Home | History | Annotate | Line # | Download | only in lfs
lfs_vnops.c revision 1.248
      1 /*	$NetBSD: lfs_vnops.c,v 1.248 2013/06/18 18:18:58 christos Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Konrad E. Schroder <perseant (at) hhhh.org>.
      9  *
     10  * Redistribution and use in source and binary forms, with or without
     11  * modification, are permitted provided that the following conditions
     12  * are met:
     13  * 1. Redistributions of source code must retain the above copyright
     14  *    notice, this list of conditions and the following disclaimer.
     15  * 2. Redistributions in binary form must reproduce the above copyright
     16  *    notice, this list of conditions and the following disclaimer in the
     17  *    documentation and/or other materials provided with the distribution.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     20  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     21  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     22  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     23  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     24  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     25  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     26  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     27  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     28  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     29  * POSSIBILITY OF SUCH DAMAGE.
     30  */
     31 /*
     32  * Copyright (c) 1986, 1989, 1991, 1993, 1995
     33  *	The Regents of the University of California.  All rights reserved.
     34  *
     35  * Redistribution and use in source and binary forms, with or without
     36  * modification, are permitted provided that the following conditions
     37  * are met:
     38  * 1. Redistributions of source code must retain the above copyright
     39  *    notice, this list of conditions and the following disclaimer.
     40  * 2. Redistributions in binary form must reproduce the above copyright
     41  *    notice, this list of conditions and the following disclaimer in the
     42  *    documentation and/or other materials provided with the distribution.
     43  * 3. Neither the name of the University nor the names of its contributors
     44  *    may be used to endorse or promote products derived from this software
     45  *    without specific prior written permission.
     46  *
     47  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     48  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     49  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     50  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     51  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     52  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     53  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     54  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     55  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     56  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     57  * SUCH DAMAGE.
     58  *
     59  *	@(#)lfs_vnops.c	8.13 (Berkeley) 6/10/95
     60  */
     61 
     62 #include <sys/cdefs.h>
     63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.248 2013/06/18 18:18:58 christos Exp $");
     64 
     65 #ifdef _KERNEL_OPT
     66 #include "opt_compat_netbsd.h"
     67 #include "opt_uvm_page_trkown.h"
     68 #endif
     69 
     70 #include <sys/param.h>
     71 #include <sys/systm.h>
     72 #include <sys/namei.h>
     73 #include <sys/resourcevar.h>
     74 #include <sys/kernel.h>
     75 #include <sys/file.h>
     76 #include <sys/stat.h>
     77 #include <sys/buf.h>
     78 #include <sys/proc.h>
     79 #include <sys/mount.h>
     80 #include <sys/vnode.h>
     81 #include <sys/pool.h>
     82 #include <sys/signalvar.h>
     83 #include <sys/kauth.h>
     84 #include <sys/syslog.h>
     85 #include <sys/fstrans.h>
     86 
     87 #include <miscfs/fifofs/fifo.h>
     88 #include <miscfs/genfs/genfs.h>
     89 #include <miscfs/specfs/specdev.h>
     90 
     91 #include <ufs/lfs/ulfs_inode.h>
     92 #include <ufs/lfs/ulfsmount.h>
     93 #include <ufs/lfs/ulfs_bswap.h>
     94 #include <ufs/lfs/ulfs_extern.h>
     95 
     96 #include <uvm/uvm.h>
     97 #include <uvm/uvm_pmap.h>
     98 #include <uvm/uvm_stat.h>
     99 #include <uvm/uvm_pager.h>
    100 
    101 #include <ufs/lfs/lfs.h>
    102 #include <ufs/lfs/lfs_extern.h>
    103 
    104 extern pid_t lfs_writer_daemon;
    105 int lfs_ignore_lazy_sync = 1;
    106 
    107 /* Global vfs data structures for lfs. */
    108 int (**lfs_vnodeop_p)(void *);
    109 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
    110 	{ &vop_default_desc, vn_default_error },
    111 	{ &vop_lookup_desc, ulfs_lookup },		/* lookup */
    112 	{ &vop_create_desc, lfs_create },		/* create */
    113 	{ &vop_whiteout_desc, ulfs_whiteout },		/* whiteout */
    114 	{ &vop_mknod_desc, lfs_mknod },			/* mknod */
    115 	{ &vop_open_desc, ulfs_open },			/* open */
    116 	{ &vop_close_desc, lfs_close },			/* close */
    117 	{ &vop_access_desc, ulfs_access },		/* access */
    118 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    119 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    120 	{ &vop_read_desc, lfs_read },			/* read */
    121 	{ &vop_write_desc, lfs_write },			/* write */
    122 	{ &vop_ioctl_desc, ulfs_ioctl },		/* ioctl */
    123 	{ &vop_fcntl_desc, lfs_fcntl },			/* fcntl */
    124 	{ &vop_poll_desc, ulfs_poll },			/* poll */
    125 	{ &vop_kqfilter_desc, genfs_kqfilter },		/* kqfilter */
    126 	{ &vop_revoke_desc, ulfs_revoke },		/* revoke */
    127 	{ &vop_mmap_desc, lfs_mmap },			/* mmap */
    128 	{ &vop_fsync_desc, lfs_fsync },			/* fsync */
    129 	{ &vop_seek_desc, ulfs_seek },			/* seek */
    130 	{ &vop_remove_desc, lfs_remove },		/* remove */
    131 	{ &vop_link_desc, lfs_link },			/* link */
    132 	{ &vop_rename_desc, lfs_rename },		/* rename */
    133 	{ &vop_mkdir_desc, lfs_mkdir },			/* mkdir */
    134 	{ &vop_rmdir_desc, lfs_rmdir },			/* rmdir */
    135 	{ &vop_symlink_desc, lfs_symlink },		/* symlink */
    136 	{ &vop_readdir_desc, ulfs_readdir },		/* readdir */
    137 	{ &vop_readlink_desc, ulfs_readlink },		/* readlink */
    138 	{ &vop_abortop_desc, ulfs_abortop },		/* abortop */
    139 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    140 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    141 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    142 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    143 	{ &vop_bmap_desc, ulfs_bmap },			/* bmap */
    144 	{ &vop_strategy_desc, lfs_strategy },		/* strategy */
    145 	{ &vop_print_desc, ulfs_print },		/* print */
    146 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    147 	{ &vop_pathconf_desc, ulfs_pathconf },		/* pathconf */
    148 	{ &vop_advlock_desc, ulfs_advlock },		/* advlock */
    149 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    150 	{ &vop_getpages_desc, lfs_getpages },		/* getpages */
    151 	{ &vop_putpages_desc, lfs_putpages },		/* putpages */
    152 	{ NULL, NULL }
    153 };
    154 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
    155 	{ &lfs_vnodeop_p, lfs_vnodeop_entries };
    156 
    157 int (**lfs_specop_p)(void *);
    158 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
    159 	{ &vop_default_desc, vn_default_error },
    160 	{ &vop_lookup_desc, spec_lookup },		/* lookup */
    161 	{ &vop_create_desc, spec_create },		/* create */
    162 	{ &vop_mknod_desc, spec_mknod },		/* mknod */
    163 	{ &vop_open_desc, spec_open },			/* open */
    164 	{ &vop_close_desc, lfsspec_close },		/* close */
    165 	{ &vop_access_desc, ulfs_access },		/* access */
    166 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    167 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    168 	{ &vop_read_desc, ulfsspec_read },		/* read */
    169 	{ &vop_write_desc, ulfsspec_write },		/* write */
    170 	{ &vop_ioctl_desc, spec_ioctl },		/* ioctl */
    171 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    172 	{ &vop_poll_desc, spec_poll },			/* poll */
    173 	{ &vop_kqfilter_desc, spec_kqfilter },		/* kqfilter */
    174 	{ &vop_revoke_desc, spec_revoke },		/* revoke */
    175 	{ &vop_mmap_desc, spec_mmap },			/* mmap */
    176 	{ &vop_fsync_desc, spec_fsync },		/* fsync */
    177 	{ &vop_seek_desc, spec_seek },			/* seek */
    178 	{ &vop_remove_desc, spec_remove },		/* remove */
    179 	{ &vop_link_desc, spec_link },			/* link */
    180 	{ &vop_rename_desc, spec_rename },		/* rename */
    181 	{ &vop_mkdir_desc, spec_mkdir },		/* mkdir */
    182 	{ &vop_rmdir_desc, spec_rmdir },		/* rmdir */
    183 	{ &vop_symlink_desc, spec_symlink },		/* symlink */
    184 	{ &vop_readdir_desc, spec_readdir },		/* readdir */
    185 	{ &vop_readlink_desc, spec_readlink },		/* readlink */
    186 	{ &vop_abortop_desc, spec_abortop },		/* abortop */
    187 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    188 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    189 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    190 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    191 	{ &vop_bmap_desc, spec_bmap },			/* bmap */
    192 	{ &vop_strategy_desc, spec_strategy },		/* strategy */
    193 	{ &vop_print_desc, ulfs_print },		/* print */
    194 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    195 	{ &vop_pathconf_desc, spec_pathconf },		/* pathconf */
    196 	{ &vop_advlock_desc, spec_advlock },		/* advlock */
    197 	{ &vop_bwrite_desc, vn_bwrite },		/* bwrite */
    198 	{ &vop_getpages_desc, spec_getpages },		/* getpages */
    199 	{ &vop_putpages_desc, spec_putpages },		/* putpages */
    200 	{ NULL, NULL }
    201 };
    202 const struct vnodeopv_desc lfs_specop_opv_desc =
    203 	{ &lfs_specop_p, lfs_specop_entries };
    204 
    205 int (**lfs_fifoop_p)(void *);
    206 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
    207 	{ &vop_default_desc, vn_default_error },
    208 	{ &vop_lookup_desc, vn_fifo_bypass },		/* lookup */
    209 	{ &vop_create_desc, vn_fifo_bypass },		/* create */
    210 	{ &vop_mknod_desc, vn_fifo_bypass },		/* mknod */
    211 	{ &vop_open_desc, vn_fifo_bypass },		/* open */
    212 	{ &vop_close_desc, lfsfifo_close },		/* close */
    213 	{ &vop_access_desc, ulfs_access },		/* access */
    214 	{ &vop_getattr_desc, lfs_getattr },		/* getattr */
    215 	{ &vop_setattr_desc, lfs_setattr },		/* setattr */
    216 	{ &vop_read_desc, ulfsfifo_read },		/* read */
    217 	{ &vop_write_desc, ulfsfifo_write },		/* write */
    218 	{ &vop_ioctl_desc, vn_fifo_bypass },		/* ioctl */
    219 	{ &vop_fcntl_desc, ulfs_fcntl },		/* fcntl */
    220 	{ &vop_poll_desc, vn_fifo_bypass },		/* poll */
    221 	{ &vop_kqfilter_desc, vn_fifo_bypass },		/* kqfilter */
    222 	{ &vop_revoke_desc, vn_fifo_bypass },		/* revoke */
    223 	{ &vop_mmap_desc, vn_fifo_bypass },		/* mmap */
    224 	{ &vop_fsync_desc, vn_fifo_bypass },		/* fsync */
    225 	{ &vop_seek_desc, vn_fifo_bypass },		/* seek */
    226 	{ &vop_remove_desc, vn_fifo_bypass },		/* remove */
    227 	{ &vop_link_desc, vn_fifo_bypass },		/* link */
    228 	{ &vop_rename_desc, vn_fifo_bypass },		/* rename */
    229 	{ &vop_mkdir_desc, vn_fifo_bypass },		/* mkdir */
    230 	{ &vop_rmdir_desc, vn_fifo_bypass },		/* rmdir */
    231 	{ &vop_symlink_desc, vn_fifo_bypass },		/* symlink */
    232 	{ &vop_readdir_desc, vn_fifo_bypass },		/* readdir */
    233 	{ &vop_readlink_desc, vn_fifo_bypass },		/* readlink */
    234 	{ &vop_abortop_desc, vn_fifo_bypass },		/* abortop */
    235 	{ &vop_inactive_desc, lfs_inactive },		/* inactive */
    236 	{ &vop_reclaim_desc, lfs_reclaim },		/* reclaim */
    237 	{ &vop_lock_desc, ulfs_lock },			/* lock */
    238 	{ &vop_unlock_desc, ulfs_unlock },		/* unlock */
    239 	{ &vop_bmap_desc, vn_fifo_bypass },		/* bmap */
    240 	{ &vop_strategy_desc, vn_fifo_bypass },		/* strategy */
    241 	{ &vop_print_desc, ulfs_print },		/* print */
    242 	{ &vop_islocked_desc, ulfs_islocked },		/* islocked */
    243 	{ &vop_pathconf_desc, vn_fifo_bypass },		/* pathconf */
    244 	{ &vop_advlock_desc, vn_fifo_bypass },		/* advlock */
    245 	{ &vop_bwrite_desc, lfs_bwrite },		/* bwrite */
    246 	{ &vop_putpages_desc, vn_fifo_bypass },		/* putpages */
    247 	{ NULL, NULL }
    248 };
    249 const struct vnodeopv_desc lfs_fifoop_opv_desc =
    250 	{ &lfs_fifoop_p, lfs_fifoop_entries };
    251 
    252 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
    253 
    254 #define	LFS_READWRITE
    255 #include <ufs/lfs/ulfs_readwrite.c>
    256 #undef	LFS_READWRITE
    257 
    258 /*
    259  * Synch an open file.
    260  */
    261 /* ARGSUSED */
    262 int
    263 lfs_fsync(void *v)
    264 {
    265 	struct vop_fsync_args /* {
    266 		struct vnode *a_vp;
    267 		kauth_cred_t a_cred;
    268 		int a_flags;
    269 		off_t offlo;
    270 		off_t offhi;
    271 	} */ *ap = v;
    272 	struct vnode *vp = ap->a_vp;
    273 	int error, wait;
    274 	struct inode *ip = VTOI(vp);
    275 	struct lfs *fs = ip->i_lfs;
    276 
    277 	/* If we're mounted read-only, don't try to sync. */
    278 	if (fs->lfs_ronly)
    279 		return 0;
    280 
    281 	/* If a removed vnode is being cleaned, no need to sync here. */
    282 	if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
    283 		return 0;
    284 
    285 	/*
    286 	 * Trickle sync simply adds this vnode to the pager list, as if
    287 	 * the pagedaemon had requested a pageout.
    288 	 */
    289 	if (ap->a_flags & FSYNC_LAZY) {
    290 		if (lfs_ignore_lazy_sync == 0) {
    291 			mutex_enter(&lfs_lock);
    292 			if (!(ip->i_flags & IN_PAGING)) {
    293 				ip->i_flags |= IN_PAGING;
    294 				TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
    295 						  i_lfs_pchain);
    296 			}
    297 			wakeup(&lfs_writer_daemon);
    298 			mutex_exit(&lfs_lock);
    299 		}
    300 		return 0;
    301 	}
    302 
    303 	/*
    304 	 * If a vnode is bring cleaned, flush it out before we try to
    305 	 * reuse it.  This prevents the cleaner from writing files twice
    306 	 * in the same partial segment, causing an accounting underflow.
    307 	 */
    308 	if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
    309 		lfs_vflush(vp);
    310 	}
    311 
    312 	wait = (ap->a_flags & FSYNC_WAIT);
    313 	do {
    314 		mutex_enter(vp->v_interlock);
    315 		error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
    316 				     round_page(ap->a_offhi),
    317 				     PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
    318 		if (error == EAGAIN) {
    319 			mutex_enter(&lfs_lock);
    320 			mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
    321 				hz / 100 + 1, &lfs_lock);
    322 			mutex_exit(&lfs_lock);
    323 		}
    324 	} while (error == EAGAIN);
    325 	if (error)
    326 		return error;
    327 
    328 	if ((ap->a_flags & FSYNC_DATAONLY) == 0)
    329 		error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
    330 
    331 	if (error == 0 && ap->a_flags & FSYNC_CACHE) {
    332 		int l = 0;
    333 		error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
    334 				  curlwp->l_cred);
    335 	}
    336 	if (wait && !VPISEMPTY(vp))
    337 		LFS_SET_UINO(ip, IN_MODIFIED);
    338 
    339 	return error;
    340 }
    341 
    342 /*
    343  * Take IN_ADIROP off, then call ulfs_inactive.
    344  */
    345 int
    346 lfs_inactive(void *v)
    347 {
    348 	struct vop_inactive_args /* {
    349 		struct vnode *a_vp;
    350 	} */ *ap = v;
    351 
    352 	lfs_unmark_vnode(ap->a_vp);
    353 
    354 	/*
    355 	 * The Ifile is only ever inactivated on unmount.
    356 	 * Streamline this process by not giving it more dirty blocks.
    357 	 */
    358 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
    359 		mutex_enter(&lfs_lock);
    360 		LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
    361 		mutex_exit(&lfs_lock);
    362 		VOP_UNLOCK(ap->a_vp);
    363 		return 0;
    364 	}
    365 
    366 #ifdef DEBUG
    367 	/*
    368 	 * This might happen on unmount.
    369 	 * XXX If it happens at any other time, it should be a panic.
    370 	 */
    371 	if (ap->a_vp->v_uflag & VU_DIROP) {
    372 		struct inode *ip = VTOI(ap->a_vp);
    373 		printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
    374 	}
    375 #endif /* DIAGNOSTIC */
    376 
    377 	return ulfs_inactive(v);
    378 }
    379 
    380 /*
    381  * These macros are used to bracket ULFS directory ops, so that we can
    382  * identify all the pages touched during directory ops which need to
    383  * be ordered and flushed atomically, so that they may be recovered.
    384  *
    385  * Because we have to mark nodes VU_DIROP in order to prevent
    386  * the cache from reclaiming them while a dirop is in progress, we must
    387  * also manage the number of nodes so marked (otherwise we can run out).
    388  * We do this by setting lfs_dirvcount to the number of marked vnodes; it
    389  * is decremented during segment write, when VU_DIROP is taken off.
    390  */
    391 #define	MARK_VNODE(vp)			lfs_mark_vnode(vp)
    392 #define	UNMARK_VNODE(vp)		lfs_unmark_vnode(vp)
    393 #define	SET_DIROP_CREATE(dvp, vpp)	lfs_set_dirop_create((dvp), (vpp))
    394 #define	SET_DIROP_REMOVE(dvp, vp)	lfs_set_dirop((dvp), (vp))
    395 static int lfs_set_dirop_create(struct vnode *, struct vnode **);
    396 static int lfs_set_dirop(struct vnode *, struct vnode *);
    397 
    398 static int
    399 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
    400 {
    401 	struct lfs *fs;
    402 	int error;
    403 
    404 	KASSERT(VOP_ISLOCKED(dvp));
    405 	KASSERT(vp == NULL || VOP_ISLOCKED(vp));
    406 
    407 	fs = VTOI(dvp)->i_lfs;
    408 
    409 	ASSERT_NO_SEGLOCK(fs);
    410 	/*
    411 	 * LFS_NRESERVE calculates direct and indirect blocks as well
    412 	 * as an inode block; an overestimate in most cases.
    413 	 */
    414 	if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
    415 		return (error);
    416 
    417     restart:
    418 	mutex_enter(&lfs_lock);
    419 	if (fs->lfs_dirops == 0) {
    420 		mutex_exit(&lfs_lock);
    421 		lfs_check(dvp, LFS_UNUSED_LBN, 0);
    422 		mutex_enter(&lfs_lock);
    423 	}
    424 	while (fs->lfs_writer) {
    425 		error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
    426 		    "lfs_sdirop", 0, &lfs_lock);
    427 		if (error == EINTR) {
    428 			mutex_exit(&lfs_lock);
    429 			goto unreserve;
    430 		}
    431 	}
    432 	if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
    433 		wakeup(&lfs_writer_daemon);
    434 		mutex_exit(&lfs_lock);
    435 		preempt();
    436 		goto restart;
    437 	}
    438 
    439 	if (lfs_dirvcount > LFS_MAX_DIROP) {
    440 		DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
    441 		      "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
    442 		if ((error = mtsleep(&lfs_dirvcount,
    443 		    PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
    444 		    &lfs_lock)) != 0) {
    445 			goto unreserve;
    446 		}
    447 		goto restart;
    448 	}
    449 
    450 	++fs->lfs_dirops;
    451 	/* fs->lfs_doifile = 1; */ /* XXX why? --ks */
    452 	mutex_exit(&lfs_lock);
    453 
    454 	/* Hold a reference so SET_ENDOP will be happy */
    455 	vref(dvp);
    456 	if (vp) {
    457 		vref(vp);
    458 		MARK_VNODE(vp);
    459 	}
    460 
    461 	MARK_VNODE(dvp);
    462 	return 0;
    463 
    464   unreserve:
    465 	lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
    466 	return error;
    467 }
    468 
    469 /*
    470  * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
    471  * in getnewvnode(), if we have a stacked filesystem mounted on top
    472  * of us.
    473  *
    474  * NB: this means we have to clear the new vnodes on error.  Fortunately
    475  * SET_ENDOP is there to do that for us.
    476  */
    477 static int
    478 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
    479 {
    480 	int error;
    481 	struct lfs *fs;
    482 
    483 	fs = VFSTOULFS(dvp->v_mount)->um_lfs;
    484 	ASSERT_NO_SEGLOCK(fs);
    485 	if (fs->lfs_ronly)
    486 		return EROFS;
    487 	if (vpp == NULL) {
    488 		return lfs_set_dirop(dvp, NULL);
    489 	}
    490 	error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
    491 	if (error) {
    492 		DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
    493 		      dvp, error));
    494 		return error;
    495 	}
    496 	if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
    497 		ungetnewvnode(*vpp);
    498 		*vpp = NULL;
    499 		return error;
    500 	}
    501 	return 0;
    502 }
    503 
    504 #define	SET_ENDOP_BASE(fs, dvp, str)					\
    505 	do {								\
    506 		mutex_enter(&lfs_lock);				\
    507 		--(fs)->lfs_dirops;					\
    508 		if (!(fs)->lfs_dirops) {				\
    509 			if ((fs)->lfs_nadirop) {			\
    510 				panic("SET_ENDOP: %s: no dirops but "	\
    511 					" nadirop=%d", (str),		\
    512 					(fs)->lfs_nadirop);		\
    513 			}						\
    514 			wakeup(&(fs)->lfs_writer);			\
    515 			mutex_exit(&lfs_lock);				\
    516 			lfs_check((dvp), LFS_UNUSED_LBN, 0);		\
    517 		} else							\
    518 			mutex_exit(&lfs_lock);				\
    519 	} while(0)
    520 #define SET_ENDOP_CREATE(fs, dvp, nvpp, str)				\
    521 	do {								\
    522 		UNMARK_VNODE(dvp);					\
    523 		if (nvpp && *nvpp)					\
    524 			UNMARK_VNODE(*nvpp);				\
    525 		/* Check for error return to stem vnode leakage */	\
    526 		if (nvpp && *nvpp && !((*nvpp)->v_uflag & VU_DIROP))	\
    527 			ungetnewvnode(*(nvpp));				\
    528 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    529 		lfs_reserve((fs), (dvp), NULL, -LFS_NRESERVE(fs));	\
    530 		vrele(dvp);						\
    531 	} while(0)
    532 #define SET_ENDOP_CREATE_AP(ap, str)					\
    533 	SET_ENDOP_CREATE(VTOI((ap)->a_dvp)->i_lfs, (ap)->a_dvp,		\
    534 			 (ap)->a_vpp, (str))
    535 #define SET_ENDOP_REMOVE(fs, dvp, ovp, str)				\
    536 	do {								\
    537 		UNMARK_VNODE(dvp);					\
    538 		if (ovp)						\
    539 			UNMARK_VNODE(ovp);				\
    540 		SET_ENDOP_BASE((fs), (dvp), (str));			\
    541 		lfs_reserve((fs), (dvp), (ovp), -LFS_NRESERVE(fs));	\
    542 		vrele(dvp);						\
    543 		if (ovp)						\
    544 			vrele(ovp);					\
    545 	} while(0)
    546 
    547 void
    548 lfs_mark_vnode(struct vnode *vp)
    549 {
    550 	struct inode *ip = VTOI(vp);
    551 	struct lfs *fs = ip->i_lfs;
    552 
    553 	mutex_enter(&lfs_lock);
    554 	if (!(ip->i_flag & IN_ADIROP)) {
    555 		if (!(vp->v_uflag & VU_DIROP)) {
    556 			mutex_exit(&lfs_lock);
    557 			mutex_enter(vp->v_interlock);
    558 			if (lfs_vref(vp) != 0)
    559 				panic("lfs_mark_vnode: could not vref");
    560 			mutex_enter(&lfs_lock);
    561 			++lfs_dirvcount;
    562 			++fs->lfs_dirvcount;
    563 			TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
    564 			vp->v_uflag |= VU_DIROP;
    565 		}
    566 		++fs->lfs_nadirop;
    567 		ip->i_flag &= ~IN_CDIROP;
    568 		ip->i_flag |= IN_ADIROP;
    569 	} else
    570 		KASSERT(vp->v_uflag & VU_DIROP);
    571 	mutex_exit(&lfs_lock);
    572 }
    573 
    574 void
    575 lfs_unmark_vnode(struct vnode *vp)
    576 {
    577 	struct inode *ip = VTOI(vp);
    578 
    579 	mutex_enter(&lfs_lock);
    580 	if (ip && (ip->i_flag & IN_ADIROP)) {
    581 		KASSERT(vp->v_uflag & VU_DIROP);
    582 		--ip->i_lfs->lfs_nadirop;
    583 		ip->i_flag &= ~IN_ADIROP;
    584 	}
    585 	mutex_exit(&lfs_lock);
    586 }
    587 
    588 int
    589 lfs_symlink(void *v)
    590 {
    591 	struct vop_symlink_args /* {
    592 		struct vnode *a_dvp;
    593 		struct vnode **a_vpp;
    594 		struct componentname *a_cnp;
    595 		struct vattr *a_vap;
    596 		char *a_target;
    597 	} */ *ap = v;
    598 	int error;
    599 
    600 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    601 		vput(ap->a_dvp);
    602 		return error;
    603 	}
    604 	error = ulfs_symlink(ap);
    605 	SET_ENDOP_CREATE_AP(ap, "symlink");
    606 	return (error);
    607 }
    608 
    609 int
    610 lfs_mknod(void *v)
    611 {
    612 	struct vop_mknod_args	/* {
    613 		struct vnode *a_dvp;
    614 		struct vnode **a_vpp;
    615 		struct componentname *a_cnp;
    616 		struct vattr *a_vap;
    617 	} */ *ap = v;
    618 	struct vattr *vap = ap->a_vap;
    619 	struct vnode **vpp = ap->a_vpp;
    620 	struct inode *ip;
    621 	int error;
    622 	struct mount	*mp;
    623 	ino_t		ino;
    624 	struct ulfs_lookup_results *ulr;
    625 
    626 	/* XXX should handle this material another way */
    627 	ulr = &VTOI(ap->a_dvp)->i_crap;
    628 	ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
    629 
    630 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    631 		vput(ap->a_dvp);
    632 		return error;
    633 	}
    634 	error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
    635 			      ap->a_dvp, ulr, vpp, ap->a_cnp);
    636 
    637 	/* Either way we're done with the dirop at this point */
    638 	SET_ENDOP_CREATE_AP(ap, "mknod");
    639 
    640 	if (error)
    641 		return (error);
    642 
    643 	ip = VTOI(*vpp);
    644 	mp  = (*vpp)->v_mount;
    645 	ino = ip->i_number;
    646 	ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
    647 	if (vap->va_rdev != VNOVAL) {
    648 		/*
    649 		 * Want to be able to use this to make badblock
    650 		 * inodes, so don't truncate the dev number.
    651 		 */
    652 #if 0
    653 		ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
    654 					   ULFS_MPNEEDSWAP((*vpp)->v_mount));
    655 #else
    656 		ip->i_ffs1_rdev = vap->va_rdev;
    657 #endif
    658 	}
    659 
    660 	/*
    661 	 * Call fsync to write the vnode so that we don't have to deal with
    662 	 * flushing it when it's marked VU_DIROP|VI_XLOCK.
    663 	 *
    664 	 * XXX KS - If we can't flush we also can't call vgone(), so must
    665 	 * return.  But, that leaves this vnode in limbo, also not good.
    666 	 * Can this ever happen (barring hardware failure)?
    667 	 */
    668 	if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
    669 		panic("lfs_mknod: couldn't fsync (ino %llu)",
    670 		      (unsigned long long)ino);
    671 		/* return (error); */
    672 	}
    673 	/*
    674 	 * Remove vnode so that it will be reloaded by VFS_VGET and
    675 	 * checked to see if it is an alias of an existing entry in
    676 	 * the inode cache.
    677 	 */
    678 	/* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
    679 
    680 	VOP_UNLOCK(*vpp);
    681 	(*vpp)->v_type = VNON;
    682 	vgone(*vpp);
    683 	error = VFS_VGET(mp, ino, vpp);
    684 
    685 	if (error != 0) {
    686 		*vpp = NULL;
    687 		return (error);
    688 	}
    689 	return (0);
    690 }
    691 
    692 int
    693 lfs_create(void *v)
    694 {
    695 	struct vop_create_args	/* {
    696 		struct vnode *a_dvp;
    697 		struct vnode **a_vpp;
    698 		struct componentname *a_cnp;
    699 		struct vattr *a_vap;
    700 	} */ *ap = v;
    701 	int error;
    702 
    703 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    704 		vput(ap->a_dvp);
    705 		return error;
    706 	}
    707 	error = ulfs_create(ap);
    708 	SET_ENDOP_CREATE_AP(ap, "create");
    709 	return (error);
    710 }
    711 
    712 int
    713 lfs_mkdir(void *v)
    714 {
    715 	struct vop_mkdir_args	/* {
    716 		struct vnode *a_dvp;
    717 		struct vnode **a_vpp;
    718 		struct componentname *a_cnp;
    719 		struct vattr *a_vap;
    720 	} */ *ap = v;
    721 	int error;
    722 
    723 	if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
    724 		vput(ap->a_dvp);
    725 		return error;
    726 	}
    727 	error = ulfs_mkdir(ap);
    728 	SET_ENDOP_CREATE_AP(ap, "mkdir");
    729 	return (error);
    730 }
    731 
    732 int
    733 lfs_remove(void *v)
    734 {
    735 	struct vop_remove_args	/* {
    736 		struct vnode *a_dvp;
    737 		struct vnode *a_vp;
    738 		struct componentname *a_cnp;
    739 	} */ *ap = v;
    740 	struct vnode *dvp, *vp;
    741 	struct inode *ip;
    742 	int error;
    743 
    744 	dvp = ap->a_dvp;
    745 	vp = ap->a_vp;
    746 	ip = VTOI(vp);
    747 	if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
    748 		if (dvp == vp)
    749 			vrele(vp);
    750 		else
    751 			vput(vp);
    752 		vput(dvp);
    753 		return error;
    754 	}
    755 	error = ulfs_remove(ap);
    756 	if (ip->i_nlink == 0)
    757 		lfs_orphan(ip->i_lfs, ip->i_number);
    758 	SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
    759 	return (error);
    760 }
    761 
    762 int
    763 lfs_rmdir(void *v)
    764 {
    765 	struct vop_rmdir_args	/* {
    766 		struct vnodeop_desc *a_desc;
    767 		struct vnode *a_dvp;
    768 		struct vnode *a_vp;
    769 		struct componentname *a_cnp;
    770 	} */ *ap = v;
    771 	struct vnode *vp;
    772 	struct inode *ip;
    773 	int error;
    774 
    775 	vp = ap->a_vp;
    776 	ip = VTOI(vp);
    777 	if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
    778 		if (ap->a_dvp == vp)
    779 			vrele(ap->a_dvp);
    780 		else
    781 			vput(ap->a_dvp);
    782 		vput(vp);
    783 		return error;
    784 	}
    785 	error = ulfs_rmdir(ap);
    786 	if (ip->i_nlink == 0)
    787 		lfs_orphan(ip->i_lfs, ip->i_number);
    788 	SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
    789 	return (error);
    790 }
    791 
    792 int
    793 lfs_link(void *v)
    794 {
    795 	struct vop_link_args	/* {
    796 		struct vnode *a_dvp;
    797 		struct vnode *a_vp;
    798 		struct componentname *a_cnp;
    799 	} */ *ap = v;
    800 	int error;
    801 	struct vnode **vpp = NULL;
    802 
    803 	if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
    804 		vput(ap->a_dvp);
    805 		return error;
    806 	}
    807 	error = ulfs_link(ap);
    808 	SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
    809 	return (error);
    810 }
    811 
    812 static const struct genfs_rename_ops lfs_genfs_rename_ops;
    813 
    814 /*
    815  * lfs_sane_rename: The hairiest vop, with the saner API.
    816  *
    817  * Arguments:
    818  *
    819  * . fdvp (from directory vnode),
    820  * . fcnp (from component name),
    821  * . tdvp (to directory vnode),
    822  * . tcnp (to component name),
    823  * . cred (credentials structure), and
    824  * . posixly_correct (flag for behaviour if target & source link same file).
    825  *
    826  * fdvp and tdvp may be the same, and must be referenced and unlocked.
    827  */
    828 static int
    829 lfs_sane_rename(
    830     struct vnode *fdvp, struct componentname *fcnp,
    831     struct vnode *tdvp, struct componentname *tcnp,
    832     kauth_cred_t cred, bool posixly_correct)
    833 {
    834 	struct ulfs_lookup_results fulr, tulr;
    835 
    836 	/*
    837 	 * XXX Provisional kludge -- ulfs_lookup does not reject rename
    838 	 * of . or .. (from or to), so we hack it here.  This is not
    839 	 * the right place: it should be caller's responsibility to
    840 	 * reject this case.
    841 	 */
    842 	KASSERT(fcnp != NULL);
    843 	KASSERT(tcnp != NULL);
    844 	KASSERT(fcnp != tcnp);
    845 	KASSERT(fcnp->cn_nameptr != NULL);
    846 	KASSERT(tcnp->cn_nameptr != NULL);
    847 
    848 	if ((fcnp->cn_flags | tcnp->cn_flags) & ISDOTDOT)
    849 		return EINVAL;	/* XXX EISDIR?  */
    850 	if ((fcnp->cn_namelen == 1) && (fcnp->cn_nameptr[0] == '.'))
    851 		return EINVAL;
    852 	if ((tcnp->cn_namelen == 1) && (tcnp->cn_nameptr[0] == '.'))
    853 		return EINVAL;
    854 
    855 	return genfs_sane_rename(&lfs_genfs_rename_ops,
    856 	    fdvp, fcnp, &fulr, tdvp, tcnp, &tulr,
    857 	    cred, posixly_correct);
    858 }
    859 
    860 /*
    861  * lfs_rename: The hairiest vop, with the insanest API.  Defer to
    862  * genfs_insane_rename immediately.
    863  */
    864 int
    865 lfs_rename(void *v)
    866 {
    867 
    868 	return genfs_insane_rename(v, &lfs_sane_rename);
    869 }
    870 
    871 /*
    872  * lfs_gro_rename: Actually perform the rename operation.  Do a little
    873  * LFS bookkeeping and then defer to ulfs_gro_rename.
    874  */
    875 static int
    876 lfs_gro_rename(struct mount *mp, kauth_cred_t cred,
    877     struct vnode *fdvp, struct componentname *fcnp,
    878     void *fde, struct vnode *fvp,
    879     struct vnode *tdvp, struct componentname *tcnp,
    880     void *tde, struct vnode *tvp)
    881 {
    882 	int error;
    883 
    884 	KASSERT(mp != NULL);
    885 	KASSERT(fdvp != NULL);
    886 	KASSERT(fcnp != NULL);
    887 	KASSERT(fde != NULL);
    888 	KASSERT(fvp != NULL);
    889 	KASSERT(tdvp != NULL);
    890 	KASSERT(tcnp != NULL);
    891 	KASSERT(tde != NULL);
    892 	KASSERT(fdvp != fvp);
    893 	KASSERT(fdvp != tvp);
    894 	KASSERT(tdvp != fvp);
    895 	KASSERT(tdvp != tvp);
    896 	KASSERT(fvp != tvp);
    897 	KASSERT(fdvp->v_mount == mp);
    898 	KASSERT(fvp->v_mount == mp);
    899 	KASSERT(tdvp->v_mount == mp);
    900 	KASSERT((tvp == NULL) || (tvp->v_mount == mp));
    901 	KASSERT(VOP_ISLOCKED(fdvp) == LK_EXCLUSIVE);
    902 	KASSERT(VOP_ISLOCKED(fvp) == LK_EXCLUSIVE);
    903 	KASSERT(VOP_ISLOCKED(tdvp) == LK_EXCLUSIVE);
    904 	KASSERT((tvp == NULL) || (VOP_ISLOCKED(tvp) == LK_EXCLUSIVE));
    905 
    906 	error = SET_DIROP_REMOVE(tdvp, tvp);
    907 	if (error != 0)
    908 		return error;
    909 
    910 	MARK_VNODE(fdvp);
    911 	MARK_VNODE(fvp);
    912 
    913 	error = ulfs_gro_rename(mp, cred,
    914 	    fdvp, fcnp, fde, fvp,
    915 	    tdvp, tcnp, tde, tvp);
    916 
    917 	UNMARK_VNODE(fdvp);
    918 	UNMARK_VNODE(fvp);
    919 	SET_ENDOP_REMOVE(VFSTOULFS(mp)->um_lfs, tdvp, tvp, "rename");
    920 
    921 	return error;
    922 }
    923 
    924 static const struct genfs_rename_ops lfs_genfs_rename_ops = {
    925 	.gro_directory_empty_p		= ulfs_gro_directory_empty_p,
    926 	.gro_rename_check_possible	= ulfs_gro_rename_check_possible,
    927 	.gro_rename_check_permitted	= ulfs_gro_rename_check_permitted,
    928 	.gro_remove_check_possible	= ulfs_gro_remove_check_possible,
    929 	.gro_remove_check_permitted	= ulfs_gro_remove_check_permitted,
    930 	.gro_rename			= lfs_gro_rename,
    931 	.gro_remove			= ulfs_gro_remove,
    932 	.gro_lookup			= ulfs_gro_lookup,
    933 	.gro_genealogy			= ulfs_gro_genealogy,
    934 	.gro_lock_directory		= ulfs_gro_lock_directory,
    935 };
    936 
    937 /* XXX hack to avoid calling ITIMES in getattr */
    938 int
    939 lfs_getattr(void *v)
    940 {
    941 	struct vop_getattr_args /* {
    942 		struct vnode *a_vp;
    943 		struct vattr *a_vap;
    944 		kauth_cred_t a_cred;
    945 	} */ *ap = v;
    946 	struct vnode *vp = ap->a_vp;
    947 	struct inode *ip = VTOI(vp);
    948 	struct vattr *vap = ap->a_vap;
    949 	struct lfs *fs = ip->i_lfs;
    950 	/*
    951 	 * Copy from inode table
    952 	 */
    953 	vap->va_fsid = ip->i_dev;
    954 	vap->va_fileid = ip->i_number;
    955 	vap->va_mode = ip->i_mode & ~LFS_IFMT;
    956 	vap->va_nlink = ip->i_nlink;
    957 	vap->va_uid = ip->i_uid;
    958 	vap->va_gid = ip->i_gid;
    959 	vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
    960 	vap->va_size = vp->v_size;
    961 	vap->va_atime.tv_sec = ip->i_ffs1_atime;
    962 	vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
    963 	vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
    964 	vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
    965 	vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
    966 	vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
    967 	vap->va_flags = ip->i_flags;
    968 	vap->va_gen = ip->i_gen;
    969 	/* this doesn't belong here */
    970 	if (vp->v_type == VBLK)
    971 		vap->va_blocksize = BLKDEV_IOSIZE;
    972 	else if (vp->v_type == VCHR)
    973 		vap->va_blocksize = MAXBSIZE;
    974 	else
    975 		vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
    976 	vap->va_bytes = lfs_fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
    977 	vap->va_type = vp->v_type;
    978 	vap->va_filerev = ip->i_modrev;
    979 	return (0);
    980 }
    981 
    982 /*
    983  * Check to make sure the inode blocks won't choke the buffer
    984  * cache, then call ulfs_setattr as usual.
    985  */
    986 int
    987 lfs_setattr(void *v)
    988 {
    989 	struct vop_setattr_args /* {
    990 		struct vnode *a_vp;
    991 		struct vattr *a_vap;
    992 		kauth_cred_t a_cred;
    993 	} */ *ap = v;
    994 	struct vnode *vp = ap->a_vp;
    995 
    996 	lfs_check(vp, LFS_UNUSED_LBN, 0);
    997 	return ulfs_setattr(v);
    998 }
    999 
   1000 /*
   1001  * Release the block we hold on lfs_newseg wrapping.  Called on file close,
   1002  * or explicitly from LFCNWRAPGO.  Called with the interlock held.
   1003  */
   1004 static int
   1005 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
   1006 {
   1007 	if (fs->lfs_stoplwp != curlwp)
   1008 		return EBUSY;
   1009 
   1010 	fs->lfs_stoplwp = NULL;
   1011 	cv_signal(&fs->lfs_stopcv);
   1012 
   1013 	KASSERT(fs->lfs_nowrap > 0);
   1014 	if (fs->lfs_nowrap <= 0) {
   1015 		return 0;
   1016 	}
   1017 
   1018 	if (--fs->lfs_nowrap == 0) {
   1019 		log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
   1020 		wakeup(&fs->lfs_wrappass);
   1021 		lfs_wakeup_cleaner(fs);
   1022 	}
   1023 	if (waitfor) {
   1024 		mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
   1025 		    0, &lfs_lock);
   1026 	}
   1027 
   1028 	return 0;
   1029 }
   1030 
   1031 /*
   1032  * Close called
   1033  */
   1034 /* ARGSUSED */
   1035 int
   1036 lfs_close(void *v)
   1037 {
   1038 	struct vop_close_args /* {
   1039 		struct vnode *a_vp;
   1040 		int  a_fflag;
   1041 		kauth_cred_t a_cred;
   1042 	} */ *ap = v;
   1043 	struct vnode *vp = ap->a_vp;
   1044 	struct inode *ip = VTOI(vp);
   1045 	struct lfs *fs = ip->i_lfs;
   1046 
   1047 	if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
   1048 	    fs->lfs_stoplwp == curlwp) {
   1049 		mutex_enter(&lfs_lock);
   1050 		log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
   1051 		lfs_wrapgo(fs, ip, 0);
   1052 		mutex_exit(&lfs_lock);
   1053 	}
   1054 
   1055 	if (vp == ip->i_lfs->lfs_ivnode &&
   1056 	    vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
   1057 		return 0;
   1058 
   1059 	if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
   1060 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1061 	}
   1062 	return (0);
   1063 }
   1064 
   1065 /*
   1066  * Close wrapper for special devices.
   1067  *
   1068  * Update the times on the inode then do device close.
   1069  */
   1070 int
   1071 lfsspec_close(void *v)
   1072 {
   1073 	struct vop_close_args /* {
   1074 		struct vnode	*a_vp;
   1075 		int		a_fflag;
   1076 		kauth_cred_t	a_cred;
   1077 	} */ *ap = v;
   1078 	struct vnode	*vp;
   1079 	struct inode	*ip;
   1080 
   1081 	vp = ap->a_vp;
   1082 	ip = VTOI(vp);
   1083 	if (vp->v_usecount > 1) {
   1084 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1085 	}
   1086 	return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
   1087 }
   1088 
   1089 /*
   1090  * Close wrapper for fifo's.
   1091  *
   1092  * Update the times on the inode then do device close.
   1093  */
   1094 int
   1095 lfsfifo_close(void *v)
   1096 {
   1097 	struct vop_close_args /* {
   1098 		struct vnode	*a_vp;
   1099 		int		a_fflag;
   1100 		kauth_cred_	a_cred;
   1101 	} */ *ap = v;
   1102 	struct vnode	*vp;
   1103 	struct inode	*ip;
   1104 
   1105 	vp = ap->a_vp;
   1106 	ip = VTOI(vp);
   1107 	if (ap->a_vp->v_usecount > 1) {
   1108 		LFS_ITIMES(ip, NULL, NULL, NULL);
   1109 	}
   1110 	return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
   1111 }
   1112 
   1113 /*
   1114  * Reclaim an inode so that it can be used for other purposes.
   1115  */
   1116 
   1117 int
   1118 lfs_reclaim(void *v)
   1119 {
   1120 	struct vop_reclaim_args /* {
   1121 		struct vnode *a_vp;
   1122 	} */ *ap = v;
   1123 	struct vnode *vp = ap->a_vp;
   1124 	struct inode *ip = VTOI(vp);
   1125 	struct lfs *fs = ip->i_lfs;
   1126 	int error;
   1127 
   1128 	/*
   1129 	 * The inode must be freed and updated before being removed
   1130 	 * from its hash chain.  Other threads trying to gain a hold
   1131 	 * on the inode will be stalled because it is locked (VI_XLOCK).
   1132 	 */
   1133 	if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
   1134 		lfs_vfree(vp, ip->i_number, ip->i_omode);
   1135 
   1136 	mutex_enter(&lfs_lock);
   1137 	LFS_CLR_UINO(ip, IN_ALLMOD);
   1138 	mutex_exit(&lfs_lock);
   1139 	if ((error = ulfs_reclaim(vp)))
   1140 		return (error);
   1141 
   1142 	/*
   1143 	 * Take us off the paging and/or dirop queues if we were on them.
   1144 	 * We shouldn't be on them.
   1145 	 */
   1146 	mutex_enter(&lfs_lock);
   1147 	if (ip->i_flags & IN_PAGING) {
   1148 		log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
   1149 		    fs->lfs_fsmnt);
   1150 		ip->i_flags &= ~IN_PAGING;
   1151 		TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   1152 	}
   1153 	if (vp->v_uflag & VU_DIROP) {
   1154 		panic("reclaimed vnode is VU_DIROP");
   1155 		vp->v_uflag &= ~VU_DIROP;
   1156 		TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
   1157 	}
   1158 	mutex_exit(&lfs_lock);
   1159 
   1160 	pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
   1161 	lfs_deregister_all(vp);
   1162 	pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
   1163 	ip->inode_ext.lfs = NULL;
   1164 	genfs_node_destroy(vp);
   1165 	pool_put(&lfs_inode_pool, vp->v_data);
   1166 	vp->v_data = NULL;
   1167 	return (0);
   1168 }
   1169 
   1170 /*
   1171  * Read a block from a storage device.
   1172  * In order to avoid reading blocks that are in the process of being
   1173  * written by the cleaner---and hence are not mutexed by the normal
   1174  * buffer cache / page cache mechanisms---check for collisions before
   1175  * reading.
   1176  *
   1177  * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
   1178  * the active cleaner test.
   1179  *
   1180  * XXX This code assumes that lfs_markv makes synchronous checkpoints.
   1181  */
   1182 int
   1183 lfs_strategy(void *v)
   1184 {
   1185 	struct vop_strategy_args /* {
   1186 		struct vnode *a_vp;
   1187 		struct buf *a_bp;
   1188 	} */ *ap = v;
   1189 	struct buf	*bp;
   1190 	struct lfs	*fs;
   1191 	struct vnode	*vp;
   1192 	struct inode	*ip;
   1193 	daddr_t		tbn;
   1194 #define MAXLOOP 25
   1195 	int		i, sn, error, slept, loopcount;
   1196 
   1197 	bp = ap->a_bp;
   1198 	vp = ap->a_vp;
   1199 	ip = VTOI(vp);
   1200 	fs = ip->i_lfs;
   1201 
   1202 	/* lfs uses its strategy routine only for read */
   1203 	KASSERT(bp->b_flags & B_READ);
   1204 
   1205 	if (vp->v_type == VBLK || vp->v_type == VCHR)
   1206 		panic("lfs_strategy: spec");
   1207 	KASSERT(bp->b_bcount != 0);
   1208 	if (bp->b_blkno == bp->b_lblkno) {
   1209 		error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
   1210 				 NULL);
   1211 		if (error) {
   1212 			bp->b_error = error;
   1213 			bp->b_resid = bp->b_bcount;
   1214 			biodone(bp);
   1215 			return (error);
   1216 		}
   1217 		if ((long)bp->b_blkno == -1) /* no valid data */
   1218 			clrbuf(bp);
   1219 	}
   1220 	if ((long)bp->b_blkno < 0) { /* block is not on disk */
   1221 		bp->b_resid = bp->b_bcount;
   1222 		biodone(bp);
   1223 		return (0);
   1224 	}
   1225 
   1226 	slept = 1;
   1227 	loopcount = 0;
   1228 	mutex_enter(&lfs_lock);
   1229 	while (slept && fs->lfs_seglock) {
   1230 		mutex_exit(&lfs_lock);
   1231 		/*
   1232 		 * Look through list of intervals.
   1233 		 * There will only be intervals to look through
   1234 		 * if the cleaner holds the seglock.
   1235 		 * Since the cleaner is synchronous, we can trust
   1236 		 * the list of intervals to be current.
   1237 		 */
   1238 		tbn = LFS_DBTOFSB(fs, bp->b_blkno);
   1239 		sn = lfs_dtosn(fs, tbn);
   1240 		slept = 0;
   1241 		for (i = 0; i < fs->lfs_cleanind; i++) {
   1242 			if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) &&
   1243 			    tbn >= fs->lfs_cleanint[i]) {
   1244 				DLOG((DLOG_CLEAN,
   1245 				      "lfs_strategy: ino %d lbn %" PRId64
   1246 				      " ind %d sn %d fsb %" PRIx32
   1247 				      " given sn %d fsb %" PRIx64 "\n",
   1248 				      ip->i_number, bp->b_lblkno, i,
   1249 				      lfs_dtosn(fs, fs->lfs_cleanint[i]),
   1250 				      fs->lfs_cleanint[i], sn, tbn));
   1251 				DLOG((DLOG_CLEAN,
   1252 				      "lfs_strategy: sleeping on ino %d lbn %"
   1253 				      PRId64 "\n", ip->i_number, bp->b_lblkno));
   1254 				mutex_enter(&lfs_lock);
   1255 				if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
   1256 					/*
   1257 					 * Cleaner can't wait for itself.
   1258 					 * Instead, wait for the blocks
   1259 					 * to be written to disk.
   1260 					 * XXX we need pribio in the test
   1261 					 * XXX here.
   1262 					 */
   1263  					mtsleep(&fs->lfs_iocount,
   1264  						(PRIBIO + 1) | PNORELOCK,
   1265 						"clean2", hz/10 + 1,
   1266  						&lfs_lock);
   1267 					slept = 1;
   1268 					++loopcount;
   1269 					break;
   1270 				} else if (fs->lfs_seglock) {
   1271 					mtsleep(&fs->lfs_seglock,
   1272 						(PRIBIO + 1) | PNORELOCK,
   1273 						"clean1", 0,
   1274 						&lfs_lock);
   1275 					slept = 1;
   1276 					break;
   1277 				}
   1278 				mutex_exit(&lfs_lock);
   1279 			}
   1280 		}
   1281 		mutex_enter(&lfs_lock);
   1282 		if (loopcount > MAXLOOP) {
   1283 			printf("lfs_strategy: breaking out of clean2 loop\n");
   1284 			break;
   1285 		}
   1286 	}
   1287 	mutex_exit(&lfs_lock);
   1288 
   1289 	vp = ip->i_devvp;
   1290 	VOP_STRATEGY(vp, bp);
   1291 	return (0);
   1292 }
   1293 
   1294 /*
   1295  * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
   1296  * Technically this is a checkpoint (the on-disk state is valid)
   1297  * even though we are leaving out all the file data.
   1298  */
   1299 int
   1300 lfs_flush_dirops(struct lfs *fs)
   1301 {
   1302 	struct inode *ip, *nip;
   1303 	struct vnode *vp;
   1304 	extern int lfs_dostats;
   1305 	struct segment *sp;
   1306 	int flags = 0;
   1307 	int error = 0;
   1308 
   1309 	ASSERT_MAYBE_SEGLOCK(fs);
   1310 	KASSERT(fs->lfs_nadirop == 0);
   1311 
   1312 	if (fs->lfs_ronly)
   1313 		return EROFS;
   1314 
   1315 	mutex_enter(&lfs_lock);
   1316 	if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
   1317 		mutex_exit(&lfs_lock);
   1318 		return 0;
   1319 	} else
   1320 		mutex_exit(&lfs_lock);
   1321 
   1322 	if (lfs_dostats)
   1323 		++lfs_stats.flush_invoked;
   1324 
   1325 	lfs_imtime(fs);
   1326 	lfs_seglock(fs, flags);
   1327 	sp = fs->lfs_sp;
   1328 
   1329 	/*
   1330 	 * lfs_writevnodes, optimized to get dirops out of the way.
   1331 	 * Only write dirops, and don't flush files' pages, only
   1332 	 * blocks from the directories.
   1333 	 *
   1334 	 * We don't need to vref these files because they are
   1335 	 * dirops and so hold an extra reference until the
   1336 	 * segunlock clears them of that status.
   1337 	 *
   1338 	 * We don't need to check for IN_ADIROP because we know that
   1339 	 * no dirops are active.
   1340 	 *
   1341 	 */
   1342 	mutex_enter(&lfs_lock);
   1343 	for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
   1344 		nip = TAILQ_NEXT(ip, i_lfs_dchain);
   1345 		mutex_exit(&lfs_lock);
   1346 		vp = ITOV(ip);
   1347 
   1348 		KASSERT((ip->i_flag & IN_ADIROP) == 0);
   1349 		KASSERT(vp->v_uflag & VU_DIROP);
   1350 		KASSERT(!(vp->v_iflag & VI_XLOCK));
   1351 
   1352 		/*
   1353 		 * All writes to directories come from dirops; all
   1354 		 * writes to files' direct blocks go through the page
   1355 		 * cache, which we're not touching.  Reads to files
   1356 		 * and/or directories will not be affected by writing
   1357 		 * directory blocks inodes and file inodes.  So we don't
   1358 		 * really need to lock.
   1359 		 */
   1360 		if (vp->v_iflag & VI_XLOCK) {
   1361 			mutex_enter(&lfs_lock);
   1362 			continue;
   1363 		}
   1364 		/* XXX see below
   1365 		 * waslocked = VOP_ISLOCKED(vp);
   1366 		 */
   1367 		if (vp->v_type != VREG &&
   1368 		    ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
   1369 			error = lfs_writefile(fs, sp, vp);
   1370 			if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1371 			    !(ip->i_flag & IN_ALLMOD)) {
   1372 			    	mutex_enter(&lfs_lock);
   1373 				LFS_SET_UINO(ip, IN_MODIFIED);
   1374 			    	mutex_exit(&lfs_lock);
   1375 			}
   1376 			if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1377 				mutex_enter(&lfs_lock);
   1378 				error = EAGAIN;
   1379 				break;
   1380 			}
   1381 		}
   1382 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1383 		error = lfs_writeinode(fs, sp, ip);
   1384 		mutex_enter(&lfs_lock);
   1385 		if (error && (sp->seg_flags & SEGM_SINGLE)) {
   1386 			error = EAGAIN;
   1387 			break;
   1388 		}
   1389 
   1390 		/*
   1391 		 * We might need to update these inodes again,
   1392 		 * for example, if they have data blocks to write.
   1393 		 * Make sure that after this flush, they are still
   1394 		 * marked IN_MODIFIED so that we don't forget to
   1395 		 * write them.
   1396 		 */
   1397 		/* XXX only for non-directories? --KS */
   1398 		LFS_SET_UINO(ip, IN_MODIFIED);
   1399 	}
   1400 	mutex_exit(&lfs_lock);
   1401 	/* We've written all the dirops there are */
   1402 	((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
   1403 	lfs_finalize_fs_seguse(fs);
   1404 	(void) lfs_writeseg(fs, sp);
   1405 	lfs_segunlock(fs);
   1406 
   1407 	return error;
   1408 }
   1409 
   1410 /*
   1411  * Flush all vnodes for which the pagedaemon has requested pageouts.
   1412  * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
   1413  * has just run, this would be an error).  If we have to skip a vnode
   1414  * for any reason, just skip it; if we have to wait for the cleaner,
   1415  * abort.  The writer daemon will call us again later.
   1416  */
   1417 int
   1418 lfs_flush_pchain(struct lfs *fs)
   1419 {
   1420 	struct inode *ip, *nip;
   1421 	struct vnode *vp;
   1422 	extern int lfs_dostats;
   1423 	struct segment *sp;
   1424 	int error, error2;
   1425 
   1426 	ASSERT_NO_SEGLOCK(fs);
   1427 
   1428 	if (fs->lfs_ronly)
   1429 		return EROFS;
   1430 
   1431 	mutex_enter(&lfs_lock);
   1432 	if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
   1433 		mutex_exit(&lfs_lock);
   1434 		return 0;
   1435 	} else
   1436 		mutex_exit(&lfs_lock);
   1437 
   1438 	/* Get dirops out of the way */
   1439 	if ((error = lfs_flush_dirops(fs)) != 0)
   1440 		return error;
   1441 
   1442 	if (lfs_dostats)
   1443 		++lfs_stats.flush_invoked;
   1444 
   1445 	/*
   1446 	 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
   1447 	 */
   1448 	lfs_imtime(fs);
   1449 	lfs_seglock(fs, 0);
   1450 	sp = fs->lfs_sp;
   1451 
   1452 	/*
   1453 	 * lfs_writevnodes, optimized to clear pageout requests.
   1454 	 * Only write non-dirop files that are in the pageout queue.
   1455 	 * We're very conservative about what we write; we want to be
   1456 	 * fast and async.
   1457 	 */
   1458 	mutex_enter(&lfs_lock);
   1459     top:
   1460 	for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
   1461 		nip = TAILQ_NEXT(ip, i_lfs_pchain);
   1462 		vp = ITOV(ip);
   1463 
   1464 		if (!(ip->i_flags & IN_PAGING))
   1465 			goto top;
   1466 
   1467 		mutex_enter(vp->v_interlock);
   1468 		if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
   1469 			mutex_exit(vp->v_interlock);
   1470 			continue;
   1471 		}
   1472 		if (vp->v_type != VREG) {
   1473 			mutex_exit(vp->v_interlock);
   1474 			continue;
   1475 		}
   1476 		if (lfs_vref(vp))
   1477 			continue;
   1478 		mutex_exit(&lfs_lock);
   1479 
   1480 		if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
   1481 			lfs_vunref(vp);
   1482 			mutex_enter(&lfs_lock);
   1483 			continue;
   1484 		}
   1485 
   1486 		error = lfs_writefile(fs, sp, vp);
   1487 		if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
   1488 		    !(ip->i_flag & IN_ALLMOD)) {
   1489 		    	mutex_enter(&lfs_lock);
   1490 			LFS_SET_UINO(ip, IN_MODIFIED);
   1491 		    	mutex_exit(&lfs_lock);
   1492 		}
   1493 		KDASSERT(ip->i_number != LFS_IFILE_INUM);
   1494 		error2 = lfs_writeinode(fs, sp, ip);
   1495 
   1496 		VOP_UNLOCK(vp);
   1497 		lfs_vunref(vp);
   1498 
   1499 		if (error == EAGAIN || error2 == EAGAIN) {
   1500 			lfs_writeseg(fs, sp);
   1501 			mutex_enter(&lfs_lock);
   1502 			break;
   1503 		}
   1504 		mutex_enter(&lfs_lock);
   1505 	}
   1506 	mutex_exit(&lfs_lock);
   1507 	(void) lfs_writeseg(fs, sp);
   1508 	lfs_segunlock(fs);
   1509 
   1510 	return 0;
   1511 }
   1512 
   1513 /*
   1514  * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
   1515  */
   1516 int
   1517 lfs_fcntl(void *v)
   1518 {
   1519 	struct vop_fcntl_args /* {
   1520 		struct vnode *a_vp;
   1521 		u_int a_command;
   1522 		void * a_data;
   1523 		int  a_fflag;
   1524 		kauth_cred_t a_cred;
   1525 	} */ *ap = v;
   1526 	struct timeval tv;
   1527 	struct timeval *tvp;
   1528 	BLOCK_INFO *blkiov;
   1529 	CLEANERINFO *cip;
   1530 	SEGUSE *sup;
   1531 	int blkcnt, error, oclean;
   1532 	size_t fh_size;
   1533 	struct lfs_fcntl_markv blkvp;
   1534 	struct lwp *l;
   1535 	fsid_t *fsidp;
   1536 	struct lfs *fs;
   1537 	struct buf *bp;
   1538 	fhandle_t *fhp;
   1539 	daddr_t off;
   1540 
   1541 	/* Only respect LFS fcntls on fs root or Ifile */
   1542 	if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
   1543 	    VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
   1544 		return ulfs_fcntl(v);
   1545 	}
   1546 
   1547 	/* Avoid locking a draining lock */
   1548 	if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
   1549 		return ESHUTDOWN;
   1550 	}
   1551 
   1552 	/* LFS control and monitoring fcntls are available only to root */
   1553 	l = curlwp;
   1554 	if (((ap->a_command & 0xff00) >> 8) == 'L' &&
   1555 	    (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
   1556 	     KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
   1557 		return (error);
   1558 
   1559 	fs = VTOI(ap->a_vp)->i_lfs;
   1560 	fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
   1561 
   1562 	error = 0;
   1563 	switch ((int)ap->a_command) {
   1564 	    case LFCNSEGWAITALL_COMPAT_50:
   1565 	    case LFCNSEGWAITALL_COMPAT:
   1566 		fsidp = NULL;
   1567 		/* FALLSTHROUGH */
   1568 	    case LFCNSEGWAIT_COMPAT_50:
   1569 	    case LFCNSEGWAIT_COMPAT:
   1570 		{
   1571 			struct timeval50 *tvp50
   1572 				= (struct timeval50 *)ap->a_data;
   1573 			timeval50_to_timeval(tvp50, &tv);
   1574 			tvp = &tv;
   1575 		}
   1576 		goto segwait_common;
   1577 	    case LFCNSEGWAITALL:
   1578 		fsidp = NULL;
   1579 		/* FALLSTHROUGH */
   1580 	    case LFCNSEGWAIT:
   1581 		tvp = (struct timeval *)ap->a_data;
   1582 segwait_common:
   1583 		mutex_enter(&lfs_lock);
   1584 		++fs->lfs_sleepers;
   1585 		mutex_exit(&lfs_lock);
   1586 
   1587 		error = lfs_segwait(fsidp, tvp);
   1588 
   1589 		mutex_enter(&lfs_lock);
   1590 		if (--fs->lfs_sleepers == 0)
   1591 			wakeup(&fs->lfs_sleepers);
   1592 		mutex_exit(&lfs_lock);
   1593 		return error;
   1594 
   1595 	    case LFCNBMAPV:
   1596 	    case LFCNMARKV:
   1597 		blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
   1598 
   1599 		blkcnt = blkvp.blkcnt;
   1600 		if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
   1601 			return (EINVAL);
   1602 		blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
   1603 		if ((error = copyin(blkvp.blkiov, blkiov,
   1604 		     blkcnt * sizeof(BLOCK_INFO))) != 0) {
   1605 			lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1606 			return error;
   1607 		}
   1608 
   1609 		mutex_enter(&lfs_lock);
   1610 		++fs->lfs_sleepers;
   1611 		mutex_exit(&lfs_lock);
   1612 		if (ap->a_command == LFCNBMAPV)
   1613 			error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
   1614 		else /* LFCNMARKV */
   1615 			error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
   1616 		if (error == 0)
   1617 			error = copyout(blkiov, blkvp.blkiov,
   1618 					blkcnt * sizeof(BLOCK_INFO));
   1619 		mutex_enter(&lfs_lock);
   1620 		if (--fs->lfs_sleepers == 0)
   1621 			wakeup(&fs->lfs_sleepers);
   1622 		mutex_exit(&lfs_lock);
   1623 		lfs_free(fs, blkiov, LFS_NB_BLKIOV);
   1624 		return error;
   1625 
   1626 	    case LFCNRECLAIM:
   1627 		/*
   1628 		 * Flush dirops and write Ifile, allowing empty segments
   1629 		 * to be immediately reclaimed.
   1630 		 */
   1631 		lfs_writer_enter(fs, "pndirop");
   1632 		off = fs->lfs_offset;
   1633 		lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
   1634 		lfs_flush_dirops(fs);
   1635 		LFS_CLEANERINFO(cip, fs, bp);
   1636 		oclean = cip->clean;
   1637 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
   1638 		lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
   1639 		fs->lfs_sp->seg_flags |= SEGM_PROT;
   1640 		lfs_segunlock(fs);
   1641 		lfs_writer_leave(fs);
   1642 
   1643 #ifdef DEBUG
   1644 		LFS_CLEANERINFO(cip, fs, bp);
   1645 		DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
   1646 		      " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
   1647 		      fs->lfs_offset - off, cip->clean - oclean,
   1648 		      fs->lfs_activesb));
   1649 		LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
   1650 #endif
   1651 
   1652 		return 0;
   1653 
   1654 	    case LFCNIFILEFH_COMPAT:
   1655 		/* Return the filehandle of the Ifile */
   1656 		if ((error = kauth_authorize_system(l->l_cred,
   1657 		    KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
   1658 			return (error);
   1659 		fhp = (struct fhandle *)ap->a_data;
   1660 		fhp->fh_fsid = *fsidp;
   1661 		fh_size = 16;	/* former VFS_MAXFIDSIZ */
   1662 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1663 
   1664 	    case LFCNIFILEFH_COMPAT2:
   1665 	    case LFCNIFILEFH:
   1666 		/* Return the filehandle of the Ifile */
   1667 		fhp = (struct fhandle *)ap->a_data;
   1668 		fhp->fh_fsid = *fsidp;
   1669 		fh_size = sizeof(struct lfs_fhandle) -
   1670 		    offsetof(fhandle_t, fh_fid);
   1671 		return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
   1672 
   1673 	    case LFCNREWIND:
   1674 		/* Move lfs_offset to the lowest-numbered segment */
   1675 		return lfs_rewind(fs, *(int *)ap->a_data);
   1676 
   1677 	    case LFCNINVAL:
   1678 		/* Mark a segment SEGUSE_INVAL */
   1679 		LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
   1680 		if (sup->su_nbytes > 0) {
   1681 			brelse(bp, 0);
   1682 			lfs_unset_inval_all(fs);
   1683 			return EBUSY;
   1684 		}
   1685 		sup->su_flags |= SEGUSE_INVAL;
   1686 		VOP_BWRITE(bp->b_vp, bp);
   1687 		return 0;
   1688 
   1689 	    case LFCNRESIZE:
   1690 		/* Resize the filesystem */
   1691 		return lfs_resize_fs(fs, *(int *)ap->a_data);
   1692 
   1693 	    case LFCNWRAPSTOP:
   1694 	    case LFCNWRAPSTOP_COMPAT:
   1695 		/*
   1696 		 * Hold lfs_newseg at segment 0; if requested, sleep until
   1697 		 * the filesystem wraps around.  To support external agents
   1698 		 * (dump, fsck-based regression test) that need to look at
   1699 		 * a snapshot of the filesystem, without necessarily
   1700 		 * requiring that all fs activity stops.
   1701 		 */
   1702 		if (fs->lfs_stoplwp == curlwp)
   1703 			return EALREADY;
   1704 
   1705 		mutex_enter(&lfs_lock);
   1706 		while (fs->lfs_stoplwp != NULL)
   1707 			cv_wait(&fs->lfs_stopcv, &lfs_lock);
   1708 		fs->lfs_stoplwp = curlwp;
   1709 		if (fs->lfs_nowrap == 0)
   1710 			log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
   1711 		++fs->lfs_nowrap;
   1712 		if (*(int *)ap->a_data == 1
   1713 		    || ap->a_command == LFCNWRAPSTOP_COMPAT) {
   1714 			log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
   1715 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1716 				"segwrap", 0, &lfs_lock);
   1717 			log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
   1718 			if (error) {
   1719 				lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
   1720 			}
   1721 		}
   1722 		mutex_exit(&lfs_lock);
   1723 		return 0;
   1724 
   1725 	    case LFCNWRAPGO:
   1726 	    case LFCNWRAPGO_COMPAT:
   1727 		/*
   1728 		 * Having done its work, the agent wakes up the writer.
   1729 		 * If the argument is 1, it sleeps until a new segment
   1730 		 * is selected.
   1731 		 */
   1732 		mutex_enter(&lfs_lock);
   1733 		error = lfs_wrapgo(fs, VTOI(ap->a_vp),
   1734 				   ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
   1735 				    *((int *)ap->a_data));
   1736 		mutex_exit(&lfs_lock);
   1737 		return error;
   1738 
   1739 	    case LFCNWRAPPASS:
   1740 		if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
   1741 			return EALREADY;
   1742 		mutex_enter(&lfs_lock);
   1743 		if (fs->lfs_stoplwp != curlwp) {
   1744 			mutex_exit(&lfs_lock);
   1745 			return EALREADY;
   1746 		}
   1747 		if (fs->lfs_nowrap == 0) {
   1748 			mutex_exit(&lfs_lock);
   1749 			return EBUSY;
   1750 		}
   1751 		fs->lfs_wrappass = 1;
   1752 		wakeup(&fs->lfs_wrappass);
   1753 		/* Wait for the log to wrap, if asked */
   1754 		if (*(int *)ap->a_data) {
   1755 			mutex_enter(ap->a_vp->v_interlock);
   1756 			if (lfs_vref(ap->a_vp) != 0)
   1757 				panic("LFCNWRAPPASS: lfs_vref failed");
   1758 			VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
   1759 			log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
   1760 			error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
   1761 				"segwrap", 0, &lfs_lock);
   1762 			log(LOG_NOTICE, "LFCNPASS done waiting\n");
   1763 			VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
   1764 			lfs_vunref(ap->a_vp);
   1765 		}
   1766 		mutex_exit(&lfs_lock);
   1767 		return error;
   1768 
   1769 	    case LFCNWRAPSTATUS:
   1770 		mutex_enter(&lfs_lock);
   1771 		*(int *)ap->a_data = fs->lfs_wrapstatus;
   1772 		mutex_exit(&lfs_lock);
   1773 		return 0;
   1774 
   1775 	    default:
   1776 		return ulfs_fcntl(v);
   1777 	}
   1778 	return 0;
   1779 }
   1780 
   1781 int
   1782 lfs_getpages(void *v)
   1783 {
   1784 	struct vop_getpages_args /* {
   1785 		struct vnode *a_vp;
   1786 		voff_t a_offset;
   1787 		struct vm_page **a_m;
   1788 		int *a_count;
   1789 		int a_centeridx;
   1790 		vm_prot_t a_access_type;
   1791 		int a_advice;
   1792 		int a_flags;
   1793 	} */ *ap = v;
   1794 
   1795 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
   1796 	    (ap->a_access_type & VM_PROT_WRITE) != 0) {
   1797 		return EPERM;
   1798 	}
   1799 	if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
   1800 		mutex_enter(&lfs_lock);
   1801 		LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
   1802 		mutex_exit(&lfs_lock);
   1803 	}
   1804 
   1805 	/*
   1806 	 * we're relying on the fact that genfs_getpages() always read in
   1807 	 * entire filesystem blocks.
   1808 	 */
   1809 	return genfs_getpages(v);
   1810 }
   1811 
   1812 /*
   1813  * Wait for a page to become unbusy, possibly printing diagnostic messages
   1814  * as well.
   1815  *
   1816  * Called with vp->v_interlock held; return with it held.
   1817  */
   1818 static void
   1819 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
   1820 {
   1821 	KASSERT(mutex_owned(vp->v_interlock));
   1822 	if ((pg->flags & PG_BUSY) == 0)
   1823 		return;		/* Nothing to wait for! */
   1824 
   1825 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
   1826 	static struct vm_page *lastpg;
   1827 
   1828 	if (label != NULL && pg != lastpg) {
   1829 		if (pg->owner_tag) {
   1830 			printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
   1831 			       curproc->p_pid, curlwp->l_lid, label,
   1832 			       pg, pg->owner, pg->lowner, pg->owner_tag);
   1833 		} else {
   1834 			printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
   1835 			       curproc->p_pid, curlwp->l_lid, label, pg);
   1836 		}
   1837 	}
   1838 	lastpg = pg;
   1839 #endif
   1840 
   1841 	pg->flags |= PG_WANTED;
   1842 	UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
   1843 	mutex_enter(vp->v_interlock);
   1844 }
   1845 
   1846 /*
   1847  * This routine is called by lfs_putpages() when it can't complete the
   1848  * write because a page is busy.  This means that either (1) someone,
   1849  * possibly the pagedaemon, is looking at this page, and will give it up
   1850  * presently; or (2) we ourselves are holding the page busy in the
   1851  * process of being written (either gathered or actually on its way to
   1852  * disk).  We don't need to give up the segment lock, but we might need
   1853  * to call lfs_writeseg() to expedite the page's journey to disk.
   1854  *
   1855  * Called with vp->v_interlock held; return with it held.
   1856  */
   1857 /* #define BUSYWAIT */
   1858 static void
   1859 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
   1860 	       int seglocked, const char *label)
   1861 {
   1862 	KASSERT(mutex_owned(vp->v_interlock));
   1863 #ifndef BUSYWAIT
   1864 	struct inode *ip = VTOI(vp);
   1865 	struct segment *sp = fs->lfs_sp;
   1866 	int count = 0;
   1867 
   1868 	if (pg == NULL)
   1869 		return;
   1870 
   1871 	while (pg->flags & PG_BUSY &&
   1872 	    pg->uobject == &vp->v_uobj) {
   1873 		mutex_exit(vp->v_interlock);
   1874 		if (sp->cbpp - sp->bpp > 1) {
   1875 			/* Write gathered pages */
   1876 			lfs_updatemeta(sp);
   1877 			lfs_release_finfo(fs);
   1878 			(void) lfs_writeseg(fs, sp);
   1879 
   1880 			/*
   1881 			 * Reinitialize FIP
   1882 			 */
   1883 			KASSERT(sp->vp == vp);
   1884 			lfs_acquire_finfo(fs, ip->i_number,
   1885 					  ip->i_gen);
   1886 		}
   1887 		++count;
   1888 		mutex_enter(vp->v_interlock);
   1889 		wait_for_page(vp, pg, label);
   1890 	}
   1891 	if (label != NULL && count > 1) {
   1892 		DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
   1893 		      curproc->p_pid, label, (count > 0 ? "looping, " : ""),
   1894 		      count));
   1895 	}
   1896 #else
   1897 	preempt(1);
   1898 #endif
   1899 	KASSERT(mutex_owned(vp->v_interlock));
   1900 }
   1901 
   1902 /*
   1903  * Make sure that for all pages in every block in the given range,
   1904  * either all are dirty or all are clean.  If any of the pages
   1905  * we've seen so far are dirty, put the vnode on the paging chain,
   1906  * and mark it IN_PAGING.
   1907  *
   1908  * If checkfirst != 0, don't check all the pages but return at the
   1909  * first dirty page.
   1910  */
   1911 static int
   1912 check_dirty(struct lfs *fs, struct vnode *vp,
   1913 	    off_t startoffset, off_t endoffset, off_t blkeof,
   1914 	    int flags, int checkfirst, struct vm_page **pgp)
   1915 {
   1916 	int by_list;
   1917 	struct vm_page *curpg = NULL; /* XXX: gcc */
   1918 	struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
   1919 	off_t soff = 0; /* XXX: gcc */
   1920 	voff_t off;
   1921 	int i;
   1922 	int nonexistent;
   1923 	int any_dirty;	/* number of dirty pages */
   1924 	int dirty;	/* number of dirty pages in a block */
   1925 	int tdirty;
   1926 	int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
   1927 	int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   1928 
   1929 	KASSERT(mutex_owned(vp->v_interlock));
   1930 	ASSERT_MAYBE_SEGLOCK(fs);
   1931   top:
   1932 	by_list = (vp->v_uobj.uo_npages <=
   1933 		   ((endoffset - startoffset) >> PAGE_SHIFT) *
   1934 		   UVM_PAGE_TREE_PENALTY);
   1935 	any_dirty = 0;
   1936 
   1937 	if (by_list) {
   1938 		curpg = TAILQ_FIRST(&vp->v_uobj.memq);
   1939 	} else {
   1940 		soff = startoffset;
   1941 	}
   1942 	while (by_list || soff < MIN(blkeof, endoffset)) {
   1943 		if (by_list) {
   1944 			/*
   1945 			 * Find the first page in a block.  Skip
   1946 			 * blocks outside our area of interest or beyond
   1947 			 * the end of file.
   1948 			 */
   1949 			KASSERT(curpg == NULL
   1950 			    || (curpg->flags & PG_MARKER) == 0);
   1951 			if (pages_per_block > 1) {
   1952 				while (curpg &&
   1953 				    ((curpg->offset & fs->lfs_bmask) ||
   1954 				    curpg->offset >= vp->v_size ||
   1955 				    curpg->offset >= endoffset)) {
   1956 					curpg = TAILQ_NEXT(curpg, listq.queue);
   1957 					KASSERT(curpg == NULL ||
   1958 					    (curpg->flags & PG_MARKER) == 0);
   1959 				}
   1960 			}
   1961 			if (curpg == NULL)
   1962 				break;
   1963 			soff = curpg->offset;
   1964 		}
   1965 
   1966 		/*
   1967 		 * Mark all pages in extended range busy; find out if any
   1968 		 * of them are dirty.
   1969 		 */
   1970 		nonexistent = dirty = 0;
   1971 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   1972 			KASSERT(mutex_owned(vp->v_interlock));
   1973 			if (by_list && pages_per_block <= 1) {
   1974 				pgs[i] = pg = curpg;
   1975 			} else {
   1976 				off = soff + (i << PAGE_SHIFT);
   1977 				pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
   1978 				if (pg == NULL) {
   1979 					++nonexistent;
   1980 					continue;
   1981 				}
   1982 			}
   1983 			KASSERT(pg != NULL);
   1984 
   1985 			/*
   1986 			 * If we're holding the segment lock, we can deadlock
   1987 			 * against a process that has our page and is waiting
   1988 			 * for the cleaner, while the cleaner waits for the
   1989 			 * segment lock.  Just bail in that case.
   1990 			 */
   1991 			if ((pg->flags & PG_BUSY) &&
   1992 			    (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
   1993 				if (i > 0)
   1994 					uvm_page_unbusy(pgs, i);
   1995 				DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
   1996 				if (pgp)
   1997 					*pgp = pg;
   1998 				KASSERT(mutex_owned(vp->v_interlock));
   1999 				return -1;
   2000 			}
   2001 
   2002 			while (pg->flags & PG_BUSY) {
   2003 				wait_for_page(vp, pg, NULL);
   2004 				KASSERT(mutex_owned(vp->v_interlock));
   2005 				if (i > 0)
   2006 					uvm_page_unbusy(pgs, i);
   2007 				KASSERT(mutex_owned(vp->v_interlock));
   2008 				goto top;
   2009 			}
   2010 			pg->flags |= PG_BUSY;
   2011 			UVM_PAGE_OWN(pg, "lfs_putpages");
   2012 
   2013 			pmap_page_protect(pg, VM_PROT_NONE);
   2014 			tdirty = (pmap_clear_modify(pg) ||
   2015 				  (pg->flags & PG_CLEAN) == 0);
   2016 			dirty += tdirty;
   2017 		}
   2018 		if (pages_per_block > 0 && nonexistent >= pages_per_block) {
   2019 			if (by_list) {
   2020 				curpg = TAILQ_NEXT(curpg, listq.queue);
   2021 			} else {
   2022 				soff += fs->lfs_bsize;
   2023 			}
   2024 			continue;
   2025 		}
   2026 
   2027 		any_dirty += dirty;
   2028 		KASSERT(nonexistent == 0);
   2029 		KASSERT(mutex_owned(vp->v_interlock));
   2030 
   2031 		/*
   2032 		 * If any are dirty make all dirty; unbusy them,
   2033 		 * but if we were asked to clean, wire them so that
   2034 		 * the pagedaemon doesn't bother us about them while
   2035 		 * they're on their way to disk.
   2036 		 */
   2037 		for (i = 0; i == 0 || i < pages_per_block; i++) {
   2038 			KASSERT(mutex_owned(vp->v_interlock));
   2039 			pg = pgs[i];
   2040 			KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
   2041 			KASSERT(pg->flags & PG_BUSY);
   2042 			if (dirty) {
   2043 				pg->flags &= ~PG_CLEAN;
   2044 				if (flags & PGO_FREE) {
   2045 					/*
   2046 					 * Wire the page so that
   2047 					 * pdaemon doesn't see it again.
   2048 					 */
   2049 					mutex_enter(&uvm_pageqlock);
   2050 					uvm_pagewire(pg);
   2051 					mutex_exit(&uvm_pageqlock);
   2052 
   2053 					/* Suspended write flag */
   2054 					pg->flags |= PG_DELWRI;
   2055 				}
   2056 			}
   2057 			if (pg->flags & PG_WANTED)
   2058 				wakeup(pg);
   2059 			pg->flags &= ~(PG_WANTED|PG_BUSY);
   2060 			UVM_PAGE_OWN(pg, NULL);
   2061 		}
   2062 
   2063 		if (checkfirst && any_dirty)
   2064 			break;
   2065 
   2066 		if (by_list) {
   2067 			curpg = TAILQ_NEXT(curpg, listq.queue);
   2068 		} else {
   2069 			soff += MAX(PAGE_SIZE, fs->lfs_bsize);
   2070 		}
   2071 	}
   2072 
   2073 	KASSERT(mutex_owned(vp->v_interlock));
   2074 	return any_dirty;
   2075 }
   2076 
   2077 /*
   2078  * lfs_putpages functions like genfs_putpages except that
   2079  *
   2080  * (1) It needs to bounds-check the incoming requests to ensure that
   2081  *     they are block-aligned; if they are not, expand the range and
   2082  *     do the right thing in case, e.g., the requested range is clean
   2083  *     but the expanded range is dirty.
   2084  *
   2085  * (2) It needs to explicitly send blocks to be written when it is done.
   2086  *     If VOP_PUTPAGES is called without the seglock held, we simply take
   2087  *     the seglock and let lfs_segunlock wait for us.
   2088  *     XXX There might be a bad situation if we have to flush a vnode while
   2089  *     XXX lfs_markv is in operation.  As of this writing we panic in this
   2090  *     XXX case.
   2091  *
   2092  * Assumptions:
   2093  *
   2094  * (1) The caller does not hold any pages in this vnode busy.  If it does,
   2095  *     there is a danger that when we expand the page range and busy the
   2096  *     pages we will deadlock.
   2097  *
   2098  * (2) We are called with vp->v_interlock held; we must return with it
   2099  *     released.
   2100  *
   2101  * (3) We don't absolutely have to free pages right away, provided that
   2102  *     the request does not have PGO_SYNCIO.  When the pagedaemon gives
   2103  *     us a request with PGO_FREE, we take the pages out of the paging
   2104  *     queue and wake up the writer, which will handle freeing them for us.
   2105  *
   2106  *     We ensure that for any filesystem block, all pages for that
   2107  *     block are either resident or not, even if those pages are higher
   2108  *     than EOF; that means that we will be getting requests to free
   2109  *     "unused" pages above EOF all the time, and should ignore them.
   2110  *
   2111  * (4) If we are called with PGO_LOCKED, the finfo array we are to write
   2112  *     into has been set up for us by lfs_writefile.  If not, we will
   2113  *     have to handle allocating and/or freeing an finfo entry.
   2114  *
   2115  * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
   2116  */
   2117 
   2118 /* How many times to loop before we should start to worry */
   2119 #define TOOMANY 4
   2120 
   2121 int
   2122 lfs_putpages(void *v)
   2123 {
   2124 	int error;
   2125 	struct vop_putpages_args /* {
   2126 		struct vnode *a_vp;
   2127 		voff_t a_offlo;
   2128 		voff_t a_offhi;
   2129 		int a_flags;
   2130 	} */ *ap = v;
   2131 	struct vnode *vp;
   2132 	struct inode *ip;
   2133 	struct lfs *fs;
   2134 	struct segment *sp;
   2135 	off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
   2136 	off_t off, max_endoffset;
   2137 	bool seglocked, sync, pagedaemon, reclaim;
   2138 	struct vm_page *pg, *busypg;
   2139 	UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
   2140 	int oreclaim = 0;
   2141 	int donewriting = 0;
   2142 #ifdef DEBUG
   2143 	int debug_n_again, debug_n_dirtyclean;
   2144 #endif
   2145 
   2146 	vp = ap->a_vp;
   2147 	ip = VTOI(vp);
   2148 	fs = ip->i_lfs;
   2149 	sync = (ap->a_flags & PGO_SYNCIO) != 0;
   2150 	reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
   2151 	pagedaemon = (curlwp == uvm.pagedaemon_lwp);
   2152 
   2153 	KASSERT(mutex_owned(vp->v_interlock));
   2154 
   2155 	/* Putpages does nothing for metadata. */
   2156 	if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
   2157 		mutex_exit(vp->v_interlock);
   2158 		return 0;
   2159 	}
   2160 
   2161 	/*
   2162 	 * If there are no pages, don't do anything.
   2163 	 */
   2164 	if (vp->v_uobj.uo_npages == 0) {
   2165 		if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
   2166 		    (vp->v_iflag & VI_ONWORKLST) &&
   2167 		    LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
   2168 			vp->v_iflag &= ~VI_WRMAPDIRTY;
   2169 			vn_syncer_remove_from_worklist(vp);
   2170 		}
   2171 		mutex_exit(vp->v_interlock);
   2172 
   2173 		/* Remove us from paging queue, if we were on it */
   2174 		mutex_enter(&lfs_lock);
   2175 		if (ip->i_flags & IN_PAGING) {
   2176 			ip->i_flags &= ~IN_PAGING;
   2177 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2178 		}
   2179 		mutex_exit(&lfs_lock);
   2180 
   2181 		KASSERT(!mutex_owned(vp->v_interlock));
   2182 		return 0;
   2183 	}
   2184 
   2185 	blkeof = lfs_blkroundup(fs, ip->i_size);
   2186 
   2187 	/*
   2188 	 * Ignore requests to free pages past EOF but in the same block
   2189 	 * as EOF, unless the vnode is being reclaimed or the request
   2190 	 * is synchronous.  (If the request is sync, it comes from
   2191 	 * lfs_truncate.)
   2192 	 *
   2193 	 * To avoid being flooded with this request, make these pages
   2194 	 * look "active".
   2195 	 */
   2196 	if (!sync && !reclaim &&
   2197 	    ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
   2198 		origoffset = ap->a_offlo;
   2199 		for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
   2200 			pg = uvm_pagelookup(&vp->v_uobj, off);
   2201 			KASSERT(pg != NULL);
   2202 			while (pg->flags & PG_BUSY) {
   2203 				pg->flags |= PG_WANTED;
   2204 				UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
   2205 						    "lfsput2", 0);
   2206 				mutex_enter(vp->v_interlock);
   2207 			}
   2208 			mutex_enter(&uvm_pageqlock);
   2209 			uvm_pageactivate(pg);
   2210 			mutex_exit(&uvm_pageqlock);
   2211 		}
   2212 		ap->a_offlo = blkeof;
   2213 		if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
   2214 			mutex_exit(vp->v_interlock);
   2215 			return 0;
   2216 		}
   2217 	}
   2218 
   2219 	/*
   2220 	 * Extend page range to start and end at block boundaries.
   2221 	 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
   2222 	 */
   2223 	origoffset = ap->a_offlo;
   2224 	origendoffset = ap->a_offhi;
   2225 	startoffset = origoffset & ~(fs->lfs_bmask);
   2226 	max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
   2227 					       << fs->lfs_bshift;
   2228 
   2229 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2230 		endoffset = max_endoffset;
   2231 		origendoffset = endoffset;
   2232 	} else {
   2233 		origendoffset = round_page(ap->a_offhi);
   2234 		endoffset = round_page(lfs_blkroundup(fs, origendoffset));
   2235 	}
   2236 
   2237 	KASSERT(startoffset > 0 || endoffset >= startoffset);
   2238 	if (startoffset == endoffset) {
   2239 		/* Nothing to do, why were we called? */
   2240 		mutex_exit(vp->v_interlock);
   2241 		DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
   2242 		      PRId64 "\n", startoffset));
   2243 		return 0;
   2244 	}
   2245 
   2246 	ap->a_offlo = startoffset;
   2247 	ap->a_offhi = endoffset;
   2248 
   2249 	/*
   2250 	 * If not cleaning, just send the pages through genfs_putpages
   2251 	 * to be returned to the pool.
   2252 	 */
   2253 	if (!(ap->a_flags & PGO_CLEANIT)) {
   2254 		DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
   2255 		      vp, (int)ip->i_number, ap->a_flags));
   2256 		int r = genfs_putpages(v);
   2257 		KASSERT(!mutex_owned(vp->v_interlock));
   2258 		return r;
   2259 	}
   2260 
   2261 	/* Set PGO_BUSYFAIL to avoid deadlocks */
   2262 	ap->a_flags |= PGO_BUSYFAIL;
   2263 
   2264 	/*
   2265 	 * Likewise, if we are asked to clean but the pages are not
   2266 	 * dirty, we can just free them using genfs_putpages.
   2267 	 */
   2268 #ifdef DEBUG
   2269 	debug_n_dirtyclean = 0;
   2270 #endif
   2271 	do {
   2272 		int r;
   2273 		KASSERT(mutex_owned(vp->v_interlock));
   2274 
   2275 		/* Count the number of dirty pages */
   2276 		r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2277 				ap->a_flags, 1, NULL);
   2278 		if (r < 0) {
   2279 			/* Pages are busy with another process */
   2280 			mutex_exit(vp->v_interlock);
   2281 			return EDEADLK;
   2282 		}
   2283 		if (r > 0) /* Some pages are dirty */
   2284 			break;
   2285 
   2286 		/*
   2287 		 * Sometimes pages are dirtied between the time that
   2288 		 * we check and the time we try to clean them.
   2289 		 * Instruct lfs_gop_write to return EDEADLK in this case
   2290 		 * so we can write them properly.
   2291 		 */
   2292 		ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
   2293 		r = genfs_do_putpages(vp, startoffset, endoffset,
   2294 				       ap->a_flags & ~PGO_SYNCIO, &busypg);
   2295 		ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
   2296 		if (r != EDEADLK) {
   2297 			KASSERT(!mutex_owned(vp->v_interlock));
   2298  			return r;
   2299 		}
   2300 
   2301 		/* One of the pages was busy.  Start over. */
   2302 		mutex_enter(vp->v_interlock);
   2303 		wait_for_page(vp, busypg, "dirtyclean");
   2304 #ifdef DEBUG
   2305 		++debug_n_dirtyclean;
   2306 #endif
   2307 	} while(1);
   2308 
   2309 #ifdef DEBUG
   2310 	if (debug_n_dirtyclean > TOOMANY)
   2311 		DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
   2312 		      debug_n_dirtyclean));
   2313 #endif
   2314 
   2315 	/*
   2316 	 * Dirty and asked to clean.
   2317 	 *
   2318 	 * Pagedaemon can't actually write LFS pages; wake up
   2319 	 * the writer to take care of that.  The writer will
   2320 	 * notice the pager inode queue and act on that.
   2321 	 *
   2322 	 * XXX We must drop the vp->interlock before taking the lfs_lock or we
   2323 	 * get a nasty deadlock with lfs_flush_pchain().
   2324 	 */
   2325 	if (pagedaemon) {
   2326 		mutex_exit(vp->v_interlock);
   2327 		mutex_enter(&lfs_lock);
   2328 		if (!(ip->i_flags & IN_PAGING)) {
   2329 			ip->i_flags |= IN_PAGING;
   2330 			TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2331 		}
   2332 		wakeup(&lfs_writer_daemon);
   2333 		mutex_exit(&lfs_lock);
   2334 		preempt();
   2335 		KASSERT(!mutex_owned(vp->v_interlock));
   2336 		return EWOULDBLOCK;
   2337 	}
   2338 
   2339 	/*
   2340 	 * If this is a file created in a recent dirop, we can't flush its
   2341 	 * inode until the dirop is complete.  Drain dirops, then flush the
   2342 	 * filesystem (taking care of any other pending dirops while we're
   2343 	 * at it).
   2344 	 */
   2345 	if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
   2346 	    (vp->v_uflag & VU_DIROP)) {
   2347 		DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
   2348 
   2349  		lfs_writer_enter(fs, "ppdirop");
   2350 
   2351 		/* Note if we hold the vnode locked */
   2352 		if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
   2353 		{
   2354 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
   2355 		} else {
   2356 		    DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
   2357 		}
   2358 		mutex_exit(vp->v_interlock);
   2359 
   2360 		mutex_enter(&lfs_lock);
   2361 		lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
   2362 		mutex_exit(&lfs_lock);
   2363 
   2364 		mutex_enter(vp->v_interlock);
   2365 		lfs_writer_leave(fs);
   2366 
   2367 		/* The flush will have cleaned out this vnode as well,
   2368 		   no need to do more to it. */
   2369 	}
   2370 
   2371 	/*
   2372 	 * This is it.	We are going to write some pages.  From here on
   2373 	 * down it's all just mechanics.
   2374 	 *
   2375 	 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
   2376 	 */
   2377 	ap->a_flags &= ~PGO_SYNCIO;
   2378 
   2379 	/*
   2380 	 * If we've already got the seglock, flush the node and return.
   2381 	 * The FIP has already been set up for us by lfs_writefile,
   2382 	 * and FIP cleanup and lfs_updatemeta will also be done there,
   2383 	 * unless genfs_putpages returns EDEADLK; then we must flush
   2384 	 * what we have, and correct FIP and segment header accounting.
   2385 	 */
   2386   get_seglock:
   2387 	/*
   2388 	 * If we are not called with the segment locked, lock it.
   2389 	 * Account for a new FIP in the segment header, and set sp->vp.
   2390 	 * (This should duplicate the setup at the top of lfs_writefile().)
   2391 	 */
   2392 	seglocked = (ap->a_flags & PGO_LOCKED) != 0;
   2393 	if (!seglocked) {
   2394 		mutex_exit(vp->v_interlock);
   2395 		error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
   2396 		if (error != 0) {
   2397 			KASSERT(!mutex_owned(vp->v_interlock));
   2398  			return error;
   2399 		}
   2400 		mutex_enter(vp->v_interlock);
   2401 		lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
   2402 	}
   2403 	sp = fs->lfs_sp;
   2404 	KASSERT(sp->vp == NULL);
   2405 	sp->vp = vp;
   2406 
   2407 	/* Note segments written by reclaim; only for debugging */
   2408 	if ((vp->v_iflag & VI_XLOCK) != 0) {
   2409 		sp->seg_flags |= SEGM_RECLAIM;
   2410 		fs->lfs_reclino = ip->i_number;
   2411 	}
   2412 
   2413 	/*
   2414 	 * Ensure that the partial segment is marked SS_DIROP if this
   2415 	 * vnode is a DIROP.
   2416 	 */
   2417 	if (!seglocked && vp->v_uflag & VU_DIROP)
   2418 		((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
   2419 
   2420 	/*
   2421 	 * Loop over genfs_putpages until all pages are gathered.
   2422 	 * genfs_putpages() drops the interlock, so reacquire it if necessary.
   2423 	 * Whenever we lose the interlock we have to rerun check_dirty, as
   2424 	 * well, since more pages might have been dirtied in our absence.
   2425 	 */
   2426 #ifdef DEBUG
   2427 	debug_n_again = 0;
   2428 #endif
   2429 	do {
   2430 		busypg = NULL;
   2431 		KASSERT(mutex_owned(vp->v_interlock));
   2432 		if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
   2433 				ap->a_flags, 0, &busypg) < 0) {
   2434 			mutex_exit(vp->v_interlock);
   2435 			/* XXX why? --ks */
   2436 			mutex_enter(vp->v_interlock);
   2437 			write_and_wait(fs, vp, busypg, seglocked, NULL);
   2438 			if (!seglocked) {
   2439 				mutex_exit(vp->v_interlock);
   2440 				lfs_release_finfo(fs);
   2441 				lfs_segunlock(fs);
   2442 				mutex_enter(vp->v_interlock);
   2443 			}
   2444 			sp->vp = NULL;
   2445 			goto get_seglock;
   2446 		}
   2447 
   2448 		busypg = NULL;
   2449 		KASSERT(!mutex_owned(&uvm_pageqlock));
   2450 		oreclaim = (ap->a_flags & PGO_RECLAIM);
   2451 		ap->a_flags &= ~PGO_RECLAIM;
   2452 		error = genfs_do_putpages(vp, startoffset, endoffset,
   2453 					   ap->a_flags, &busypg);
   2454 		ap->a_flags |= oreclaim;
   2455 
   2456 		if (error == EDEADLK || error == EAGAIN) {
   2457 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2458 			      " %d ino %d off %x (seg %d)\n", error,
   2459 			      ip->i_number, fs->lfs_offset,
   2460 			      lfs_dtosn(fs, fs->lfs_offset)));
   2461 
   2462 			if (oreclaim) {
   2463 				mutex_enter(vp->v_interlock);
   2464 				write_and_wait(fs, vp, busypg, seglocked, "again");
   2465 				mutex_exit(vp->v_interlock);
   2466 			} else {
   2467 				if ((sp->seg_flags & SEGM_SINGLE) &&
   2468 				    fs->lfs_curseg != fs->lfs_startseg)
   2469 					donewriting = 1;
   2470 			}
   2471 		} else if (error) {
   2472 			DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
   2473 			      " %d ino %d off %x (seg %d)\n", error,
   2474 			      (int)ip->i_number, fs->lfs_offset,
   2475 			      lfs_dtosn(fs, fs->lfs_offset)));
   2476 		}
   2477 		/* genfs_do_putpages loses the interlock */
   2478 #ifdef DEBUG
   2479 		++debug_n_again;
   2480 #endif
   2481 		if (oreclaim && error == EAGAIN) {
   2482 			DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
   2483 			      vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
   2484 			mutex_enter(vp->v_interlock);
   2485 		}
   2486 		if (error == EDEADLK)
   2487 			mutex_enter(vp->v_interlock);
   2488 	} while (error == EDEADLK || (oreclaim && error == EAGAIN));
   2489 #ifdef DEBUG
   2490 	if (debug_n_again > TOOMANY)
   2491 		DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
   2492 #endif
   2493 
   2494 	KASSERT(sp != NULL && sp->vp == vp);
   2495 	if (!seglocked && !donewriting) {
   2496 		sp->vp = NULL;
   2497 
   2498 		/* Write indirect blocks as well */
   2499 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
   2500 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
   2501 		lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
   2502 
   2503 		KASSERT(sp->vp == NULL);
   2504 		sp->vp = vp;
   2505 	}
   2506 
   2507 	/*
   2508 	 * Blocks are now gathered into a segment waiting to be written.
   2509 	 * All that's left to do is update metadata, and write them.
   2510 	 */
   2511 	lfs_updatemeta(sp);
   2512 	KASSERT(sp->vp == vp);
   2513 	sp->vp = NULL;
   2514 
   2515 	/*
   2516 	 * If we were called from lfs_writefile, we don't need to clean up
   2517 	 * the FIP or unlock the segment lock.	We're done.
   2518 	 */
   2519 	if (seglocked) {
   2520 		KASSERT(!mutex_owned(vp->v_interlock));
   2521 		return error;
   2522 	}
   2523 
   2524 	/* Clean up FIP and send it to disk. */
   2525 	lfs_release_finfo(fs);
   2526 	lfs_writeseg(fs, fs->lfs_sp);
   2527 
   2528 	/*
   2529 	 * Remove us from paging queue if we wrote all our pages.
   2530 	 */
   2531 	if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
   2532 		mutex_enter(&lfs_lock);
   2533 		if (ip->i_flags & IN_PAGING) {
   2534 			ip->i_flags &= ~IN_PAGING;
   2535 			TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
   2536 		}
   2537 		mutex_exit(&lfs_lock);
   2538 	}
   2539 
   2540 	/*
   2541 	 * XXX - with the malloc/copy writeseg, the pages are freed by now
   2542 	 * even if we don't wait (e.g. if we hold a nested lock).  This
   2543 	 * will not be true if we stop using malloc/copy.
   2544 	 */
   2545 	KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
   2546 	lfs_segunlock(fs);
   2547 
   2548 	/*
   2549 	 * Wait for v_numoutput to drop to zero.  The seglock should
   2550 	 * take care of this, but there is a slight possibility that
   2551 	 * aiodoned might not have got around to our buffers yet.
   2552 	 */
   2553 	if (sync) {
   2554 		mutex_enter(vp->v_interlock);
   2555 		while (vp->v_numoutput > 0) {
   2556 			DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
   2557 			      " num %d\n", ip->i_number, vp->v_numoutput));
   2558 			cv_wait(&vp->v_cv, vp->v_interlock);
   2559 		}
   2560 		mutex_exit(vp->v_interlock);
   2561 	}
   2562 	KASSERT(!mutex_owned(vp->v_interlock));
   2563 	return error;
   2564 }
   2565 
   2566 /*
   2567  * Return the last logical file offset that should be written for this file
   2568  * if we're doing a write that ends at "size".	If writing, we need to know
   2569  * about sizes on disk, i.e. fragments if there are any; if reading, we need
   2570  * to know about entire blocks.
   2571  */
   2572 void
   2573 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
   2574 {
   2575 	struct inode *ip = VTOI(vp);
   2576 	struct lfs *fs = ip->i_lfs;
   2577 	daddr_t olbn, nlbn;
   2578 
   2579 	olbn = lfs_lblkno(fs, ip->i_size);
   2580 	nlbn = lfs_lblkno(fs, size);
   2581 	if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
   2582 		*eobp = lfs_fragroundup(fs, size);
   2583 	} else {
   2584 		*eobp = lfs_blkroundup(fs, size);
   2585 	}
   2586 }
   2587 
   2588 #ifdef DEBUG
   2589 void lfs_dump_vop(void *);
   2590 
   2591 void
   2592 lfs_dump_vop(void *v)
   2593 {
   2594 	struct vop_putpages_args /* {
   2595 		struct vnode *a_vp;
   2596 		voff_t a_offlo;
   2597 		voff_t a_offhi;
   2598 		int a_flags;
   2599 	} */ *ap = v;
   2600 
   2601 #ifdef DDB
   2602 	vfs_vnode_print(ap->a_vp, 0, printf);
   2603 #endif
   2604 	lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
   2605 }
   2606 #endif
   2607 
   2608 int
   2609 lfs_mmap(void *v)
   2610 {
   2611 	struct vop_mmap_args /* {
   2612 		const struct vnodeop_desc *a_desc;
   2613 		struct vnode *a_vp;
   2614 		vm_prot_t a_prot;
   2615 		kauth_cred_t a_cred;
   2616 	} */ *ap = v;
   2617 
   2618 	if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
   2619 		return EOPNOTSUPP;
   2620 	return ulfs_mmap(v);
   2621 }
   2622