lfs_vnops.c revision 1.254 1 /* $NetBSD: lfs_vnops.c,v 1.254 2013/07/28 01:27:02 dholland Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31 /*
32 * Copyright (c) 1986, 1989, 1991, 1993, 1995
33 * The Regents of the University of California. All rights reserved.
34 *
35 * Redistribution and use in source and binary forms, with or without
36 * modification, are permitted provided that the following conditions
37 * are met:
38 * 1. Redistributions of source code must retain the above copyright
39 * notice, this list of conditions and the following disclaimer.
40 * 2. Redistributions in binary form must reproduce the above copyright
41 * notice, this list of conditions and the following disclaimer in the
42 * documentation and/or other materials provided with the distribution.
43 * 3. Neither the name of the University nor the names of its contributors
44 * may be used to endorse or promote products derived from this software
45 * without specific prior written permission.
46 *
47 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
48 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
49 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
50 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
51 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
52 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
53 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
54 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
55 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
56 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
57 * SUCH DAMAGE.
58 *
59 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
60 */
61
62 #include <sys/cdefs.h>
63 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.254 2013/07/28 01:27:02 dholland Exp $");
64
65 #ifdef _KERNEL_OPT
66 #include "opt_compat_netbsd.h"
67 #include "opt_uvm_page_trkown.h"
68 #endif
69
70 #include <sys/param.h>
71 #include <sys/systm.h>
72 #include <sys/namei.h>
73 #include <sys/resourcevar.h>
74 #include <sys/kernel.h>
75 #include <sys/file.h>
76 #include <sys/stat.h>
77 #include <sys/buf.h>
78 #include <sys/proc.h>
79 #include <sys/mount.h>
80 #include <sys/vnode.h>
81 #include <sys/pool.h>
82 #include <sys/signalvar.h>
83 #include <sys/kauth.h>
84 #include <sys/syslog.h>
85 #include <sys/fstrans.h>
86
87 #include <miscfs/fifofs/fifo.h>
88 #include <miscfs/genfs/genfs.h>
89 #include <miscfs/specfs/specdev.h>
90
91 #include <ufs/lfs/ulfs_inode.h>
92 #include <ufs/lfs/ulfsmount.h>
93 #include <ufs/lfs/ulfs_bswap.h>
94 #include <ufs/lfs/ulfs_extern.h>
95
96 #include <uvm/uvm.h>
97 #include <uvm/uvm_pmap.h>
98 #include <uvm/uvm_stat.h>
99 #include <uvm/uvm_pager.h>
100
101 #include <ufs/lfs/lfs.h>
102 #include <ufs/lfs/lfs_kernel.h>
103 #include <ufs/lfs/lfs_extern.h>
104
105 extern pid_t lfs_writer_daemon;
106 int lfs_ignore_lazy_sync = 1;
107
108 static int lfs_openextattr(void *v);
109 static int lfs_closeextattr(void *v);
110 static int lfs_getextattr(void *v);
111 static int lfs_setextattr(void *v);
112 static int lfs_listextattr(void *v);
113 static int lfs_deleteextattr(void *v);
114
115 /* Global vfs data structures for lfs. */
116 int (**lfs_vnodeop_p)(void *);
117 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
118 { &vop_default_desc, vn_default_error },
119 { &vop_lookup_desc, ulfs_lookup }, /* lookup */
120 { &vop_create_desc, lfs_create }, /* create */
121 { &vop_whiteout_desc, ulfs_whiteout }, /* whiteout */
122 { &vop_mknod_desc, lfs_mknod }, /* mknod */
123 { &vop_open_desc, ulfs_open }, /* open */
124 { &vop_close_desc, lfs_close }, /* close */
125 { &vop_access_desc, ulfs_access }, /* access */
126 { &vop_getattr_desc, lfs_getattr }, /* getattr */
127 { &vop_setattr_desc, lfs_setattr }, /* setattr */
128 { &vop_read_desc, lfs_read }, /* read */
129 { &vop_write_desc, lfs_write }, /* write */
130 { &vop_ioctl_desc, ulfs_ioctl }, /* ioctl */
131 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
132 { &vop_poll_desc, ulfs_poll }, /* poll */
133 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
134 { &vop_revoke_desc, ulfs_revoke }, /* revoke */
135 { &vop_mmap_desc, lfs_mmap }, /* mmap */
136 { &vop_fsync_desc, lfs_fsync }, /* fsync */
137 { &vop_seek_desc, ulfs_seek }, /* seek */
138 { &vop_remove_desc, lfs_remove }, /* remove */
139 { &vop_link_desc, lfs_link }, /* link */
140 { &vop_rename_desc, lfs_rename }, /* rename */
141 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
142 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
143 { &vop_symlink_desc, lfs_symlink }, /* symlink */
144 { &vop_readdir_desc, ulfs_readdir }, /* readdir */
145 { &vop_readlink_desc, ulfs_readlink }, /* readlink */
146 { &vop_abortop_desc, ulfs_abortop }, /* abortop */
147 { &vop_inactive_desc, lfs_inactive }, /* inactive */
148 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
149 { &vop_lock_desc, ulfs_lock }, /* lock */
150 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
151 { &vop_bmap_desc, ulfs_bmap }, /* bmap */
152 { &vop_strategy_desc, lfs_strategy }, /* strategy */
153 { &vop_print_desc, ulfs_print }, /* print */
154 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
155 { &vop_pathconf_desc, ulfs_pathconf }, /* pathconf */
156 { &vop_advlock_desc, ulfs_advlock }, /* advlock */
157 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
158 { &vop_getpages_desc, lfs_getpages }, /* getpages */
159 { &vop_putpages_desc, lfs_putpages }, /* putpages */
160 { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
161 { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
162 { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
163 { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
164 { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
165 { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
166 { NULL, NULL }
167 };
168 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
169 { &lfs_vnodeop_p, lfs_vnodeop_entries };
170
171 int (**lfs_specop_p)(void *);
172 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
173 { &vop_default_desc, vn_default_error },
174 { &vop_lookup_desc, spec_lookup }, /* lookup */
175 { &vop_create_desc, spec_create }, /* create */
176 { &vop_mknod_desc, spec_mknod }, /* mknod */
177 { &vop_open_desc, spec_open }, /* open */
178 { &vop_close_desc, lfsspec_close }, /* close */
179 { &vop_access_desc, ulfs_access }, /* access */
180 { &vop_getattr_desc, lfs_getattr }, /* getattr */
181 { &vop_setattr_desc, lfs_setattr }, /* setattr */
182 { &vop_read_desc, ulfsspec_read }, /* read */
183 { &vop_write_desc, ulfsspec_write }, /* write */
184 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
185 { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
186 { &vop_poll_desc, spec_poll }, /* poll */
187 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
188 { &vop_revoke_desc, spec_revoke }, /* revoke */
189 { &vop_mmap_desc, spec_mmap }, /* mmap */
190 { &vop_fsync_desc, spec_fsync }, /* fsync */
191 { &vop_seek_desc, spec_seek }, /* seek */
192 { &vop_remove_desc, spec_remove }, /* remove */
193 { &vop_link_desc, spec_link }, /* link */
194 { &vop_rename_desc, spec_rename }, /* rename */
195 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
196 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
197 { &vop_symlink_desc, spec_symlink }, /* symlink */
198 { &vop_readdir_desc, spec_readdir }, /* readdir */
199 { &vop_readlink_desc, spec_readlink }, /* readlink */
200 { &vop_abortop_desc, spec_abortop }, /* abortop */
201 { &vop_inactive_desc, lfs_inactive }, /* inactive */
202 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
203 { &vop_lock_desc, ulfs_lock }, /* lock */
204 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
205 { &vop_bmap_desc, spec_bmap }, /* bmap */
206 { &vop_strategy_desc, spec_strategy }, /* strategy */
207 { &vop_print_desc, ulfs_print }, /* print */
208 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
209 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
210 { &vop_advlock_desc, spec_advlock }, /* advlock */
211 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
212 { &vop_getpages_desc, spec_getpages }, /* getpages */
213 { &vop_putpages_desc, spec_putpages }, /* putpages */
214 { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
215 { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
216 { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
217 { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
218 { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
219 { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
220 { NULL, NULL }
221 };
222 const struct vnodeopv_desc lfs_specop_opv_desc =
223 { &lfs_specop_p, lfs_specop_entries };
224
225 int (**lfs_fifoop_p)(void *);
226 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
227 { &vop_default_desc, vn_default_error },
228 { &vop_lookup_desc, vn_fifo_bypass }, /* lookup */
229 { &vop_create_desc, vn_fifo_bypass }, /* create */
230 { &vop_mknod_desc, vn_fifo_bypass }, /* mknod */
231 { &vop_open_desc, vn_fifo_bypass }, /* open */
232 { &vop_close_desc, lfsfifo_close }, /* close */
233 { &vop_access_desc, ulfs_access }, /* access */
234 { &vop_getattr_desc, lfs_getattr }, /* getattr */
235 { &vop_setattr_desc, lfs_setattr }, /* setattr */
236 { &vop_read_desc, ulfsfifo_read }, /* read */
237 { &vop_write_desc, ulfsfifo_write }, /* write */
238 { &vop_ioctl_desc, vn_fifo_bypass }, /* ioctl */
239 { &vop_fcntl_desc, ulfs_fcntl }, /* fcntl */
240 { &vop_poll_desc, vn_fifo_bypass }, /* poll */
241 { &vop_kqfilter_desc, vn_fifo_bypass }, /* kqfilter */
242 { &vop_revoke_desc, vn_fifo_bypass }, /* revoke */
243 { &vop_mmap_desc, vn_fifo_bypass }, /* mmap */
244 { &vop_fsync_desc, vn_fifo_bypass }, /* fsync */
245 { &vop_seek_desc, vn_fifo_bypass }, /* seek */
246 { &vop_remove_desc, vn_fifo_bypass }, /* remove */
247 { &vop_link_desc, vn_fifo_bypass }, /* link */
248 { &vop_rename_desc, vn_fifo_bypass }, /* rename */
249 { &vop_mkdir_desc, vn_fifo_bypass }, /* mkdir */
250 { &vop_rmdir_desc, vn_fifo_bypass }, /* rmdir */
251 { &vop_symlink_desc, vn_fifo_bypass }, /* symlink */
252 { &vop_readdir_desc, vn_fifo_bypass }, /* readdir */
253 { &vop_readlink_desc, vn_fifo_bypass }, /* readlink */
254 { &vop_abortop_desc, vn_fifo_bypass }, /* abortop */
255 { &vop_inactive_desc, lfs_inactive }, /* inactive */
256 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
257 { &vop_lock_desc, ulfs_lock }, /* lock */
258 { &vop_unlock_desc, ulfs_unlock }, /* unlock */
259 { &vop_bmap_desc, vn_fifo_bypass }, /* bmap */
260 { &vop_strategy_desc, vn_fifo_bypass }, /* strategy */
261 { &vop_print_desc, ulfs_print }, /* print */
262 { &vop_islocked_desc, ulfs_islocked }, /* islocked */
263 { &vop_pathconf_desc, vn_fifo_bypass }, /* pathconf */
264 { &vop_advlock_desc, vn_fifo_bypass }, /* advlock */
265 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
266 { &vop_putpages_desc, vn_fifo_bypass }, /* putpages */
267 { &vop_openextattr_desc, lfs_openextattr }, /* openextattr */
268 { &vop_closeextattr_desc, lfs_closeextattr }, /* closeextattr */
269 { &vop_getextattr_desc, lfs_getextattr }, /* getextattr */
270 { &vop_setextattr_desc, lfs_setextattr }, /* setextattr */
271 { &vop_listextattr_desc, lfs_listextattr }, /* listextattr */
272 { &vop_deleteextattr_desc, lfs_deleteextattr }, /* deleteextattr */
273 { NULL, NULL }
274 };
275 const struct vnodeopv_desc lfs_fifoop_opv_desc =
276 { &lfs_fifoop_p, lfs_fifoop_entries };
277
278 static int check_dirty(struct lfs *, struct vnode *, off_t, off_t, off_t, int, int, struct vm_page **);
279
280 #define LFS_READWRITE
281 #include <ufs/lfs/ulfs_readwrite.c>
282 #undef LFS_READWRITE
283
284 /*
285 * Synch an open file.
286 */
287 /* ARGSUSED */
288 int
289 lfs_fsync(void *v)
290 {
291 struct vop_fsync_args /* {
292 struct vnode *a_vp;
293 kauth_cred_t a_cred;
294 int a_flags;
295 off_t offlo;
296 off_t offhi;
297 } */ *ap = v;
298 struct vnode *vp = ap->a_vp;
299 int error, wait;
300 struct inode *ip = VTOI(vp);
301 struct lfs *fs = ip->i_lfs;
302
303 /* If we're mounted read-only, don't try to sync. */
304 if (fs->lfs_ronly)
305 return 0;
306
307 /* If a removed vnode is being cleaned, no need to sync here. */
308 if ((ap->a_flags & FSYNC_RECLAIM) != 0 && ip->i_mode == 0)
309 return 0;
310
311 /*
312 * Trickle sync simply adds this vnode to the pager list, as if
313 * the pagedaemon had requested a pageout.
314 */
315 if (ap->a_flags & FSYNC_LAZY) {
316 if (lfs_ignore_lazy_sync == 0) {
317 mutex_enter(&lfs_lock);
318 if (!(ip->i_flags & IN_PAGING)) {
319 ip->i_flags |= IN_PAGING;
320 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip,
321 i_lfs_pchain);
322 }
323 wakeup(&lfs_writer_daemon);
324 mutex_exit(&lfs_lock);
325 }
326 return 0;
327 }
328
329 /*
330 * If a vnode is bring cleaned, flush it out before we try to
331 * reuse it. This prevents the cleaner from writing files twice
332 * in the same partial segment, causing an accounting underflow.
333 */
334 if (ap->a_flags & FSYNC_RECLAIM && ip->i_flags & IN_CLEANING) {
335 lfs_vflush(vp);
336 }
337
338 wait = (ap->a_flags & FSYNC_WAIT);
339 do {
340 mutex_enter(vp->v_interlock);
341 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
342 round_page(ap->a_offhi),
343 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
344 if (error == EAGAIN) {
345 mutex_enter(&lfs_lock);
346 mtsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_fsync",
347 hz / 100 + 1, &lfs_lock);
348 mutex_exit(&lfs_lock);
349 }
350 } while (error == EAGAIN);
351 if (error)
352 return error;
353
354 if ((ap->a_flags & FSYNC_DATAONLY) == 0)
355 error = lfs_update(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
356
357 if (error == 0 && ap->a_flags & FSYNC_CACHE) {
358 int l = 0;
359 error = VOP_IOCTL(ip->i_devvp, DIOCCACHESYNC, &l, FWRITE,
360 curlwp->l_cred);
361 }
362 if (wait && !VPISEMPTY(vp))
363 LFS_SET_UINO(ip, IN_MODIFIED);
364
365 return error;
366 }
367
368 /*
369 * Take IN_ADIROP off, then call ulfs_inactive.
370 */
371 int
372 lfs_inactive(void *v)
373 {
374 struct vop_inactive_args /* {
375 struct vnode *a_vp;
376 } */ *ap = v;
377
378 lfs_unmark_vnode(ap->a_vp);
379
380 /*
381 * The Ifile is only ever inactivated on unmount.
382 * Streamline this process by not giving it more dirty blocks.
383 */
384 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
385 mutex_enter(&lfs_lock);
386 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
387 mutex_exit(&lfs_lock);
388 VOP_UNLOCK(ap->a_vp);
389 return 0;
390 }
391
392 #ifdef DEBUG
393 /*
394 * This might happen on unmount.
395 * XXX If it happens at any other time, it should be a panic.
396 */
397 if (ap->a_vp->v_uflag & VU_DIROP) {
398 struct inode *ip = VTOI(ap->a_vp);
399 printf("lfs_inactive: inactivating VU_DIROP? ino = %d\n", (int)ip->i_number);
400 }
401 #endif /* DIAGNOSTIC */
402
403 return ulfs_inactive(v);
404 }
405
406 int
407 lfs_set_dirop(struct vnode *dvp, struct vnode *vp)
408 {
409 struct lfs *fs;
410 int error;
411
412 KASSERT(VOP_ISLOCKED(dvp));
413 KASSERT(vp == NULL || VOP_ISLOCKED(vp));
414
415 fs = VTOI(dvp)->i_lfs;
416
417 ASSERT_NO_SEGLOCK(fs);
418 /*
419 * LFS_NRESERVE calculates direct and indirect blocks as well
420 * as an inode block; an overestimate in most cases.
421 */
422 if ((error = lfs_reserve(fs, dvp, vp, LFS_NRESERVE(fs))) != 0)
423 return (error);
424
425 restart:
426 mutex_enter(&lfs_lock);
427 if (fs->lfs_dirops == 0) {
428 mutex_exit(&lfs_lock);
429 lfs_check(dvp, LFS_UNUSED_LBN, 0);
430 mutex_enter(&lfs_lock);
431 }
432 while (fs->lfs_writer) {
433 error = mtsleep(&fs->lfs_dirops, (PRIBIO + 1) | PCATCH,
434 "lfs_sdirop", 0, &lfs_lock);
435 if (error == EINTR) {
436 mutex_exit(&lfs_lock);
437 goto unreserve;
438 }
439 }
440 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
441 wakeup(&lfs_writer_daemon);
442 mutex_exit(&lfs_lock);
443 preempt();
444 goto restart;
445 }
446
447 if (lfs_dirvcount > LFS_MAX_DIROP) {
448 DLOG((DLOG_DIROP, "lfs_set_dirop: sleeping with dirops=%d, "
449 "dirvcount=%d\n", fs->lfs_dirops, lfs_dirvcount));
450 if ((error = mtsleep(&lfs_dirvcount,
451 PCATCH | PUSER | PNORELOCK, "lfs_maxdirop", 0,
452 &lfs_lock)) != 0) {
453 goto unreserve;
454 }
455 goto restart;
456 }
457
458 ++fs->lfs_dirops;
459 /* fs->lfs_doifile = 1; */ /* XXX why? --ks */
460 mutex_exit(&lfs_lock);
461
462 /* Hold a reference so SET_ENDOP will be happy */
463 vref(dvp);
464 if (vp) {
465 vref(vp);
466 MARK_VNODE(vp);
467 }
468
469 MARK_VNODE(dvp);
470 return 0;
471
472 unreserve:
473 lfs_reserve(fs, dvp, vp, -LFS_NRESERVE(fs));
474 return error;
475 }
476
477 /*
478 * Get a new vnode *before* adjusting the dirop count, to avoid a deadlock
479 * in getnewvnode(), if we have a stacked filesystem mounted on top
480 * of us.
481 *
482 * NB: this means we have to clear the new vnodes on error. Fortunately
483 * SET_ENDOP is there to do that for us.
484 */
485 int
486 lfs_set_dirop_create(struct vnode *dvp, struct vnode **vpp)
487 {
488 int error;
489 struct lfs *fs;
490
491 fs = VFSTOULFS(dvp->v_mount)->um_lfs;
492 ASSERT_NO_SEGLOCK(fs);
493 if (fs->lfs_ronly)
494 return EROFS;
495 if (vpp == NULL) {
496 return lfs_set_dirop(dvp, NULL);
497 }
498 error = getnewvnode(VT_LFS, dvp->v_mount, lfs_vnodeop_p, NULL, vpp);
499 if (error) {
500 DLOG((DLOG_ALLOC, "lfs_set_dirop_create: dvp %p error %d\n",
501 dvp, error));
502 return error;
503 }
504 if ((error = lfs_set_dirop(dvp, NULL)) != 0) {
505 ungetnewvnode(*vpp);
506 *vpp = NULL;
507 return error;
508 }
509 return 0;
510 }
511
512 void
513 lfs_mark_vnode(struct vnode *vp)
514 {
515 struct inode *ip = VTOI(vp);
516 struct lfs *fs = ip->i_lfs;
517
518 mutex_enter(&lfs_lock);
519 if (!(ip->i_flag & IN_ADIROP)) {
520 if (!(vp->v_uflag & VU_DIROP)) {
521 mutex_exit(&lfs_lock);
522 mutex_enter(vp->v_interlock);
523 if (lfs_vref(vp) != 0)
524 panic("lfs_mark_vnode: could not vref");
525 mutex_enter(&lfs_lock);
526 ++lfs_dirvcount;
527 ++fs->lfs_dirvcount;
528 TAILQ_INSERT_TAIL(&fs->lfs_dchainhd, ip, i_lfs_dchain);
529 vp->v_uflag |= VU_DIROP;
530 }
531 ++fs->lfs_nadirop;
532 ip->i_flag &= ~IN_CDIROP;
533 ip->i_flag |= IN_ADIROP;
534 } else
535 KASSERT(vp->v_uflag & VU_DIROP);
536 mutex_exit(&lfs_lock);
537 }
538
539 void
540 lfs_unmark_vnode(struct vnode *vp)
541 {
542 struct inode *ip = VTOI(vp);
543
544 mutex_enter(&lfs_lock);
545 if (ip && (ip->i_flag & IN_ADIROP)) {
546 KASSERT(vp->v_uflag & VU_DIROP);
547 --ip->i_lfs->lfs_nadirop;
548 ip->i_flag &= ~IN_ADIROP;
549 }
550 mutex_exit(&lfs_lock);
551 }
552
553 int
554 lfs_symlink(void *v)
555 {
556 struct vop_symlink_args /* {
557 struct vnode *a_dvp;
558 struct vnode **a_vpp;
559 struct componentname *a_cnp;
560 struct vattr *a_vap;
561 char *a_target;
562 } */ *ap = v;
563 int error;
564
565 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
566 vput(ap->a_dvp);
567 return error;
568 }
569 error = ulfs_symlink(ap);
570 SET_ENDOP_CREATE_AP(ap, "symlink");
571 return (error);
572 }
573
574 int
575 lfs_mknod(void *v)
576 {
577 struct vop_mknod_args /* {
578 struct vnode *a_dvp;
579 struct vnode **a_vpp;
580 struct componentname *a_cnp;
581 struct vattr *a_vap;
582 } */ *ap = v;
583 struct vattr *vap;
584 struct vnode **vpp;
585 struct inode *ip;
586 int error;
587 struct mount *mp;
588 ino_t ino;
589 struct ulfs_lookup_results *ulr;
590
591 vap = ap->a_vap;
592 vpp = ap->a_vpp;
593
594 /* XXX should handle this material another way */
595 ulr = &VTOI(ap->a_dvp)->i_crap;
596 ULFS_CHECK_CRAPCOUNTER(VTOI(ap->a_dvp));
597
598 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
599 vput(ap->a_dvp);
600 return error;
601 }
602
603 fstrans_start(ap->a_dvp->v_mount, FSTRANS_SHARED);
604 error = ulfs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
605 ap->a_dvp, ulr, vpp, ap->a_cnp);
606
607 /* Either way we're done with the dirop at this point */
608 SET_ENDOP_CREATE_AP(ap, "mknod");
609
610 if (error) {
611 fstrans_done(ap->a_dvp->v_mount);
612 *vpp = NULL;
613 return (error);
614 }
615
616 VN_KNOTE(ap->a_dvp, NOTE_WRITE);
617 ip = VTOI(*vpp);
618 mp = (*vpp)->v_mount;
619 ino = ip->i_number;
620 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
621 if (vap->va_rdev != VNOVAL) {
622 struct ulfsmount *ump = ip->i_ump;
623 struct lfs *fs = ip->i_lfs;
624 /*
625 * Want to be able to use this to make badblock
626 * inodes, so don't truncate the dev number.
627 */
628 if (ump->um_fstype == ULFS1)
629 ip->i_ffs1_rdev = ulfs_rw32(vap->va_rdev,
630 ULFS_MPNEEDSWAP(fs));
631 else
632 ip->i_ffs2_rdev = ulfs_rw64(vap->va_rdev,
633 ULFS_MPNEEDSWAP(fs));
634 }
635
636 /*
637 * Call fsync to write the vnode so that we don't have to deal with
638 * flushing it when it's marked VU_DIROP|VI_XLOCK.
639 *
640 * XXX KS - If we can't flush we also can't call vgone(), so must
641 * return. But, that leaves this vnode in limbo, also not good.
642 * Can this ever happen (barring hardware failure)?
643 */
644 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0)) != 0) {
645 panic("lfs_mknod: couldn't fsync (ino %llu)",
646 (unsigned long long)ino);
647 /* return (error); */
648 }
649 /*
650 * Remove vnode so that it will be reloaded by VFS_VGET and
651 * checked to see if it is an alias of an existing entry in
652 * the inode cache.
653 */
654 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
655
656 (*vpp)->v_type = VNON;
657 VOP_UNLOCK(*vpp);
658 vgone(*vpp);
659 error = VFS_VGET(mp, ino, vpp);
660
661 fstrans_done(ap->a_dvp->v_mount);
662 if (error != 0) {
663 *vpp = NULL;
664 return (error);
665 }
666 return (0);
667 }
668
669 int
670 lfs_create(void *v)
671 {
672 struct vop_create_args /* {
673 struct vnode *a_dvp;
674 struct vnode **a_vpp;
675 struct componentname *a_cnp;
676 struct vattr *a_vap;
677 } */ *ap = v;
678 int error;
679
680 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
681 vput(ap->a_dvp);
682 return error;
683 }
684 error = ulfs_create(ap);
685 SET_ENDOP_CREATE_AP(ap, "create");
686 return (error);
687 }
688
689 int
690 lfs_mkdir(void *v)
691 {
692 struct vop_mkdir_args /* {
693 struct vnode *a_dvp;
694 struct vnode **a_vpp;
695 struct componentname *a_cnp;
696 struct vattr *a_vap;
697 } */ *ap = v;
698 int error;
699
700 if ((error = SET_DIROP_CREATE(ap->a_dvp, ap->a_vpp)) != 0) {
701 vput(ap->a_dvp);
702 return error;
703 }
704 error = ulfs_mkdir(ap);
705 SET_ENDOP_CREATE_AP(ap, "mkdir");
706 return (error);
707 }
708
709 int
710 lfs_remove(void *v)
711 {
712 struct vop_remove_args /* {
713 struct vnode *a_dvp;
714 struct vnode *a_vp;
715 struct componentname *a_cnp;
716 } */ *ap = v;
717 struct vnode *dvp, *vp;
718 struct inode *ip;
719 int error;
720
721 dvp = ap->a_dvp;
722 vp = ap->a_vp;
723 ip = VTOI(vp);
724 if ((error = SET_DIROP_REMOVE(dvp, vp)) != 0) {
725 if (dvp == vp)
726 vrele(vp);
727 else
728 vput(vp);
729 vput(dvp);
730 return error;
731 }
732 error = ulfs_remove(ap);
733 if (ip->i_nlink == 0)
734 lfs_orphan(ip->i_lfs, ip->i_number);
735 SET_ENDOP_REMOVE(ip->i_lfs, dvp, ap->a_vp, "remove");
736 return (error);
737 }
738
739 int
740 lfs_rmdir(void *v)
741 {
742 struct vop_rmdir_args /* {
743 struct vnodeop_desc *a_desc;
744 struct vnode *a_dvp;
745 struct vnode *a_vp;
746 struct componentname *a_cnp;
747 } */ *ap = v;
748 struct vnode *vp;
749 struct inode *ip;
750 int error;
751
752 vp = ap->a_vp;
753 ip = VTOI(vp);
754 if ((error = SET_DIROP_REMOVE(ap->a_dvp, ap->a_vp)) != 0) {
755 if (ap->a_dvp == vp)
756 vrele(ap->a_dvp);
757 else
758 vput(ap->a_dvp);
759 vput(vp);
760 return error;
761 }
762 error = ulfs_rmdir(ap);
763 if (ip->i_nlink == 0)
764 lfs_orphan(ip->i_lfs, ip->i_number);
765 SET_ENDOP_REMOVE(ip->i_lfs, ap->a_dvp, ap->a_vp, "rmdir");
766 return (error);
767 }
768
769 int
770 lfs_link(void *v)
771 {
772 struct vop_link_args /* {
773 struct vnode *a_dvp;
774 struct vnode *a_vp;
775 struct componentname *a_cnp;
776 } */ *ap = v;
777 int error;
778 struct vnode **vpp = NULL;
779
780 if ((error = SET_DIROP_CREATE(ap->a_dvp, vpp)) != 0) {
781 vput(ap->a_dvp);
782 return error;
783 }
784 error = ulfs_link(ap);
785 SET_ENDOP_CREATE(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vpp, "link");
786 return (error);
787 }
788
789 /* XXX hack to avoid calling ITIMES in getattr */
790 int
791 lfs_getattr(void *v)
792 {
793 struct vop_getattr_args /* {
794 struct vnode *a_vp;
795 struct vattr *a_vap;
796 kauth_cred_t a_cred;
797 } */ *ap = v;
798 struct vnode *vp = ap->a_vp;
799 struct inode *ip = VTOI(vp);
800 struct vattr *vap = ap->a_vap;
801 struct lfs *fs = ip->i_lfs;
802
803 fstrans_start(vp->v_mount, FSTRANS_SHARED);
804 /*
805 * Copy from inode table
806 */
807 vap->va_fsid = ip->i_dev;
808 vap->va_fileid = ip->i_number;
809 vap->va_mode = ip->i_mode & ~LFS_IFMT;
810 vap->va_nlink = ip->i_nlink;
811 vap->va_uid = ip->i_uid;
812 vap->va_gid = ip->i_gid;
813 vap->va_rdev = (dev_t)ip->i_ffs1_rdev;
814 vap->va_size = vp->v_size;
815 vap->va_atime.tv_sec = ip->i_ffs1_atime;
816 vap->va_atime.tv_nsec = ip->i_ffs1_atimensec;
817 vap->va_mtime.tv_sec = ip->i_ffs1_mtime;
818 vap->va_mtime.tv_nsec = ip->i_ffs1_mtimensec;
819 vap->va_ctime.tv_sec = ip->i_ffs1_ctime;
820 vap->va_ctime.tv_nsec = ip->i_ffs1_ctimensec;
821 vap->va_flags = ip->i_flags;
822 vap->va_gen = ip->i_gen;
823 /* this doesn't belong here */
824 if (vp->v_type == VBLK)
825 vap->va_blocksize = BLKDEV_IOSIZE;
826 else if (vp->v_type == VCHR)
827 vap->va_blocksize = MAXBSIZE;
828 else
829 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
830 vap->va_bytes = lfs_fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
831 vap->va_type = vp->v_type;
832 vap->va_filerev = ip->i_modrev;
833 fstrans_done(vp->v_mount);
834 return (0);
835 }
836
837 /*
838 * Check to make sure the inode blocks won't choke the buffer
839 * cache, then call ulfs_setattr as usual.
840 */
841 int
842 lfs_setattr(void *v)
843 {
844 struct vop_setattr_args /* {
845 struct vnode *a_vp;
846 struct vattr *a_vap;
847 kauth_cred_t a_cred;
848 } */ *ap = v;
849 struct vnode *vp = ap->a_vp;
850
851 lfs_check(vp, LFS_UNUSED_LBN, 0);
852 return ulfs_setattr(v);
853 }
854
855 /*
856 * Release the block we hold on lfs_newseg wrapping. Called on file close,
857 * or explicitly from LFCNWRAPGO. Called with the interlock held.
858 */
859 static int
860 lfs_wrapgo(struct lfs *fs, struct inode *ip, int waitfor)
861 {
862 if (fs->lfs_stoplwp != curlwp)
863 return EBUSY;
864
865 fs->lfs_stoplwp = NULL;
866 cv_signal(&fs->lfs_stopcv);
867
868 KASSERT(fs->lfs_nowrap > 0);
869 if (fs->lfs_nowrap <= 0) {
870 return 0;
871 }
872
873 if (--fs->lfs_nowrap == 0) {
874 log(LOG_NOTICE, "%s: re-enabled log wrap\n", fs->lfs_fsmnt);
875 wakeup(&fs->lfs_wrappass);
876 lfs_wakeup_cleaner(fs);
877 }
878 if (waitfor) {
879 mtsleep(&fs->lfs_nextseg, PCATCH | PUSER, "segment",
880 0, &lfs_lock);
881 }
882
883 return 0;
884 }
885
886 /*
887 * Close called.
888 *
889 * Update the times on the inode.
890 */
891 /* ARGSUSED */
892 int
893 lfs_close(void *v)
894 {
895 struct vop_close_args /* {
896 struct vnode *a_vp;
897 int a_fflag;
898 kauth_cred_t a_cred;
899 } */ *ap = v;
900 struct vnode *vp = ap->a_vp;
901 struct inode *ip = VTOI(vp);
902 struct lfs *fs = ip->i_lfs;
903
904 if ((ip->i_number == ULFS_ROOTINO || ip->i_number == LFS_IFILE_INUM) &&
905 fs->lfs_stoplwp == curlwp) {
906 mutex_enter(&lfs_lock);
907 log(LOG_NOTICE, "lfs_close: releasing log wrap control\n");
908 lfs_wrapgo(fs, ip, 0);
909 mutex_exit(&lfs_lock);
910 }
911
912 if (vp == ip->i_lfs->lfs_ivnode &&
913 vp->v_mount->mnt_iflag & IMNT_UNMOUNT)
914 return 0;
915
916 fstrans_start(vp->v_mount, FSTRANS_SHARED);
917 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
918 LFS_ITIMES(ip, NULL, NULL, NULL);
919 }
920 fstrans_done(vp->v_mount);
921 return (0);
922 }
923
924 /*
925 * Close wrapper for special devices.
926 *
927 * Update the times on the inode then do device close.
928 */
929 int
930 lfsspec_close(void *v)
931 {
932 struct vop_close_args /* {
933 struct vnode *a_vp;
934 int a_fflag;
935 kauth_cred_t a_cred;
936 } */ *ap = v;
937 struct vnode *vp;
938 struct inode *ip;
939
940 vp = ap->a_vp;
941 ip = VTOI(vp);
942 if (vp->v_usecount > 1) {
943 LFS_ITIMES(ip, NULL, NULL, NULL);
944 }
945 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
946 }
947
948 /*
949 * Close wrapper for fifo's.
950 *
951 * Update the times on the inode then do device close.
952 */
953 int
954 lfsfifo_close(void *v)
955 {
956 struct vop_close_args /* {
957 struct vnode *a_vp;
958 int a_fflag;
959 kauth_cred_ a_cred;
960 } */ *ap = v;
961 struct vnode *vp;
962 struct inode *ip;
963
964 vp = ap->a_vp;
965 ip = VTOI(vp);
966 if (ap->a_vp->v_usecount > 1) {
967 LFS_ITIMES(ip, NULL, NULL, NULL);
968 }
969 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
970 }
971
972 /*
973 * Reclaim an inode so that it can be used for other purposes.
974 */
975
976 int
977 lfs_reclaim(void *v)
978 {
979 struct vop_reclaim_args /* {
980 struct vnode *a_vp;
981 } */ *ap = v;
982 struct vnode *vp = ap->a_vp;
983 struct inode *ip = VTOI(vp);
984 struct lfs *fs = ip->i_lfs;
985 int error;
986
987 /*
988 * The inode must be freed and updated before being removed
989 * from its hash chain. Other threads trying to gain a hold
990 * on the inode will be stalled because it is locked (VI_XLOCK).
991 */
992 if (ip->i_nlink <= 0 && (vp->v_mount->mnt_flag & MNT_RDONLY) == 0)
993 lfs_vfree(vp, ip->i_number, ip->i_omode);
994
995 mutex_enter(&lfs_lock);
996 LFS_CLR_UINO(ip, IN_ALLMOD);
997 mutex_exit(&lfs_lock);
998 if ((error = ulfs_reclaim(vp)))
999 return (error);
1000
1001 /*
1002 * Take us off the paging and/or dirop queues if we were on them.
1003 * We shouldn't be on them.
1004 */
1005 mutex_enter(&lfs_lock);
1006 if (ip->i_flags & IN_PAGING) {
1007 log(LOG_WARNING, "%s: reclaimed vnode is IN_PAGING\n",
1008 fs->lfs_fsmnt);
1009 ip->i_flags &= ~IN_PAGING;
1010 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1011 }
1012 if (vp->v_uflag & VU_DIROP) {
1013 panic("reclaimed vnode is VU_DIROP");
1014 vp->v_uflag &= ~VU_DIROP;
1015 TAILQ_REMOVE(&fs->lfs_dchainhd, ip, i_lfs_dchain);
1016 }
1017 mutex_exit(&lfs_lock);
1018
1019 pool_put(&lfs_dinode_pool, ip->i_din.ffs1_din);
1020 lfs_deregister_all(vp);
1021 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1022 ip->inode_ext.lfs = NULL;
1023 genfs_node_destroy(vp);
1024 pool_put(&lfs_inode_pool, vp->v_data);
1025 vp->v_data = NULL;
1026 return (0);
1027 }
1028
1029 /*
1030 * Read a block from a storage device.
1031 *
1032 * Calculate the logical to physical mapping if not done already,
1033 * then call the device strategy routine.
1034 *
1035 * In order to avoid reading blocks that are in the process of being
1036 * written by the cleaner---and hence are not mutexed by the normal
1037 * buffer cache / page cache mechanisms---check for collisions before
1038 * reading.
1039 *
1040 * We inline ulfs_strategy to make sure that the VOP_BMAP occurs *before*
1041 * the active cleaner test.
1042 *
1043 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1044 */
1045 int
1046 lfs_strategy(void *v)
1047 {
1048 struct vop_strategy_args /* {
1049 struct vnode *a_vp;
1050 struct buf *a_bp;
1051 } */ *ap = v;
1052 struct buf *bp;
1053 struct lfs *fs;
1054 struct vnode *vp;
1055 struct inode *ip;
1056 daddr_t tbn;
1057 #define MAXLOOP 25
1058 int i, sn, error, slept, loopcount;
1059
1060 bp = ap->a_bp;
1061 vp = ap->a_vp;
1062 ip = VTOI(vp);
1063 fs = ip->i_lfs;
1064
1065 /* lfs uses its strategy routine only for read */
1066 KASSERT(bp->b_flags & B_READ);
1067
1068 if (vp->v_type == VBLK || vp->v_type == VCHR)
1069 panic("lfs_strategy: spec");
1070 KASSERT(bp->b_bcount != 0);
1071 if (bp->b_blkno == bp->b_lblkno) {
1072 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1073 NULL);
1074 if (error) {
1075 bp->b_error = error;
1076 bp->b_resid = bp->b_bcount;
1077 biodone(bp);
1078 return (error);
1079 }
1080 if ((long)bp->b_blkno == -1) /* no valid data */
1081 clrbuf(bp);
1082 }
1083 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1084 bp->b_resid = bp->b_bcount;
1085 biodone(bp);
1086 return (0);
1087 }
1088
1089 slept = 1;
1090 loopcount = 0;
1091 mutex_enter(&lfs_lock);
1092 while (slept && fs->lfs_seglock) {
1093 mutex_exit(&lfs_lock);
1094 /*
1095 * Look through list of intervals.
1096 * There will only be intervals to look through
1097 * if the cleaner holds the seglock.
1098 * Since the cleaner is synchronous, we can trust
1099 * the list of intervals to be current.
1100 */
1101 tbn = LFS_DBTOFSB(fs, bp->b_blkno);
1102 sn = lfs_dtosn(fs, tbn);
1103 slept = 0;
1104 for (i = 0; i < fs->lfs_cleanind; i++) {
1105 if (sn == lfs_dtosn(fs, fs->lfs_cleanint[i]) &&
1106 tbn >= fs->lfs_cleanint[i]) {
1107 DLOG((DLOG_CLEAN,
1108 "lfs_strategy: ino %d lbn %" PRId64
1109 " ind %d sn %d fsb %" PRIx32
1110 " given sn %d fsb %" PRIx64 "\n",
1111 ip->i_number, bp->b_lblkno, i,
1112 lfs_dtosn(fs, fs->lfs_cleanint[i]),
1113 fs->lfs_cleanint[i], sn, tbn));
1114 DLOG((DLOG_CLEAN,
1115 "lfs_strategy: sleeping on ino %d lbn %"
1116 PRId64 "\n", ip->i_number, bp->b_lblkno));
1117 mutex_enter(&lfs_lock);
1118 if (LFS_SEGLOCK_HELD(fs) && fs->lfs_iocount) {
1119 /*
1120 * Cleaner can't wait for itself.
1121 * Instead, wait for the blocks
1122 * to be written to disk.
1123 * XXX we need pribio in the test
1124 * XXX here.
1125 */
1126 mtsleep(&fs->lfs_iocount,
1127 (PRIBIO + 1) | PNORELOCK,
1128 "clean2", hz/10 + 1,
1129 &lfs_lock);
1130 slept = 1;
1131 ++loopcount;
1132 break;
1133 } else if (fs->lfs_seglock) {
1134 mtsleep(&fs->lfs_seglock,
1135 (PRIBIO + 1) | PNORELOCK,
1136 "clean1", 0,
1137 &lfs_lock);
1138 slept = 1;
1139 break;
1140 }
1141 mutex_exit(&lfs_lock);
1142 }
1143 }
1144 mutex_enter(&lfs_lock);
1145 if (loopcount > MAXLOOP) {
1146 printf("lfs_strategy: breaking out of clean2 loop\n");
1147 break;
1148 }
1149 }
1150 mutex_exit(&lfs_lock);
1151
1152 vp = ip->i_devvp;
1153 return VOP_STRATEGY(vp, bp);
1154 }
1155
1156 /*
1157 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1158 * Technically this is a checkpoint (the on-disk state is valid)
1159 * even though we are leaving out all the file data.
1160 */
1161 int
1162 lfs_flush_dirops(struct lfs *fs)
1163 {
1164 struct inode *ip, *nip;
1165 struct vnode *vp;
1166 extern int lfs_dostats;
1167 struct segment *sp;
1168 int flags = 0;
1169 int error = 0;
1170
1171 ASSERT_MAYBE_SEGLOCK(fs);
1172 KASSERT(fs->lfs_nadirop == 0);
1173
1174 if (fs->lfs_ronly)
1175 return EROFS;
1176
1177 mutex_enter(&lfs_lock);
1178 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL) {
1179 mutex_exit(&lfs_lock);
1180 return 0;
1181 } else
1182 mutex_exit(&lfs_lock);
1183
1184 if (lfs_dostats)
1185 ++lfs_stats.flush_invoked;
1186
1187 lfs_imtime(fs);
1188 lfs_seglock(fs, flags);
1189 sp = fs->lfs_sp;
1190
1191 /*
1192 * lfs_writevnodes, optimized to get dirops out of the way.
1193 * Only write dirops, and don't flush files' pages, only
1194 * blocks from the directories.
1195 *
1196 * We don't need to vref these files because they are
1197 * dirops and so hold an extra reference until the
1198 * segunlock clears them of that status.
1199 *
1200 * We don't need to check for IN_ADIROP because we know that
1201 * no dirops are active.
1202 *
1203 */
1204 mutex_enter(&lfs_lock);
1205 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1206 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1207 mutex_exit(&lfs_lock);
1208 vp = ITOV(ip);
1209
1210 KASSERT((ip->i_flag & IN_ADIROP) == 0);
1211 KASSERT(vp->v_uflag & VU_DIROP);
1212 KASSERT(!(vp->v_iflag & VI_XLOCK));
1213
1214 /*
1215 * All writes to directories come from dirops; all
1216 * writes to files' direct blocks go through the page
1217 * cache, which we're not touching. Reads to files
1218 * and/or directories will not be affected by writing
1219 * directory blocks inodes and file inodes. So we don't
1220 * really need to lock.
1221 */
1222 if (vp->v_iflag & VI_XLOCK) {
1223 mutex_enter(&lfs_lock);
1224 continue;
1225 }
1226 /* XXX see below
1227 * waslocked = VOP_ISLOCKED(vp);
1228 */
1229 if (vp->v_type != VREG &&
1230 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1231 error = lfs_writefile(fs, sp, vp);
1232 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1233 !(ip->i_flag & IN_ALLMOD)) {
1234 mutex_enter(&lfs_lock);
1235 LFS_SET_UINO(ip, IN_MODIFIED);
1236 mutex_exit(&lfs_lock);
1237 }
1238 if (error && (sp->seg_flags & SEGM_SINGLE)) {
1239 mutex_enter(&lfs_lock);
1240 error = EAGAIN;
1241 break;
1242 }
1243 }
1244 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1245 error = lfs_writeinode(fs, sp, ip);
1246 mutex_enter(&lfs_lock);
1247 if (error && (sp->seg_flags & SEGM_SINGLE)) {
1248 error = EAGAIN;
1249 break;
1250 }
1251
1252 /*
1253 * We might need to update these inodes again,
1254 * for example, if they have data blocks to write.
1255 * Make sure that after this flush, they are still
1256 * marked IN_MODIFIED so that we don't forget to
1257 * write them.
1258 */
1259 /* XXX only for non-directories? --KS */
1260 LFS_SET_UINO(ip, IN_MODIFIED);
1261 }
1262 mutex_exit(&lfs_lock);
1263 /* We've written all the dirops there are */
1264 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1265 lfs_finalize_fs_seguse(fs);
1266 (void) lfs_writeseg(fs, sp);
1267 lfs_segunlock(fs);
1268
1269 return error;
1270 }
1271
1272 /*
1273 * Flush all vnodes for which the pagedaemon has requested pageouts.
1274 * Skip over any files that are marked VU_DIROP (since lfs_flush_dirop()
1275 * has just run, this would be an error). If we have to skip a vnode
1276 * for any reason, just skip it; if we have to wait for the cleaner,
1277 * abort. The writer daemon will call us again later.
1278 */
1279 int
1280 lfs_flush_pchain(struct lfs *fs)
1281 {
1282 struct inode *ip, *nip;
1283 struct vnode *vp;
1284 extern int lfs_dostats;
1285 struct segment *sp;
1286 int error, error2;
1287
1288 ASSERT_NO_SEGLOCK(fs);
1289
1290 if (fs->lfs_ronly)
1291 return EROFS;
1292
1293 mutex_enter(&lfs_lock);
1294 if (TAILQ_FIRST(&fs->lfs_pchainhd) == NULL) {
1295 mutex_exit(&lfs_lock);
1296 return 0;
1297 } else
1298 mutex_exit(&lfs_lock);
1299
1300 /* Get dirops out of the way */
1301 if ((error = lfs_flush_dirops(fs)) != 0)
1302 return error;
1303
1304 if (lfs_dostats)
1305 ++lfs_stats.flush_invoked;
1306
1307 /*
1308 * Inline lfs_segwrite/lfs_writevnodes, but just for pageouts.
1309 */
1310 lfs_imtime(fs);
1311 lfs_seglock(fs, 0);
1312 sp = fs->lfs_sp;
1313
1314 /*
1315 * lfs_writevnodes, optimized to clear pageout requests.
1316 * Only write non-dirop files that are in the pageout queue.
1317 * We're very conservative about what we write; we want to be
1318 * fast and async.
1319 */
1320 mutex_enter(&lfs_lock);
1321 top:
1322 for (ip = TAILQ_FIRST(&fs->lfs_pchainhd); ip != NULL; ip = nip) {
1323 nip = TAILQ_NEXT(ip, i_lfs_pchain);
1324 vp = ITOV(ip);
1325
1326 if (!(ip->i_flags & IN_PAGING))
1327 goto top;
1328
1329 mutex_enter(vp->v_interlock);
1330 if ((vp->v_iflag & VI_XLOCK) || (vp->v_uflag & VU_DIROP) != 0) {
1331 mutex_exit(vp->v_interlock);
1332 continue;
1333 }
1334 if (vp->v_type != VREG) {
1335 mutex_exit(vp->v_interlock);
1336 continue;
1337 }
1338 if (lfs_vref(vp))
1339 continue;
1340 mutex_exit(&lfs_lock);
1341
1342 if (vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT | LK_RETRY) != 0) {
1343 lfs_vunref(vp);
1344 mutex_enter(&lfs_lock);
1345 continue;
1346 }
1347
1348 error = lfs_writefile(fs, sp, vp);
1349 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1350 !(ip->i_flag & IN_ALLMOD)) {
1351 mutex_enter(&lfs_lock);
1352 LFS_SET_UINO(ip, IN_MODIFIED);
1353 mutex_exit(&lfs_lock);
1354 }
1355 KDASSERT(ip->i_number != LFS_IFILE_INUM);
1356 error2 = lfs_writeinode(fs, sp, ip);
1357
1358 VOP_UNLOCK(vp);
1359 lfs_vunref(vp);
1360
1361 if (error == EAGAIN || error2 == EAGAIN) {
1362 lfs_writeseg(fs, sp);
1363 mutex_enter(&lfs_lock);
1364 break;
1365 }
1366 mutex_enter(&lfs_lock);
1367 }
1368 mutex_exit(&lfs_lock);
1369 (void) lfs_writeseg(fs, sp);
1370 lfs_segunlock(fs);
1371
1372 return 0;
1373 }
1374
1375 /*
1376 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1377 */
1378 int
1379 lfs_fcntl(void *v)
1380 {
1381 struct vop_fcntl_args /* {
1382 struct vnode *a_vp;
1383 u_int a_command;
1384 void * a_data;
1385 int a_fflag;
1386 kauth_cred_t a_cred;
1387 } */ *ap = v;
1388 struct timeval tv;
1389 struct timeval *tvp;
1390 BLOCK_INFO *blkiov;
1391 CLEANERINFO *cip;
1392 SEGUSE *sup;
1393 int blkcnt, error, oclean;
1394 size_t fh_size;
1395 struct lfs_fcntl_markv blkvp;
1396 struct lwp *l;
1397 fsid_t *fsidp;
1398 struct lfs *fs;
1399 struct buf *bp;
1400 fhandle_t *fhp;
1401 daddr_t off;
1402
1403 /* Only respect LFS fcntls on fs root or Ifile */
1404 if (VTOI(ap->a_vp)->i_number != ULFS_ROOTINO &&
1405 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1406 return ulfs_fcntl(v);
1407 }
1408
1409 /* Avoid locking a draining lock */
1410 if (ap->a_vp->v_mount->mnt_iflag & IMNT_UNMOUNT) {
1411 return ESHUTDOWN;
1412 }
1413
1414 /* LFS control and monitoring fcntls are available only to root */
1415 l = curlwp;
1416 if (((ap->a_command & 0xff00) >> 8) == 'L' &&
1417 (error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_LFS,
1418 KAUTH_REQ_SYSTEM_LFS_FCNTL, NULL, NULL, NULL)) != 0)
1419 return (error);
1420
1421 fs = VTOI(ap->a_vp)->i_lfs;
1422 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsidx;
1423
1424 error = 0;
1425 switch ((int)ap->a_command) {
1426 case LFCNSEGWAITALL_COMPAT_50:
1427 case LFCNSEGWAITALL_COMPAT:
1428 fsidp = NULL;
1429 /* FALLSTHROUGH */
1430 case LFCNSEGWAIT_COMPAT_50:
1431 case LFCNSEGWAIT_COMPAT:
1432 {
1433 struct timeval50 *tvp50
1434 = (struct timeval50 *)ap->a_data;
1435 timeval50_to_timeval(tvp50, &tv);
1436 tvp = &tv;
1437 }
1438 goto segwait_common;
1439 case LFCNSEGWAITALL:
1440 fsidp = NULL;
1441 /* FALLSTHROUGH */
1442 case LFCNSEGWAIT:
1443 tvp = (struct timeval *)ap->a_data;
1444 segwait_common:
1445 mutex_enter(&lfs_lock);
1446 ++fs->lfs_sleepers;
1447 mutex_exit(&lfs_lock);
1448
1449 error = lfs_segwait(fsidp, tvp);
1450
1451 mutex_enter(&lfs_lock);
1452 if (--fs->lfs_sleepers == 0)
1453 wakeup(&fs->lfs_sleepers);
1454 mutex_exit(&lfs_lock);
1455 return error;
1456
1457 case LFCNBMAPV:
1458 case LFCNMARKV:
1459 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1460
1461 blkcnt = blkvp.blkcnt;
1462 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1463 return (EINVAL);
1464 blkiov = lfs_malloc(fs, blkcnt * sizeof(BLOCK_INFO), LFS_NB_BLKIOV);
1465 if ((error = copyin(blkvp.blkiov, blkiov,
1466 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1467 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1468 return error;
1469 }
1470
1471 mutex_enter(&lfs_lock);
1472 ++fs->lfs_sleepers;
1473 mutex_exit(&lfs_lock);
1474 if (ap->a_command == LFCNBMAPV)
1475 error = lfs_bmapv(l->l_proc, fsidp, blkiov, blkcnt);
1476 else /* LFCNMARKV */
1477 error = lfs_markv(l->l_proc, fsidp, blkiov, blkcnt);
1478 if (error == 0)
1479 error = copyout(blkiov, blkvp.blkiov,
1480 blkcnt * sizeof(BLOCK_INFO));
1481 mutex_enter(&lfs_lock);
1482 if (--fs->lfs_sleepers == 0)
1483 wakeup(&fs->lfs_sleepers);
1484 mutex_exit(&lfs_lock);
1485 lfs_free(fs, blkiov, LFS_NB_BLKIOV);
1486 return error;
1487
1488 case LFCNRECLAIM:
1489 /*
1490 * Flush dirops and write Ifile, allowing empty segments
1491 * to be immediately reclaimed.
1492 */
1493 lfs_writer_enter(fs, "pndirop");
1494 off = fs->lfs_offset;
1495 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1496 lfs_flush_dirops(fs);
1497 LFS_CLEANERINFO(cip, fs, bp);
1498 oclean = cip->clean;
1499 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1500 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1501 fs->lfs_sp->seg_flags |= SEGM_PROT;
1502 lfs_segunlock(fs);
1503 lfs_writer_leave(fs);
1504
1505 #ifdef DEBUG
1506 LFS_CLEANERINFO(cip, fs, bp);
1507 DLOG((DLOG_CLEAN, "lfs_fcntl: reclaim wrote %" PRId64
1508 " blocks, cleaned %" PRId32 " segments (activesb %d)\n",
1509 fs->lfs_offset - off, cip->clean - oclean,
1510 fs->lfs_activesb));
1511 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1512 #endif
1513
1514 return 0;
1515
1516 case LFCNIFILEFH_COMPAT:
1517 /* Return the filehandle of the Ifile */
1518 if ((error = kauth_authorize_system(l->l_cred,
1519 KAUTH_SYSTEM_FILEHANDLE, 0, NULL, NULL, NULL)) != 0)
1520 return (error);
1521 fhp = (struct fhandle *)ap->a_data;
1522 fhp->fh_fsid = *fsidp;
1523 fh_size = 16; /* former VFS_MAXFIDSIZ */
1524 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1525
1526 case LFCNIFILEFH_COMPAT2:
1527 case LFCNIFILEFH:
1528 /* Return the filehandle of the Ifile */
1529 fhp = (struct fhandle *)ap->a_data;
1530 fhp->fh_fsid = *fsidp;
1531 fh_size = sizeof(struct lfs_fhandle) -
1532 offsetof(fhandle_t, fh_fid);
1533 return lfs_vptofh(fs->lfs_ivnode, &(fhp->fh_fid), &fh_size);
1534
1535 case LFCNREWIND:
1536 /* Move lfs_offset to the lowest-numbered segment */
1537 return lfs_rewind(fs, *(int *)ap->a_data);
1538
1539 case LFCNINVAL:
1540 /* Mark a segment SEGUSE_INVAL */
1541 LFS_SEGENTRY(sup, fs, *(int *)ap->a_data, bp);
1542 if (sup->su_nbytes > 0) {
1543 brelse(bp, 0);
1544 lfs_unset_inval_all(fs);
1545 return EBUSY;
1546 }
1547 sup->su_flags |= SEGUSE_INVAL;
1548 VOP_BWRITE(bp->b_vp, bp);
1549 return 0;
1550
1551 case LFCNRESIZE:
1552 /* Resize the filesystem */
1553 return lfs_resize_fs(fs, *(int *)ap->a_data);
1554
1555 case LFCNWRAPSTOP:
1556 case LFCNWRAPSTOP_COMPAT:
1557 /*
1558 * Hold lfs_newseg at segment 0; if requested, sleep until
1559 * the filesystem wraps around. To support external agents
1560 * (dump, fsck-based regression test) that need to look at
1561 * a snapshot of the filesystem, without necessarily
1562 * requiring that all fs activity stops.
1563 */
1564 if (fs->lfs_stoplwp == curlwp)
1565 return EALREADY;
1566
1567 mutex_enter(&lfs_lock);
1568 while (fs->lfs_stoplwp != NULL)
1569 cv_wait(&fs->lfs_stopcv, &lfs_lock);
1570 fs->lfs_stoplwp = curlwp;
1571 if (fs->lfs_nowrap == 0)
1572 log(LOG_NOTICE, "%s: disabled log wrap\n", fs->lfs_fsmnt);
1573 ++fs->lfs_nowrap;
1574 if (*(int *)ap->a_data == 1
1575 || ap->a_command == LFCNWRAPSTOP_COMPAT) {
1576 log(LOG_NOTICE, "LFCNSTOPWRAP waiting for log wrap\n");
1577 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1578 "segwrap", 0, &lfs_lock);
1579 log(LOG_NOTICE, "LFCNSTOPWRAP done waiting\n");
1580 if (error) {
1581 lfs_wrapgo(fs, VTOI(ap->a_vp), 0);
1582 }
1583 }
1584 mutex_exit(&lfs_lock);
1585 return 0;
1586
1587 case LFCNWRAPGO:
1588 case LFCNWRAPGO_COMPAT:
1589 /*
1590 * Having done its work, the agent wakes up the writer.
1591 * If the argument is 1, it sleeps until a new segment
1592 * is selected.
1593 */
1594 mutex_enter(&lfs_lock);
1595 error = lfs_wrapgo(fs, VTOI(ap->a_vp),
1596 ap->a_command == LFCNWRAPGO_COMPAT ? 1 :
1597 *((int *)ap->a_data));
1598 mutex_exit(&lfs_lock);
1599 return error;
1600
1601 case LFCNWRAPPASS:
1602 if ((VTOI(ap->a_vp)->i_lfs_iflags & LFSI_WRAPWAIT))
1603 return EALREADY;
1604 mutex_enter(&lfs_lock);
1605 if (fs->lfs_stoplwp != curlwp) {
1606 mutex_exit(&lfs_lock);
1607 return EALREADY;
1608 }
1609 if (fs->lfs_nowrap == 0) {
1610 mutex_exit(&lfs_lock);
1611 return EBUSY;
1612 }
1613 fs->lfs_wrappass = 1;
1614 wakeup(&fs->lfs_wrappass);
1615 /* Wait for the log to wrap, if asked */
1616 if (*(int *)ap->a_data) {
1617 mutex_enter(ap->a_vp->v_interlock);
1618 if (lfs_vref(ap->a_vp) != 0)
1619 panic("LFCNWRAPPASS: lfs_vref failed");
1620 VTOI(ap->a_vp)->i_lfs_iflags |= LFSI_WRAPWAIT;
1621 log(LOG_NOTICE, "LFCNPASS waiting for log wrap\n");
1622 error = mtsleep(&fs->lfs_nowrap, PCATCH | PUSER,
1623 "segwrap", 0, &lfs_lock);
1624 log(LOG_NOTICE, "LFCNPASS done waiting\n");
1625 VTOI(ap->a_vp)->i_lfs_iflags &= ~LFSI_WRAPWAIT;
1626 lfs_vunref(ap->a_vp);
1627 }
1628 mutex_exit(&lfs_lock);
1629 return error;
1630
1631 case LFCNWRAPSTATUS:
1632 mutex_enter(&lfs_lock);
1633 *(int *)ap->a_data = fs->lfs_wrapstatus;
1634 mutex_exit(&lfs_lock);
1635 return 0;
1636
1637 default:
1638 return ulfs_fcntl(v);
1639 }
1640 return 0;
1641 }
1642
1643 int
1644 lfs_getpages(void *v)
1645 {
1646 struct vop_getpages_args /* {
1647 struct vnode *a_vp;
1648 voff_t a_offset;
1649 struct vm_page **a_m;
1650 int *a_count;
1651 int a_centeridx;
1652 vm_prot_t a_access_type;
1653 int a_advice;
1654 int a_flags;
1655 } */ *ap = v;
1656
1657 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1658 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1659 return EPERM;
1660 }
1661 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1662 mutex_enter(&lfs_lock);
1663 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1664 mutex_exit(&lfs_lock);
1665 }
1666
1667 /*
1668 * we're relying on the fact that genfs_getpages() always read in
1669 * entire filesystem blocks.
1670 */
1671 return genfs_getpages(v);
1672 }
1673
1674 /*
1675 * Wait for a page to become unbusy, possibly printing diagnostic messages
1676 * as well.
1677 *
1678 * Called with vp->v_interlock held; return with it held.
1679 */
1680 static void
1681 wait_for_page(struct vnode *vp, struct vm_page *pg, const char *label)
1682 {
1683 KASSERT(mutex_owned(vp->v_interlock));
1684 if ((pg->flags & PG_BUSY) == 0)
1685 return; /* Nothing to wait for! */
1686
1687 #if defined(DEBUG) && defined(UVM_PAGE_TRKOWN)
1688 static struct vm_page *lastpg;
1689
1690 if (label != NULL && pg != lastpg) {
1691 if (pg->owner_tag) {
1692 printf("lfs_putpages[%d.%d]: %s: page %p owner %d.%d [%s]\n",
1693 curproc->p_pid, curlwp->l_lid, label,
1694 pg, pg->owner, pg->lowner, pg->owner_tag);
1695 } else {
1696 printf("lfs_putpages[%d.%d]: %s: page %p unowned?!\n",
1697 curproc->p_pid, curlwp->l_lid, label, pg);
1698 }
1699 }
1700 lastpg = pg;
1701 #endif
1702
1703 pg->flags |= PG_WANTED;
1704 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0, "lfsput", 0);
1705 mutex_enter(vp->v_interlock);
1706 }
1707
1708 /*
1709 * This routine is called by lfs_putpages() when it can't complete the
1710 * write because a page is busy. This means that either (1) someone,
1711 * possibly the pagedaemon, is looking at this page, and will give it up
1712 * presently; or (2) we ourselves are holding the page busy in the
1713 * process of being written (either gathered or actually on its way to
1714 * disk). We don't need to give up the segment lock, but we might need
1715 * to call lfs_writeseg() to expedite the page's journey to disk.
1716 *
1717 * Called with vp->v_interlock held; return with it held.
1718 */
1719 /* #define BUSYWAIT */
1720 static void
1721 write_and_wait(struct lfs *fs, struct vnode *vp, struct vm_page *pg,
1722 int seglocked, const char *label)
1723 {
1724 KASSERT(mutex_owned(vp->v_interlock));
1725 #ifndef BUSYWAIT
1726 struct inode *ip = VTOI(vp);
1727 struct segment *sp = fs->lfs_sp;
1728 int count = 0;
1729
1730 if (pg == NULL)
1731 return;
1732
1733 while (pg->flags & PG_BUSY &&
1734 pg->uobject == &vp->v_uobj) {
1735 mutex_exit(vp->v_interlock);
1736 if (sp->cbpp - sp->bpp > 1) {
1737 /* Write gathered pages */
1738 lfs_updatemeta(sp);
1739 lfs_release_finfo(fs);
1740 (void) lfs_writeseg(fs, sp);
1741
1742 /*
1743 * Reinitialize FIP
1744 */
1745 KASSERT(sp->vp == vp);
1746 lfs_acquire_finfo(fs, ip->i_number,
1747 ip->i_gen);
1748 }
1749 ++count;
1750 mutex_enter(vp->v_interlock);
1751 wait_for_page(vp, pg, label);
1752 }
1753 if (label != NULL && count > 1) {
1754 DLOG((DLOG_PAGE, "lfs_putpages[%d]: %s: %sn = %d\n",
1755 curproc->p_pid, label, (count > 0 ? "looping, " : ""),
1756 count));
1757 }
1758 #else
1759 preempt(1);
1760 #endif
1761 KASSERT(mutex_owned(vp->v_interlock));
1762 }
1763
1764 /*
1765 * Make sure that for all pages in every block in the given range,
1766 * either all are dirty or all are clean. If any of the pages
1767 * we've seen so far are dirty, put the vnode on the paging chain,
1768 * and mark it IN_PAGING.
1769 *
1770 * If checkfirst != 0, don't check all the pages but return at the
1771 * first dirty page.
1772 */
1773 static int
1774 check_dirty(struct lfs *fs, struct vnode *vp,
1775 off_t startoffset, off_t endoffset, off_t blkeof,
1776 int flags, int checkfirst, struct vm_page **pgp)
1777 {
1778 int by_list;
1779 struct vm_page *curpg = NULL; /* XXX: gcc */
1780 struct vm_page *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1781 off_t soff = 0; /* XXX: gcc */
1782 voff_t off;
1783 int i;
1784 int nonexistent;
1785 int any_dirty; /* number of dirty pages */
1786 int dirty; /* number of dirty pages in a block */
1787 int tdirty;
1788 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1789 int pagedaemon = (curlwp == uvm.pagedaemon_lwp);
1790
1791 KASSERT(mutex_owned(vp->v_interlock));
1792 ASSERT_MAYBE_SEGLOCK(fs);
1793 top:
1794 by_list = (vp->v_uobj.uo_npages <=
1795 ((endoffset - startoffset) >> PAGE_SHIFT) *
1796 UVM_PAGE_TREE_PENALTY);
1797 any_dirty = 0;
1798
1799 if (by_list) {
1800 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1801 } else {
1802 soff = startoffset;
1803 }
1804 while (by_list || soff < MIN(blkeof, endoffset)) {
1805 if (by_list) {
1806 /*
1807 * Find the first page in a block. Skip
1808 * blocks outside our area of interest or beyond
1809 * the end of file.
1810 */
1811 KASSERT(curpg == NULL
1812 || (curpg->flags & PG_MARKER) == 0);
1813 if (pages_per_block > 1) {
1814 while (curpg &&
1815 ((curpg->offset & fs->lfs_bmask) ||
1816 curpg->offset >= vp->v_size ||
1817 curpg->offset >= endoffset)) {
1818 curpg = TAILQ_NEXT(curpg, listq.queue);
1819 KASSERT(curpg == NULL ||
1820 (curpg->flags & PG_MARKER) == 0);
1821 }
1822 }
1823 if (curpg == NULL)
1824 break;
1825 soff = curpg->offset;
1826 }
1827
1828 /*
1829 * Mark all pages in extended range busy; find out if any
1830 * of them are dirty.
1831 */
1832 nonexistent = dirty = 0;
1833 for (i = 0; i == 0 || i < pages_per_block; i++) {
1834 KASSERT(mutex_owned(vp->v_interlock));
1835 if (by_list && pages_per_block <= 1) {
1836 pgs[i] = pg = curpg;
1837 } else {
1838 off = soff + (i << PAGE_SHIFT);
1839 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1840 if (pg == NULL) {
1841 ++nonexistent;
1842 continue;
1843 }
1844 }
1845 KASSERT(pg != NULL);
1846
1847 /*
1848 * If we're holding the segment lock, we can deadlock
1849 * against a process that has our page and is waiting
1850 * for the cleaner, while the cleaner waits for the
1851 * segment lock. Just bail in that case.
1852 */
1853 if ((pg->flags & PG_BUSY) &&
1854 (pagedaemon || LFS_SEGLOCK_HELD(fs))) {
1855 if (i > 0)
1856 uvm_page_unbusy(pgs, i);
1857 DLOG((DLOG_PAGE, "lfs_putpages: avoiding 3-way or pagedaemon deadlock\n"));
1858 if (pgp)
1859 *pgp = pg;
1860 KASSERT(mutex_owned(vp->v_interlock));
1861 return -1;
1862 }
1863
1864 while (pg->flags & PG_BUSY) {
1865 wait_for_page(vp, pg, NULL);
1866 KASSERT(mutex_owned(vp->v_interlock));
1867 if (i > 0)
1868 uvm_page_unbusy(pgs, i);
1869 KASSERT(mutex_owned(vp->v_interlock));
1870 goto top;
1871 }
1872 pg->flags |= PG_BUSY;
1873 UVM_PAGE_OWN(pg, "lfs_putpages");
1874
1875 pmap_page_protect(pg, VM_PROT_NONE);
1876 tdirty = (pmap_clear_modify(pg) ||
1877 (pg->flags & PG_CLEAN) == 0);
1878 dirty += tdirty;
1879 }
1880 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1881 if (by_list) {
1882 curpg = TAILQ_NEXT(curpg, listq.queue);
1883 } else {
1884 soff += fs->lfs_bsize;
1885 }
1886 continue;
1887 }
1888
1889 any_dirty += dirty;
1890 KASSERT(nonexistent == 0);
1891 KASSERT(mutex_owned(vp->v_interlock));
1892
1893 /*
1894 * If any are dirty make all dirty; unbusy them,
1895 * but if we were asked to clean, wire them so that
1896 * the pagedaemon doesn't bother us about them while
1897 * they're on their way to disk.
1898 */
1899 for (i = 0; i == 0 || i < pages_per_block; i++) {
1900 KASSERT(mutex_owned(vp->v_interlock));
1901 pg = pgs[i];
1902 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1903 KASSERT(pg->flags & PG_BUSY);
1904 if (dirty) {
1905 pg->flags &= ~PG_CLEAN;
1906 if (flags & PGO_FREE) {
1907 /*
1908 * Wire the page so that
1909 * pdaemon doesn't see it again.
1910 */
1911 mutex_enter(&uvm_pageqlock);
1912 uvm_pagewire(pg);
1913 mutex_exit(&uvm_pageqlock);
1914
1915 /* Suspended write flag */
1916 pg->flags |= PG_DELWRI;
1917 }
1918 }
1919 if (pg->flags & PG_WANTED)
1920 wakeup(pg);
1921 pg->flags &= ~(PG_WANTED|PG_BUSY);
1922 UVM_PAGE_OWN(pg, NULL);
1923 }
1924
1925 if (checkfirst && any_dirty)
1926 break;
1927
1928 if (by_list) {
1929 curpg = TAILQ_NEXT(curpg, listq.queue);
1930 } else {
1931 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1932 }
1933 }
1934
1935 KASSERT(mutex_owned(vp->v_interlock));
1936 return any_dirty;
1937 }
1938
1939 /*
1940 * lfs_putpages functions like genfs_putpages except that
1941 *
1942 * (1) It needs to bounds-check the incoming requests to ensure that
1943 * they are block-aligned; if they are not, expand the range and
1944 * do the right thing in case, e.g., the requested range is clean
1945 * but the expanded range is dirty.
1946 *
1947 * (2) It needs to explicitly send blocks to be written when it is done.
1948 * If VOP_PUTPAGES is called without the seglock held, we simply take
1949 * the seglock and let lfs_segunlock wait for us.
1950 * XXX There might be a bad situation if we have to flush a vnode while
1951 * XXX lfs_markv is in operation. As of this writing we panic in this
1952 * XXX case.
1953 *
1954 * Assumptions:
1955 *
1956 * (1) The caller does not hold any pages in this vnode busy. If it does,
1957 * there is a danger that when we expand the page range and busy the
1958 * pages we will deadlock.
1959 *
1960 * (2) We are called with vp->v_interlock held; we must return with it
1961 * released.
1962 *
1963 * (3) We don't absolutely have to free pages right away, provided that
1964 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1965 * us a request with PGO_FREE, we take the pages out of the paging
1966 * queue and wake up the writer, which will handle freeing them for us.
1967 *
1968 * We ensure that for any filesystem block, all pages for that
1969 * block are either resident or not, even if those pages are higher
1970 * than EOF; that means that we will be getting requests to free
1971 * "unused" pages above EOF all the time, and should ignore them.
1972 *
1973 * (4) If we are called with PGO_LOCKED, the finfo array we are to write
1974 * into has been set up for us by lfs_writefile. If not, we will
1975 * have to handle allocating and/or freeing an finfo entry.
1976 *
1977 * XXX note that we're (ab)using PGO_LOCKED as "seglock held".
1978 */
1979
1980 /* How many times to loop before we should start to worry */
1981 #define TOOMANY 4
1982
1983 int
1984 lfs_putpages(void *v)
1985 {
1986 int error;
1987 struct vop_putpages_args /* {
1988 struct vnode *a_vp;
1989 voff_t a_offlo;
1990 voff_t a_offhi;
1991 int a_flags;
1992 } */ *ap = v;
1993 struct vnode *vp;
1994 struct inode *ip;
1995 struct lfs *fs;
1996 struct segment *sp;
1997 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1998 off_t off, max_endoffset;
1999 bool seglocked, sync, pagedaemon, reclaim;
2000 struct vm_page *pg, *busypg;
2001 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
2002 int oreclaim = 0;
2003 int donewriting = 0;
2004 #ifdef DEBUG
2005 int debug_n_again, debug_n_dirtyclean;
2006 #endif
2007
2008 vp = ap->a_vp;
2009 ip = VTOI(vp);
2010 fs = ip->i_lfs;
2011 sync = (ap->a_flags & PGO_SYNCIO) != 0;
2012 reclaim = (ap->a_flags & PGO_RECLAIM) != 0;
2013 pagedaemon = (curlwp == uvm.pagedaemon_lwp);
2014
2015 KASSERT(mutex_owned(vp->v_interlock));
2016
2017 /* Putpages does nothing for metadata. */
2018 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
2019 mutex_exit(vp->v_interlock);
2020 return 0;
2021 }
2022
2023 /*
2024 * If there are no pages, don't do anything.
2025 */
2026 if (vp->v_uobj.uo_npages == 0) {
2027 if (TAILQ_EMPTY(&vp->v_uobj.memq) &&
2028 (vp->v_iflag & VI_ONWORKLST) &&
2029 LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
2030 vp->v_iflag &= ~VI_WRMAPDIRTY;
2031 vn_syncer_remove_from_worklist(vp);
2032 }
2033 mutex_exit(vp->v_interlock);
2034
2035 /* Remove us from paging queue, if we were on it */
2036 mutex_enter(&lfs_lock);
2037 if (ip->i_flags & IN_PAGING) {
2038 ip->i_flags &= ~IN_PAGING;
2039 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2040 }
2041 mutex_exit(&lfs_lock);
2042
2043 KASSERT(!mutex_owned(vp->v_interlock));
2044 return 0;
2045 }
2046
2047 blkeof = lfs_blkroundup(fs, ip->i_size);
2048
2049 /*
2050 * Ignore requests to free pages past EOF but in the same block
2051 * as EOF, unless the vnode is being reclaimed or the request
2052 * is synchronous. (If the request is sync, it comes from
2053 * lfs_truncate.)
2054 *
2055 * To avoid being flooded with this request, make these pages
2056 * look "active".
2057 */
2058 if (!sync && !reclaim &&
2059 ap->a_offlo >= ip->i_size && ap->a_offlo < blkeof) {
2060 origoffset = ap->a_offlo;
2061 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
2062 pg = uvm_pagelookup(&vp->v_uobj, off);
2063 KASSERT(pg != NULL);
2064 while (pg->flags & PG_BUSY) {
2065 pg->flags |= PG_WANTED;
2066 UVM_UNLOCK_AND_WAIT(pg, vp->v_interlock, 0,
2067 "lfsput2", 0);
2068 mutex_enter(vp->v_interlock);
2069 }
2070 mutex_enter(&uvm_pageqlock);
2071 uvm_pageactivate(pg);
2072 mutex_exit(&uvm_pageqlock);
2073 }
2074 ap->a_offlo = blkeof;
2075 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
2076 mutex_exit(vp->v_interlock);
2077 return 0;
2078 }
2079 }
2080
2081 /*
2082 * Extend page range to start and end at block boundaries.
2083 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
2084 */
2085 origoffset = ap->a_offlo;
2086 origendoffset = ap->a_offhi;
2087 startoffset = origoffset & ~(fs->lfs_bmask);
2088 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
2089 << fs->lfs_bshift;
2090
2091 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2092 endoffset = max_endoffset;
2093 origendoffset = endoffset;
2094 } else {
2095 origendoffset = round_page(ap->a_offhi);
2096 endoffset = round_page(lfs_blkroundup(fs, origendoffset));
2097 }
2098
2099 KASSERT(startoffset > 0 || endoffset >= startoffset);
2100 if (startoffset == endoffset) {
2101 /* Nothing to do, why were we called? */
2102 mutex_exit(vp->v_interlock);
2103 DLOG((DLOG_PAGE, "lfs_putpages: startoffset = endoffset = %"
2104 PRId64 "\n", startoffset));
2105 return 0;
2106 }
2107
2108 ap->a_offlo = startoffset;
2109 ap->a_offhi = endoffset;
2110
2111 /*
2112 * If not cleaning, just send the pages through genfs_putpages
2113 * to be returned to the pool.
2114 */
2115 if (!(ap->a_flags & PGO_CLEANIT)) {
2116 DLOG((DLOG_PAGE, "lfs_putpages: no cleanit vn %p ino %d (flags %x)\n",
2117 vp, (int)ip->i_number, ap->a_flags));
2118 int r = genfs_putpages(v);
2119 KASSERT(!mutex_owned(vp->v_interlock));
2120 return r;
2121 }
2122
2123 /* Set PGO_BUSYFAIL to avoid deadlocks */
2124 ap->a_flags |= PGO_BUSYFAIL;
2125
2126 /*
2127 * Likewise, if we are asked to clean but the pages are not
2128 * dirty, we can just free them using genfs_putpages.
2129 */
2130 #ifdef DEBUG
2131 debug_n_dirtyclean = 0;
2132 #endif
2133 do {
2134 int r;
2135 KASSERT(mutex_owned(vp->v_interlock));
2136
2137 /* Count the number of dirty pages */
2138 r = check_dirty(fs, vp, startoffset, endoffset, blkeof,
2139 ap->a_flags, 1, NULL);
2140 if (r < 0) {
2141 /* Pages are busy with another process */
2142 mutex_exit(vp->v_interlock);
2143 return EDEADLK;
2144 }
2145 if (r > 0) /* Some pages are dirty */
2146 break;
2147
2148 /*
2149 * Sometimes pages are dirtied between the time that
2150 * we check and the time we try to clean them.
2151 * Instruct lfs_gop_write to return EDEADLK in this case
2152 * so we can write them properly.
2153 */
2154 ip->i_lfs_iflags |= LFSI_NO_GOP_WRITE;
2155 r = genfs_do_putpages(vp, startoffset, endoffset,
2156 ap->a_flags & ~PGO_SYNCIO, &busypg);
2157 ip->i_lfs_iflags &= ~LFSI_NO_GOP_WRITE;
2158 if (r != EDEADLK) {
2159 KASSERT(!mutex_owned(vp->v_interlock));
2160 return r;
2161 }
2162
2163 /* One of the pages was busy. Start over. */
2164 mutex_enter(vp->v_interlock);
2165 wait_for_page(vp, busypg, "dirtyclean");
2166 #ifdef DEBUG
2167 ++debug_n_dirtyclean;
2168 #endif
2169 } while(1);
2170
2171 #ifdef DEBUG
2172 if (debug_n_dirtyclean > TOOMANY)
2173 DLOG((DLOG_PAGE, "lfs_putpages: dirtyclean: looping, n = %d\n",
2174 debug_n_dirtyclean));
2175 #endif
2176
2177 /*
2178 * Dirty and asked to clean.
2179 *
2180 * Pagedaemon can't actually write LFS pages; wake up
2181 * the writer to take care of that. The writer will
2182 * notice the pager inode queue and act on that.
2183 *
2184 * XXX We must drop the vp->interlock before taking the lfs_lock or we
2185 * get a nasty deadlock with lfs_flush_pchain().
2186 */
2187 if (pagedaemon) {
2188 mutex_exit(vp->v_interlock);
2189 mutex_enter(&lfs_lock);
2190 if (!(ip->i_flags & IN_PAGING)) {
2191 ip->i_flags |= IN_PAGING;
2192 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2193 }
2194 wakeup(&lfs_writer_daemon);
2195 mutex_exit(&lfs_lock);
2196 preempt();
2197 KASSERT(!mutex_owned(vp->v_interlock));
2198 return EWOULDBLOCK;
2199 }
2200
2201 /*
2202 * If this is a file created in a recent dirop, we can't flush its
2203 * inode until the dirop is complete. Drain dirops, then flush the
2204 * filesystem (taking care of any other pending dirops while we're
2205 * at it).
2206 */
2207 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
2208 (vp->v_uflag & VU_DIROP)) {
2209 DLOG((DLOG_PAGE, "lfs_putpages: flushing VU_DIROP\n"));
2210
2211 lfs_writer_enter(fs, "ppdirop");
2212
2213 /* Note if we hold the vnode locked */
2214 if (VOP_ISLOCKED(vp) == LK_EXCLUSIVE)
2215 {
2216 DLOG((DLOG_PAGE, "lfs_putpages: dirop inode already locked\n"));
2217 } else {
2218 DLOG((DLOG_PAGE, "lfs_putpages: dirop inode not locked\n"));
2219 }
2220 mutex_exit(vp->v_interlock);
2221
2222 mutex_enter(&lfs_lock);
2223 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
2224 mutex_exit(&lfs_lock);
2225
2226 mutex_enter(vp->v_interlock);
2227 lfs_writer_leave(fs);
2228
2229 /* The flush will have cleaned out this vnode as well,
2230 no need to do more to it. */
2231 }
2232
2233 /*
2234 * This is it. We are going to write some pages. From here on
2235 * down it's all just mechanics.
2236 *
2237 * Don't let genfs_putpages wait; lfs_segunlock will wait for us.
2238 */
2239 ap->a_flags &= ~PGO_SYNCIO;
2240
2241 /*
2242 * If we've already got the seglock, flush the node and return.
2243 * The FIP has already been set up for us by lfs_writefile,
2244 * and FIP cleanup and lfs_updatemeta will also be done there,
2245 * unless genfs_putpages returns EDEADLK; then we must flush
2246 * what we have, and correct FIP and segment header accounting.
2247 */
2248 get_seglock:
2249 /*
2250 * If we are not called with the segment locked, lock it.
2251 * Account for a new FIP in the segment header, and set sp->vp.
2252 * (This should duplicate the setup at the top of lfs_writefile().)
2253 */
2254 seglocked = (ap->a_flags & PGO_LOCKED) != 0;
2255 if (!seglocked) {
2256 mutex_exit(vp->v_interlock);
2257 error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0));
2258 if (error != 0) {
2259 KASSERT(!mutex_owned(vp->v_interlock));
2260 return error;
2261 }
2262 mutex_enter(vp->v_interlock);
2263 lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
2264 }
2265 sp = fs->lfs_sp;
2266 KASSERT(sp->vp == NULL);
2267 sp->vp = vp;
2268
2269 /* Note segments written by reclaim; only for debugging */
2270 if ((vp->v_iflag & VI_XLOCK) != 0) {
2271 sp->seg_flags |= SEGM_RECLAIM;
2272 fs->lfs_reclino = ip->i_number;
2273 }
2274
2275 /*
2276 * Ensure that the partial segment is marked SS_DIROP if this
2277 * vnode is a DIROP.
2278 */
2279 if (!seglocked && vp->v_uflag & VU_DIROP)
2280 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
2281
2282 /*
2283 * Loop over genfs_putpages until all pages are gathered.
2284 * genfs_putpages() drops the interlock, so reacquire it if necessary.
2285 * Whenever we lose the interlock we have to rerun check_dirty, as
2286 * well, since more pages might have been dirtied in our absence.
2287 */
2288 #ifdef DEBUG
2289 debug_n_again = 0;
2290 #endif
2291 do {
2292 busypg = NULL;
2293 KASSERT(mutex_owned(vp->v_interlock));
2294 if (check_dirty(fs, vp, startoffset, endoffset, blkeof,
2295 ap->a_flags, 0, &busypg) < 0) {
2296 mutex_exit(vp->v_interlock);
2297 /* XXX why? --ks */
2298 mutex_enter(vp->v_interlock);
2299 write_and_wait(fs, vp, busypg, seglocked, NULL);
2300 if (!seglocked) {
2301 mutex_exit(vp->v_interlock);
2302 lfs_release_finfo(fs);
2303 lfs_segunlock(fs);
2304 mutex_enter(vp->v_interlock);
2305 }
2306 sp->vp = NULL;
2307 goto get_seglock;
2308 }
2309
2310 busypg = NULL;
2311 KASSERT(!mutex_owned(&uvm_pageqlock));
2312 oreclaim = (ap->a_flags & PGO_RECLAIM);
2313 ap->a_flags &= ~PGO_RECLAIM;
2314 error = genfs_do_putpages(vp, startoffset, endoffset,
2315 ap->a_flags, &busypg);
2316 ap->a_flags |= oreclaim;
2317
2318 if (error == EDEADLK || error == EAGAIN) {
2319 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2320 " %d ino %d off %x (seg %d)\n", error,
2321 ip->i_number, fs->lfs_offset,
2322 lfs_dtosn(fs, fs->lfs_offset)));
2323
2324 if (oreclaim) {
2325 mutex_enter(vp->v_interlock);
2326 write_and_wait(fs, vp, busypg, seglocked, "again");
2327 mutex_exit(vp->v_interlock);
2328 } else {
2329 if ((sp->seg_flags & SEGM_SINGLE) &&
2330 fs->lfs_curseg != fs->lfs_startseg)
2331 donewriting = 1;
2332 }
2333 } else if (error) {
2334 DLOG((DLOG_PAGE, "lfs_putpages: genfs_putpages returned"
2335 " %d ino %d off %x (seg %d)\n", error,
2336 (int)ip->i_number, fs->lfs_offset,
2337 lfs_dtosn(fs, fs->lfs_offset)));
2338 }
2339 /* genfs_do_putpages loses the interlock */
2340 #ifdef DEBUG
2341 ++debug_n_again;
2342 #endif
2343 if (oreclaim && error == EAGAIN) {
2344 DLOG((DLOG_PAGE, "vp %p ino %d vi_flags %x a_flags %x avoiding vclean panic\n",
2345 vp, (int)ip->i_number, vp->v_iflag, ap->a_flags));
2346 mutex_enter(vp->v_interlock);
2347 }
2348 if (error == EDEADLK)
2349 mutex_enter(vp->v_interlock);
2350 } while (error == EDEADLK || (oreclaim && error == EAGAIN));
2351 #ifdef DEBUG
2352 if (debug_n_again > TOOMANY)
2353 DLOG((DLOG_PAGE, "lfs_putpages: again: looping, n = %d\n", debug_n_again));
2354 #endif
2355
2356 KASSERT(sp != NULL && sp->vp == vp);
2357 if (!seglocked && !donewriting) {
2358 sp->vp = NULL;
2359
2360 /* Write indirect blocks as well */
2361 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_indir);
2362 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_dindir);
2363 lfs_gather(fs, fs->lfs_sp, vp, lfs_match_tindir);
2364
2365 KASSERT(sp->vp == NULL);
2366 sp->vp = vp;
2367 }
2368
2369 /*
2370 * Blocks are now gathered into a segment waiting to be written.
2371 * All that's left to do is update metadata, and write them.
2372 */
2373 lfs_updatemeta(sp);
2374 KASSERT(sp->vp == vp);
2375 sp->vp = NULL;
2376
2377 /*
2378 * If we were called from lfs_writefile, we don't need to clean up
2379 * the FIP or unlock the segment lock. We're done.
2380 */
2381 if (seglocked) {
2382 KASSERT(!mutex_owned(vp->v_interlock));
2383 return error;
2384 }
2385
2386 /* Clean up FIP and send it to disk. */
2387 lfs_release_finfo(fs);
2388 lfs_writeseg(fs, fs->lfs_sp);
2389
2390 /*
2391 * Remove us from paging queue if we wrote all our pages.
2392 */
2393 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
2394 mutex_enter(&lfs_lock);
2395 if (ip->i_flags & IN_PAGING) {
2396 ip->i_flags &= ~IN_PAGING;
2397 TAILQ_REMOVE(&fs->lfs_pchainhd, ip, i_lfs_pchain);
2398 }
2399 mutex_exit(&lfs_lock);
2400 }
2401
2402 /*
2403 * XXX - with the malloc/copy writeseg, the pages are freed by now
2404 * even if we don't wait (e.g. if we hold a nested lock). This
2405 * will not be true if we stop using malloc/copy.
2406 */
2407 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
2408 lfs_segunlock(fs);
2409
2410 /*
2411 * Wait for v_numoutput to drop to zero. The seglock should
2412 * take care of this, but there is a slight possibility that
2413 * aiodoned might not have got around to our buffers yet.
2414 */
2415 if (sync) {
2416 mutex_enter(vp->v_interlock);
2417 while (vp->v_numoutput > 0) {
2418 DLOG((DLOG_PAGE, "lfs_putpages: ino %d sleeping on"
2419 " num %d\n", ip->i_number, vp->v_numoutput));
2420 cv_wait(&vp->v_cv, vp->v_interlock);
2421 }
2422 mutex_exit(vp->v_interlock);
2423 }
2424 KASSERT(!mutex_owned(vp->v_interlock));
2425 return error;
2426 }
2427
2428 /*
2429 * Return the last logical file offset that should be written for this file
2430 * if we're doing a write that ends at "size". If writing, we need to know
2431 * about sizes on disk, i.e. fragments if there are any; if reading, we need
2432 * to know about entire blocks.
2433 */
2434 void
2435 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
2436 {
2437 struct inode *ip = VTOI(vp);
2438 struct lfs *fs = ip->i_lfs;
2439 daddr_t olbn, nlbn;
2440
2441 olbn = lfs_lblkno(fs, ip->i_size);
2442 nlbn = lfs_lblkno(fs, size);
2443 if (!(flags & GOP_SIZE_MEM) && nlbn < ULFS_NDADDR && olbn <= nlbn) {
2444 *eobp = lfs_fragroundup(fs, size);
2445 } else {
2446 *eobp = lfs_blkroundup(fs, size);
2447 }
2448 }
2449
2450 #ifdef DEBUG
2451 void lfs_dump_vop(void *);
2452
2453 void
2454 lfs_dump_vop(void *v)
2455 {
2456 struct vop_putpages_args /* {
2457 struct vnode *a_vp;
2458 voff_t a_offlo;
2459 voff_t a_offhi;
2460 int a_flags;
2461 } */ *ap = v;
2462
2463 #ifdef DDB
2464 vfs_vnode_print(ap->a_vp, 0, printf);
2465 #endif
2466 lfs_dump_dinode(VTOI(ap->a_vp)->i_din.ffs1_din);
2467 }
2468 #endif
2469
2470 int
2471 lfs_mmap(void *v)
2472 {
2473 struct vop_mmap_args /* {
2474 const struct vnodeop_desc *a_desc;
2475 struct vnode *a_vp;
2476 vm_prot_t a_prot;
2477 kauth_cred_t a_cred;
2478 } */ *ap = v;
2479
2480 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
2481 return EOPNOTSUPP;
2482 return ulfs_mmap(v);
2483 }
2484
2485 static int
2486 lfs_openextattr(void *v)
2487 {
2488 struct vop_openextattr_args /* {
2489 struct vnode *a_vp;
2490 kauth_cred_t a_cred;
2491 struct proc *a_p;
2492 } */ *ap = v;
2493 struct inode *ip = VTOI(ap->a_vp);
2494 struct ulfsmount *ump = ip->i_ump;
2495 //struct lfs *fs = ip->i_lfs;
2496
2497 /* Not supported for ULFS1 file systems. */
2498 if (ump->um_fstype == ULFS1)
2499 return (EOPNOTSUPP);
2500
2501 /* XXX Not implemented for ULFS2 file systems. */
2502 return (EOPNOTSUPP);
2503 }
2504
2505 static int
2506 lfs_closeextattr(void *v)
2507 {
2508 struct vop_closeextattr_args /* {
2509 struct vnode *a_vp;
2510 int a_commit;
2511 kauth_cred_t a_cred;
2512 struct proc *a_p;
2513 } */ *ap = v;
2514 struct inode *ip = VTOI(ap->a_vp);
2515 struct ulfsmount *ump = ip->i_ump;
2516 //struct lfs *fs = ip->i_lfs;
2517
2518 /* Not supported for ULFS1 file systems. */
2519 if (ump->um_fstype == ULFS1)
2520 return (EOPNOTSUPP);
2521
2522 /* XXX Not implemented for ULFS2 file systems. */
2523 return (EOPNOTSUPP);
2524 }
2525
2526 static int
2527 lfs_getextattr(void *v)
2528 {
2529 struct vop_getextattr_args /* {
2530 struct vnode *a_vp;
2531 int a_attrnamespace;
2532 const char *a_name;
2533 struct uio *a_uio;
2534 size_t *a_size;
2535 kauth_cred_t a_cred;
2536 struct proc *a_p;
2537 } */ *ap = v;
2538 struct vnode *vp = ap->a_vp;
2539 struct inode *ip = VTOI(vp);
2540 struct ulfsmount *ump = ip->i_ump;
2541 //struct lfs *fs = ip->i_lfs;
2542 int error;
2543
2544 if (ump->um_fstype == ULFS1) {
2545 #ifdef LFS_EXTATTR
2546 fstrans_start(vp->v_mount, FSTRANS_SHARED);
2547 error = ulfs_getextattr(ap);
2548 fstrans_done(vp->v_mount);
2549 #else
2550 error = EOPNOTSUPP;
2551 #endif
2552 return error;
2553 }
2554
2555 /* XXX Not implemented for ULFS2 file systems. */
2556 return (EOPNOTSUPP);
2557 }
2558
2559 static int
2560 lfs_setextattr(void *v)
2561 {
2562 struct vop_setextattr_args /* {
2563 struct vnode *a_vp;
2564 int a_attrnamespace;
2565 const char *a_name;
2566 struct uio *a_uio;
2567 kauth_cred_t a_cred;
2568 struct proc *a_p;
2569 } */ *ap = v;
2570 struct vnode *vp = ap->a_vp;
2571 struct inode *ip = VTOI(vp);
2572 struct ulfsmount *ump = ip->i_ump;
2573 //struct lfs *fs = ip->i_lfs;
2574 int error;
2575
2576 if (ump->um_fstype == ULFS1) {
2577 #ifdef LFS_EXTATTR
2578 fstrans_start(vp->v_mount, FSTRANS_SHARED);
2579 error = ulfs_setextattr(ap);
2580 fstrans_done(vp->v_mount);
2581 #else
2582 error = EOPNOTSUPP;
2583 #endif
2584 return error;
2585 }
2586
2587 /* XXX Not implemented for ULFS2 file systems. */
2588 return (EOPNOTSUPP);
2589 }
2590
2591 static int
2592 lfs_listextattr(void *v)
2593 {
2594 struct vop_listextattr_args /* {
2595 struct vnode *a_vp;
2596 int a_attrnamespace;
2597 struct uio *a_uio;
2598 size_t *a_size;
2599 kauth_cred_t a_cred;
2600 struct proc *a_p;
2601 } */ *ap = v;
2602 struct vnode *vp = ap->a_vp;
2603 struct inode *ip = VTOI(vp);
2604 struct ulfsmount *ump = ip->i_ump;
2605 //struct lfs *fs = ip->i_lfs;
2606 int error;
2607
2608 if (ump->um_fstype == ULFS1) {
2609 #ifdef LFS_EXTATTR
2610 fstrans_start(vp->v_mount, FSTRANS_SHARED);
2611 error = ulfs_listextattr(ap);
2612 fstrans_done(vp->v_mount);
2613 #else
2614 error = EOPNOTSUPP;
2615 #endif
2616 return error;
2617 }
2618
2619 /* XXX Not implemented for ULFS2 file systems. */
2620 return (EOPNOTSUPP);
2621 }
2622
2623 static int
2624 lfs_deleteextattr(void *v)
2625 {
2626 struct vop_deleteextattr_args /* {
2627 struct vnode *a_vp;
2628 int a_attrnamespace;
2629 kauth_cred_t a_cred;
2630 struct proc *a_p;
2631 } */ *ap = v;
2632 struct vnode *vp = ap->a_vp;
2633 struct inode *ip = VTOI(vp);
2634 struct ulfsmount *ump = ip->i_ump;
2635 //struct fs *fs = ip->i_lfs;
2636 int error;
2637
2638 if (ump->um_fstype == ULFS1) {
2639 #ifdef LFS_EXTATTR
2640 fstrans_start(vp->v_mount, FSTRANS_SHARED);
2641 error = ulfs_deleteextattr(ap);
2642 fstrans_done(vp->v_mount);
2643 #else
2644 error = EOPNOTSUPP;
2645 #endif
2646 return error;
2647 }
2648
2649 /* XXX Not implemented for ULFS2 file systems. */
2650 return (EOPNOTSUPP);
2651 }
2652