpp;
595 struct componentname *a_cnp;
596 struct vattr *a_vap;
597 char *a_target;
598 } */ *ap = v;
599 int error;
600
601 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
602 vput(ap->a_dvp);
603 return error;
604 }
605 error = ulfs_symlink(ap);
606 SET_ENDOP_CREATE_AP(ap, "symlink");
607 return (error);
608 }
609
610 int
611 lfs_mknod(void *v)
612 {
613 struct vop_mknod_args /* {
614 struct vnode *a_dvp;
615 struct vnode **a_vpp;
616 struct componentname *a_cnp;
617 struct vattr *a_vap;
618 } */ *ap = v;
619 struct vattr *vap = ap->a_vap;
620 struct vnode **vpp = ap->a_vpp;
621 struct inode *ip;
622 int error;
623 struct mount *mp;
624 ino_t ino;
625 struct ulfs_lookup_results *ulr;
626
627 /* XXX should handle this material another way */
628 ulr = &VTOI(ap->a_dvp)->i_crap;
629 ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
630
631 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
632 vput(ap->a_dvp);
633 return error;
634 }
635 error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
636 ap->a_dvp, ulr, vpp, ap->a_cnp);
637
638 /* Either way we're done with the dirop at this point */
639 SET_ENDOP_CREATE_AP(ap, "mknod");
640
641 if (error)
642 return (error);
643
644 ip = VTOI(*vpp);
645 mp = (*vpp)->v_mount;
646 ino = ip->i_number;
647 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
648 if (vap->va_rdev != VNOVAL) {
649 /*
650 * Want to be able to use this to make badblock
651 * inodes, so don't truncate the dev number.
652 */
653 #if 0
654 ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
655 ULFS_MPNEEDSWAP((*vpp)->v_mount));
656 #else
657 ip->i_ffs1_rdev = vap->va_rdev;
658 #endif
659 }
660
661 /*
662 * Call fsync to write the vnode so that we don't have to deal with
663 * flushing it when it's marked VU_DIROP|VI_XLOCK.
664 *
665 * XXX KS - If we can't flush we also can't call vgone(), so must
666 * return. But, that leaves this vnode in limbo, also not good.
667 * Can this ever happen (barring hardware failure)?
668 */
669 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
670 panic("lfs_mknod: couldn't fsync (ino %llu)",
671 (unsigned long long)ino);
672 /* return (error); */
673 }
674 /*
675 * Remove vnode so that it will be reloaded by VFS_VGET and
676 * checked to see if it is an alias of an existing entry in
677 * the inode cache.
678 */
679 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
680
681 VOP_UNLOCK(*vpp);
682 (*vpp)->v_type = VNON;
683 vgone(*vpp);
684 error = VFS_VGET(mp, ino, vpp);
685
686 if (error != 0) {
687 *vpp = NULL;
688 return (error);
689 }
690 return (0);
691 }
692
693 int
694 lfs_create(void *v)
695 {
696 struct vop_create_args /* {
697 struct vnode *a_dvp;
698 struct vnode **a_vpp;
699 struct componentname *a_cnp;
700 struct vattr *a_vap;
701 } */ *ap = v;
702 int error;
703
704 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
705 vput(ap->a_dvp);
706 return error;
707 }
708 error = ulfs_create(ap);
709 SET_ENDOP_CREATE_AP(ap, "create");
710 return (error);
711 }
712
713 int
714 lfs_mkdir(void *v)
715 {
716 struct vop_mkdir_args /* {
717 struct vnode *a_dvp;
718 struct vnode **a_vpp;
719 struct componentname *a_cnp;
720 struct vattr *a_vap;
721 } */ *ap = v;
722 int error;
723
724 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
725 vput(ap->a_dvp);
726 return error;
727 }
728 error = ulfs_mkdir(ap);
729 SET_ENDOP_CREATE_AP(ap, "mkdir");
730 return (error);
731 }
732
733 int
734 lfs_remove(void *v)
735 {
736 struct vop_remove_args /* {
737 struct vnode *a_dvp;
738 struct vnode *a_vp;
739 struct componentname *a_cnp;
740 } */ *ap = v;
741 struct vnode *dvp, *vp;
742 struct inode *ip;
743 int error;
744
745 dvp = ap->a_dvp;
746 vp = ap->a_vp;
747 ip = VTOI(vp);
748 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
749 if (dvp == vp)
750 vrele(vp);
751 else
752 vput(vp);
753 vput(dvp);
754 return error;
755 }
756 error = ulfs_remove(ap);
757 if (ip->i_nlink == 0)
758 lfs_orphan(ip->i_lfs, ip->i_number);
759 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
760 return (error);
761 }
762
763 int
764 lfs_rmdir(void *v)
765 {
766 struct vop_rmdir_args /* {
767 struct vnodeop_desc *a_desc;
768 struct vnode *a_dvp;
769 struct vnode *a_vp;
770 struct componentname *a_cnp;
771 } */ *ap = v;
772 struct vnode *vp;
773 struct inode *ip;
774 int error;
775
776 vp = ap->a_vp;
777 ip = VTOI(vp);
778 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
779 if (ap->a_dvp == vp)
780 vrele(ap->a_dvp);
781 else
782 vput(ap->a_dvp);
783 vput(vp);
784 return error;
785 }
786 error = ulfs_rmdir(ap);
787 if (ip->i_nlink == 0)
788 lfs_orphan(ip->i_lfs, ip->i_number);
789 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
790 return (error);
791 }
792
793 int
794 lfs_link(void *v)
795 {
796 struct vop_link_args /* {
797 struct vnode *a_dvp;
798 struct vnode *a_vp;
799 struct componentname *a_cnp;
800 } */ *ap = v;
801 int error;
802 struct vnode **vpp = NULL;
803
804 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
805 vput(ap->a_dvp);
806 return error;
807 }
808 error = ulfs_link(ap);
809 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
810 return (error);
811 }
812
813 static const struct genfs_rename_ops lfs_genfs_rename_ops;
814
815 /*
816 * lfs_sane_rename: The hairiest vop, with the saner API.
817 *
818 * Arguments:
819 *
820 * . fdvp (from directory vnode),
821 * . fcnp (from component name),
822 * . tdvp (to directory vnode),
823 * . tcnp (to component name),
824 * . cred (credentials structure), and
825 * . posixly_correct (flag for behaviour if target & source link same file).
826 *
827 * fdvp and tdvp may be the same, and must be referenced and unlocked.
828 */
829 static int
830 lfs_sane_rename(
831 struct vnode *fdvp, struct componentname *fcnp,
832 struct vnode *tdvp, struct componentname *tcnp,
833 kauth_cred_t cred, bool posixly_correct)
834 {
835 struct ulfs_lookup_results fulr, tulr;
836
837 /*
838 * XXX Provisional kludge -- ulfs_lookup does not reject rename
839 * of . or .. (from or to), so we hack it here. This is not
840 * the right place: it should be caller's responsibility to
841 * reject this case.
842 */
843 KASSERT(fcnp != NULL);
844 KASSERT(tcnp != NULL);
845 KASSERT(fcnp != tcnp);
846 KASSERT(fcnp->cn_nameptr != NULL);
847 KASSERT(tcnp->cn_nameptr != NULL);
848
849 if ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT)
850 return EINVAL; /* XXX EISDIR? */
851 if ((fcnp->cn_namelen == 1) && (fcnp->cn_nameptr[0] == '.'))
852 return EINVAL;
853 if ((tcnp->cn_namelen == 1) && (tcnp->cn_nameptr[0] == '.'))
854 return EINVAL;
855
856 return genfs_sane_rename(&lfs_genfs_rename_ops,
857 fdvp, fcnp, &fulr, tdvp, tcnp, &tulr,
858 cred, posixly_correct);
859 }
860
861 /*
862 * lfs_rename: The hairiest vop, with the insanest API. Defer to
863 * genfs_insane_rename immediately.
864 */
865 int
866 lfs_rename(void *v)
867 {
868
869 return genfs_insane_rename(v, &lfs_sane_rename);
870 }
871
872 /*
873 * lfs_gro_rename: Actually perform the rename operation. Do a little
874 * LFS bookkeeping and then defer to ulfs_gro_rename.
875 */
876 static int
877 lfs_gro_rename(struct mount *mp, kauth_cred_t cred,
878 struct vnode *fdvp, struct componentname *fcnp,
879 void *fde, struct vnode *fvp,
880 struct vnode *tdvp, struct componentname *tcnp,
881 void *tde, struct vnode *tvp)
882 {
883 int error;
884
885 KASSERT(mp != NULL);
886 KASSERT(fdvp != NULL);
887 KASSERT(fcnp != NULL);
888 KASSERT(fde != NULL);
889 KASSERT(fvp != NULL);
890 KASSERT(tdvp != NULL);
891 KASSERT(tcnp != NULL);
892 KASSERT(tde != NULL);
893 KASSERT(fdvp != fvp);
894 KASSERT(fdvp != tvp);
895 KASSERT(tdvp != fvp);
896 KASSERT(tdvp != tvp);
897 KASSERT(fvp != tvp);
898 KASSERT(fdvp->v_mount == mp);
899 KASSERT(fvp->v_mount == mp);
900 KASSERT(tdvp->v_mount == mp);
901 KASSERT((tvp == NULL) || (tvp->v_mount == mp));
902 KASSERT(VOP_ISLOCKED(fdvp) == LK_EXCLUSIVE);
903 KASSERT(VOP_ISLOCKED(fvp) == LK_EXCLUSIVE);
904 KASSERT(VOP_ISLOCKED(tdvp) == LK_EXCLUSIVE);
905 KASSERT((tvp == NULL) || (VOP_ISLOCKED(tvp) == LK_EXCLUSIVE));
906
907 error = SET_DIROP_REMOVE(tdvp, tvp);
908 if (error != 0)
909 return error;
910
911 MARK_VNODE(fdvp);
912 MARK_VNODE(fvp);
913
914 error = ulfs_gro_rename(mp, cred,
915 fdvp, fcnp, fde, fvp,
916 tdvp, tcnp, tde, tvp);
917
918 UNMARK_VNODE(fdvp);
919 UNMARK_VNODE(fvp);
920 SET_ENDOP_REMOVE(VFSTOULFS(mp)->um_lfs, tdvp, tvp, "rename");
921
922 return error;
923 }
924
925 static const struct genfs_rename_ops lfs_genfs_rename_ops = {
926 .gro_directory_empty_p = ulfs_gro_directory_empty_p,
927 .gro_rename_check_possible = ulfs_gro_rename_check_possible,
928 .gro_rename_check_permitted = ulfs_gro_rename_check_permitted,
929 .gro_remove_check_possible = ulfs_gro_remove_check_possible,
930 .gro_remove_check_permitted = ulfs_gro_remove_check_permitted,
931 .gro_rename = lfs_gro_rename,
932 .gro_remove = ulfs_gro_remove,
933 .gro_lookup = ulfs_gro_lookup,
934 .gro_genealogy = ulfs_gro_genealogy,
935 .gro_lock_directory = ulfs_gro_lock_directory,
936 };
937
938 /* XXX hack to avoid calling ITIMES in getattr */
939 int
940 lfs_getattr(void *v)
941 {
942 struct vop_getattr_args /* {
943 struct vnode *a_vp;
944 struct vattr *a_vap;
945 kauth_cred_t a_cred;
946 } */ *ap = v;
947 struct vnode *vp = ap->a_vp;
948 struct inode *ip = VTOI(vp);
949 struct vattr *vap = ap->a_vap;
950 struct lfs *fs = ip->i_lfs;
951 /*
952 * Copy from inode table
953 */
954 vap->va_fsid = ip->i_dev;
955 vap->va_fileid = ip->i_number;
956 vap->va_mode = ip->i_mode & ~LFS_IFMT;
957 vap->va_nlink = ip->i_nlink;
958 vap->va_uid = ip->i_uid;
959 vap->va_gid = ip->i_gid;
960 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
961 vap->va_size = vp->v_size;
962 vap->va_atime.tv_sec = ip->i_ffs1_atime;
963 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
964 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
965 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
966 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
967 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
968 vap->va_flags = ip->i_flags;
969 vap->va_gen = ip->i_gen;
970 /* this doesn't belong here */
971 if (vp->v_type == VBLK)
972 vap->va_blocksize = BLKDEV_IOSIZE;
973 else if (vp->v_type == VCHR)
974 vap->va_blocksize = MAXBSIZE;
975 else
976 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
977 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
978 vap->va_type = vp->v_type;
979 vap->va_filerev = ip->i_modrev;
980 return (0);
981 }
982
983 /*
984 * Check to make sure the inode blocks won't choke the buffer
985 * cache, then call ulfs_setattr as usual.
986 */
987 int
988 lfs_setattr(void *v)
989 {
990 struct vop_setattr_args /* {
991 struct vnode *a_vp;
992 struct vattr *a_vap;
993 kauth_cred_t a_cred;
994 } */ *ap = v;
995 struct vnode *vp = ap->a_vp;
996
997 lfs_check(vp, LFS_UNUSED_LBN, 0);
998 return ulfs_setattr(v);
999 }
1000
1001 /*
1002 * Release the block we hold on lfs_newseg wrapping. Called on file close,
1003 * or explicitly from LFCNWRAPGO. Called with the interlock held.
1004 */
1005 static int
1006 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
1007 {
1008 if (fs->lfs_stoplwp != curlwp)
1009 return EBUSY;
1010
1011 fs->lfs_stoplwp = NULL;
1012 cv_signal(&fs->lfs_stopcv);
1013
1014 KASSERT(fs->lfs_nowrap > 0);
1015 if (fs->lfs_nowrap <= 0) {
1016 return 0;
1017 }
1018
1019 if (--fs->lfs_nowrap == 0) {
1020 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
1021 wakeup(&fs->lfs_wrappass);
1022 lfs_wakeup_cleaner(fs);
1023 }
1024 if (waitfor) {
1025 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
1026 0, &lfs_lock);
1027 }
1028
1029 return 0;
1030 }
1031
1032 /*
1033 * Close called
1034 */
1035 /* ARGSUSED */
1036 int
1037 lfs_close(void *v)
1038 {
1039 struct vop_close_args /* {
1040 struct vnode *a_vp;
1041 int a_fflag;
1042 kauth_cred_t a_cred;
1043 } */ *ap = v;
1044 struct vnode *vp = ap->a_vp;
1045 struct inode *ip = VTOI(vp);
1046 struct lfs *fs = ip->i_lfs;
1047
1048 if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
1049 fs->lfs_stoplwp == curlwp) {
1050 mutex_enter(&lfs_lock);
1051 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
1052 lfs_wrapgo(fs, ip, 0);
1053 mutex_exit(&lfs_lock);
1054 }
1055
1056 if (vp == ip->i_lfs->lfs_ivnode &&
1057 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
1058 return 0;
1059
1060 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
1061 LFS_ITIMES(ip, NULL, NULL, NULL);
1062 }
1063 return (0);
1064 }
1065
1066 /*
1067 * Close wrapper for special devices.
1068 *
1069 * Update the times on the inode then do device close.
1070 */
1071 int
1072 lfsspec_close(void *v)
1073 {
1074 struct vop_close_args /* {
1075 struct vnode *a_vp;
1076 int a_fflag;
1077 kauth_cred_t a_cred;
1078 } */ *ap = v;
1079 struct vnode *vp;
1080 struct inode *ip;
1081
1082 vp = ap->a_vp;
1083 ip = VTOI(vp);
1084 if (vp->v_usecount > 1) {
1085 LFS_ITIMES(ip, NULL, NULL, NULL);
1086 }
1087 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
1088 }
1089
1090 /*
1091 * Close wrapper for fifo's.
1092 *
1093 * Update the times on the inode then do device close.
1094 */
1095 int
1096 lfsfifo_close(void *v)
1097 {
1098 struct vop_close_args /* {
1099 struct vnode *a_vp;
1100 int a_fflag;
1101 kauth_cred_ a_cred;
1102 } */ *ap = v;
1103 struct vnode *vp;
1104 struct inode *ip;
1105
1106 vp = ap->a_vp;
1107 ip = VTOI(vp);
1108 if (ap->a_vp->v_usecount > 1) {
1109 LFS_ITIMES(ip, NULL, NULL, NULL);
1110 }
1111 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
1112 }
1113
1114 /*
1115 * Reclaim an inode so that it can be used for other purposes.
1116 */
1117
1118 int
1119 lfs_reclaim(void *v)
1120 {
1121 struct vop_reclaim_args /* {
1122 struct vnode *a_vp;
1123 } */ *ap = v;
1124 struct vnode *vp = ap->a_vp;
1125 struct inode *ip = VTOI(vp);
1126 struct lfs *fs = ip->i_lfs;
1127 int error;
1128
1129 /*
1130 * The inode must be freed and updated before being removed
1131 * from its hash chain. Other threads trying to gain a hold
1132 * on the inode will be stalled because it is locked (VI_XLOCK).
1133 */
1134 if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
1135 lfs_vfree(vp, ip->i_number, ip->i_omode);
1136
1137 mutex_enter(&lfs_lock);
1138 LFS_CLR_UINO(ip, IN_ALLMOD);
1139 mutex_exit(&lfs_lock);
1140 if ((error = ulfs_reclaim(vp)))
1141 return (error);
1142
1143 /*
1144 * Take us off the paging and/or dirop queues if we were on them.
1145 * We shouldn't be on them.
1146 */
1147 mutex_enter(&lfs_lock);
1148 if (ip->i_flags & IN_PAGING) {
1149 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1150 fs->lfs_fsmnt);
1151 ip->i_flags &= ~IN_PAGING;
1152 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1153 }
1154 if (vp->v_uflag & VU_DIROP) {
1155 panic("reclaimed vnode is VU_DIROP");
1156 vp->v_uflag &= ~VU_DIROP;
1157 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1158 }
1159 mutex_exit(&lfs_lock);
1160
1161 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1162 lfs_deregister_all(vp);
1163 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1164 ip->inode_ext.lfs = NULL;
1165 genfs_node_destroy(vp);
1166 pool_put(&lfs_inode_pool, vp->v_data);
1167 vp->v_data = NULL;
1168 return (0);
1169 }
1170
1171 /*
1172 * Read a block from a storage device.
1173 * In order to avoid reading blocks that are in the process of being
1174 * written by the cleaner---and hence are not mutexed by the normal
1175 * buffer cache / page cache mechanisms---check for collisions before
1176 * reading.
1177 *
1178 * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
1179 * the active cleaner test.
1180 *
1181 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1182 */
1183 int
1184 lfs_strategy(void *v)
1185 {
1186 struct vop_strategy_args /* {
1187 struct vnode *a_vp;
1188 struct buf *a_bp;
1189 } */ *ap = v;
1190 struct buf *bp;
1191 struct lfs *fs;
1192 struct vnode *vp;
1193 struct inode *ip;
1194 daddr_t tbn;
1195 #define MAXLOOP 25
1196 int i, sn, error, slept, loopcount;
1197
1198 bp = ap->a_bp;
1199 vp = ap->a_vp;
1200 ip = VTOI(vp);
1201 fs = ip->i_lfs;
1202
1203 /* lfs uses its strategy routine only for read */
1204 KASSERT(bp->b_flags & B_READ);
1205
1206 if (vp->v_type == VBLK || vp->v_type == VCHR)
1207 panic("lfs_strategy: spec");
1208 KASSERT(bp->b_bcount != 0);
1209 if (bp->b_blkno == bp->b_lblkno) {
1210 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1211 NULL);
1212 if (error) {
1213 bp->b_error = error;
1214 bp->b_resid = bp->b_bcount;
1215 biodone(bp);
1216 return (error);
1217 }
1218 if ((long)bp->b_blkno == -1) /* no valid data */
1219 clrbuf(bp);
1220 }
1221 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1222 bp->b_resid = bp->b_bcount;
1223 biodone(bp);
1224 return (0);
1225 }
1226
1227 slept = 1;
1228 loopcount = 0;
1229 mutex_enter(&lfs_lock);
1230 while (slept && fs->lfs_seglock) {
1231 mutex_exit(&lfs_lock);
1232 /*
1233 * Look through list of intervals.
1234 * There will only be intervals to look through
1235 * if the cleaner holds the seglock.
1236 * Since the cleaner is synchronous, we can trust
1237 * the list of intervals to be current.
1238 */
1239 tbn = dbtofsb(fs, bp->b_blkno);
1240 sn = dtosn(fs, tbn);
1241 slept = 0;
1242 for (i = 0; i < fs->lfs_cleanind; i++) {
1243 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1244 tbn >= fs->lfs_cleanint[i]) {
1245 DLOG((DLOG_CLEAN,
1246 "lfs_strategy: ino %d lbn %" PRId64
1247 " ind %d sn %d fsb %" PRIx32
1248 " given sn %d fsb %" PRIx64 "\n",
1249 ip->i_number, bp->b_lblkno, i,
1250 dtosn(fs, fs->lfs_cleanint[i]),
1251 fs->lfs_cleanint[i], sn, tbn));
1252 DLOG((DLOG_CLEAN,
1253 "lfs_strategy: sleeping on ino %d lbn %"
1254 PRId64 "\n", ip->i_number, bp->b_lblkno));
1255 mutex_enter(&lfs_lock);
1256 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1257 /*
1258 * Cleaner can't wait for itself.
1259 * Instead, wait for the blocks
1260 * to be written to disk.
1261 * XXX we need pribio in the test
1262 * XXX here.
1263 */
1264 mtsleep(&fs->lfs_iocount,
1265 (PRIBIO + 1) | PNORELOCK,
1266 "clean2", hz/10 + 1,
1267 &lfs_lock);
1268 slept = 1;
1269 ++loopcount;
1270 break;
1271 } else if (fs->lfs_seglock) {
1272 mtsleep(&fs->lfs_seglock,
1273 (PRIBIO + 1) | PNORELOCK,
1274 "clean1", 0,
1275 &lfs_lock);
1276 slept = 1;
1277 break;
1278 }
1279 mutex_exit(&lfs_lock);
1280 }
1281 }
1282 mutex_enter(&lfs_lock);
1283 if (loopcount > MAXLOOP) {
1284 printf("lfs_strategy: breaking out of clean2 loop\n");
1285 break;
1286 }
1287 }
1288 mutex_exit(&lfs_lock);
1289
1290 vp = ip->i_devvp;
1291 VOP_STRATEGY(vp, bp);
1292 return (0);
1293 }
1294
1295 /*
1296 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1297 * Technically this is a checkpoint (the on-disk state is valid)
1298 * even though we are leaving out all the file data.
1299 */
1300 int
1301 lfs_flush_dirops(struct lfs *fs)
1302 {
1303 struct inode *ip, *nip;
1304 struct vnode *vp;
1305 extern int lfs_dostats;
1306 struct segment *sp;
1307 int flags = 0;
1308 int error = 0;
1309
1310 ASSERT_MAYBE_SEGLOCK(fs);
1311 KASSERT(fs->lfs_nadirop == 0);
1312
1313 if (fs->lfs_ronly)
1314 return EROFS;
1315
1316 mutex_enter(&lfs_lock);
1317 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1318 mutex_exit(&lfs_lock);
1319 return 0;
1320 } else
1321 mutex_exit(&lfs_lock);
1322
1323 if (lfs_dostats)
1324 ++lfs_stats.flush_invoked;
1325
1326 lfs_imtime(fs);
1327 lfs_seglock(fs, flags);
1328 sp = fs->lfs_sp;
1329
1330 /*
1331 * lfs_writevnodes, optimized to get dirops out of the way.
1332 * Only write dirops, and don't flush files' pages, only
1333 * blocks from the directories.
1334 *
1335 * We don't need to vref these files because they are
1336 * dirops and so hold an extra reference until the
1337 * segunlock clears them of that status.
1338 *
1339 * We don't need to check for IN_ADIROP because we know that
1340 * no dirops are active.
1341 *
1342 */
1343 mutex_enter(&lfs_lock);
1344 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1345 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1346 mutex_exit(&lfs_lock);
1347 vp = ITOV(ip);
1348
1349 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1350 KASSERT(vp->v_uflag & VU_DIROP);
1351 KASSERT(!(vp->v_iflag & VI_XLOCK));
1352
1353 /*
1354 * All writes to directories come from dirops; all
1355 * writes to files' direct blocks go through the page
1356 * cache, which we're not touching. Reads to files
1357 * and/or directories will not be affected by writing
1358 * directory blocks inodes and file inodes. So we don't
1359 * really need to lock.
1360 */
1361 if (vp->v_iflag & VI_XLOCK) {
1362 mutex_enter(&lfs_lock);
1363 continue;
1364 }
1365 /* XXX see below
1366 * waslocked = VOP_ISLOCKED(vp);
1367 */
1368 if (vp->v_type != VREG &&
1369 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1370 error = lfs_writefile(fs, sp, vp);
1371 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1372 !(ip->i_flag & IN_ALLMOD)) {
1373 mutex_enter(&lfs_lock);
1374 LFS_SET_UINO(ip, IN_MODIFIED);
1375 mutex_exit(&lfs_lock);
1376 }
1377 if (error && (sp->seg_flags & SEGM_SINGLE)) {
1378 mutex_enter(&lfs_lock);
1379 error = EAGAIN;
1380 break;
1381 }
1382 }
1383 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1384 error = lfs_writeinode(fs, sp, ip);
1385 mutex_enter(&lfs_lock);
1386 if (error && (sp->seg_flags & SEGM_SINGLE)) {
1387 error = EAGAIN;
1388 break;
1389 }
1390
1391 /*
1392 * We might need to update these inodes again,
1393 * for example, if they have data blocks to write.
1394 * Make sure that after this flush, they are still
1395 * marked IN_MODIFIED so that we don't forget to
1396 * write them.
1397 */
1398 /* XXX only for non-directories? --KS */
1399 LFS_SET_UINO(ip, IN_MODIFIED);
1400 }
1401 mutex_exit(&lfs_lock);
1402 /* We've written all the dirops there are */
1403 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1404 lfs_finalize_fs_seguse(fs);
1405 (void) lfs_writeseg(fs, sp);
1406 lfs_segunlock(fs);
1407
1408 return error;
1409 }
1410
1411 /*
1412 * Flush all vnodes for which the pagedaemon has requested pageouts.
1413 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1414 * has just run, this would be an error). If we have to skip a vnode
1415 * for any reason, just skip it; if we have to wait for the cleaner,
1416 * abort. The writer daemon will call us again later.
1417 */
1418 int
1419 lfs_flush_pchain(struct lfs *fs)
1420 {
1421 struct inode *ip, *nip;
1422 struct vnode *vp;
1423 extern int lfs_dostats;
1424 struct segment *sp;
1425 int error, error2;
1426
1427 ASSERT_NO_SEGLOCK(fs);
1428
1429 if (fs->lfs_ronly)
1430 return EROFS;
1431
1432 mutex_enter(&lfs_lock);
1433 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1434 mutex_exit(&lfs_lock);
1435 return 0;
1436 } else
1437 mutex_exit(&lfs_lock);
1438
1439 /* Get dirops out of the way */
1440 if ((error = lfs_flush_dirops(fs)) != 0)
1441 return error;
1442
1443 if (lfs_dostats)
1444 ++lfs_stats.flush_invoked;
1445
1446 /*
1447 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1448 */
1449 lfs_imtime(fs);
1450 lfs_seglock(fs, 0);
1451 sp = fs->lfs_sp;
1452
1453 /*
1454 * lfs_writevnodes, optimized to clear pageout requests.
1455 * Only write non-dirop files that are in the pageout queue.
1456 * We're very conservative about what we write; we want to be
1457 * fast and async.
1458 */
1459 mutex_enter(&lfs_lock);
1460 top:
1461 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1462 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1463 vp = ITOV(ip);
1464
1465 if (!(ip->i_flags & IN_PAGING))
1466 goto top;
1467
1468 mutex_enter(vp->v_interlock);
1469 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1470 mutex_exit(vp->v_interlock);
1471 continue;
1472 }
1473 if (vp->v_type != VREG) {
1474 mutex_exit(vp->v_interlock);
1475 continue;
1476 }
1477 if (lfs_vref(vp))
1478 continue;
1479 mutex_exit(&lfs_lock);
1480
1481 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1482 lfs_vunref(vp);
1483 mutex_enter(&lfs_lock);
1484 continue;
1485 }
1486
1487 error = lfs_writefile(fs, sp, vp);
1488 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1489 !(ip->i_flag & IN_ALLMOD)) {
1490 mutex_enter(&lfs_lock);
1491 LFS_SET_UINO(ip, IN_MODIFIED);
1492 mutex_exit(&lfs_lock);
1493 }
1494 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1495 error2 = lfs_writeinode(fs, sp, ip);
1496
1497 VOP_UNLOCK(vp);
1498 lfs_vunref(vp);
1499
1500 if (error == EAGAIN || error2 == EAGAIN) {
1501 lfs_writeseg(fs, sp);
1502 mutex_enter(&lfs_lock);
1503 break;
1504 }
1505 mutex_enter(&lfs_lock);
1506 }
1507 mutex_exit(&lfs_lock);
1508 (void) lfs_writeseg(fs, sp);
1509 lfs_segunlock(fs);
1510
1511 return 0;
1512 }
1513
1514 /*
1515 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1516 */
1517 int
1518 lfs_fcntl(void *v)
1519 {
1520 struct vop_fcntl_args /* {
1521 struct vnode *a_vp;
1522 u_int a_command;
1523 void * a_data;
1524 int a_fflag;
1525 kauth_cred_t a_cred;
1526 } */ *ap = v;
1527 struct timeval tv;
1528 struct timeval *tvp;
1529 BLOCK_INFO *blkiov;
1530 CLEANERINFO *cip;
1531 SEGUSE *sup;
1532 int blkcnt, error, oclean;
1533 size_t fh_size;
1534 struct lfs_fcntl_markv blkvp;
1535 struct lwp *l;
1536 fsid_t *fsidp;
1537 struct lfs *fs;
1538 struct buf *bp;
1539 fhandle_t *fhp;
1540 daddr_t off;
1541
1542 /* Only respect LFS fcntls on fs root or Ifile */
1543 if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
1544 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1545 return ulfs_fcntl(v);
1546 }
1547
1548 /* Avoid locking a draining lock */
1549 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1550 return ESHUTDOWN;
1551 }
1552
1553 /* LFS control and monitoring fcntls are available only to root */
1554 l = curlwp;
1555 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1556 (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
1557 KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
1558 return (error);
1559
1560 fs = VTOI(ap->a_vp)->i_lfs;
1561 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1562
1563 error = 0;
1564 switch ((int)ap->a_command) {
1565 case LFCNSEGWAITALL_COMPAT_50:
1566 case LFCNSEGWAITALL_COMPAT:
1567 fsidp = NULL;
1568 /* FALLSTHROUGH */
1569 case LFCNSEGWAIT_COMPAT_50:
1570 case LFCNSEGWAIT_COMPAT:
1571 {
1572 struct timeval50 *tvp50
1573 = (struct timeval50 *)ap->a_data;
1574 timeval50_to_timeval(tvp50, &tv);
1575 tvp = &tv;
1576 }
1577 goto segwait_common;
1578 case LFCNSEGWAITALL:
1579 fsidp = NULL;
1580 /* FALLSTHROUGH */
1581 case LFCNSEGWAIT:
1582 tvp = (struct timeval *)ap->a_data;
1583 segwait_common:
1584 mutex_enter(&lfs_lock);
1585 ++fs->lfs_sleepers;
1586 mutex_exit(&lfs_lock);
1587
1588 error = lfs_segwait(fsidp, tvp);
1589
1590 mutex_enter(&lfs_lock);
1591 if (--fs->lfs_sleepers == 0)
1592 wakeup(&fs->lfs_sleepers);
1593 mutex_exit(&lfs_lock);
1594 return error;
1595
1596 case LFCNBMAPV:
1597 case LFCNMARKV:
1598 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1599
1600 blkcnt = blkvp.blkcnt;
1601 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1602 return (EINVAL);
1603 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1604 if ((error = copyin(blkvp.blkiov, blkiov,
1605 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1606 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1607 return error;
1608 }
1609
1610 mutex_enter(&lfs_lock);
1611 ++fs->lfs_sleepers;
1612 mutex_exit(&lfs_lock);
1613 if (ap->a_command == LFCNBMAPV)
1614 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1615 else /* LFCNMARKV */
1616 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1617 if (error == 0)
1618 error = copyout(blkiov, blkvp.blkiov,
1619 blkcnt * sizeof(BLOCK_INFO));
1620 mutex_enter(&lfs_lock);
1621 if (--fs->lfs_sleepers == 0)
1622 wakeup(&fs->lfs_sleepers);
1623 mutex_exit(&lfs_lock);
1624 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1625 return error;
1626
1627 case LFCNRECLAIM:
1628 /*
1629 * Flush dirops and write Ifile, allowing empty segments
1630 * to be immediately reclaimed.
1631 */
1632 lfs_writer_enter(fs, "pndirop");
1633 off = fs->lfs_offset;
1634 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1635 lfs_flush_dirops(fs);
1636 LFS_CLEANERINFO(cip, fs, bp);
1637 oclean = cip->clean;
1638 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1639 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1640 fs->lfs_sp->seg_flags |= SEGM_PROT;
1641 lfs_segunlock(fs);
1642 lfs_writer_leave(fs);
1643
1644 #ifdef DEBUG
1645 LFS_CLEANERINFO(cip, fs, bp);
1646 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1647 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1648 fs->lfs_offset - off, cip->clean - oclean,
1649 fs->lfs_activesb));
1650 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1651 #endif
1652
1653 return 0;
1654
1655 case LFCNIFILEFH_COMPAT:
1656 /* Return the filehandle of the Ifile */
1657 if ((error = kauth_authorize_system(l->l_cred,
1658 KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1659 return (error);
1660 fhp = (struct fhandle *)ap->a_data;
1661 fhp->fh_fsid = *fsidp;
1662 fh_size = 16; /* former VFS_MAXFIDSIZ */
1663 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1664
1665 case LFCNIFILEFH_COMPAT2:
1666 case LFCNIFILEFH:
1667 /* Return the filehandle of the Ifile */
1668 fhp = (struct fhandle *)ap->a_data;
1669 fhp->fh_fsid = *fsidp;
1670 fh_size = sizeof(struct lfs_fhandle) -
1671 offsetof(fhandle_t, fh_fid);
1672 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1673
1674 case LFCNREWIND:
1675 /* Move lfs_offset to the lowest-numbered segment */
1676 return lfs_rewind(fs, *(int *)ap->a_data);
1677
1678 case LFCNINVAL:
1679 /* Mark a segment SEGUSE_INVAL */
1680 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1681 if (sup->su_nbytes > 0) {
1682 brelse(bp, 0);
1683 lfs_unset_inval_all(fs);
1684 return EBUSY;
1685 }
1686 sup->su_flags |= SEGUSE_INVAL;
1687 VOP_BWRITE(bp->b_vp, bp);
1688 return 0;
1689
1690 case LFCNRESIZE:
1691 /* Resize the filesystem */
1692 return lfs_resize_fs(fs, *(int *)ap->a_data);
1693
1694 case LFCNWRAPSTOP:
1695 case LFCNWRAPSTOP_COMPAT:
1696 /*
1697 * Hold lfs_newseg at segment 0; if requested, sleep until
1698 * the filesystem wraps around. To support external agents
1699 * (dump, fsck-based regression test) that need to look at
1700 * a snapshot of the filesystem, without necessarily
1701 * requiring that all fs activity stops.
1702 */
1703 if (fs->lfs_stoplwp == curlwp)
1704 return EALREADY;
1705
1706 mutex_enter(&lfs_lock);
1707 while (fs->lfs_stoplwp != NULL)
1708 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1709 fs->lfs_stoplwp = curlwp;
1710 if (fs->lfs_nowrap == 0)
1711 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1712 ++fs->lfs_nowrap;
1713 if (*(int *)ap->a_data == 1
1714 || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1715 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1716 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1717 "segwrap", 0, &lfs_lock);
1718 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1719 if (error) {
1720 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1721 }
1722 }
1723 mutex_exit(&lfs_lock);
1724 return 0;
1725
1726 case LFCNWRAPGO:
1727 case LFCNWRAPGO_COMPAT:
1728 /*
1729 * Having done its work, the agent wakes up the writer.
1730 * If the argument is 1, it sleeps until a new segment
1731 * is selected.
1732 */
1733 mutex_enter(&lfs_lock);
1734 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1735 ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1736 *((int *)ap->a_data));
1737 mutex_exit(&lfs_lock);
1738 return error;
1739
1740 case LFCNWRAPPASS:
1741 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1742 return EALREADY;
1743 mutex_enter(&lfs_lock);
1744 if (fs->lfs_stoplwp != curlwp) {
1745 mutex_exit(&lfs_lock);
1746 return EALREADY;
1747 }
1748 if (fs->lfs_nowrap == 0) {
1749 mutex_exit(&lfs_lock);
1750 return EBUSY;
1751 }
1752 fs->lfs_wrappass = 1;
1753 wakeup(&fs->lfs_wrappass);
1754 /* Wait for the log to wrap, if asked */
1755 if (*(int *)ap->a_data) {
1756 mutex_enter(ap->a_vp->v_interlock);
1757 if (lfs_vref(ap->a_vp) != 0)
1758 panic("LFCNWRAPPASS: lfs_vref failed");
1759 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1760 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1761 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1762 "segwrap", 0, &lfs_lock);
1763 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1764 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1765 lfs_vunref(ap->a_vp);
1766 }
1767 mutex_exit(&lfs_lock);
1768 return error;
1769
1770 case LFCNWRAPSTATUS:
1771 mutex_enter(&lfs_lock);
1772 *(int *)ap->a_data = fs->lfs_wrapstatus;
1773 mutex_exit(&lfs_lock);
1774 return 0;
1775
1776 default:
1777 return ulfs_fcntl(v);
1778 }
1779 return 0;
1780 }
1781
1782 int
1783 lfs_getpages(void *v)
1784 {
1785 struct vop_getpages_args /* {
1786 struct vnode *a_vp;
1787 voff_t a_offset;
1788 struct vm_page **a_m;
1789 int *a_count;
1790 int a_centeridx;
1791 vm_prot_t a_access_type;
1792 int a_advice;
1793 int a_flags;
1794 } */ *ap = v;
1795
1796 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1797 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1798 return EPERM;
1799 }
1800 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1801 mutex_enter(&lfs_lock);
1802 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1803 mutex_exit(&lfs_lock);
1804 }
1805
1806 /*
1807 * we're relying on the fact that genfs_getpages() always read in
1808 * entire filesystem blocks.
1809 */
1810 return genfs_getpages(v);
1811 }
1812
1813 /*
1814 * Wait for a page to become unbusy, possibly printing diagnostic messages
1815 * as well.
1816 *
1817 * Called with vp->v_interlock held; return with it held.
1818 */
1819 static void
1820 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1821 {
1822 KASSERT(mutex_owned(vp->v_interlock));
1823 if ((pg->flags & PG_BUSY) == 0)
1824 return; /* Nothing to wait for! */
1825
1826 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1827 static struct vm_page *lastpg;
1828
1829 if (label != NULL && pg != lastpg) {
1830 if (pg->owner_tag) {
1831 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1832 curproc->p_pid, curlwp->l_lid, label,
1833 pg, pg->owner, pg->lowner, pg->owner_tag);
1834 } else {
1835 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1836 curproc->p_pid, curlwp->l_lid, label, pg);
1837 }
1838 }
1839 lastpg = pg;
1840 #endif
1841
1842 pg->flags |= PG_WANTED;
1843 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1844 mutex_enter(vp->v_interlock);
1845 }
1846
1847 /*
1848 * This routine is called by lfs_putpages() when it can't complete the
1849 * write because a page is busy. This means that either (1) someone,
1850 * possibly the pagedaemon, is looking at this page, and will give it up
1851 * presently; or (2) we ourselves are holding the page busy in the
1852 * process of being written (either gathered or actually on its way to
1853 * disk). We don't need to give up the segment lock, but we might need
1854 * to call lfs_writeseg() to expedite the page's journey to disk.
1855 *
1856 * Called with vp->v_interlock held; return with it held.
1857 */
1858 /* #define BUSYWAIT */
1859 static void
1860 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1861 int seglocked, const char *label)
1862 {
1863 KASSERT(mutex_owned(vp->v_interlock));
1864 #ifndef BUSYWAIT
1865 struct inode *ip = VTOI(vp);
1866 struct segment *sp = fs->lfs_sp;
1867 int count = 0;
1868
1869 if (pg == NULL)
1870 return;
1871
1872 while (pg->flags & PG_BUSY &&
1873 pg->uobject == &vp->v_uobj) {
1874 mutex_exit(vp->v_interlock);
1875 if (sp->cbpp - sp->bpp > 1) {
1876 /* Write gathered pages */
1877 lfs_updatemeta(sp);
1878 lfs_release_finfo(fs);
1879 (void) lfs_writeseg(fs, sp);
1880
1881 /*
1882 * Reinitialize FIP
1883 */
1884 KASSERT(sp->vp == vp);
1885 lfs_acquire_finfo(fs, ip->i_number,
1886 ip->i_gen);
1887 }
1888 ++count;
1889 mutex_enter(vp->v_interlock);
1890 wait_for_page(vp, pg, label);
1891 }
1892 if (label != NULL && count > 1) {
1893 DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
1894 curproc->p_pid, label, (count > 0 ? "looping, " : ""),
1895 count));
1896 }
1897 #else
1898 preempt(1);
1899 #endif
1900 KASSERT(mutex_owned(vp->v_interlock));
1901 }
1902
1903 /*
1904 * Make sure that for all pages in every block in the given range,
1905 * either all are dirty or all are clean. If any of the pages
1906 * we've seen so far are dirty, put the vnode on the paging chain,
1907 * and mark it IN_PAGING.
1908 *
1909 * If checkfirst != 0, don't check all the pages but return at the
1910 * first dirty page.
1911 */
1912 static int
1913 check_dirty(struct lfs *fs, struct vnode *vp,
1914 off_t startoffset, off_t endoffset, off_t blkeof,
1915 int flags, int checkfirst, struct vm_page **pgp)
1916 {
1917 int by_list;
1918 struct vm_page *curpg = NULL; /* XXX: gcc */
1919 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1920 off_t soff = 0; /* XXX: gcc */
1921 voff_t off;
1922 int i;
1923 int nonexistent;
1924 int any_dirty; /* number of dirty pages */
1925 int dirty; /* number of dirty pages in a block */
1926 int tdirty;
1927 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1928 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1929
1930 KASSERT(mutex_owned(vp->v_interlock));
1931 ASSERT_MAYBE_SEGLOCK(fs);
1932 top:
1933 by_list = (vp->v_uobj.uo_npages <=
1934 ((endoffset - startoffset) >> PAGE_SHIFT) *
1935 UVM_PAGE_TREE_PENALTY);
1936 any_dirty = 0;
1937
1938 if (by_list) {
1939 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1940 } else {
1941 soff = startoffset;
1942 }
1943 while (by_list || soff < MIN(blkeof, endoffset)) {
1944 if (by_list) {
1945 /*
1946 * Find the first page in a block. Skip
1947 * blocks outside our area of interest or beyond
1948 * the end of file.
1949 */
1950 KASSERT(curpg == NULL
1951 || (curpg->flags & PG_MARKER) == 0);
1952 if (pages_per_block > 1) {
1953 while (curpg &&
1954 ((curpg->offset & fs->lfs_bmask) ||
1955 curpg->offset >= vp->v_size ||
1956 curpg->offset >= endoffset)) {
1957 curpg = TAILQ_NEXT(curpg, listq.queue);
1958 KASSERT(curpg == NULL ||
1959 (curpg->flags & PG_MARKER) == 0);
1960 }
1961 }
1962 if (curpg == NULL)
1963 break;
1964 soff = curpg->offset;
1965 }
1966
1967 /*
1968 * Mark all pages in extended range busy; find out if any
1969 * of them are dirty.
1970 */
1971 nonexistent = dirty = 0;
1972 for (i = 0; i == 0 || i < pages_per_block; i++) {
1973 KASSERT(mutex_owned(vp->v_interlock));
1974 if (by_list && pages_per_block <= 1) {
1975 pgs[i] = pg = curpg;
1976 } else {
1977 off = soff + (i << PAGE_SHIFT);
1978 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1979 if (pg == NULL) {
1980 ++nonexistent;
1981 continue;
1982 }
1983 }
1984 KASSERT(pg != NULL);
1985
1986 /*
1987 * If we're holding the segment lock, we can deadlock
1988 * against a process that has our page and is waiting
1989 * for the cleaner, while the cleaner waits for the
1990 * segment lock. Just bail in that case.
1991 */
1992 if ((pg->flags & PG_BUSY) &&
1993 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1994 if (i > 0)
1995 uvm_page_unbusy(pgs, i);
1996 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1997 if (pgp)
1998 *pgp = pg;
1999 KASSERT(mutex_owned(vp->v_interlock));
2000 return -1;
2001 }
2002
2003 while (pg->flags & PG_BUSY) {
2004 wait_for_page(vp, pg, NULL);
2005 KASSERT(mutex_owned(vp->v_interlock));
2006 if (i > 0)
2007 uvm_page_unbusy(pgs, i);
2008 KASSERT(mutex_owned(vp->v_interlock));
2009 goto top;
2010 }
2011 pg->flags |= PG_BUSY;
2012 UVM_PAGE_OWN(pg, "lfs_putpages");
2013
2014 pmap_page_protect(pg, VM_PROT_NONE);
2015 tdirty = (pmap_clear_modify(pg) ||
2016 (pg->flags & PG_CLEAN) == 0);
2017 dirty += tdirty;
2018 }
2019 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
2020 if (by_list) {
2021 curpg = TAILQ_NEXT(curpg, listq.queue);
2022 } else {
2023 soff += fs->lfs_bsize;
2024 }
2025 continue;
2026 }
2027
2028 any_dirty += dirty;
2029 KASSERT(nonexistent == 0);
2030 KASSERT(mutex_owned(vp->v_interlock));
2031
2032 /*
2033 * If any are dirty make all dirty; unbusy them,
2034 * but if we were asked to clean, wire them so that
2035 * the pagedaemon doesn't bother us about them while
2036 * they're on their way to disk.
2037 */
2038 for (i = 0; i == 0 || i < pages_per_block; i++) {
2039 KASSERT(mutex_owned(vp->v_interlock));
2040 pg = pgs[i];
2041 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
2042 KASSERT(pg->flags & PG_BUSY);
2043 if (dirty) {
2044 pg->flags &= ~PG_CLEAN;
2045 if (flags & PGO_FREE) {
2046 /*
2047 * Wire the page so that
2048 * pdaemon doesn't see it again.
2049 */
2050 mutex_enter(&uvm_pageqlock);
2051 uvm_pagewire(pg);
2052 mutex_exit(&uvm_pageqlock);
2053
2054 /* Suspended write flag */
2055 pg->flags |= PG_DELWRI;
2056 }
2057 }
2058 if (pg->flags & PG_WANTED)
2059 wakeup(pg);
2060 pg->flags &= ~(PG_WANTED|PG_BUSY);
2061 UVM_PAGE_OWN(pg, NULL);
2062 }
2063
2064 if (checkfirst && any_dirty)
2065 break;
2066
2067 if (by_list) {
2068 curpg = TAILQ_NEXT(curpg, listq.queue);
2069 } else {
2070 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
2071 }
2072 }
2073
2074 KASSERT(mutex_owned(vp->v_interlock));
2075 return any_dirty;
2076 }
2077
2078 /*
2079 * lfs_putpages functions like genfs_putpages except that
2080 *
2081 * (1) It needs to bounds-check the incoming requests to ensure that
2082 * they are block-aligned; if they are not, expand the range and
2083 * do the right thing in case, e.g., the requested range is clean
2084 * but the expanded range is dirty.
2085 *
2086 * (2) It needs to explicitly send blocks to be written when it is done.
2087 * If VOP_PUTPAGES is called without the seglock held, we simply take
2088 * the seglock and let lfs_segunlock wait for us.
2089 * XXX There might be a bad situation if we have to flush a vnode while
2090 * XXX lfs_markv is in operation. As of this writing we panic in this
2091 * XXX case.
2092 *
2093 * Assumptions:
2094 *
2095 * (1) The caller does not hold any pages in this vnode busy. If it does,
2096 * there is a danger that when we expand the page range and busy the
2097 * pages we will deadlock.
2098 *
2099 * (2) We are called with vp->v_interlock held; we must return with it
2100 * released.
2101 *
2102 * (3) We don't absolutely have to free pages right away, provided that
2103 * the request does not have PGO_SYNCIO. When the pagedaemon gives
2104 * us a request with PGO_FREE, we take the pages out of the paging
2105 * queue and wake up the writer, which will handle freeing them for us.
2106 *
2107 * We ensure that for any filesystem block, all pages for that
2108 * block are either resident or not, even if those pages are higher
2109 * than EOF; that means that we will be getting requests to free
2110 * "unused" pages above EOF all the time, and should ignore them.
2111 *
2112 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
2113 * into has been set up for us by lfs_writefile. If not, we will
2114 * have to handle allocating and/or freeing an finfo entry.
2115 *
2116 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
2117 */
2118
2119 /* How many times to loop before we should start to worry */
2120 #define TOOMANY 4
2121
2122 int
2123 lfs_putpages(void *v)
2124 {
2125 int error;
2126 struct vop_putpages_args /* {
2127 struct vnode *a_vp;
2128 voff_t a_offlo;
2129 voff_t a_offhi;
2130 int a_flags;
2131 } */ *ap = v;
2132 struct vnode *vp;
2133 struct inode *ip;
2134 struct lfs *fs;
2135 struct segment *sp;
2136 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
2137 off_t off, max_endoffset;
2138 bool seglocked, sync, pagedaemon, reclaim;
2139 struct vm_page *pg, *busypg;
2140 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2141 int oreclaim = 0;
2142 int donewriting = 0;
2143 #ifdef DEBUG
2144 int debug_n_again, debug_n_dirtyclean;
2145 #endif
2146
2147 vp = ap->a_vp;
2148 ip = VTOI(vp);
2149 fs = ip->i_lfs;
2150 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2151 reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
2152 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2153
2154 KASSERT(mutex_owned(vp->v_interlock));
2155
2156 /* Putpages does nothing for metadata. */
2157 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2158 mutex_exit(vp->v_interlock);
2159 return 0;
2160 }
2161
2162 /*
2163 * If there are no pages, don't do anything.
2164 */
2165 if (vp->v_uobj.uo_npages == 0) {
2166 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2167 (vp->v_iflag & VI_ONWORKLST) &&
2168 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2169 vp->v_iflag &= ~VI_WRMAPDIRTY;
2170 vn_syncer_remove_from_worklist(vp);
2171 }
2172 mutex_exit(vp->v_interlock);
2173
2174 /* Remove us from paging queue, if we were on it */
2175 mutex_enter(&lfs_lock);
2176 if (ip->i_flags & IN_PAGING) {
2177 ip->i_flags &= ~IN_PAGING;
2178 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2179 }
2180 mutex_exit(&lfs_lock);
2181
2182 KASSERT(!mutex_owned(vp->v_interlock));
2183 return 0;
2184 }
2185
2186 blkeof = blkroundup(fs, ip->i_size);
2187
2188 /*
2189 * Ignore requests to free pages past EOF but in the same block
2190 * as EOF, unless the vnode is being reclaimed or the request
2191 * is synchronous. (If the request is sync, it comes from
2192 * lfs_truncate.)
2193 *
2194 * To avoid being flooded with this request, make these pages
2195 * look "active".
2196 */
2197 if (!sync && !reclaim &&
2198 ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2199 origoffset = ap->a_offlo;
2200 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2201 pg = uvm_pagelookup(&vp->v_uobj, off);
2202 KASSERT(pg != NULL);
2203 while (pg->flags & PG_BUSY) {
2204 pg->flags |= PG_WANTED;
2205 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2206 "lfsput2", 0);
2207 mutex_enter(vp->v_interlock);
2208 }
2209 mutex_enter(&uvm_pageqlock);
2210 uvm_pageactivate(pg);
2211 mutex_exit(&uvm_pageqlock);
2212 }
2213 ap->a_offlo = blkeof;
2214 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2215 mutex_exit(vp->v_interlock);
2216 return 0;
2217 }
2218 }
2219
2220 /*
2221 * Extend page range to start and end at block boundaries.
2222 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2223 */
2224 origoffset = ap->a_offlo;
2225 origendoffset = ap->a_offhi;
2226 startoffset = origoffset & ~(fs->lfs_bmask);
2227 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2228 << fs->lfs_bshift;
2229
2230 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2231 endoffset = max_endoffset;
2232 origendoffset = endoffset;
2233 } else {
2234 origendoffset = round_page(ap->a_offhi);
2235 endoffset = round_page(blkroundup(fs, origendoffset));
2236 }
2237
2238 KASSERT(startoffset > 0 || endoffset >= startoffset);
2239 if (startoffset == endoffset) {
2240 /* Nothing to do, why were we called? */
2241 mutex_exit(vp->v_interlock);
2242 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2243 PRId64 "\n", startoffset));
2244 return 0;
2245 }
2246
2247 ap->a_offlo = startoffset;
2248 ap->a_offhi = endoffset;
2249
2250 /*
2251 * If not cleaning, just send the pages through genfs_putpages
2252 * to be returned to the pool.
2253 */
2254 if (!(ap->a_flags & PGO_CLEANIT)) {
2255 DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
2256 vp, (int)ip->i_number, ap->a_flags));
2257 int r = genfs_putpages(v);
2258 KASSERT(!mutex_owned(vp->v_interlock));
2259 return r;
2260 }
2261
2262 /* Set PGO_BUSYFAIL to avoid deadlocks */
2263 ap->a_flags |= PGO_BUSYFAIL;
2264
2265 /*
2266 * Likewise, if we are asked to clean but the pages are not
2267 * dirty, we can just free them using genfs_putpages.
2268 */
2269 #ifdef DEBUG
2270 debug_n_dirtyclean = 0;
2271 #endif
2272 do {
2273 int r;
2274 KASSERT(mutex_owned(vp->v_interlock));
2275
2276 /* Count the number of dirty pages */
2277 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2278 ap->a_flags, 1, NULL);
2279 if (r < 0) {
2280 /* Pages are busy with another process */
2281 mutex_exit(vp->v_interlock);
2282 return EDEADLK;
2283 }
2284 if (r > 0) /* Some pages are dirty */
2285 break;
2286
2287 /*
2288 * Sometimes pages are dirtied between the time that
2289 * we check and the time we try to clean them.
2290 * Instruct lfs_gop_write to return EDEADLK in this case
2291 * so we can write them properly.
2292 */
2293 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2294 r = genfs_do_putpages(vp, startoffset, endoffset,
2295 ap->a_flags & ~PGO_SYNCIO, &busypg);
2296 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2297 if (r != EDEADLK) {
2298 KASSERT(!mutex_owned(vp->v_interlock));
2299 return r;
2300 }
2301
2302 /* One of the pages was busy. Start over. */
2303 mutex_enter(vp->v_interlock);
2304 wait_for_page(vp, busypg, "dirtyclean");
2305 #ifdef DEBUG
2306 ++debug_n_dirtyclean;
2307 #endif
2308 } while(1);
2309
2310 #ifdef DEBUG
2311 if (debug_n_dirtyclean > TOOMANY)
2312 DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
2313 debug_n_dirtyclean));
2314 #endif
2315
2316 /*
2317 * Dirty and asked to clean.
2318 *
2319 * Pagedaemon can't actually write LFS pages; wake up
2320 * the writer to take care of that. The writer will
2321 * notice the pager inode queue and act on that.
2322 *
2323 * XXX We must drop the vp->interlock before taking the lfs_lock or we
2324 * get a nasty deadlock with lfs_flush_pchain().
2325 */
2326 if (pagedaemon) {
2327 mutex_exit(vp->v_interlock);
2328 mutex_enter(&lfs_lock);
2329 if (!(ip->i_flags & IN_PAGING)) {
2330 ip->i_flags |= IN_PAGING;
2331 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2332 }
2333 wakeup(&lfs_writer_daemon);
2334 mutex_exit(&lfs_lock);
2335 preempt();
2336 KASSERT(!mutex_owned(vp->v_interlock));
2337 return EWOULDBLOCK;
2338 }
2339
2340 /*
2341 * If this is a file created in a recent dirop, we can't flush its
2342 * inode until the dirop is complete. Drain dirops, then flush the
2343 * filesystem (taking care of any other pending dirops while we're
2344 * at it).
2345 */
2346 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2347 (vp->v_uflag & VU_DIROP)) {
2348 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2349
2350 lfs_writer_enter(fs, "ppdirop");
2351
2352 /* Note if we hold the vnode locked */
2353 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
2354 {
2355 DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
2356 } else {
2357 DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
2358 }
2359 mutex_exit(vp->v_interlock);
2360
2361 mutex_enter(&lfs_lock);
2362 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2363 mutex_exit(&lfs_lock);
2364
2365 mutex_enter(vp->v_interlock);
2366 lfs_writer_leave(fs);
2367
2368 /* The flush will have cleaned out this vnode as well,
2369 no need to do more to it. */
2370 }
2371
2372 /*
2373 * This is it. We are going to write some pages. From here on
2374 * down it's all just mechanics.
2375 *
2376 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2377 */
2378 ap->a_flags &= ~PGO_SYNCIO;
2379
2380 /*
2381 * If we've already got the seglock, flush the node and return.
2382 * The FIP has already been set up for us by lfs_writefile,
2383 * and FIP cleanup and lfs_updatemeta will also be done there,
2384 * unless genfs_putpages returns EDEADLK; then we must flush
2385 * what we have, and correct FIP and segment header accounting.
2386 */
2387 get_seglock:
2388 /*
2389 * If we are not called with the segment locked, lock it.
2390 * Account for a new FIP in the segment header, and set sp->vp.
2391 * (This should duplicate the setup at the top of lfs_writefile().)
2392 */
2393 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2394 if (!seglocked) {
2395 mutex_exit(vp->v_interlock);
2396 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2397 if (error != 0) {
2398 KASSERT(!mutex_owned(vp->v_interlock));
2399 return error;
2400 }
2401 mutex_enter(vp->v_interlock);
2402 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2403 }
2404 sp = fs->lfs_sp;
2405 KASSERT(sp->vp == NULL);
2406 sp->vp = vp;
2407
2408 /* Note segments written by reclaim; only for debugging */
2409 if ((vp->v_iflag & VI_XLOCK) != 0) {
2410 sp->seg_flags |= SEGM_RECLAIM;
2411 fs->lfs_reclino = ip->i_number;
2412 }
2413
2414 /*
2415 * Ensure that the partial segment is marked SS_DIROP if this
2416 * vnode is a DIROP.
2417 */
2418 if (!seglocked && vp->v_uflag & VU_DIROP)
2419 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2420
2421 /*
2422 * Loop over genfs_putpages until all pages are gathered.
2423 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2424 * Whenever we lose the interlock we have to rerun check_dirty, as
2425 * well, since more pages might have been dirtied in our absence.
2426 */
2427 #ifdef DEBUG
2428 debug_n_again = 0;
2429 #endif
2430 do {
2431 busypg = NULL;
2432 KASSERT(mutex_owned(vp->v_interlock));
2433 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2434 ap->a_flags, 0, &busypg) < 0) {
2435 mutex_exit(vp->v_interlock);
2436 /* XXX why? --ks */
2437 mutex_enter(vp->v_interlock);
2438 write_and_wait(fs, vp, busypg, seglocked, NULL);
2439 if (!seglocked) {
2440 mutex_exit(vp->v_interlock);
2441 lfs_release_finfo(fs);
2442 lfs_segunlock(fs);
2443 mutex_enter(vp->v_interlock);
2444 }
2445 sp->vp = NULL;
2446 goto get_seglock;
2447 }
2448
2449 busypg = NULL;
2450 KASSERT(!mutex_owned(&uvm_pageqlock));
2451 oreclaim = (ap->a_flags & PGO_RECLAIM);
2452 ap->a_flags &= ~PGO_RECLAIM;
2453 error = genfs_do_putpages(vp, startoffset, endoffset,
2454 ap->a_flags, &busypg);
2455 ap->a_flags |= oreclaim;
2456
2457 if (error == EDEADLK || error == EAGAIN) {
2458 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2459 " %d ino %d off %x (seg %d)\n", error,
2460 ip->i_number, fs->lfs_offset,
2461 dtosn(fs, fs->lfs_offset)));
2462
2463 if (oreclaim) {
2464 mutex_enter(vp->v_interlock);
2465 write_and_wait(fs, vp, busypg, seglocked, "again");
2466 mutex_exit(vp->v_interlock);
2467 } else {
2468 if ((sp->seg_flags & SEGM_SINGLE) &&
2469 fs->lfs_curseg != fs->lfs_startseg)
2470 donewriting = 1;
2471 }
2472 } else if (error) {
2473 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2474 " %d ino %d off %x (seg %d)\n", error,
2475 (int)ip->i_number, fs->lfs_offset,
2476 dtosn(fs, fs->lfs_offset)));
2477 }
2478 /* genfs_do_putpages loses the interlock */
2479 #ifdef DEBUG
2480 ++debug_n_again;
2481 #endif
2482 if (oreclaim && error == EAGAIN) {
2483 DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
2484 vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
2485 mutex_enter(vp->v_interlock);
2486 }
2487 if (error == EDEADLK)
2488 mutex_enter(vp->v_interlock);
2489 } while (error == EDEADLK || (oreclaim && error == EAGAIN));
2490 #ifdef DEBUG
2491 if (debug_n_again > TOOMANY)
2492 DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
2493 #endif
2494
2495 KASSERT(sp != NULL && sp->vp == vp);
2496 if (!seglocked && !donewriting) {
2497 sp->vp = NULL;
2498
2499 /* Write indirect blocks as well */
2500 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2501 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2502 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2503
2504 KASSERT(sp->vp == NULL);
2505 sp->vp = vp;
2506 }
2507
2508 /*
2509 * Blocks are now gathered into a segment waiting to be written.
2510 * All that's left to do is update metadata, and write them.
2511 */
2512 lfs_updatemeta(sp);
2513 KASSERT(sp->vp == vp);
2514 sp->vp = NULL;
2515
2516 /*
2517 * If we were called from lfs_writefile, we don't need to clean up
2518 * the FIP or unlock the segment lock. We're done.
2519 */
2520 if (seglocked) {
2521 KASSERT(!mutex_owned(vp->v_interlock));
2522 return error;
2523 }
2524
2525 /* Clean up FIP and send it to disk. */
2526 lfs_release_finfo(fs);
2527 lfs_writeseg(fs, fs->lfs_sp);
2528
2529 /*
2530 * Remove us from paging queue if we wrote all our pages.
2531 */
2532 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2533 mutex_enter(&lfs_lock);
2534 if (ip->i_flags & IN_PAGING) {
2535 ip->i_flags &= ~IN_PAGING;
2536 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2537 }
2538 mutex_exit(&lfs_lock);
2539 }
2540
2541 /*
2542 * XXX - with the malloc/copy writeseg, the pages are freed by now
2543 * even if we don't wait (e.g. if we hold a nested lock). This
2544 * will not be true if we stop using malloc/copy.
2545 */
2546 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2547 lfs_segunlock(fs);
2548
2549 /*
2550 * Wait for v_numoutput to drop to zero. The seglock should
2551 * take care of this, but there is a slight possibility that
2552 * aiodoned might not have got around to our buffers yet.
2553 */
2554 if (sync) {
2555 mutex_enter(vp->v_interlock);
2556 while (vp->v_numoutput > 0) {
2557 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2558 " num %d\n", ip->i_number, vp->v_numoutput));
2559 cv_wait(&vp->v_cv, vp->v_interlock);
2560 }
2561 mutex_exit(vp->v_interlock);
2562 }
2563 KASSERT(!mutex_owned(vp->v_interlock));
2564 return error;
2565 }
2566
2567 /*
2568 * Return the last logical file offset that should be written for this file
2569 * if we're doing a write that ends at "size". If writing, we need to know
2570 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2571 * to know about entire blocks.
2572 */
2573 void
2574 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2575 {
2576 struct inode *ip = VTOI(vp);
2577 struct lfs *fs = ip->i_lfs;
2578 daddr_t olbn, nlbn;
2579
2580 olbn = lblkno(fs, ip->i_size);
2581 nlbn = lblkno(fs, size);
2582 if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
2583 *eobp = fragroundup(fs, size);
2584 } else {
2585 *eobp = blkroundup(fs, size);
2586 }
2587 }
2588
2589 #ifdef DEBUG
2590 void lfs_dump_vop(void *);
2591
2592 void
2593 lfs_dump_vop(void *v)
2594 {
2595 struct vop_putpages_args /* {
2596 struct vnode *a_vp;
2597 voff_t a_offlo;
2598 voff_t a_offhi;
2599 int a_flags;
2600 } */ *ap = v;
2601
2602 #ifdef DDB
2603 vfs_vnode_print(ap->a_vp, 0, printf);
2604 #endif
2605 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2606 }
2607 #endif
2608
2609 int
2610 lfs_mmap(void *v)
2611 {
2612 struct vop_mmap_args /* {
2613 const struct vnodeop_desc *a_desc;
2614 struct vnode *a_vp;
2615 vm_prot_t a_prot;
2616 kauth_cred_t a_cred;
2617 } */ *ap = v;
2618
2619 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2620 return EOPNOTSUPP;
2621 return ulfs_mmap(v);
2622 }
2623