lfs_vnops.c revision 1.95 1 /* $NetBSD: lfs_vnops.c,v 1.95 2003/03/08 21:46:06 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.95 2003/03/08 21:46:06 perseant Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109 extern int lfs_subsys_pages;
110
111 /* Global vfs data structures for lfs. */
112 int (**lfs_vnodeop_p)(void *);
113 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
114 { &vop_default_desc, vn_default_error },
115 { &vop_lookup_desc, ufs_lookup }, /* lookup */
116 { &vop_create_desc, lfs_create }, /* create */
117 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
118 { &vop_mknod_desc, lfs_mknod }, /* mknod */
119 { &vop_open_desc, ufs_open }, /* open */
120 { &vop_close_desc, lfs_close }, /* close */
121 { &vop_access_desc, ufs_access }, /* access */
122 { &vop_getattr_desc, lfs_getattr }, /* getattr */
123 { &vop_setattr_desc, lfs_setattr }, /* setattr */
124 { &vop_read_desc, lfs_read }, /* read */
125 { &vop_write_desc, lfs_write }, /* write */
126 { &vop_lease_desc, ufs_lease_check }, /* lease */
127 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
128 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
129 { &vop_poll_desc, ufs_poll }, /* poll */
130 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
131 { &vop_revoke_desc, ufs_revoke }, /* revoke */
132 { &vop_mmap_desc, lfs_mmap }, /* mmap */
133 { &vop_fsync_desc, lfs_fsync }, /* fsync */
134 { &vop_seek_desc, ufs_seek }, /* seek */
135 { &vop_remove_desc, lfs_remove }, /* remove */
136 { &vop_link_desc, lfs_link }, /* link */
137 { &vop_rename_desc, lfs_rename }, /* rename */
138 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
139 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
140 { &vop_symlink_desc, lfs_symlink }, /* symlink */
141 { &vop_readdir_desc, ufs_readdir }, /* readdir */
142 { &vop_readlink_desc, ufs_readlink }, /* readlink */
143 { &vop_abortop_desc, ufs_abortop }, /* abortop */
144 { &vop_inactive_desc, lfs_inactive }, /* inactive */
145 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
146 { &vop_lock_desc, ufs_lock }, /* lock */
147 { &vop_unlock_desc, ufs_unlock }, /* unlock */
148 { &vop_bmap_desc, ufs_bmap }, /* bmap */
149 { &vop_strategy_desc, lfs_strategy }, /* strategy */
150 { &vop_print_desc, ufs_print }, /* print */
151 { &vop_islocked_desc, ufs_islocked }, /* islocked */
152 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
153 { &vop_advlock_desc, ufs_advlock }, /* advlock */
154 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
155 { &vop_valloc_desc, lfs_valloc }, /* valloc */
156 { &vop_balloc_desc, lfs_balloc }, /* balloc */
157 { &vop_vfree_desc, lfs_vfree }, /* vfree */
158 { &vop_truncate_desc, lfs_truncate }, /* truncate */
159 { &vop_update_desc, lfs_update }, /* update */
160 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
161 { &vop_getpages_desc, lfs_getpages }, /* getpages */
162 { &vop_putpages_desc, lfs_putpages }, /* putpages */
163 { NULL, NULL }
164 };
165 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
166 { &lfs_vnodeop_p, lfs_vnodeop_entries };
167
168 int (**lfs_specop_p)(void *);
169 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
170 { &vop_default_desc, vn_default_error },
171 { &vop_lookup_desc, spec_lookup }, /* lookup */
172 { &vop_create_desc, spec_create }, /* create */
173 { &vop_mknod_desc, spec_mknod }, /* mknod */
174 { &vop_open_desc, spec_open }, /* open */
175 { &vop_close_desc, lfsspec_close }, /* close */
176 { &vop_access_desc, ufs_access }, /* access */
177 { &vop_getattr_desc, lfs_getattr }, /* getattr */
178 { &vop_setattr_desc, lfs_setattr }, /* setattr */
179 { &vop_read_desc, ufsspec_read }, /* read */
180 { &vop_write_desc, ufsspec_write }, /* write */
181 { &vop_lease_desc, spec_lease_check }, /* lease */
182 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
183 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
184 { &vop_poll_desc, spec_poll }, /* poll */
185 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
186 { &vop_revoke_desc, spec_revoke }, /* revoke */
187 { &vop_mmap_desc, spec_mmap }, /* mmap */
188 { &vop_fsync_desc, spec_fsync }, /* fsync */
189 { &vop_seek_desc, spec_seek }, /* seek */
190 { &vop_remove_desc, spec_remove }, /* remove */
191 { &vop_link_desc, spec_link }, /* link */
192 { &vop_rename_desc, spec_rename }, /* rename */
193 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
194 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
195 { &vop_symlink_desc, spec_symlink }, /* symlink */
196 { &vop_readdir_desc, spec_readdir }, /* readdir */
197 { &vop_readlink_desc, spec_readlink }, /* readlink */
198 { &vop_abortop_desc, spec_abortop }, /* abortop */
199 { &vop_inactive_desc, lfs_inactive }, /* inactive */
200 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
201 { &vop_lock_desc, ufs_lock }, /* lock */
202 { &vop_unlock_desc, ufs_unlock }, /* unlock */
203 { &vop_bmap_desc, spec_bmap }, /* bmap */
204 { &vop_strategy_desc, spec_strategy }, /* strategy */
205 { &vop_print_desc, ufs_print }, /* print */
206 { &vop_islocked_desc, ufs_islocked }, /* islocked */
207 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
208 { &vop_advlock_desc, spec_advlock }, /* advlock */
209 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
210 { &vop_valloc_desc, spec_valloc }, /* valloc */
211 { &vop_vfree_desc, lfs_vfree }, /* vfree */
212 { &vop_truncate_desc, spec_truncate }, /* truncate */
213 { &vop_update_desc, lfs_update }, /* update */
214 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
215 { &vop_getpages_desc, spec_getpages }, /* getpages */
216 { &vop_putpages_desc, spec_putpages }, /* putpages */
217 { NULL, NULL }
218 };
219 const struct vnodeopv_desc lfs_specop_opv_desc =
220 { &lfs_specop_p, lfs_specop_entries };
221
222 int (**lfs_fifoop_p)(void *);
223 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
224 { &vop_default_desc, vn_default_error },
225 { &vop_lookup_desc, fifo_lookup }, /* lookup */
226 { &vop_create_desc, fifo_create }, /* create */
227 { &vop_mknod_desc, fifo_mknod }, /* mknod */
228 { &vop_open_desc, fifo_open }, /* open */
229 { &vop_close_desc, lfsfifo_close }, /* close */
230 { &vop_access_desc, ufs_access }, /* access */
231 { &vop_getattr_desc, lfs_getattr }, /* getattr */
232 { &vop_setattr_desc, lfs_setattr }, /* setattr */
233 { &vop_read_desc, ufsfifo_read }, /* read */
234 { &vop_write_desc, ufsfifo_write }, /* write */
235 { &vop_lease_desc, fifo_lease_check }, /* lease */
236 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
237 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
238 { &vop_poll_desc, fifo_poll }, /* poll */
239 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
240 { &vop_revoke_desc, fifo_revoke }, /* revoke */
241 { &vop_mmap_desc, fifo_mmap }, /* mmap */
242 { &vop_fsync_desc, fifo_fsync }, /* fsync */
243 { &vop_seek_desc, fifo_seek }, /* seek */
244 { &vop_remove_desc, fifo_remove }, /* remove */
245 { &vop_link_desc, fifo_link }, /* link */
246 { &vop_rename_desc, fifo_rename }, /* rename */
247 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
248 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
249 { &vop_symlink_desc, fifo_symlink }, /* symlink */
250 { &vop_readdir_desc, fifo_readdir }, /* readdir */
251 { &vop_readlink_desc, fifo_readlink }, /* readlink */
252 { &vop_abortop_desc, fifo_abortop }, /* abortop */
253 { &vop_inactive_desc, lfs_inactive }, /* inactive */
254 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
255 { &vop_lock_desc, ufs_lock }, /* lock */
256 { &vop_unlock_desc, ufs_unlock }, /* unlock */
257 { &vop_bmap_desc, fifo_bmap }, /* bmap */
258 { &vop_strategy_desc, fifo_strategy }, /* strategy */
259 { &vop_print_desc, ufs_print }, /* print */
260 { &vop_islocked_desc, ufs_islocked }, /* islocked */
261 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
262 { &vop_advlock_desc, fifo_advlock }, /* advlock */
263 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
264 { &vop_valloc_desc, fifo_valloc }, /* valloc */
265 { &vop_vfree_desc, lfs_vfree }, /* vfree */
266 { &vop_truncate_desc, fifo_truncate }, /* truncate */
267 { &vop_update_desc, lfs_update }, /* update */
268 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
269 { &vop_putpages_desc, fifo_putpages }, /* putpages */
270 { NULL, NULL }
271 };
272 const struct vnodeopv_desc lfs_fifoop_opv_desc =
273 { &lfs_fifoop_p, lfs_fifoop_entries };
274
275 /*
276 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
277 */
278 void
279 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
280 {
281 LFS_ITIMES(ip, acc, mod, cre);
282 }
283
284 #define LFS_READWRITE
285 #include <ufs/ufs/ufs_readwrite.c>
286 #undef LFS_READWRITE
287
288 /*
289 * Synch an open file.
290 */
291 /* ARGSUSED */
292 int
293 lfs_fsync(void *v)
294 {
295 struct vop_fsync_args /* {
296 struct vnode *a_vp;
297 struct ucred *a_cred;
298 int a_flags;
299 off_t offlo;
300 off_t offhi;
301 struct proc *a_p;
302 } */ *ap = v;
303 struct vnode *vp = ap->a_vp;
304 int error, wait;
305
306 /*
307 * Trickle sync checks for need to do a checkpoint after possible
308 * activity from the pagedaemon.
309 */
310 if (ap->a_flags & FSYNC_LAZY) {
311 wakeup(&lfs_writer_daemon);
312 return 0;
313 }
314
315 wait = (ap->a_flags & FSYNC_WAIT);
316 do {
317 #ifdef DEBUG
318 struct buf *bp;
319 #endif
320
321 simple_lock(&vp->v_interlock);
322 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
323 round_page(ap->a_offhi),
324 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
325 if (error)
326 return error;
327 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
328 if (wait && error == 0 && !VPISEMPTY(vp)) {
329 #ifdef DEBUG
330 printf("lfs_fsync: reflushing ino %d\n",
331 VTOI(vp)->i_number);
332 printf("vflags %x iflags %x npages %d\n",
333 vp->v_flag, VTOI(vp)->i_flag,
334 vp->v_uobj.uo_npages);
335 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
336 printf("%" PRId64 " (%lx)", bp->b_lblkno,
337 bp->b_flags);
338 printf("\n");
339 #endif
340 VTOI(vp)->i_flag |= IN_MODIFIED;
341 }
342 } while (wait && error == 0 && !VPISEMPTY(vp));
343
344 return error;
345 }
346
347 /*
348 * Take IN_ADIROP off, then call ufs_inactive.
349 */
350 int
351 lfs_inactive(void *v)
352 {
353 struct vop_inactive_args /* {
354 struct vnode *a_vp;
355 struct proc *a_p;
356 } */ *ap = v;
357
358 KASSERT(VTOI(ap->a_vp)->i_ffs_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
359
360 lfs_unmark_vnode(ap->a_vp);
361
362 return ufs_inactive(v);
363 }
364
365 /*
366 * These macros are used to bracket UFS directory ops, so that we can
367 * identify all the pages touched during directory ops which need to
368 * be ordered and flushed atomically, so that they may be recovered.
369 */
370 /*
371 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
372 * the cache from reclaiming them while a dirop is in progress, we must
373 * also manage the number of nodes so marked (otherwise we can run out).
374 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
375 * is decremented during segment write, when VDIROP is taken off.
376 */
377 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
378 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
379 static int lfs_set_dirop(struct vnode *, struct vnode *);
380 extern int lfs_dirvcount;
381 extern int lfs_do_flush;
382
383 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
384
385 static int
386 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
387 {
388 struct lfs *fs;
389 int error;
390
391 KASSERT(VOP_ISLOCKED(vp));
392 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
393
394 fs = VTOI(vp)->i_lfs;
395 /*
396 * We might need one directory block plus supporting indirect blocks,
397 * plus an inode block and ifile page for the new vnode.
398 */
399 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
400 return (error);
401
402 if (fs->lfs_dirops == 0)
403 lfs_check(vp, LFS_UNUSED_LBN, 0);
404 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
405 if (fs->lfs_writer)
406 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
407 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
408 wakeup(&lfs_writer_daemon);
409 preempt(NULL);
410 }
411
412 if (lfs_dirvcount > LFS_MAX_DIROP) {
413 #ifdef DEBUG_LFS
414 printf("lfs_set_dirop: sleeping with dirops=%d, "
415 "dirvcount=%d\n", fs->lfs_dirops,
416 lfs_dirvcount);
417 #endif
418 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
419 "lfs_maxdirop", 0)) != 0) {
420 goto unreserve;
421 }
422 }
423 }
424 ++fs->lfs_dirops;
425 fs->lfs_doifile = 1;
426
427 /* Hold a reference so SET_ENDOP will be happy */
428 vref(vp);
429 if (vp2)
430 vref(vp2);
431
432 return 0;
433
434 unreserve:
435 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
436 return error;
437 }
438
439 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
440 #define SET_ENDOP2(fs, vp, vp2, str) { \
441 --(fs)->lfs_dirops; \
442 if (!(fs)->lfs_dirops) { \
443 if ((fs)->lfs_nadirop) { \
444 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
445 (str), (fs)->lfs_nadirop); \
446 } \
447 wakeup(&(fs)->lfs_writer); \
448 lfs_check((vp),LFS_UNUSED_LBN,0); \
449 } \
450 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
451 vrele(vp); \
452 if (vp2) \
453 vrele(vp2); \
454 }
455
456 #define MARK_VNODE(dvp) do { \
457 struct inode *_ip = VTOI(dvp); \
458 struct lfs *_fs = _ip->i_lfs; \
459 \
460 if (!((dvp)->v_flag & VDIROP)) { \
461 (void)lfs_vref(dvp); \
462 ++lfs_dirvcount; \
463 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
464 } \
465 (dvp)->v_flag |= VDIROP; \
466 if (!(_ip->i_flag & IN_ADIROP)) { \
467 ++_fs->lfs_nadirop; \
468 } \
469 _ip->i_flag |= IN_ADIROP; \
470 } while (0)
471
472 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
473
474 void lfs_unmark_vnode(struct vnode *vp)
475 {
476 struct inode *ip;
477
478 ip = VTOI(vp);
479
480 if (ip->i_flag & IN_ADIROP)
481 --ip->i_lfs->lfs_nadirop;
482 ip->i_flag &= ~IN_ADIROP;
483 }
484
485 int
486 lfs_symlink(void *v)
487 {
488 struct vop_symlink_args /* {
489 struct vnode *a_dvp;
490 struct vnode **a_vpp;
491 struct componentname *a_cnp;
492 struct vattr *a_vap;
493 char *a_target;
494 } */ *ap = v;
495 int error;
496
497 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
498 vput(ap->a_dvp);
499 return error;
500 }
501 MARK_VNODE(ap->a_dvp);
502 error = ufs_symlink(ap);
503 UNMARK_VNODE(ap->a_dvp);
504 if (*(ap->a_vpp))
505 UNMARK_VNODE(*(ap->a_vpp));
506 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
507 return (error);
508 }
509
510 int
511 lfs_mknod(void *v)
512 {
513 struct vop_mknod_args /* {
514 struct vnode *a_dvp;
515 struct vnode **a_vpp;
516 struct componentname *a_cnp;
517 struct vattr *a_vap;
518 } */ *ap = v;
519 struct vattr *vap = ap->a_vap;
520 struct vnode **vpp = ap->a_vpp;
521 struct inode *ip;
522 int error;
523 struct mount *mp;
524 ino_t ino;
525
526 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
527 vput(ap->a_dvp);
528 return error;
529 }
530 MARK_VNODE(ap->a_dvp);
531 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
532 ap->a_dvp, vpp, ap->a_cnp);
533 UNMARK_VNODE(ap->a_dvp);
534 if (*(ap->a_vpp))
535 UNMARK_VNODE(*(ap->a_vpp));
536
537 /* Either way we're done with the dirop at this point */
538 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
539
540 if (error)
541 return (error);
542
543 ip = VTOI(*vpp);
544 mp = (*vpp)->v_mount;
545 ino = ip->i_number;
546 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
547 if (vap->va_rdev != VNOVAL) {
548 /*
549 * Want to be able to use this to make badblock
550 * inodes, so don't truncate the dev number.
551 */
552 #if 0
553 ip->i_ffs_rdev = ufs_rw32(vap->va_rdev,
554 UFS_MPNEEDSWAP((*vpp)->v_mount));
555 #else
556 ip->i_ffs_rdev = vap->va_rdev;
557 #endif
558 }
559 /*
560 * Call fsync to write the vnode so that we don't have to deal with
561 * flushing it when it's marked VDIROP|VXLOCK.
562 *
563 * XXX KS - If we can't flush we also can't call vgone(), so must
564 * return. But, that leaves this vnode in limbo, also not good.
565 * Can this ever happen (barring hardware failure)?
566 */
567 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
568 curproc)) != 0) {
569 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
570 VTOI(*vpp)->i_number);
571 return (error);
572 }
573 /*
574 * Remove vnode so that it will be reloaded by VFS_VGET and
575 * checked to see if it is an alias of an existing entry in
576 * the inode cache.
577 */
578 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
579 VOP_UNLOCK(*vpp, 0);
580 lfs_vunref(*vpp);
581 (*vpp)->v_type = VNON;
582 vgone(*vpp);
583 error = VFS_VGET(mp, ino, vpp);
584 if (error != 0) {
585 *vpp = NULL;
586 return (error);
587 }
588 return (0);
589 }
590
591 int
592 lfs_create(void *v)
593 {
594 struct vop_create_args /* {
595 struct vnode *a_dvp;
596 struct vnode **a_vpp;
597 struct componentname *a_cnp;
598 struct vattr *a_vap;
599 } */ *ap = v;
600 int error;
601
602 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
603 vput(ap->a_dvp);
604 return error;
605 }
606 MARK_VNODE(ap->a_dvp);
607 error = ufs_create(ap);
608 UNMARK_VNODE(ap->a_dvp);
609 if (*(ap->a_vpp))
610 UNMARK_VNODE(*(ap->a_vpp));
611 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
612 return (error);
613 }
614
615 int
616 lfs_mkdir(void *v)
617 {
618 struct vop_mkdir_args /* {
619 struct vnode *a_dvp;
620 struct vnode **a_vpp;
621 struct componentname *a_cnp;
622 struct vattr *a_vap;
623 } */ *ap = v;
624 int error;
625
626 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
627 vput(ap->a_dvp);
628 return error;
629 }
630 MARK_VNODE(ap->a_dvp);
631 error = ufs_mkdir(ap);
632 UNMARK_VNODE(ap->a_dvp);
633 if (*(ap->a_vpp))
634 UNMARK_VNODE(*(ap->a_vpp));
635 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
636 return (error);
637 }
638
639 int
640 lfs_remove(void *v)
641 {
642 struct vop_remove_args /* {
643 struct vnode *a_dvp;
644 struct vnode *a_vp;
645 struct componentname *a_cnp;
646 } */ *ap = v;
647 struct vnode *dvp, *vp;
648 int error;
649
650 dvp = ap->a_dvp;
651 vp = ap->a_vp;
652 if ((error = SET_DIROP2(dvp, vp)) != 0) {
653 if (dvp == vp)
654 vrele(vp);
655 else
656 vput(vp);
657 vput(dvp);
658 return error;
659 }
660 MARK_VNODE(dvp);
661 MARK_VNODE(vp);
662 error = ufs_remove(ap);
663 UNMARK_VNODE(dvp);
664 UNMARK_VNODE(vp);
665
666 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
667 return (error);
668 }
669
670 int
671 lfs_rmdir(void *v)
672 {
673 struct vop_rmdir_args /* {
674 struct vnodeop_desc *a_desc;
675 struct vnode *a_dvp;
676 struct vnode *a_vp;
677 struct componentname *a_cnp;
678 } */ *ap = v;
679 struct vnode *vp;
680 int error;
681
682 vp = ap->a_vp;
683 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
684 vrele(ap->a_dvp);
685 if (ap->a_vp != ap->a_dvp)
686 VOP_UNLOCK(ap->a_dvp, 0);
687 vput(vp);
688 return error;
689 }
690 MARK_VNODE(ap->a_dvp);
691 MARK_VNODE(vp);
692 error = ufs_rmdir(ap);
693 UNMARK_VNODE(ap->a_dvp);
694 UNMARK_VNODE(vp);
695
696 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
697 return (error);
698 }
699
700 int
701 lfs_link(void *v)
702 {
703 struct vop_link_args /* {
704 struct vnode *a_dvp;
705 struct vnode *a_vp;
706 struct componentname *a_cnp;
707 } */ *ap = v;
708 int error;
709
710 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
711 vput(ap->a_dvp);
712 return error;
713 }
714 MARK_VNODE(ap->a_dvp);
715 error = ufs_link(ap);
716 UNMARK_VNODE(ap->a_dvp);
717 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
718 return (error);
719 }
720
721 int
722 lfs_rename(void *v)
723 {
724 struct vop_rename_args /* {
725 struct vnode *a_fdvp;
726 struct vnode *a_fvp;
727 struct componentname *a_fcnp;
728 struct vnode *a_tdvp;
729 struct vnode *a_tvp;
730 struct componentname *a_tcnp;
731 } */ *ap = v;
732 struct vnode *tvp, *fvp, *tdvp, *fdvp;
733 struct componentname *tcnp, *fcnp;
734 int error;
735 struct lfs *fs;
736
737 fs = VTOI(ap->a_fdvp)->i_lfs;
738 tvp = ap->a_tvp;
739 tdvp = ap->a_tdvp;
740 tcnp = ap->a_tcnp;
741 fvp = ap->a_fvp;
742 fdvp = ap->a_fdvp;
743 fcnp = ap->a_fcnp;
744
745 /*
746 * Check for cross-device rename.
747 * If it is, we don't want to set dirops, just error out.
748 * (In particular note that MARK_VNODE(tdvp) will DTWT on
749 * a cross-device rename.)
750 *
751 * Copied from ufs_rename.
752 */
753 if ((fvp->v_mount != tdvp->v_mount) ||
754 (tvp && (fvp->v_mount != tvp->v_mount))) {
755 error = EXDEV;
756 goto errout;
757 }
758
759 /*
760 * Check to make sure we're not renaming a vnode onto itself
761 * (deleting a hard link by renaming one name onto another);
762 * if we are we can't recursively call VOP_REMOVE since that
763 * would leave us with an unaccounted-for number of live dirops.
764 *
765 * Inline the relevant section of ufs_rename here, *before*
766 * calling SET_DIROP2.
767 */
768 if (tvp && ((VTOI(tvp)->i_ffs_flags & (IMMUTABLE | APPEND)) ||
769 (VTOI(tdvp)->i_ffs_flags & APPEND))) {
770 error = EPERM;
771 goto errout;
772 }
773 if (fvp == tvp) {
774 if (fvp->v_type == VDIR) {
775 error = EINVAL;
776 goto errout;
777 }
778
779 /* Release destination completely. */
780 VOP_ABORTOP(tdvp, tcnp);
781 vput(tdvp);
782 vput(tvp);
783
784 /* Delete source. */
785 vrele(fvp);
786 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
787 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
788 fcnp->cn_nameiop = DELETE;
789 if ((error = relookup(fdvp, &fvp, fcnp))){
790 /* relookup blew away fdvp */
791 return (error);
792 }
793 return (VOP_REMOVE(fdvp, fvp, fcnp));
794 }
795
796 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
797 goto errout;
798 MARK_VNODE(fdvp);
799 MARK_VNODE(tdvp);
800 MARK_VNODE(fvp);
801 if (tvp) {
802 MARK_VNODE(tvp);
803 }
804
805 error = ufs_rename(ap);
806 UNMARK_VNODE(fdvp);
807 UNMARK_VNODE(tdvp);
808 UNMARK_VNODE(fvp);
809 if (tvp) {
810 UNMARK_VNODE(tvp);
811 }
812 SET_ENDOP2(fs, tdvp, tvp, "rename");
813 return (error);
814
815 errout:
816 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
817 if (tdvp == tvp)
818 vrele(tdvp);
819 else
820 vput(tdvp);
821 if (tvp)
822 vput(tvp);
823 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
824 vrele(fdvp);
825 vrele(fvp);
826 return (error);
827 }
828
829 /* XXX hack to avoid calling ITIMES in getattr */
830 int
831 lfs_getattr(void *v)
832 {
833 struct vop_getattr_args /* {
834 struct vnode *a_vp;
835 struct vattr *a_vap;
836 struct ucred *a_cred;
837 struct proc *a_p;
838 } */ *ap = v;
839 struct vnode *vp = ap->a_vp;
840 struct inode *ip = VTOI(vp);
841 struct vattr *vap = ap->a_vap;
842 struct lfs *fs = ip->i_lfs;
843 /*
844 * Copy from inode table
845 */
846 vap->va_fsid = ip->i_dev;
847 vap->va_fileid = ip->i_number;
848 vap->va_mode = ip->i_ffs_mode & ~IFMT;
849 vap->va_nlink = ip->i_ffs_nlink;
850 vap->va_uid = ip->i_ffs_uid;
851 vap->va_gid = ip->i_ffs_gid;
852 vap->va_rdev = (dev_t)ip->i_ffs_rdev;
853 vap->va_size = vp->v_size;
854 vap->va_atime.tv_sec = ip->i_ffs_atime;
855 vap->va_atime.tv_nsec = ip->i_ffs_atimensec;
856 vap->va_mtime.tv_sec = ip->i_ffs_mtime;
857 vap->va_mtime.tv_nsec = ip->i_ffs_mtimensec;
858 vap->va_ctime.tv_sec = ip->i_ffs_ctime;
859 vap->va_ctime.tv_nsec = ip->i_ffs_ctimensec;
860 vap->va_flags = ip->i_ffs_flags;
861 vap->va_gen = ip->i_ffs_gen;
862 /* this doesn't belong here */
863 if (vp->v_type == VBLK)
864 vap->va_blocksize = BLKDEV_IOSIZE;
865 else if (vp->v_type == VCHR)
866 vap->va_blocksize = MAXBSIZE;
867 else
868 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
869 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
870 vap->va_type = vp->v_type;
871 vap->va_filerev = ip->i_modrev;
872 return (0);
873 }
874
875 /*
876 * Check to make sure the inode blocks won't choke the buffer
877 * cache, then call ufs_setattr as usual.
878 */
879 int
880 lfs_setattr(void *v)
881 {
882 struct vop_getattr_args /* {
883 struct vnode *a_vp;
884 struct vattr *a_vap;
885 struct ucred *a_cred;
886 struct proc *a_p;
887 } */ *ap = v;
888 struct vnode *vp = ap->a_vp;
889
890 lfs_check(vp, LFS_UNUSED_LBN, 0);
891 return ufs_setattr(v);
892 }
893
894 /*
895 * Close called
896 *
897 * XXX -- we were using ufs_close, but since it updates the
898 * times on the inode, we might need to bump the uinodes
899 * count.
900 */
901 /* ARGSUSED */
902 int
903 lfs_close(void *v)
904 {
905 struct vop_close_args /* {
906 struct vnode *a_vp;
907 int a_fflag;
908 struct ucred *a_cred;
909 struct proc *a_p;
910 } */ *ap = v;
911 struct vnode *vp = ap->a_vp;
912 struct inode *ip = VTOI(vp);
913 struct timespec ts;
914
915 if (vp->v_usecount > 1) {
916 TIMEVAL_TO_TIMESPEC(&time, &ts);
917 LFS_ITIMES(ip, &ts, &ts, &ts);
918 }
919 return (0);
920 }
921
922 /*
923 * Close wrapper for special devices.
924 *
925 * Update the times on the inode then do device close.
926 */
927 int
928 lfsspec_close(void *v)
929 {
930 struct vop_close_args /* {
931 struct vnode *a_vp;
932 int a_fflag;
933 struct ucred *a_cred;
934 struct proc *a_p;
935 } */ *ap = v;
936 struct vnode *vp;
937 struct inode *ip;
938 struct timespec ts;
939
940 vp = ap->a_vp;
941 ip = VTOI(vp);
942 if (vp->v_usecount > 1) {
943 TIMEVAL_TO_TIMESPEC(&time, &ts);
944 LFS_ITIMES(ip, &ts, &ts, &ts);
945 }
946 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
947 }
948
949 /*
950 * Close wrapper for fifo's.
951 *
952 * Update the times on the inode then do device close.
953 */
954 int
955 lfsfifo_close(void *v)
956 {
957 struct vop_close_args /* {
958 struct vnode *a_vp;
959 int a_fflag;
960 struct ucred *a_cred;
961 struct proc *a_p;
962 } */ *ap = v;
963 struct vnode *vp;
964 struct inode *ip;
965 struct timespec ts;
966
967 vp = ap->a_vp;
968 ip = VTOI(vp);
969 if (ap->a_vp->v_usecount > 1) {
970 TIMEVAL_TO_TIMESPEC(&time, &ts);
971 LFS_ITIMES(ip, &ts, &ts, &ts);
972 }
973 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
974 }
975
976 /*
977 * Reclaim an inode so that it can be used for other purposes.
978 */
979 int lfs_no_inactive = 0;
980
981 int
982 lfs_reclaim(void *v)
983 {
984 struct vop_reclaim_args /* {
985 struct vnode *a_vp;
986 struct proc *a_p;
987 } */ *ap = v;
988 struct vnode *vp = ap->a_vp;
989 struct inode *ip = VTOI(vp);
990 int error;
991
992 KASSERT(ip->i_ffs_nlink == ip->i_ffs_effnlink);
993
994 LFS_CLR_UINO(ip, IN_ALLMOD);
995 if ((error = ufs_reclaim(vp, ap->a_p)))
996 return (error);
997 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
998 ip->inode_ext.lfs = NULL;
999 pool_put(&lfs_inode_pool, vp->v_data);
1000 vp->v_data = NULL;
1001 return (0);
1002 }
1003
1004 /*
1005 * Read a block from, or write a block to, a storage device.
1006 * In order to avoid reading blocks that are in the process of being
1007 * written by the cleaner---and hence are not mutexed by the normal
1008 * buffer cache / page cache mechanisms---check for collisions before
1009 * reading.
1010 *
1011 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1012 * the active cleaner test.
1013 *
1014 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1015 */
1016 int
1017 lfs_strategy(void *v)
1018 {
1019 struct vop_strategy_args /* {
1020 struct buf *a_bp;
1021 } */ *ap = v;
1022 struct buf *bp;
1023 struct lfs *fs;
1024 struct vnode *vp;
1025 struct inode *ip;
1026 daddr_t tbn;
1027 int i, sn, error, slept;
1028
1029 bp = ap->a_bp;
1030 vp = bp->b_vp;
1031 ip = VTOI(vp);
1032 fs = ip->i_lfs;
1033
1034 if (vp->v_type == VBLK || vp->v_type == VCHR)
1035 panic("lfs_strategy: spec");
1036 KASSERT(bp->b_bcount != 0);
1037 if (bp->b_blkno == bp->b_lblkno) {
1038 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1039 NULL);
1040 if (error) {
1041 bp->b_error = error;
1042 bp->b_flags |= B_ERROR;
1043 biodone(bp);
1044 return (error);
1045 }
1046 if ((long)bp->b_blkno == -1) /* no valid data */
1047 clrbuf(bp);
1048 }
1049 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1050 biodone(bp);
1051 return (0);
1052 }
1053
1054 /* XXX simplelock seglock */
1055 slept = 1;
1056 while (slept && bp->b_flags & B_READ && fs->lfs_seglock) {
1057 /*
1058 * Look through list of intervals.
1059 * There will only be intervals to look through
1060 * if the cleaner holds the seglock.
1061 * Since the cleaner is synchronous, we can trust
1062 * the list of intervals to be current.
1063 */
1064 tbn = dbtofsb(fs, bp->b_blkno);
1065 sn = dtosn(fs, tbn);
1066 slept = 0;
1067 for (i = 0; i < fs->lfs_cleanind; i++) {
1068 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1069 tbn >= fs->lfs_cleanint[i]) {
1070 #ifdef DEBUG_LFS
1071 printf("lfs_strategy: ino %d lbn %" PRId64
1072 " ind %d sn %d fsb %" PRIx32
1073 " given sn %d fsb %" PRIx64 "\n",
1074 ip->i_number, bp->b_lblkno, i,
1075 dtosn(fs, fs->lfs_cleanint[i]),
1076 fs->lfs_cleanint[i], sn, tbn);
1077 printf("lfs_strategy: sleeping on ino %d lbn %"
1078 PRId64 "\n", ip->i_number, bp->b_lblkno);
1079 #endif
1080 tsleep(&fs->lfs_seglock, PRIBIO+1,
1081 "lfs_strategy", 0);
1082 /* Things may be different now; start over. */
1083 slept = 1;
1084 break;
1085 }
1086 }
1087 }
1088
1089 vp = ip->i_devvp;
1090 bp->b_dev = vp->v_rdev;
1091 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1092 return (0);
1093 }
1094
1095 static void
1096 lfs_flush_dirops(struct lfs *fs)
1097 {
1098 struct inode *ip, *nip;
1099 struct vnode *vp;
1100 extern int lfs_dostats;
1101 struct segment *sp;
1102 int needunlock;
1103
1104 if (fs->lfs_ronly)
1105 return;
1106
1107 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1108 return;
1109
1110 /* XXX simplelock fs->lfs_dirops */
1111 while (fs->lfs_dirops > 0) {
1112 ++fs->lfs_diropwait;
1113 tsleep(&fs->lfs_writer, PRIBIO+1, "pndirop", 0);
1114 --fs->lfs_diropwait;
1115 }
1116 /* disallow dirops during flush */
1117 fs->lfs_writer++;
1118
1119 if (lfs_dostats)
1120 ++lfs_stats.flush_invoked;
1121
1122 /*
1123 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1124 * Technically this is a checkpoint (the on-disk state is valid)
1125 * even though we are leaving out all the file data.
1126 */
1127 lfs_imtime(fs);
1128 lfs_seglock(fs, SEGM_CKP);
1129 sp = fs->lfs_sp;
1130
1131 /*
1132 * lfs_writevnodes, optimized to get dirops out of the way.
1133 * Only write dirops, and don't flush files' pages, only
1134 * blocks from the directories.
1135 *
1136 * We don't need to vref these files because they are
1137 * dirops and so hold an extra reference until the
1138 * segunlock clears them of that status.
1139 *
1140 * We don't need to check for IN_ADIROP because we know that
1141 * no dirops are active.
1142 *
1143 */
1144 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1145 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1146 vp = ITOV(ip);
1147
1148 /*
1149 * All writes to directories come from dirops; all
1150 * writes to files' direct blocks go through the page
1151 * cache, which we're not touching. Reads to files
1152 * and/or directories will not be affected by writing
1153 * directory blocks inodes and file inodes. So we don't
1154 * really need to lock. If we don't lock, though,
1155 * make sure that we don't clear IN_MODIFIED
1156 * unnecessarily.
1157 */
1158 if (vp->v_flag & VXLOCK)
1159 continue;
1160 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1161 LK_NOWAIT) == 0) {
1162 needunlock = 1;
1163 } else {
1164 printf("lfs_flush_dirops: flushing locked ino %d\n",
1165 VTOI(vp)->i_number);
1166 needunlock = 0;
1167 }
1168 if (vp->v_type != VREG &&
1169 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1170 lfs_writefile(fs, sp, vp);
1171 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1172 !(ip->i_flag & IN_ALLMOD)) {
1173 LFS_SET_UINO(ip, IN_MODIFIED);
1174 }
1175 }
1176 (void) lfs_writeinode(fs, sp, ip);
1177 if (needunlock)
1178 VOP_UNLOCK(vp, 0);
1179 else
1180 LFS_SET_UINO(ip, IN_MODIFIED);
1181 }
1182 /* We've written all the dirops there are */
1183 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1184 (void) lfs_writeseg(fs, sp);
1185 lfs_segunlock(fs);
1186
1187 if (--fs->lfs_writer == 0)
1188 wakeup(&fs->lfs_dirops);
1189 }
1190
1191 /*
1192 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1193 */
1194 int
1195 lfs_fcntl(void *v)
1196 {
1197 struct vop_fcntl_args /* {
1198 struct vnode *a_vp;
1199 u_long a_command;
1200 caddr_t a_data;
1201 int a_fflag;
1202 struct ucred *a_cred;
1203 struct proc *a_p;
1204 } */ *ap = v;
1205 struct timeval *tvp;
1206 BLOCK_INFO *blkiov;
1207 CLEANERINFO *cip;
1208 int blkcnt, error, oclean;
1209 struct lfs_fcntl_markv blkvp;
1210 fsid_t *fsidp;
1211 struct lfs *fs;
1212 struct buf *bp;
1213 daddr_t off;
1214
1215 /* Only respect LFS fcntls on fs root or Ifile */
1216 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1217 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1218 return ufs_fcntl(v);
1219 }
1220
1221 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1222
1223 switch(ap->a_command) {
1224 case LFCNSEGWAITALL:
1225 fsidp = NULL;
1226 /* FALLSTHROUGH */
1227 case LFCNSEGWAIT:
1228 tvp = (struct timeval *)ap->a_data;
1229 VOP_UNLOCK(ap->a_vp, 0);
1230 error = lfs_segwait(fsidp, tvp);
1231 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1232 return error;
1233
1234 case LFCNBMAPV:
1235 case LFCNMARKV:
1236 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1237 return (error);
1238 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1239
1240 blkcnt = blkvp.blkcnt;
1241 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1242 return (EINVAL);
1243 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1244 if ((error = copyin(blkvp.blkiov, blkiov,
1245 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1246 free(blkiov, M_SEGMENT);
1247 return error;
1248 }
1249
1250 VOP_UNLOCK(ap->a_vp, 0);
1251 if (ap->a_command == LFCNBMAPV)
1252 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1253 else /* LFCNMARKV */
1254 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1255 if (error == 0)
1256 error = copyout(blkiov, blkvp.blkiov,
1257 blkcnt * sizeof(BLOCK_INFO));
1258 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1259 free(blkiov, M_SEGMENT);
1260 return error;
1261
1262 case LFCNRECLAIM:
1263 /*
1264 * Flush dirops and write Ifile, allowing empty segments
1265 * to be immediately reclaimed.
1266 */
1267 fs = VTOI(ap->a_vp)->i_lfs;
1268 off = fs->lfs_offset;
1269 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1270 lfs_flush_dirops(fs);
1271 LFS_CLEANERINFO(cip, fs, bp);
1272 oclean = cip->clean;
1273 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1274 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1275 lfs_segunlock(fs);
1276
1277 #ifdef DEBUG_LFS
1278 LFS_CLEANERINFO(cip, fs, bp);
1279 oclean = cip->clean;
1280 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1281 "%" PRId32 " segments (activesb %d)\n",
1282 fs->lfs_offset - off, cip->clean - oclean,
1283 fs->lfs_activesb);
1284 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1285 #endif
1286
1287 return 0;
1288
1289 default:
1290 return ufs_fcntl(v);
1291 }
1292 return 0;
1293 }
1294
1295 int
1296 lfs_getpages(void *v)
1297 {
1298 struct vop_getpages_args /* {
1299 struct vnode *a_vp;
1300 voff_t a_offset;
1301 struct vm_page **a_m;
1302 int *a_count;
1303 int a_centeridx;
1304 vm_prot_t a_access_type;
1305 int a_advice;
1306 int a_flags;
1307 } */ *ap = v;
1308
1309 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1310 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1311 }
1312 return genfs_getpages(v);
1313 }
1314
1315 /*
1316 * Make sure that for all pages in every block in the given range,
1317 * either all are dirty or all are clean. If any of the pages
1318 * we've seen so far are dirty, put the vnode on the paging chain,
1319 * and mark it IN_PAGING.
1320 */
1321 static int
1322 check_dirty(struct lfs *fs, struct vnode *vp,
1323 off_t startoffset, off_t endoffset, off_t blkeof,
1324 int flags)
1325 {
1326 int by_list;
1327 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1328 struct lwp *l = curlwp ? curlwp : &lwp0;
1329 off_t soff;
1330 voff_t off;
1331 int i, dirty, tdirty, nonexistent, any_dirty;
1332 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1333
1334 top:
1335 by_list = (vp->v_uobj.uo_npages <=
1336 ((endoffset - startoffset) >> PAGE_SHIFT) *
1337 UVM_PAGE_HASH_PENALTY);
1338 any_dirty = 0;
1339
1340 if (by_list) {
1341 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1342 PHOLD(l);
1343 } else {
1344 soff = startoffset;
1345 }
1346 while (by_list || soff < MIN(blkeof, endoffset)) {
1347 if (by_list) {
1348 if (pages_per_block > 1) {
1349 while (curpg && (curpg->offset & fs->lfs_bmask))
1350 curpg = TAILQ_NEXT(curpg, listq);
1351 }
1352 if (curpg == NULL)
1353 break;
1354 soff = curpg->offset;
1355 }
1356
1357 /*
1358 * Mark all pages in extended range busy; find out if any
1359 * of them are dirty.
1360 */
1361 nonexistent = dirty = 0;
1362 for (i = 0; i == 0 || i < pages_per_block; i++) {
1363 if (by_list && pages_per_block <= 1) {
1364 pgs[i] = pg = curpg;
1365 } else {
1366 off = soff + (i << PAGE_SHIFT);
1367 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1368 if (pg == NULL) {
1369 ++nonexistent;
1370 continue;
1371 }
1372 }
1373 KASSERT(pg != NULL);
1374 while (pg->flags & PG_BUSY) {
1375 pg->flags |= PG_WANTED;
1376 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1377 "lfsput", 0);
1378 simple_lock(&vp->v_interlock);
1379 if (by_list)
1380 goto top;
1381 }
1382 pg->flags |= PG_BUSY;
1383 UVM_PAGE_OWN(pg, "lfs_putpages");
1384
1385 pmap_page_protect(pg, VM_PROT_NONE);
1386 tdirty = (pmap_clear_modify(pg) ||
1387 (pg->flags & PG_CLEAN) == 0);
1388 dirty += tdirty;
1389 }
1390 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1391 if (by_list) {
1392 curpg = TAILQ_NEXT(curpg, listq);
1393 } else {
1394 soff += fs->lfs_bsize;
1395 }
1396 continue;
1397 }
1398
1399 any_dirty += dirty;
1400 KASSERT(nonexistent == 0);
1401
1402 /*
1403 * If any are dirty make all dirty; unbusy them,
1404 * but if we were asked to clean, wire them so that
1405 * the pagedaemon doesn't bother us about them while
1406 * they're on their way to disk.
1407 */
1408 for (i = 0; i == 0 || i < pages_per_block; i++) {
1409 pg = pgs[i];
1410 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1411 if (dirty) {
1412 pg->flags &= ~PG_CLEAN;
1413 if (flags & PGO_FREE) {
1414 /* XXXUBC need better way to update */
1415 lfs_subsys_pages += MIN(1, pages_per_block);
1416 /*
1417 * wire the page so that
1418 * pdaemon don't see it again.
1419 */
1420 uvm_lock_pageq();
1421 uvm_pagewire(pg);
1422 uvm_unlock_pageq();
1423
1424 /* Suspended write flag */
1425 pg->flags |= PG_DELWRI;
1426 }
1427 }
1428 if (pg->flags & PG_WANTED)
1429 wakeup(pg);
1430 pg->flags &= ~(PG_WANTED|PG_BUSY);
1431 UVM_PAGE_OWN(pg, NULL);
1432 }
1433
1434 if (by_list) {
1435 curpg = TAILQ_NEXT(curpg, listq);
1436 } else {
1437 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1438 }
1439 }
1440 if (by_list) {
1441 PRELE(l);
1442 }
1443
1444 /*
1445 * If any pages were dirty, mark this inode as "pageout requested",
1446 * and put it on the paging queue.
1447 * XXXUBC locking (check locking on dchainhd too)
1448 */
1449 #ifdef notyet
1450 if (any_dirty) {
1451 if (!(ip->i_flags & IN_PAGING)) {
1452 ip->i_flags |= IN_PAGING;
1453 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1454 }
1455 }
1456 #endif
1457 return any_dirty;
1458 }
1459
1460 /*
1461 * lfs_putpages functions like genfs_putpages except that
1462 *
1463 * (1) It needs to bounds-check the incoming requests to ensure that
1464 * they are block-aligned; if they are not, expand the range and
1465 * do the right thing in case, e.g., the requested range is clean
1466 * but the expanded range is dirty.
1467 * (2) It needs to explicitly send blocks to be written when it is done.
1468 * VOP_PUTPAGES is not ever called with the seglock held, so
1469 * we simply take the seglock and let lfs_segunlock wait for us.
1470 * XXX Actually we can be called with the seglock held, if we have
1471 * XXX to flush a vnode while lfs_markv is in operation. As of this
1472 * XXX writing we panic in this case.
1473 *
1474 * Assumptions:
1475 *
1476 * (1) The caller does not hold any pages in this vnode busy. If it does,
1477 * there is a danger that when we expand the page range and busy the
1478 * pages we will deadlock.
1479 * (2) We are called with vp->v_interlock held; we must return with it
1480 * released.
1481 * (3) We don't absolutely have to free pages right away, provided that
1482 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1483 * us a request with PGO_FREE, we take the pages out of the paging
1484 * queue and wake up the writer, which will handle freeing them for us.
1485 *
1486 * We ensure that for any filesystem block, all pages for that
1487 * block are either resident or not, even if those pages are higher
1488 * than EOF; that means that we will be getting requests to free
1489 * "unused" pages above EOF all the time, and should ignore them.
1490 */
1491
1492 int
1493 lfs_putpages(void *v)
1494 {
1495 int error;
1496 struct vop_putpages_args /* {
1497 struct vnode *a_vp;
1498 voff_t a_offlo;
1499 voff_t a_offhi;
1500 int a_flags;
1501 } */ *ap = v;
1502 struct vnode *vp;
1503 struct inode *ip;
1504 struct lfs *fs;
1505 struct segment *sp;
1506 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1507 off_t off, max_endoffset;
1508 int pages_per_block;
1509 int s, sync, dirty, pagedaemon;
1510 struct vm_page *pg;
1511 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1512
1513 vp = ap->a_vp;
1514 ip = VTOI(vp);
1515 fs = ip->i_lfs;
1516 sync = (ap->a_flags & PGO_SYNCIO);
1517 pagedaemon = (curproc == uvm.pagedaemon_proc);
1518
1519 /* Putpages does nothing for metadata. */
1520 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1521 simple_unlock(&vp->v_interlock);
1522 return 0;
1523 }
1524
1525 /*
1526 * If there are no pages, don't do anything.
1527 */
1528 if (vp->v_uobj.uo_npages == 0) {
1529 s = splbio();
1530 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1531 (vp->v_flag & VONWORKLST)) {
1532 vp->v_flag &= ~VONWORKLST;
1533 LIST_REMOVE(vp, v_synclist);
1534 }
1535 splx(s);
1536 simple_unlock(&vp->v_interlock);
1537 return 0;
1538 }
1539
1540 blkeof = blkroundup(fs, ip->i_ffs_size);
1541
1542 /*
1543 * Ignore requests to free pages past EOF but in the same block
1544 * as EOF, unless the request is synchronous. (XXX why sync?)
1545 * XXXUBC Make these pages look "active" so the pagedaemon won't
1546 * XXXUBC bother us with them again.
1547 */
1548 if (!sync && ap->a_offlo >= ip->i_ffs_size && ap->a_offlo < blkeof) {
1549 origoffset = ap->a_offlo;
1550 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1551 pg = uvm_pagelookup(&vp->v_uobj, off);
1552 KASSERT(pg != NULL);
1553 while (pg->flags & PG_BUSY) {
1554 pg->flags |= PG_WANTED;
1555 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1556 "lfsput2", 0);
1557 simple_lock(&vp->v_interlock);
1558 }
1559 uvm_lock_pageq();
1560 uvm_pageactivate(pg);
1561 uvm_unlock_pageq();
1562 }
1563 ap->a_offlo = blkeof;
1564 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1565 simple_unlock(&vp->v_interlock);
1566 return 0;
1567 }
1568 }
1569
1570 /*
1571 * Extend page range to start and end at block boundaries.
1572 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1573 */
1574 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1575 origoffset = ap->a_offlo;
1576 origendoffset = ap->a_offhi;
1577 startoffset = origoffset & ~(fs->lfs_bmask);
1578 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1579 << fs->lfs_bshift;
1580
1581 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1582 endoffset = max_endoffset;
1583 origendoffset = endoffset;
1584 } else {
1585 origendoffset = round_page(ap->a_offhi);
1586 endoffset = round_page(blkroundup(fs, origendoffset));
1587 }
1588
1589 KASSERT(startoffset > 0 || endoffset >= startoffset);
1590 if (startoffset == endoffset) {
1591 /* Nothing to do, why were we called? */
1592 simple_unlock(&vp->v_interlock);
1593 #ifdef DEBUG
1594 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1595 startoffset);
1596 #endif
1597 return 0;
1598 }
1599
1600 ap->a_offlo = startoffset;
1601 ap->a_offhi = endoffset;
1602
1603 if (!(ap->a_flags & PGO_CLEANIT))
1604 return genfs_putpages(v);
1605
1606 /*
1607 * Make sure that all pages in any given block are dirty, or
1608 * none of them are. Find out if any of the pages we've been
1609 * asked about are dirty. If none are dirty, send them on
1610 * through genfs_putpages(), albeit with adjusted offsets.
1611 * XXXUBC I am assuming here that they can't be dirtied in
1612 * XXXUBC the meantime, but I bet that's wrong.
1613 */
1614 dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags);
1615 if (!dirty)
1616 return genfs_putpages(v);
1617
1618 /*
1619 * Dirty and asked to clean.
1620 *
1621 * Pagedaemon can't actually write LFS pages; wake up
1622 * the writer to take care of that. The writer will
1623 * notice the pager inode queue and act on that.
1624 */
1625 if (pagedaemon) {
1626 ++fs->lfs_pdflush;
1627 wakeup(&lfs_writer_daemon);
1628 simple_unlock(&vp->v_interlock);
1629 return EWOULDBLOCK;
1630 }
1631
1632 /*
1633 * If this is a file created in a recent dirop, we can't flush its
1634 * inode until the dirop is complete. Drain dirops, then flush the
1635 * filesystem (taking care of any other pending dirops while we're
1636 * at it).
1637 */
1638 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1639 (vp->v_flag & VDIROP)) {
1640 int locked;
1641
1642 /* printf("putpages to clean VDIROP, flushing\n"); */
1643 while (fs->lfs_dirops > 0) {
1644 ++fs->lfs_diropwait;
1645 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1646 --fs->lfs_diropwait;
1647 }
1648 ++fs->lfs_writer;
1649 locked = VOP_ISLOCKED(vp) && /* XXX */
1650 vp->v_lock.lk_lockholder == curproc->p_pid;
1651 if (locked)
1652 VOP_UNLOCK(vp, 0);
1653 simple_unlock(&vp->v_interlock);
1654
1655 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1656
1657 simple_lock(&vp->v_interlock);
1658 if (locked)
1659 VOP_LOCK(vp, LK_EXCLUSIVE);
1660 if (--fs->lfs_writer == 0)
1661 wakeup(&fs->lfs_dirops);
1662
1663 /* XXX the flush should have taken care of this one too! */
1664 }
1665
1666
1667 /*
1668 * This is it. We are going to write some pages. From here on
1669 * down it's all just mechanics.
1670 *
1671 * If there are more than one page per block, we don't want to get
1672 * caught locking them backwards; so set PGO_BUSYFAIL to avoid
1673 * deadlocks. Also, don't let genfs_putpages wait;
1674 * lfs_segunlock will wait for us, if need be.
1675 */
1676 ap->a_flags &= ~PGO_SYNCIO;
1677 if (pages_per_block > 1)
1678 ap->a_flags |= PGO_BUSYFAIL;
1679
1680 /*
1681 * If we've already got the seglock, flush the node and return.
1682 * The FIP has already been set up for us by lfs_writefile,
1683 * and FIP cleanup and lfs_updatemeta will also be done there,
1684 * unless genfs_putpages returns EDEADLK; then we must flush
1685 * what we have, and correct FIP and segment header accounting.
1686 */
1687 if (ap->a_flags & PGO_LOCKED) {
1688 sp = fs->lfs_sp;
1689 sp->vp = vp;
1690
1691 while ((error = genfs_putpages(v)) == EDEADLK) {
1692 #ifdef DEBUG_LFS
1693 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1694 " ino %d off %x (seg %d)\n",
1695 ip->i_number, fs->lfs_offset,
1696 dtosn(fs, fs->lfs_offset));
1697 #endif
1698 /* If nothing to write, short-circuit */
1699 if (sp->cbpp - sp->bpp == 1) {
1700 preempt(NULL);
1701 simple_lock(&vp->v_interlock);
1702 continue;
1703 }
1704 /* Write gathered pages */
1705 lfs_updatemeta(sp);
1706 (void) lfs_writeseg(fs, sp);
1707
1708 /* Reinitialize brand new FIP and add us to it */
1709 sp->vp = vp;
1710 sp->fip->fi_version = ip->i_ffs_gen;
1711 sp->fip->fi_ino = ip->i_number;
1712 /* Add us to the new segment summary. */
1713 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1714 sp->sum_bytes_left -=
1715 sizeof(struct finfo) - sizeof(int32_t);
1716
1717 /* Give the write a chance to complete */
1718 preempt(NULL);
1719 simple_lock(&vp->v_interlock);
1720 }
1721 return error;
1722 }
1723
1724 simple_unlock(&vp->v_interlock);
1725 /*
1726 * Take the seglock, because we are going to be writing pages.
1727 */
1728 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1729 return error;
1730
1731 /*
1732 * VOP_PUTPAGES should not be called while holding the seglock.
1733 * XXXUBC fix lfs_markv, or do this properly.
1734 */
1735 /* KASSERT(fs->lfs_seglock == 1); */
1736
1737 /*
1738 * We assume we're being called with sp->fip pointing at blank space.
1739 * Account for a new FIP in the segment header, and set sp->vp.
1740 * (This should duplicate the setup at the top of lfs_writefile().)
1741 */
1742 sp = fs->lfs_sp;
1743 if (sp->seg_bytes_left < fs->lfs_bsize ||
1744 sp->sum_bytes_left < sizeof(struct finfo))
1745 (void) lfs_writeseg(fs, fs->lfs_sp);
1746
1747 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1748 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1749 sp->vp = vp;
1750
1751 if (vp->v_flag & VDIROP)
1752 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1753
1754 sp->fip->fi_nblocks = 0;
1755 sp->fip->fi_ino = ip->i_number;
1756 sp->fip->fi_version = ip->i_ffs_gen;
1757
1758 /*
1759 * Loop through genfs_putpages until all pages are gathered.
1760 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1761 */
1762 simple_lock(&vp->v_interlock);
1763 while ((error = genfs_putpages(v)) == EDEADLK) {
1764 #ifdef DEBUG_LFS
1765 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1766 " ino %d off %x (seg %d)\n",
1767 ip->i_number, fs->lfs_offset,
1768 dtosn(fs, fs->lfs_offset));
1769 #endif
1770 /* If nothing to write, short-circuit */
1771 if (sp->cbpp - sp->bpp == 1) {
1772 preempt(NULL);
1773 simple_lock(&vp->v_interlock);
1774 continue;
1775 }
1776 /* Write gathered pages */
1777 lfs_updatemeta(sp);
1778 (void) lfs_writeseg(fs, sp);
1779
1780 /*
1781 * Reinitialize brand new FIP and add us to it.
1782 * (This should duplicate the fixup in lfs_gatherpages().)
1783 */
1784 sp->vp = vp;
1785 sp->fip->fi_version = ip->i_ffs_gen;
1786 sp->fip->fi_ino = ip->i_number;
1787 /* Add us to the new segment summary. */
1788 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1789 sp->sum_bytes_left -=
1790 sizeof(struct finfo) - sizeof(int32_t);
1791
1792 /* Give the write a chance to complete */
1793 preempt(NULL);
1794 simple_lock(&vp->v_interlock);
1795 }
1796
1797 /*
1798 * Blocks are now gathered into a segment waiting to be written.
1799 * All that's left to do is update metadata, and write them.
1800 */
1801 lfs_updatemeta(fs->lfs_sp);
1802 fs->lfs_sp->vp = NULL;
1803 /*
1804 * Clean up FIP, since we're done writing this file.
1805 * This should duplicate cleanup at the end of lfs_writefile().
1806 */
1807 if (sp->fip->fi_nblocks != 0) {
1808 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1809 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1810 sp->start_lbp = &sp->fip->fi_blocks[0];
1811 } else {
1812 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1813 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1814 }
1815 lfs_writeseg(fs, fs->lfs_sp);
1816
1817 /*
1818 * XXX - with the malloc/copy writeseg, the pages are freed by now
1819 * even if we don't wait (e.g. if we hold a nested lock). This
1820 * will not be true if we stop using malloc/copy.
1821 */
1822 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1823 lfs_segunlock(fs);
1824
1825 /*
1826 * Wait for v_numoutput to drop to zero. The seglock should
1827 * take care of this, but there is a slight possibility that
1828 * aiodoned might not have got around to our buffers yet.
1829 */
1830 if (sync) {
1831 int s;
1832
1833 s = splbio();
1834 simple_lock(&global_v_numoutput_slock);
1835 while(vp->v_numoutput > 0) {
1836 #ifdef DEBUG
1837 printf("ino %d sleeping on num %d\n",
1838 ip->i_number, vp->v_numoutput);
1839 #endif
1840 vp->v_flag |= VBWAIT;
1841 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1842 &global_v_numoutput_slock);
1843 }
1844 simple_unlock(&global_v_numoutput_slock);
1845 splx(s);
1846 }
1847 return error;
1848 }
1849
1850 /*
1851 * Find out whether the vnode has any blocks or pages waiting to be written.
1852 * We used to just check LIST_EMPTY(&vp->v_dirtyblkhd), but there is not
1853 * presently as simple a mechanism for the page cache.
1854 */
1855 int
1856 lfs_checkifempty(struct vnode *vp)
1857 {
1858 struct vm_page *pg;
1859 struct buf *bp;
1860 int r, s;
1861
1862 if (vp->v_type != VREG || VTOI(vp)->i_number == LFS_IFILE_INUM)
1863 return LIST_EMPTY(&vp->v_dirtyblkhd);
1864
1865 /*
1866 * For vnodes with pages it is a little more complex.
1867 * Pages that have been written (i.e. are "clean" for our purposes)
1868 * might be in seemingly dirty buffers, so we have to troll
1869 * looking for indirect block buffers as well as pages.
1870 */
1871 simple_lock(&vp->v_interlock);
1872 s = splbio();
1873 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp;
1874 bp = LIST_NEXT(bp, b_vnbufs)) {
1875 if (bp->b_lblkno < 0) {
1876 splx(s);
1877 simple_unlock(&vp->v_interlock);
1878 return 0;
1879 }
1880 }
1881 splx(s);
1882
1883 /*
1884 * Run through the page list to find dirty pages.
1885 * Right now I just walk the memq.
1886 */
1887 pg = TAILQ_FIRST(&vp->v_uobj.memq);
1888 r = 1;
1889 while(pg) {
1890 if ((pg->flags & PG_CLEAN) == 0 || pmap_is_modified(pg)) {
1891 r = 0;
1892 break;
1893 }
1894 pg = TAILQ_NEXT(pg, listq);
1895 }
1896 #if 0
1897 if (r != !(vp->v_flag & VONWORKLST)) {
1898 printf("nope, VONWORKLST isn't good enough!\n");
1899 }
1900 #endif
1901 simple_unlock(&vp->v_interlock);
1902 return r;
1903 }
1904
1905 /*
1906 * Return the last logical file offset that should be written for this file
1907 * if we're doing a write that ends at "size". If writing, we need to know
1908 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1909 * to know about entire blocks.
1910 */
1911 void
1912 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1913 {
1914 struct inode *ip = VTOI(vp);
1915 struct lfs *fs = ip->i_lfs;
1916 daddr_t olbn, nlbn;
1917
1918 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1919 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1920 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1921
1922 olbn = lblkno(fs, ip->i_ffs_size);
1923 nlbn = lblkno(fs, size);
1924 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1925 *eobp = fragroundup(fs, size);
1926 } else {
1927 *eobp = blkroundup(fs, size);
1928 }
1929 }
1930
1931 #ifdef DEBUG
1932 void lfs_dump_vop(void *);
1933
1934 void
1935 lfs_dump_vop(void *v)
1936 {
1937 struct vop_putpages_args /* {
1938 struct vnode *a_vp;
1939 voff_t a_offlo;
1940 voff_t a_offhi;
1941 int a_flags;
1942 } */ *ap = v;
1943
1944 vfs_vnode_print(ap->a_vp, 0, printf);
1945 lfs_dump_dinode(&VTOI(ap->a_vp)->i_din.ffs_din);
1946 }
1947 #endif
1948
1949 int
1950 lfs_mmap(void *v)
1951 {
1952 struct vop_mmap_args /* {
1953 const struct vnodeop_desc *a_desc;
1954 struct vnode *a_vp;
1955 int a_fflags;
1956 struct ucred *a_cred;
1957 struct proc *a_p;
1958 } */ *ap = v;
1959
1960 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1961 return EOPNOTSUPP;
1962 return ufs_mmap(v);
1963 }
1964