lfs_vnops.c revision 1.86 1 /* $NetBSD: lfs_vnops.c,v 1.86 2003/02/20 04:27:25 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.86 2003/02/20 04:27:25 perseant Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #ifdef LFS_UBC
102 # include <uvm/uvm_pmap.h>
103 # include <uvm/uvm_stat.h>
104 # include <uvm/uvm_pager.h>
105 #endif
106
107 #include <ufs/lfs/lfs.h>
108 #include <ufs/lfs/lfs_extern.h>
109
110 extern int lfs_writer_daemon;
111 extern int lfs_subsys_pages;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 #ifdef LFS_UBC
135 { &vop_mmap_desc, lfs_mmap }, /* mmap */
136 #else
137 { &vop_mmap_desc, ufs_mmap }, /* mmap */
138 #endif
139 { &vop_fsync_desc, lfs_fsync }, /* fsync */
140 { &vop_seek_desc, ufs_seek }, /* seek */
141 { &vop_remove_desc, lfs_remove }, /* remove */
142 { &vop_link_desc, lfs_link }, /* link */
143 { &vop_rename_desc, lfs_rename }, /* rename */
144 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
145 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
146 { &vop_symlink_desc, lfs_symlink }, /* symlink */
147 { &vop_readdir_desc, ufs_readdir }, /* readdir */
148 { &vop_readlink_desc, ufs_readlink }, /* readlink */
149 { &vop_abortop_desc, ufs_abortop }, /* abortop */
150 { &vop_inactive_desc, lfs_inactive }, /* inactive */
151 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
152 { &vop_lock_desc, ufs_lock }, /* lock */
153 { &vop_unlock_desc, ufs_unlock }, /* unlock */
154 { &vop_bmap_desc, ufs_bmap }, /* bmap */
155 { &vop_strategy_desc, ufs_strategy }, /* strategy */
156 { &vop_print_desc, ufs_print }, /* print */
157 { &vop_islocked_desc, ufs_islocked }, /* islocked */
158 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
159 { &vop_advlock_desc, ufs_advlock }, /* advlock */
160 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
161 { &vop_valloc_desc, lfs_valloc }, /* valloc */
162 { &vop_balloc_desc, lfs_balloc }, /* balloc */
163 { &vop_vfree_desc, lfs_vfree }, /* vfree */
164 { &vop_truncate_desc, lfs_truncate }, /* truncate */
165 { &vop_update_desc, lfs_update }, /* update */
166 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
167 #ifdef LFS_UBC
168 { &vop_getpages_desc, genfs_getpages }, /* getpages */
169 #else
170 { &vop_getpages_desc, lfs_getpages }, /* getpages */
171 #endif
172 { &vop_putpages_desc, lfs_putpages }, /* putpages */
173 { NULL, NULL }
174 };
175 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
176 { &lfs_vnodeop_p, lfs_vnodeop_entries };
177
178 int (**lfs_specop_p)(void *);
179 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
180 { &vop_default_desc, vn_default_error },
181 { &vop_lookup_desc, spec_lookup }, /* lookup */
182 { &vop_create_desc, spec_create }, /* create */
183 { &vop_mknod_desc, spec_mknod }, /* mknod */
184 { &vop_open_desc, spec_open }, /* open */
185 { &vop_close_desc, lfsspec_close }, /* close */
186 { &vop_access_desc, ufs_access }, /* access */
187 { &vop_getattr_desc, lfs_getattr }, /* getattr */
188 { &vop_setattr_desc, lfs_setattr }, /* setattr */
189 { &vop_read_desc, ufsspec_read }, /* read */
190 { &vop_write_desc, ufsspec_write }, /* write */
191 { &vop_lease_desc, spec_lease_check }, /* lease */
192 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
193 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
194 { &vop_poll_desc, spec_poll }, /* poll */
195 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
196 { &vop_revoke_desc, spec_revoke }, /* revoke */
197 { &vop_mmap_desc, spec_mmap }, /* mmap */
198 { &vop_fsync_desc, spec_fsync }, /* fsync */
199 { &vop_seek_desc, spec_seek }, /* seek */
200 { &vop_remove_desc, spec_remove }, /* remove */
201 { &vop_link_desc, spec_link }, /* link */
202 { &vop_rename_desc, spec_rename }, /* rename */
203 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
204 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
205 { &vop_symlink_desc, spec_symlink }, /* symlink */
206 { &vop_readdir_desc, spec_readdir }, /* readdir */
207 { &vop_readlink_desc, spec_readlink }, /* readlink */
208 { &vop_abortop_desc, spec_abortop }, /* abortop */
209 { &vop_inactive_desc, lfs_inactive }, /* inactive */
210 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
211 { &vop_lock_desc, ufs_lock }, /* lock */
212 { &vop_unlock_desc, ufs_unlock }, /* unlock */
213 { &vop_bmap_desc, spec_bmap }, /* bmap */
214 { &vop_strategy_desc, spec_strategy }, /* strategy */
215 { &vop_print_desc, ufs_print }, /* print */
216 { &vop_islocked_desc, ufs_islocked }, /* islocked */
217 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
218 { &vop_advlock_desc, spec_advlock }, /* advlock */
219 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
220 { &vop_valloc_desc, spec_valloc }, /* valloc */
221 { &vop_vfree_desc, lfs_vfree }, /* vfree */
222 { &vop_truncate_desc, spec_truncate }, /* truncate */
223 { &vop_update_desc, lfs_update }, /* update */
224 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
225 { &vop_getpages_desc, spec_getpages }, /* getpages */
226 { &vop_putpages_desc, spec_putpages }, /* putpages */
227 { NULL, NULL }
228 };
229 const struct vnodeopv_desc lfs_specop_opv_desc =
230 { &lfs_specop_p, lfs_specop_entries };
231
232 int (**lfs_fifoop_p)(void *);
233 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
234 { &vop_default_desc, vn_default_error },
235 { &vop_lookup_desc, fifo_lookup }, /* lookup */
236 { &vop_create_desc, fifo_create }, /* create */
237 { &vop_mknod_desc, fifo_mknod }, /* mknod */
238 { &vop_open_desc, fifo_open }, /* open */
239 { &vop_close_desc, lfsfifo_close }, /* close */
240 { &vop_access_desc, ufs_access }, /* access */
241 { &vop_getattr_desc, lfs_getattr }, /* getattr */
242 { &vop_setattr_desc, lfs_setattr }, /* setattr */
243 { &vop_read_desc, ufsfifo_read }, /* read */
244 { &vop_write_desc, ufsfifo_write }, /* write */
245 { &vop_lease_desc, fifo_lease_check }, /* lease */
246 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
247 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
248 { &vop_poll_desc, fifo_poll }, /* poll */
249 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
250 { &vop_revoke_desc, fifo_revoke }, /* revoke */
251 { &vop_mmap_desc, fifo_mmap }, /* mmap */
252 { &vop_fsync_desc, fifo_fsync }, /* fsync */
253 { &vop_seek_desc, fifo_seek }, /* seek */
254 { &vop_remove_desc, fifo_remove }, /* remove */
255 { &vop_link_desc, fifo_link }, /* link */
256 { &vop_rename_desc, fifo_rename }, /* rename */
257 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
258 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
259 { &vop_symlink_desc, fifo_symlink }, /* symlink */
260 { &vop_readdir_desc, fifo_readdir }, /* readdir */
261 { &vop_readlink_desc, fifo_readlink }, /* readlink */
262 { &vop_abortop_desc, fifo_abortop }, /* abortop */
263 { &vop_inactive_desc, lfs_inactive }, /* inactive */
264 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
265 { &vop_lock_desc, ufs_lock }, /* lock */
266 { &vop_unlock_desc, ufs_unlock }, /* unlock */
267 { &vop_bmap_desc, fifo_bmap }, /* bmap */
268 { &vop_strategy_desc, fifo_strategy }, /* strategy */
269 { &vop_print_desc, ufs_print }, /* print */
270 { &vop_islocked_desc, ufs_islocked }, /* islocked */
271 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
272 { &vop_advlock_desc, fifo_advlock }, /* advlock */
273 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
274 { &vop_valloc_desc, fifo_valloc }, /* valloc */
275 { &vop_vfree_desc, lfs_vfree }, /* vfree */
276 { &vop_truncate_desc, fifo_truncate }, /* truncate */
277 { &vop_update_desc, lfs_update }, /* update */
278 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
279 { &vop_putpages_desc, fifo_putpages }, /* putpages */
280 { NULL, NULL }
281 };
282 const struct vnodeopv_desc lfs_fifoop_opv_desc =
283 { &lfs_fifoop_p, lfs_fifoop_entries };
284
285 /*
286 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
287 */
288 void
289 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
290 {
291 LFS_ITIMES(ip, acc, mod, cre);
292 }
293
294 #define LFS_READWRITE
295 #include <ufs/ufs/ufs_readwrite.c>
296 #undef LFS_READWRITE
297
298 /*
299 * Synch an open file.
300 */
301 /* ARGSUSED */
302 int
303 lfs_fsync(void *v)
304 {
305 struct vop_fsync_args /* {
306 struct vnode *a_vp;
307 struct ucred *a_cred;
308 int a_flags;
309 off_t offlo;
310 off_t offhi;
311 struct proc *a_p;
312 } */ *ap = v;
313 struct vnode *vp = ap->a_vp;
314 int error, wait;
315
316 /*
317 * Trickle sync checks for need to do a checkpoint after possible
318 * activity from the pagedaemon.
319 */
320 if (ap->a_flags & FSYNC_LAZY) {
321 wakeup(&lfs_writer_daemon);
322 return 0;
323 }
324
325 wait = (ap->a_flags & FSYNC_WAIT);
326 do {
327 #ifdef DEBUG
328 struct buf *bp;
329 #endif
330
331 simple_lock(&vp->v_interlock);
332 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
333 round_page(ap->a_offhi),
334 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
335 if (error)
336 return error;
337 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
338 if (wait && error == 0 && !VPISEMPTY(vp)) {
339 #ifdef DEBUG
340 printf("lfs_fsync: reflushing ino %d\n",
341 VTOI(vp)->i_number);
342 printf("vflags %x iflags %x npages %d\n",
343 vp->v_flag, VTOI(vp)->i_flag,
344 vp->v_uobj.uo_npages);
345 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
346 printf("%" PRId64 " (%lx)", bp->b_lblkno,
347 bp->b_flags);
348 printf("\n");
349 #endif
350 VTOI(vp)->i_flag |= IN_MODIFIED;
351 }
352 } while (wait && error == 0 && !VPISEMPTY(vp));
353
354 return error;
355 }
356
357 /*
358 * Take IN_ADIROP off, then call ufs_inactive.
359 */
360 int
361 lfs_inactive(void *v)
362 {
363 struct vop_inactive_args /* {
364 struct vnode *a_vp;
365 struct proc *a_p;
366 } */ *ap = v;
367
368 KASSERT(VTOI(ap->a_vp)->i_ffs_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
369
370 lfs_unmark_vnode(ap->a_vp);
371
372 return ufs_inactive(v);
373 }
374
375 /*
376 * These macros are used to bracket UFS directory ops, so that we can
377 * identify all the pages touched during directory ops which need to
378 * be ordered and flushed atomically, so that they may be recovered.
379 */
380 /*
381 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
382 * the cache from reclaiming them while a dirop is in progress, we must
383 * also manage the number of nodes so marked (otherwise we can run out).
384 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
385 * is decremented during segment write, when VDIROP is taken off.
386 */
387 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
388 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
389 static int lfs_set_dirop(struct vnode *, struct vnode *);
390 extern int lfs_dirvcount;
391 extern int lfs_do_flush;
392
393 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
394
395 static int
396 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
397 {
398 struct lfs *fs;
399 int error;
400
401 KASSERT(VOP_ISLOCKED(vp));
402 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
403
404 fs = VTOI(vp)->i_lfs;
405 /*
406 * We might need one directory block plus supporting indirect blocks,
407 * plus an inode block and ifile page for the new vnode.
408 */
409 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
410 return (error);
411
412 if (fs->lfs_dirops == 0)
413 lfs_check(vp, LFS_UNUSED_LBN, 0);
414 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
415 if (fs->lfs_writer)
416 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
417 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
418 wakeup(&lfs_writer_daemon);
419 preempt(NULL);
420 }
421
422 if (lfs_dirvcount > LFS_MAX_DIROP) {
423 #ifdef DEBUG_LFS
424 printf("lfs_set_dirop: sleeping with dirops=%d, "
425 "dirvcount=%d\n", fs->lfs_dirops,
426 lfs_dirvcount);
427 #endif
428 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
429 "lfs_maxdirop", 0)) != 0) {
430 goto unreserve;
431 }
432 }
433 }
434 ++fs->lfs_dirops;
435 fs->lfs_doifile = 1;
436
437 /* Hold a reference so SET_ENDOP will be happy */
438 vref(vp);
439 if (vp2)
440 vref(vp2);
441
442 return 0;
443
444 unreserve:
445 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
446 return error;
447 }
448
449 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
450 #define SET_ENDOP2(fs, vp, vp2, str) { \
451 --(fs)->lfs_dirops; \
452 if (!(fs)->lfs_dirops) { \
453 if ((fs)->lfs_nadirop) { \
454 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
455 (str), (fs)->lfs_nadirop); \
456 } \
457 wakeup(&(fs)->lfs_writer); \
458 lfs_check((vp),LFS_UNUSED_LBN,0); \
459 } \
460 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
461 vrele(vp); \
462 if (vp2) \
463 vrele(vp2); \
464 }
465
466 #define MARK_VNODE(dvp) do { \
467 struct inode *_ip = VTOI(dvp); \
468 struct lfs *_fs = _ip->i_lfs; \
469 \
470 if (!((dvp)->v_flag & VDIROP)) { \
471 (void)lfs_vref(dvp); \
472 ++lfs_dirvcount; \
473 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
474 } \
475 (dvp)->v_flag |= VDIROP; \
476 if (!(_ip->i_flag & IN_ADIROP)) { \
477 ++_fs->lfs_nadirop; \
478 } \
479 _ip->i_flag |= IN_ADIROP; \
480 } while (0)
481
482 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
483
484 void lfs_unmark_vnode(struct vnode *vp)
485 {
486 struct inode *ip;
487
488 ip = VTOI(vp);
489
490 if (ip->i_flag & IN_ADIROP)
491 --ip->i_lfs->lfs_nadirop;
492 ip->i_flag &= ~IN_ADIROP;
493 }
494
495 int
496 lfs_symlink(void *v)
497 {
498 struct vop_symlink_args /* {
499 struct vnode *a_dvp;
500 struct vnode **a_vpp;
501 struct componentname *a_cnp;
502 struct vattr *a_vap;
503 char *a_target;
504 } */ *ap = v;
505 int error;
506
507 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
508 vput(ap->a_dvp);
509 return error;
510 }
511 MARK_VNODE(ap->a_dvp);
512 error = ufs_symlink(ap);
513 UNMARK_VNODE(ap->a_dvp);
514 if (*(ap->a_vpp))
515 UNMARK_VNODE(*(ap->a_vpp));
516 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
517 return (error);
518 }
519
520 int
521 lfs_mknod(void *v)
522 {
523 struct vop_mknod_args /* {
524 struct vnode *a_dvp;
525 struct vnode **a_vpp;
526 struct componentname *a_cnp;
527 struct vattr *a_vap;
528 } */ *ap = v;
529 struct vattr *vap = ap->a_vap;
530 struct vnode **vpp = ap->a_vpp;
531 struct inode *ip;
532 int error;
533 struct mount *mp;
534 ino_t ino;
535
536 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
537 vput(ap->a_dvp);
538 return error;
539 }
540 MARK_VNODE(ap->a_dvp);
541 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
542 ap->a_dvp, vpp, ap->a_cnp);
543 UNMARK_VNODE(ap->a_dvp);
544 if (*(ap->a_vpp))
545 UNMARK_VNODE(*(ap->a_vpp));
546
547 /* Either way we're done with the dirop at this point */
548 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
549
550 if (error)
551 return (error);
552
553 ip = VTOI(*vpp);
554 mp = (*vpp)->v_mount;
555 ino = ip->i_number;
556 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
557 if (vap->va_rdev != VNOVAL) {
558 /*
559 * Want to be able to use this to make badblock
560 * inodes, so don't truncate the dev number.
561 */
562 #if 0
563 ip->i_ffs_rdev = ufs_rw32(vap->va_rdev,
564 UFS_MPNEEDSWAP((*vpp)->v_mount));
565 #else
566 ip->i_ffs_rdev = vap->va_rdev;
567 #endif
568 }
569 /*
570 * Call fsync to write the vnode so that we don't have to deal with
571 * flushing it when it's marked VDIROP|VXLOCK.
572 *
573 * XXX KS - If we can't flush we also can't call vgone(), so must
574 * return. But, that leaves this vnode in limbo, also not good.
575 * Can this ever happen (barring hardware failure)?
576 */
577 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
578 curproc)) != 0) {
579 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
580 VTOI(*vpp)->i_number);
581 return (error);
582 }
583 /*
584 * Remove vnode so that it will be reloaded by VFS_VGET and
585 * checked to see if it is an alias of an existing entry in
586 * the inode cache.
587 */
588 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
589 VOP_UNLOCK(*vpp, 0);
590 lfs_vunref(*vpp);
591 (*vpp)->v_type = VNON;
592 vgone(*vpp);
593 error = VFS_VGET(mp, ino, vpp);
594 if (error != 0) {
595 *vpp = NULL;
596 return (error);
597 }
598 return (0);
599 }
600
601 int
602 lfs_create(void *v)
603 {
604 struct vop_create_args /* {
605 struct vnode *a_dvp;
606 struct vnode **a_vpp;
607 struct componentname *a_cnp;
608 struct vattr *a_vap;
609 } */ *ap = v;
610 int error;
611
612 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
613 vput(ap->a_dvp);
614 return error;
615 }
616 MARK_VNODE(ap->a_dvp);
617 error = ufs_create(ap);
618 UNMARK_VNODE(ap->a_dvp);
619 if (*(ap->a_vpp))
620 UNMARK_VNODE(*(ap->a_vpp));
621 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
622 return (error);
623 }
624
625 int
626 lfs_mkdir(void *v)
627 {
628 struct vop_mkdir_args /* {
629 struct vnode *a_dvp;
630 struct vnode **a_vpp;
631 struct componentname *a_cnp;
632 struct vattr *a_vap;
633 } */ *ap = v;
634 int error;
635
636 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
637 vput(ap->a_dvp);
638 return error;
639 }
640 MARK_VNODE(ap->a_dvp);
641 error = ufs_mkdir(ap);
642 UNMARK_VNODE(ap->a_dvp);
643 if (*(ap->a_vpp))
644 UNMARK_VNODE(*(ap->a_vpp));
645 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
646 return (error);
647 }
648
649 int
650 lfs_remove(void *v)
651 {
652 struct vop_remove_args /* {
653 struct vnode *a_dvp;
654 struct vnode *a_vp;
655 struct componentname *a_cnp;
656 } */ *ap = v;
657 struct vnode *dvp, *vp;
658 int error;
659
660 dvp = ap->a_dvp;
661 vp = ap->a_vp;
662 if ((error = SET_DIROP2(dvp, vp)) != 0) {
663 if (dvp == vp)
664 vrele(vp);
665 else
666 vput(vp);
667 vput(dvp);
668 return error;
669 }
670 MARK_VNODE(dvp);
671 MARK_VNODE(vp);
672 error = ufs_remove(ap);
673 UNMARK_VNODE(dvp);
674 UNMARK_VNODE(vp);
675
676 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
677 return (error);
678 }
679
680 int
681 lfs_rmdir(void *v)
682 {
683 struct vop_rmdir_args /* {
684 struct vnodeop_desc *a_desc;
685 struct vnode *a_dvp;
686 struct vnode *a_vp;
687 struct componentname *a_cnp;
688 } */ *ap = v;
689 struct vnode *vp;
690 int error;
691
692 vp = ap->a_vp;
693 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
694 vrele(ap->a_dvp);
695 if (ap->a_vp != ap->a_dvp)
696 VOP_UNLOCK(ap->a_dvp, 0);
697 vput(vp);
698 return error;
699 }
700 MARK_VNODE(ap->a_dvp);
701 MARK_VNODE(vp);
702 error = ufs_rmdir(ap);
703 UNMARK_VNODE(ap->a_dvp);
704 UNMARK_VNODE(vp);
705
706 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
707 return (error);
708 }
709
710 int
711 lfs_link(void *v)
712 {
713 struct vop_link_args /* {
714 struct vnode *a_dvp;
715 struct vnode *a_vp;
716 struct componentname *a_cnp;
717 } */ *ap = v;
718 int error;
719
720 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
721 vput(ap->a_dvp);
722 return error;
723 }
724 MARK_VNODE(ap->a_dvp);
725 error = ufs_link(ap);
726 UNMARK_VNODE(ap->a_dvp);
727 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
728 return (error);
729 }
730
731 int
732 lfs_rename(void *v)
733 {
734 struct vop_rename_args /* {
735 struct vnode *a_fdvp;
736 struct vnode *a_fvp;
737 struct componentname *a_fcnp;
738 struct vnode *a_tdvp;
739 struct vnode *a_tvp;
740 struct componentname *a_tcnp;
741 } */ *ap = v;
742 struct vnode *tvp, *fvp, *tdvp, *fdvp;
743 struct componentname *tcnp, *fcnp;
744 int error;
745 struct lfs *fs;
746
747 fs = VTOI(ap->a_fdvp)->i_lfs;
748 tvp = ap->a_tvp;
749 tdvp = ap->a_tdvp;
750 tcnp = ap->a_tcnp;
751 fvp = ap->a_fvp;
752 fdvp = ap->a_fdvp;
753 fcnp = ap->a_fcnp;
754
755 /*
756 * Check for cross-device rename.
757 * If it is, we don't want to set dirops, just error out.
758 * (In particular note that MARK_VNODE(tdvp) will DTWT on
759 * a cross-device rename.)
760 *
761 * Copied from ufs_rename.
762 */
763 if ((fvp->v_mount != tdvp->v_mount) ||
764 (tvp && (fvp->v_mount != tvp->v_mount))) {
765 error = EXDEV;
766 goto errout;
767 }
768
769 /*
770 * Check to make sure we're not renaming a vnode onto itself
771 * (deleting a hard link by renaming one name onto another);
772 * if we are we can't recursively call VOP_REMOVE since that
773 * would leave us with an unaccounted-for number of live dirops.
774 *
775 * Inline the relevant section of ufs_rename here, *before*
776 * calling SET_DIROP2.
777 */
778 if (tvp && ((VTOI(tvp)->i_ffs_flags & (IMMUTABLE | APPEND)) ||
779 (VTOI(tdvp)->i_ffs_flags & APPEND))) {
780 error = EPERM;
781 goto errout;
782 }
783 if (fvp == tvp) {
784 if (fvp->v_type == VDIR) {
785 error = EINVAL;
786 goto errout;
787 }
788
789 /* Release destination completely. */
790 VOP_ABORTOP(tdvp, tcnp);
791 vput(tdvp);
792 vput(tvp);
793
794 /* Delete source. */
795 vrele(fvp);
796 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
797 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
798 fcnp->cn_nameiop = DELETE;
799 if ((error = relookup(fdvp, &fvp, fcnp))){
800 /* relookup blew away fdvp */
801 return (error);
802 }
803 return (VOP_REMOVE(fdvp, fvp, fcnp));
804 }
805
806 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
807 goto errout;
808 MARK_VNODE(fdvp);
809 MARK_VNODE(tdvp);
810 MARK_VNODE(fvp);
811 if (tvp) {
812 MARK_VNODE(tvp);
813 }
814
815 error = ufs_rename(ap);
816 UNMARK_VNODE(fdvp);
817 UNMARK_VNODE(tdvp);
818 UNMARK_VNODE(fvp);
819 if (tvp) {
820 UNMARK_VNODE(tvp);
821 }
822 SET_ENDOP2(fs, tdvp, tvp, "rename");
823 return (error);
824
825 errout:
826 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
827 if (tdvp == tvp)
828 vrele(tdvp);
829 else
830 vput(tdvp);
831 if (tvp)
832 vput(tvp);
833 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
834 vrele(fdvp);
835 vrele(fvp);
836 return (error);
837 }
838
839 /* XXX hack to avoid calling ITIMES in getattr */
840 int
841 lfs_getattr(void *v)
842 {
843 struct vop_getattr_args /* {
844 struct vnode *a_vp;
845 struct vattr *a_vap;
846 struct ucred *a_cred;
847 struct proc *a_p;
848 } */ *ap = v;
849 struct vnode *vp = ap->a_vp;
850 struct inode *ip = VTOI(vp);
851 struct vattr *vap = ap->a_vap;
852 struct lfs *fs = ip->i_lfs;
853 /*
854 * Copy from inode table
855 */
856 vap->va_fsid = ip->i_dev;
857 vap->va_fileid = ip->i_number;
858 vap->va_mode = ip->i_ffs_mode & ~IFMT;
859 vap->va_nlink = ip->i_ffs_nlink;
860 vap->va_uid = ip->i_ffs_uid;
861 vap->va_gid = ip->i_ffs_gid;
862 vap->va_rdev = (dev_t)ip->i_ffs_rdev;
863 vap->va_size = vp->v_size;
864 vap->va_atime.tv_sec = ip->i_ffs_atime;
865 vap->va_atime.tv_nsec = ip->i_ffs_atimensec;
866 vap->va_mtime.tv_sec = ip->i_ffs_mtime;
867 vap->va_mtime.tv_nsec = ip->i_ffs_mtimensec;
868 vap->va_ctime.tv_sec = ip->i_ffs_ctime;
869 vap->va_ctime.tv_nsec = ip->i_ffs_ctimensec;
870 vap->va_flags = ip->i_ffs_flags;
871 vap->va_gen = ip->i_ffs_gen;
872 /* this doesn't belong here */
873 if (vp->v_type == VBLK)
874 vap->va_blocksize = BLKDEV_IOSIZE;
875 else if (vp->v_type == VCHR)
876 vap->va_blocksize = MAXBSIZE;
877 else
878 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
879 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
880 vap->va_type = vp->v_type;
881 vap->va_filerev = ip->i_modrev;
882 return (0);
883 }
884
885 /*
886 * Check to make sure the inode blocks won't choke the buffer
887 * cache, then call ufs_setattr as usual.
888 */
889 int
890 lfs_setattr(void *v)
891 {
892 struct vop_getattr_args /* {
893 struct vnode *a_vp;
894 struct vattr *a_vap;
895 struct ucred *a_cred;
896 struct proc *a_p;
897 } */ *ap = v;
898 struct vnode *vp = ap->a_vp;
899
900 lfs_check(vp, LFS_UNUSED_LBN, 0);
901 return ufs_setattr(v);
902 }
903
904 /*
905 * Close called
906 *
907 * XXX -- we were using ufs_close, but since it updates the
908 * times on the inode, we might need to bump the uinodes
909 * count.
910 */
911 /* ARGSUSED */
912 int
913 lfs_close(void *v)
914 {
915 struct vop_close_args /* {
916 struct vnode *a_vp;
917 int a_fflag;
918 struct ucred *a_cred;
919 struct proc *a_p;
920 } */ *ap = v;
921 struct vnode *vp = ap->a_vp;
922 struct inode *ip = VTOI(vp);
923 struct timespec ts;
924
925 if (vp->v_usecount > 1) {
926 TIMEVAL_TO_TIMESPEC(&time, &ts);
927 LFS_ITIMES(ip, &ts, &ts, &ts);
928 }
929 return (0);
930 }
931
932 /*
933 * Close wrapper for special devices.
934 *
935 * Update the times on the inode then do device close.
936 */
937 int
938 lfsspec_close(void *v)
939 {
940 struct vop_close_args /* {
941 struct vnode *a_vp;
942 int a_fflag;
943 struct ucred *a_cred;
944 struct proc *a_p;
945 } */ *ap = v;
946 struct vnode *vp;
947 struct inode *ip;
948 struct timespec ts;
949
950 vp = ap->a_vp;
951 ip = VTOI(vp);
952 if (vp->v_usecount > 1) {
953 TIMEVAL_TO_TIMESPEC(&time, &ts);
954 LFS_ITIMES(ip, &ts, &ts, &ts);
955 }
956 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
957 }
958
959 /*
960 * Close wrapper for fifo's.
961 *
962 * Update the times on the inode then do device close.
963 */
964 int
965 lfsfifo_close(void *v)
966 {
967 struct vop_close_args /* {
968 struct vnode *a_vp;
969 int a_fflag;
970 struct ucred *a_cred;
971 struct proc *a_p;
972 } */ *ap = v;
973 struct vnode *vp;
974 struct inode *ip;
975 struct timespec ts;
976
977 vp = ap->a_vp;
978 ip = VTOI(vp);
979 if (ap->a_vp->v_usecount > 1) {
980 TIMEVAL_TO_TIMESPEC(&time, &ts);
981 LFS_ITIMES(ip, &ts, &ts, &ts);
982 }
983 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
984 }
985
986 /*
987 * Reclaim an inode so that it can be used for other purposes.
988 */
989 int lfs_no_inactive = 0;
990
991 int
992 lfs_reclaim(void *v)
993 {
994 struct vop_reclaim_args /* {
995 struct vnode *a_vp;
996 struct proc *a_p;
997 } */ *ap = v;
998 struct vnode *vp = ap->a_vp;
999 struct inode *ip = VTOI(vp);
1000 int error;
1001
1002 KASSERT(ip->i_ffs_nlink == ip->i_ffs_effnlink);
1003
1004 LFS_CLR_UINO(ip, IN_ALLMOD);
1005 if ((error = ufs_reclaim(vp, ap->a_p)))
1006 return (error);
1007 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1008 ip->inode_ext.lfs = NULL;
1009 pool_put(&lfs_inode_pool, vp->v_data);
1010 vp->v_data = NULL;
1011 return (0);
1012 }
1013
1014 #ifndef LFS_UBC
1015 int
1016 lfs_getpages(void *v)
1017 {
1018 struct vop_getpages_args /* {
1019 struct vnode *a_vp;
1020 voff_t a_offset;
1021 struct vm_page **a_m;
1022 int *a_count;
1023 int a_centeridx;
1024 vm_prot_t a_access_type;
1025 int a_advice;
1026 int a_flags;
1027 } */ *ap = v;
1028
1029 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1030 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1031 }
1032 return genfs_compat_getpages(v);
1033 }
1034
1035 int
1036 lfs_putpages(void *v)
1037 {
1038 int error;
1039
1040 error = genfs_putpages(v);
1041 return error;
1042 }
1043
1044 #else /* LFS_UBC */
1045
1046 /*
1047 * Make sure that for all pages in every block in the given range,
1048 * either all are dirty or all are clean. If any of the pages
1049 * we've seen so far are dirty, put the vnode on the paging chain,
1050 * and mark it IN_PAGING.
1051 */
1052 static int
1053 check_dirty(struct lfs *fs, struct vnode *vp,
1054 off_t startoffset, off_t endoffset, off_t blkeof,
1055 int flags)
1056 {
1057 int by_list;
1058 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1059 struct lwp *l = curlwp ? curlwp : &lwp0;
1060 off_t soff;
1061 voff_t off;
1062 int i, dirty, tdirty, nonexistent, any_dirty;
1063 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1064
1065 top:
1066 by_list = (vp->v_uobj.uo_npages <=
1067 ((endoffset - startoffset) >> PAGE_SHIFT) *
1068 UVM_PAGE_HASH_PENALTY);
1069 any_dirty = 0;
1070
1071 if (by_list) {
1072 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1073 PHOLD(l);
1074 } else {
1075 soff = startoffset;
1076 }
1077 while (by_list || soff < MIN(blkeof, endoffset)) {
1078 if (by_list) {
1079 if (pages_per_block > 1) {
1080 while (curpg && (curpg->offset & fs->lfs_bmask))
1081 curpg = TAILQ_NEXT(curpg, listq);
1082 }
1083 if (curpg == NULL)
1084 break;
1085 soff = curpg->offset;
1086 }
1087
1088 /*
1089 * Mark all pages in extended range busy; find out if any
1090 * of them are dirty.
1091 */
1092 nonexistent = dirty = 0;
1093 for (i = 0; i == 0 || i < pages_per_block; i++) {
1094 if (by_list && pages_per_block <= 1) {
1095 pgs[i] = pg = curpg;
1096 } else {
1097 off = soff + (i << PAGE_SHIFT);
1098 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1099 if (pg == NULL) {
1100 ++nonexistent;
1101 continue;
1102 }
1103 }
1104 KASSERT(pg != NULL);
1105 while (pg->flags & PG_BUSY) {
1106 pg->flags |= PG_WANTED;
1107 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1108 "lfsput", 0);
1109 simple_lock(&vp->v_interlock);
1110 if (by_list)
1111 goto top;
1112 }
1113 pg->flags |= PG_BUSY;
1114 UVM_PAGE_OWN(pg, "lfs_putpages");
1115
1116 pmap_page_protect(pg, VM_PROT_NONE);
1117 tdirty = (pmap_clear_modify(pg) ||
1118 (pg->flags & PG_CLEAN) == 0);
1119 dirty += tdirty;
1120 }
1121 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1122 if (by_list) {
1123 curpg = TAILQ_NEXT(curpg, listq);
1124 } else {
1125 soff += fs->lfs_bsize;
1126 }
1127 continue;
1128 }
1129
1130 any_dirty += dirty;
1131 KASSERT(nonexistent == 0);
1132
1133 /*
1134 * If any are dirty make all dirty; unbusy them,
1135 * but if we were asked to clean, take them off
1136 * of their queue so the pagedaemon doesn't bother
1137 * us about them while they're on their way to disk.
1138 *
1139 * (XXXUBC the page is now on *no* page queue.)
1140 */
1141 for (i = 0; i == 0 || i < pages_per_block; i++) {
1142 pg = pgs[i];
1143 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1144 if (dirty) {
1145 pg->flags &= ~PG_CLEAN;
1146 if (flags & PGO_FREE) {
1147 /* XXXUBC need better way to update */
1148 lfs_subsys_pages += MIN(1, pages_per_block);
1149 /*
1150 * wire the page so that
1151 * pdaemon don't see it again.
1152 */
1153 uvm_lock_pageq();
1154 uvm_pagewire(pg);
1155 uvm_unlock_pageq();
1156 /* Suspended write flag */
1157 pg->flags |= PG_DELWRI;
1158 }
1159 }
1160 if (pg->flags & PG_WANTED)
1161 wakeup(pg);
1162 pg->flags &= ~(PG_WANTED|PG_BUSY);
1163 UVM_PAGE_OWN(pg, NULL);
1164 }
1165
1166 if (by_list) {
1167 curpg = TAILQ_NEXT(curpg, listq);
1168 } else {
1169 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1170 }
1171 }
1172 if (by_list) {
1173 PRELE(l);
1174 }
1175
1176 /*
1177 * If any pages were dirty, mark this inode as "pageout requested",
1178 * and put it on the paging queue.
1179 * XXXUBC locking (check locking on dchainhd too)
1180 */
1181 #ifdef notyet
1182 if (any_dirty) {
1183 if (!(ip->i_flags & IN_PAGING)) {
1184 ip->i_flags |= IN_PAGING;
1185 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1186 }
1187 }
1188 #endif
1189 return any_dirty;
1190 }
1191
1192 /*
1193 * lfs_putpages functions like genfs_putpages except that
1194 *
1195 * (1) It needs to bounds-check the incoming requests to ensure that
1196 * they are block-aligned; if they are not, expand the range and
1197 * do the right thing in case, e.g., the requested range is clean
1198 * but the expanded range is dirty.
1199 * (2) It needs to explicitly send blocks to be written when it is done.
1200 * VOP_PUTPAGES is not ever called with the seglock held, so
1201 * we simply take the seglock and let lfs_segunlock wait for us.
1202 * XXX Actually we can be called with the seglock held, if we have
1203 * XXX to flush a vnode while lfs_markv is in operation. As of this
1204 * XXX writing we panic in this case.
1205 *
1206 * Assumptions:
1207 *
1208 * (1) The caller does not hold any pages in this vnode busy. If it does,
1209 * there is a danger that when we expand the page range and busy the
1210 * pages we will deadlock.
1211 * (2) We are called with vp->v_interlock held; we must return with it
1212 * released.
1213 * (3) We don't absolutely have to free pages right away, provided that
1214 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1215 * us a request with PGO_FREE, we take the pages out of the paging
1216 * queue and wake up the writer, which will handle freeing them for us.
1217 *
1218 * We ensure that for any filesystem block, all pages for that
1219 * block are either resident or not, even if those pages are higher
1220 * than EOF; that means that we will be getting requests to free
1221 * "unused" pages above EOF all the time, and should ignore them.
1222 */
1223
1224 int
1225 lfs_putpages(void *v)
1226 {
1227 int error;
1228 struct vop_putpages_args /* {
1229 struct vnode *a_vp;
1230 voff_t a_offlo;
1231 voff_t a_offhi;
1232 int a_flags;
1233 } */ *ap = v;
1234 struct vnode *vp;
1235 struct inode *ip;
1236 struct lfs *fs;
1237 struct segment *sp;
1238 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1239 off_t max_endoffset;
1240 int pages_per_block;
1241 int s, sync, dirty, pagedaemon;
1242 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1243
1244 vp = ap->a_vp;
1245 ip = VTOI(vp);
1246 fs = ip->i_lfs;
1247 sync = (ap->a_flags & PGO_SYNCIO);
1248 pagedaemon = (curproc == uvm.pagedaemon_proc);
1249
1250 /* Putpages does nothing for metadata. */
1251 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1252 simple_unlock(&vp->v_interlock);
1253 return 0;
1254 }
1255
1256 /*
1257 * If there are no pages, don't do anything.
1258 */
1259 if (vp->v_uobj.uo_npages == 0) {
1260 s = splbio();
1261 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1262 (vp->v_flag & VONWORKLST)) {
1263 vp->v_flag &= ~VONWORKLST;
1264 LIST_REMOVE(vp, v_synclist);
1265 }
1266 splx(s);
1267 simple_unlock(&vp->v_interlock);
1268 return 0;
1269 }
1270
1271 blkeof = blkroundup(fs, ip->i_ffs_size);
1272
1273 /*
1274 * Ignore requests to free pages past EOF but in the same block
1275 * as EOF, unless the request is synchronous. (XXX why sync?)
1276 * XXXUBC Make these pages look "active" so the pagedaemon won't
1277 * XXXUBC bother us with them again.
1278 */
1279 if (!sync && ap->a_offlo >= ip->i_ffs_size && ap->a_offlo < blkeof) {
1280 origoffset = ap->a_offlo;
1281 ap->a_offlo = blkeof;
1282 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1283 simple_unlock(&vp->v_interlock);
1284 return 0;
1285 }
1286 }
1287
1288 /*
1289 * Extend page range to start and end at block boundaries.
1290 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1291 */
1292 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1293 origoffset = ap->a_offlo;
1294 origendoffset = ap->a_offhi;
1295 startoffset = origoffset & ~(fs->lfs_bmask);
1296 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1297 << fs->lfs_bshift;
1298
1299 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1300 endoffset = max_endoffset;
1301 origendoffset = endoffset;
1302 } else {
1303 origendoffset = round_page(ap->a_offhi);
1304 endoffset = round_page(blkroundup(fs, origendoffset));
1305 }
1306
1307 KASSERT(startoffset > 0 || endoffset >= startoffset);
1308 if (startoffset == endoffset) {
1309 /* Nothing to do, why were we called? */
1310 simple_unlock(&vp->v_interlock);
1311 #ifdef DEBUG
1312 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1313 startoffset);
1314 #endif
1315 return 0;
1316 }
1317
1318 ap->a_offlo = startoffset;
1319 ap->a_offhi = endoffset;
1320
1321 if (!(ap->a_flags & PGO_CLEANIT))
1322 return genfs_putpages(v);
1323
1324 /*
1325 * Make sure that all pages in any given block are dirty, or
1326 * none of them are. Find out if any of the pages we've been
1327 * asked about are dirty. If none are dirty, send them on
1328 * through genfs_putpages(), albeit with adjusted offsets.
1329 * XXXUBC I am assuming here that they can't be dirtied in
1330 * XXXUBC the meantime, but I bet that's wrong.
1331 */
1332 dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags);
1333 if (!dirty)
1334 return genfs_putpages(v);
1335
1336 /*
1337 * Dirty and asked to clean.
1338 *
1339 * Pagedaemon can't actually write LFS pages; wake up
1340 * the writer to take care of that. The writer will
1341 * notice the pager inode queue and act on that.
1342 */
1343 if (pagedaemon) {
1344 ++fs->lfs_pdflush;
1345 wakeup(&lfs_writer_daemon);
1346 return EWOULDBLOCK;
1347 }
1348
1349 /*
1350 * If this is a file created in a recent dirop, we can't flush its
1351 * inode until the dirop is complete. Drain dirops, then flush the
1352 * filesystem (taking care of any other pending dirops while we're
1353 * at it).
1354 */
1355 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1356 (vp->v_flag & VDIROP)) {
1357 int locked;
1358
1359 /* printf("putpages to clean VDIROP, flushing\n"); */
1360 while (fs->lfs_dirops > 0) {
1361 ++fs->lfs_diropwait;
1362 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1363 --fs->lfs_diropwait;
1364 }
1365 ++fs->lfs_writer;
1366 locked = VOP_ISLOCKED(vp) && /* XXX */
1367 vp->v_lock.lk_lockholder == curproc->p_pid;
1368 if (locked)
1369 VOP_UNLOCK(vp, 0);
1370 simple_unlock(&vp->v_interlock);
1371
1372 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1373
1374 simple_lock(&vp->v_interlock);
1375 if (locked)
1376 VOP_LOCK(vp, LK_EXCLUSIVE);
1377 if (--fs->lfs_writer == 0)
1378 wakeup(&fs->lfs_dirops);
1379
1380 /* XXX the flush should have taken care of this one too! */
1381 }
1382
1383
1384 /*
1385 * This is it. We are going to write some pages. From here on
1386 * down it's all just mechanics.
1387 *
1388 * If there are more than one page per block, we don't want to get
1389 * caught locking them backwards; so set PGO_BUSYFAIL to avoid
1390 * deadlocks. Also, don't let genfs_putpages wait;
1391 * lfs_segunlock will wait for us, if need be.
1392 */
1393 ap->a_flags &= ~PGO_SYNCIO;
1394 if (pages_per_block > 1)
1395 ap->a_flags |= PGO_BUSYFAIL;
1396
1397 /*
1398 * If we've already got the seglock, flush the node and return.
1399 * The FIP has already been set up for us by lfs_writefile,
1400 * and FIP cleanup and lfs_updatemeta will also be done there,
1401 * unless genfs_putpages returns EDEADLK; then we must flush
1402 * what we have, and correct FIP and segment header accounting.
1403 */
1404 if (ap->a_flags & PGO_LOCKED) {
1405 sp = fs->lfs_sp;
1406 sp->vp = vp;
1407
1408 /*
1409 * XXXUBC
1410 * There is some danger here that we might run out of
1411 * buffers if we flush too much at once. If the number
1412 * of dirty buffers is too great, we should cut the range
1413 * down and write in chunks.
1414 */
1415 while ((error = genfs_putpages(v)) == EDEADLK) {
1416 #ifdef DEBUG_LFS
1417 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1418 " ino %d off %x (seg %d)\n",
1419 ip->i_number, fs->lfs_offset,
1420 dtosn(fs, fs->lfs_offset));
1421 #endif
1422 /* Write gathered pages */
1423 lfs_updatemeta(sp);
1424 (void) lfs_writeseg(fs, sp);
1425
1426 /* Reinitialize brand new FIP and add us to it */
1427 sp->vp = vp;
1428 sp->fip->fi_version = ip->i_ffs_gen;
1429 sp->fip->fi_ino = ip->i_number;
1430 /* Add us to the new segment summary. */
1431 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1432 sp->sum_bytes_left -=
1433 sizeof(struct finfo) - sizeof(int32_t);
1434
1435 /* Give the write a chance to complete */
1436 simple_unlock(&vp->v_interlock);
1437 preempt(NULL);
1438 simple_lock(&vp->v_interlock);
1439 }
1440 return error;
1441 }
1442
1443 /*
1444 * Take the seglock, because we are going to be writing pages.
1445 */
1446 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1447 return error;
1448
1449 /*
1450 * VOP_PUTPAGES should not be called while holding the seglock.
1451 * XXX fix lfs_markv, or do this properly.
1452 */
1453 KASSERT(fs->lfs_seglock == 1);
1454
1455 /*
1456 * We assume we're being called with sp->fip pointing at blank space.
1457 * Account for a new FIP in the segment header, and set sp->vp.
1458 * (This should duplicate the setup at the top of lfs_writefile().)
1459 */
1460 sp = fs->lfs_sp;
1461 if (sp->seg_bytes_left < fs->lfs_bsize ||
1462 sp->sum_bytes_left < sizeof(struct finfo))
1463 (void) lfs_writeseg(fs, fs->lfs_sp);
1464
1465 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1466 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1467 sp->vp = vp;
1468
1469 if (vp->v_flag & VDIROP)
1470 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1471
1472 sp->fip->fi_nblocks = 0;
1473 sp->fip->fi_ino = ip->i_number;
1474 sp->fip->fi_version = ip->i_ffs_gen;
1475
1476 /*
1477 * Loop through genfs_putpages until all pages are gathered.
1478 */
1479 /*
1480 * There is some danger here that we might run out of
1481 * buffers if we flush too much at once. If the number
1482 * of dirty buffers is too great, then, cut the range down
1483 * and write in chunks.
1484 *
1485 * XXXUBC this assumes a uniform dirtying of the pages
1486 * XXXUBC across the address space
1487 * XXXXXX do this
1488 */
1489 while ((error = genfs_putpages(v)) == EDEADLK) {
1490 #ifdef DEBUG_LFS
1491 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1492 " ino %d off %x (seg %d)\n",
1493 ip->i_number, fs->lfs_offset,
1494 dtosn(fs, fs->lfs_offset));
1495 #endif
1496 /* Write gathered pages */
1497 lfs_updatemeta(sp);
1498 (void) lfs_writeseg(fs, sp);
1499
1500 /*
1501 * Reinitialize brand new FIP and add us to it.
1502 * (This should duplicate the fixup in lfs_gatherpages().)
1503 */
1504 sp->vp = vp;
1505 sp->fip->fi_version = ip->i_ffs_gen;
1506 sp->fip->fi_ino = ip->i_number;
1507 /* Add us to the new segment summary. */
1508 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1509 sp->sum_bytes_left -=
1510 sizeof(struct finfo) - sizeof(int32_t);
1511
1512 /* Give the write a chance to complete */
1513 simple_unlock(&vp->v_interlock);
1514 preempt(NULL);
1515 simple_lock(&vp->v_interlock);
1516 }
1517
1518 /*
1519 * Blocks are now gathered into a segment waiting to be written.
1520 * All that's left to do is update metadata, and write them.
1521 */
1522 lfs_updatemeta(fs->lfs_sp);
1523 fs->lfs_sp->vp = NULL;
1524 lfs_writeseg(fs, fs->lfs_sp);
1525
1526 /*
1527 * Clean up FIP.
1528 * (This should duplicate cleanup at the end of lfs_writefile().)
1529 */
1530 if (sp->fip->fi_nblocks != 0) {
1531 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1532 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1533 sp->start_lbp = &sp->fip->fi_blocks[0];
1534 } else {
1535 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1536 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1537 }
1538 /*
1539 * XXX - with the malloc/copy writeseg, the pages are freed by now
1540 * even if we don't wait (e.g. if we hold a nested lock). This
1541 * will not be true if we stop using malloc/copy.
1542 */
1543 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1544 lfs_segunlock(fs);
1545
1546 /*
1547 * Wait for v_numoutput to drop to zero. The seglock should
1548 * take care of this, but there is a slight possibility that
1549 * aiodoned might not have got around to our buffers yet.
1550 */
1551 if (sync) {
1552 int s;
1553
1554 s = splbio();
1555 simple_lock(&global_v_numoutput_slock);
1556 while(vp->v_numoutput > 0) {
1557 #ifdef DEBUG
1558 printf("ino %d sleeping on num %d\n",
1559 ip->i_number, vp->v_numoutput);
1560 #endif
1561 vp->v_flag |= VBWAIT;
1562 simple_unlock(&global_v_numoutput_slock);
1563 tsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0);
1564 simple_lock(&global_v_numoutput_slock);
1565 }
1566 simple_unlock(&global_v_numoutput_slock);
1567 splx(s);
1568 }
1569 return error;
1570 }
1571
1572 /*
1573 * Find out whether the vnode has any blocks or pages waiting to be written.
1574 * We used to just check LIST_EMPTY(&vp->v_dirtyblkhd), but there is not
1575 * presently as simple a mechanism for the page cache.
1576 */
1577 int
1578 lfs_checkifempty(struct vnode *vp)
1579 {
1580 struct vm_page *pg;
1581 struct buf *bp;
1582 int r, s;
1583
1584 if (vp->v_type != VREG || VTOI(vp)->i_number == LFS_IFILE_INUM)
1585 return LIST_EMPTY(&vp->v_dirtyblkhd);
1586
1587 /*
1588 * For vnodes with pages it is a little more complex.
1589 * Pages that have been written (i.e. are "clean" for our purposes)
1590 * might be in seemingly dirty buffers, so we have to troll
1591 * looking for indirect block buffers as well as pages.
1592 */
1593 simple_lock(&vp->v_interlock);
1594 s = splbio();
1595 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp;
1596 bp = LIST_NEXT(bp, b_vnbufs)) {
1597 if (bp->b_lblkno < 0) {
1598 splx(s);
1599 return 0;
1600 }
1601 }
1602 splx(s);
1603
1604 /*
1605 * Run through the page list to find dirty pages.
1606 * Right now I just walk the memq.
1607 */
1608 pg = TAILQ_FIRST(&vp->v_uobj.memq);
1609 r = 1;
1610 while(pg) {
1611 if ((pg->flags & PG_CLEAN) == 0 || pmap_is_modified(pg)) {
1612 r = 0;
1613 break;
1614 }
1615 pg = TAILQ_NEXT(pg, listq);
1616 }
1617 #if 0
1618 if (r != !(vp->v_flag & VONWORKLST)) {
1619 printf("nope, VONWORKLST isn't good enough!\n");
1620 }
1621 #endif
1622 simple_unlock(&vp->v_interlock);
1623 return r;
1624 }
1625
1626 /*
1627 * Return the last logical file offset that should be written for this file
1628 * if we're doing a write that ends at "size". If writing, we need to know
1629 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1630 * to know about entire blocks.
1631 */
1632 void
1633 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1634 {
1635 struct inode *ip = VTOI(vp);
1636 struct lfs *fs = ip->i_lfs;
1637 daddr_t olbn, nlbn;
1638
1639 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1640 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1641 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1642
1643 olbn = lblkno(fs, ip->i_ffs_size);
1644 nlbn = lblkno(fs, size);
1645 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1646 *eobp = fragroundup(fs, size);
1647 } else {
1648 *eobp = blkroundup(fs, size);
1649 }
1650 }
1651
1652 #ifdef DEBUG
1653 void lfs_dump_vop(void *);
1654
1655 void
1656 lfs_dump_vop(void *v)
1657 {
1658 struct vop_putpages_args /* {
1659 struct vnode *a_vp;
1660 voff_t a_offlo;
1661 voff_t a_offhi;
1662 int a_flags;
1663 } */ *ap = v;
1664
1665 vfs_vnode_print(ap->a_vp, 0, printf);
1666 lfs_dump_dinode(&VTOI(ap->a_vp)->i_din.ffs_din);
1667 }
1668 #endif
1669
1670 int
1671 lfs_mmap(void *v)
1672 {
1673 struct vop_mmap_args /* {
1674 const struct vnodeop_desc *a_desc;
1675 struct vnode *a_vp;
1676 int a_fflags;
1677 struct ucred *a_cred;
1678 struct proc *a_p;
1679 } */ *ap = v;
1680
1681 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1682 return EOPNOTSUPP;
1683 return ufs_mmap(v);
1684 }
1685 #endif /* LFS_UBC */
1686