lfs_vnops.c revision 1.96 1 /* $NetBSD: lfs_vnops.c,v 1.96 2003/03/15 06:58:51 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.96 2003/03/15 06:58:51 perseant Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109 extern int lfs_subsys_pages;
110 extern int lfs_dirvcount;
111 extern struct simplelock lfs_subsys_lock;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
157 { &vop_valloc_desc, lfs_valloc }, /* valloc */
158 { &vop_balloc_desc, lfs_balloc }, /* balloc */
159 { &vop_vfree_desc, lfs_vfree }, /* vfree */
160 { &vop_truncate_desc, lfs_truncate }, /* truncate */
161 { &vop_update_desc, lfs_update }, /* update */
162 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
163 { &vop_getpages_desc, lfs_getpages }, /* getpages */
164 { &vop_putpages_desc, lfs_putpages }, /* putpages */
165 { NULL, NULL }
166 };
167 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
168 { &lfs_vnodeop_p, lfs_vnodeop_entries };
169
170 int (**lfs_specop_p)(void *);
171 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
172 { &vop_default_desc, vn_default_error },
173 { &vop_lookup_desc, spec_lookup }, /* lookup */
174 { &vop_create_desc, spec_create }, /* create */
175 { &vop_mknod_desc, spec_mknod }, /* mknod */
176 { &vop_open_desc, spec_open }, /* open */
177 { &vop_close_desc, lfsspec_close }, /* close */
178 { &vop_access_desc, ufs_access }, /* access */
179 { &vop_getattr_desc, lfs_getattr }, /* getattr */
180 { &vop_setattr_desc, lfs_setattr }, /* setattr */
181 { &vop_read_desc, ufsspec_read }, /* read */
182 { &vop_write_desc, ufsspec_write }, /* write */
183 { &vop_lease_desc, spec_lease_check }, /* lease */
184 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
185 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
186 { &vop_poll_desc, spec_poll }, /* poll */
187 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
188 { &vop_revoke_desc, spec_revoke }, /* revoke */
189 { &vop_mmap_desc, spec_mmap }, /* mmap */
190 { &vop_fsync_desc, spec_fsync }, /* fsync */
191 { &vop_seek_desc, spec_seek }, /* seek */
192 { &vop_remove_desc, spec_remove }, /* remove */
193 { &vop_link_desc, spec_link }, /* link */
194 { &vop_rename_desc, spec_rename }, /* rename */
195 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
196 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
197 { &vop_symlink_desc, spec_symlink }, /* symlink */
198 { &vop_readdir_desc, spec_readdir }, /* readdir */
199 { &vop_readlink_desc, spec_readlink }, /* readlink */
200 { &vop_abortop_desc, spec_abortop }, /* abortop */
201 { &vop_inactive_desc, lfs_inactive }, /* inactive */
202 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
203 { &vop_lock_desc, ufs_lock }, /* lock */
204 { &vop_unlock_desc, ufs_unlock }, /* unlock */
205 { &vop_bmap_desc, spec_bmap }, /* bmap */
206 { &vop_strategy_desc, spec_strategy }, /* strategy */
207 { &vop_print_desc, ufs_print }, /* print */
208 { &vop_islocked_desc, ufs_islocked }, /* islocked */
209 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
210 { &vop_advlock_desc, spec_advlock }, /* advlock */
211 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
212 { &vop_valloc_desc, spec_valloc }, /* valloc */
213 { &vop_vfree_desc, lfs_vfree }, /* vfree */
214 { &vop_truncate_desc, spec_truncate }, /* truncate */
215 { &vop_update_desc, lfs_update }, /* update */
216 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
217 { &vop_getpages_desc, spec_getpages }, /* getpages */
218 { &vop_putpages_desc, spec_putpages }, /* putpages */
219 { NULL, NULL }
220 };
221 const struct vnodeopv_desc lfs_specop_opv_desc =
222 { &lfs_specop_p, lfs_specop_entries };
223
224 int (**lfs_fifoop_p)(void *);
225 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
226 { &vop_default_desc, vn_default_error },
227 { &vop_lookup_desc, fifo_lookup }, /* lookup */
228 { &vop_create_desc, fifo_create }, /* create */
229 { &vop_mknod_desc, fifo_mknod }, /* mknod */
230 { &vop_open_desc, fifo_open }, /* open */
231 { &vop_close_desc, lfsfifo_close }, /* close */
232 { &vop_access_desc, ufs_access }, /* access */
233 { &vop_getattr_desc, lfs_getattr }, /* getattr */
234 { &vop_setattr_desc, lfs_setattr }, /* setattr */
235 { &vop_read_desc, ufsfifo_read }, /* read */
236 { &vop_write_desc, ufsfifo_write }, /* write */
237 { &vop_lease_desc, fifo_lease_check }, /* lease */
238 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
239 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
240 { &vop_poll_desc, fifo_poll }, /* poll */
241 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
242 { &vop_revoke_desc, fifo_revoke }, /* revoke */
243 { &vop_mmap_desc, fifo_mmap }, /* mmap */
244 { &vop_fsync_desc, fifo_fsync }, /* fsync */
245 { &vop_seek_desc, fifo_seek }, /* seek */
246 { &vop_remove_desc, fifo_remove }, /* remove */
247 { &vop_link_desc, fifo_link }, /* link */
248 { &vop_rename_desc, fifo_rename }, /* rename */
249 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
250 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
251 { &vop_symlink_desc, fifo_symlink }, /* symlink */
252 { &vop_readdir_desc, fifo_readdir }, /* readdir */
253 { &vop_readlink_desc, fifo_readlink }, /* readlink */
254 { &vop_abortop_desc, fifo_abortop }, /* abortop */
255 { &vop_inactive_desc, lfs_inactive }, /* inactive */
256 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
257 { &vop_lock_desc, ufs_lock }, /* lock */
258 { &vop_unlock_desc, ufs_unlock }, /* unlock */
259 { &vop_bmap_desc, fifo_bmap }, /* bmap */
260 { &vop_strategy_desc, fifo_strategy }, /* strategy */
261 { &vop_print_desc, ufs_print }, /* print */
262 { &vop_islocked_desc, ufs_islocked }, /* islocked */
263 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
264 { &vop_advlock_desc, fifo_advlock }, /* advlock */
265 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
266 { &vop_valloc_desc, fifo_valloc }, /* valloc */
267 { &vop_vfree_desc, lfs_vfree }, /* vfree */
268 { &vop_truncate_desc, fifo_truncate }, /* truncate */
269 { &vop_update_desc, lfs_update }, /* update */
270 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
271 { &vop_putpages_desc, fifo_putpages }, /* putpages */
272 { NULL, NULL }
273 };
274 const struct vnodeopv_desc lfs_fifoop_opv_desc =
275 { &lfs_fifoop_p, lfs_fifoop_entries };
276
277 /*
278 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
279 */
280 void
281 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
282 {
283 LFS_ITIMES(ip, acc, mod, cre);
284 }
285
286 #define LFS_READWRITE
287 #include <ufs/ufs/ufs_readwrite.c>
288 #undef LFS_READWRITE
289
290 /*
291 * Synch an open file.
292 */
293 /* ARGSUSED */
294 int
295 lfs_fsync(void *v)
296 {
297 struct vop_fsync_args /* {
298 struct vnode *a_vp;
299 struct ucred *a_cred;
300 int a_flags;
301 off_t offlo;
302 off_t offhi;
303 struct proc *a_p;
304 } */ *ap = v;
305 struct vnode *vp = ap->a_vp;
306 int error, wait;
307
308 /*
309 * Trickle sync checks for need to do a checkpoint after possible
310 * activity from the pagedaemon.
311 */
312 if (ap->a_flags & FSYNC_LAZY) {
313 wakeup(&lfs_writer_daemon);
314 return 0;
315 }
316
317 wait = (ap->a_flags & FSYNC_WAIT);
318 do {
319 #ifdef DEBUG
320 struct buf *bp;
321 #endif
322
323 simple_lock(&vp->v_interlock);
324 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
325 round_page(ap->a_offhi),
326 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
327 if (error)
328 return error;
329 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
330 if (wait && error == 0 && !VPISEMPTY(vp)) {
331 #ifdef DEBUG
332 printf("lfs_fsync: reflushing ino %d\n",
333 VTOI(vp)->i_number);
334 printf("vflags %x iflags %x npages %d\n",
335 vp->v_flag, VTOI(vp)->i_flag,
336 vp->v_uobj.uo_npages);
337 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
338 printf("%" PRId64 " (%lx)", bp->b_lblkno,
339 bp->b_flags);
340 printf("\n");
341 #endif
342 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
343 }
344 } while (wait && error == 0 && !VPISEMPTY(vp));
345
346 return error;
347 }
348
349 /*
350 * Take IN_ADIROP off, then call ufs_inactive.
351 */
352 int
353 lfs_inactive(void *v)
354 {
355 struct vop_inactive_args /* {
356 struct vnode *a_vp;
357 struct proc *a_p;
358 } */ *ap = v;
359
360 KASSERT(VTOI(ap->a_vp)->i_ffs_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
361
362 lfs_unmark_vnode(ap->a_vp);
363
364 return ufs_inactive(v);
365 }
366
367 /*
368 * These macros are used to bracket UFS directory ops, so that we can
369 * identify all the pages touched during directory ops which need to
370 * be ordered and flushed atomically, so that they may be recovered.
371 */
372 /*
373 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
374 * the cache from reclaiming them while a dirop is in progress, we must
375 * also manage the number of nodes so marked (otherwise we can run out).
376 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
377 * is decremented during segment write, when VDIROP is taken off.
378 */
379 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
380 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
381 static int lfs_set_dirop(struct vnode *, struct vnode *);
382 extern int lfs_dirvcount;
383 extern int lfs_do_flush;
384
385 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
386
387 static int
388 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
389 {
390 struct lfs *fs;
391 int error;
392
393 KASSERT(VOP_ISLOCKED(vp));
394 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
395
396 fs = VTOI(vp)->i_lfs;
397 /*
398 * We might need one directory block plus supporting indirect blocks,
399 * plus an inode block and ifile page for the new vnode.
400 */
401 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
402 return (error);
403
404 if (fs->lfs_dirops == 0)
405 lfs_check(vp, LFS_UNUSED_LBN, 0);
406 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
407 if (fs->lfs_writer)
408 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
409 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
410 wakeup(&lfs_writer_daemon);
411 preempt(NULL);
412 }
413
414 if (lfs_dirvcount > LFS_MAX_DIROP) {
415 #ifdef DEBUG_LFS
416 printf("lfs_set_dirop: sleeping with dirops=%d, "
417 "dirvcount=%d\n", fs->lfs_dirops,
418 lfs_dirvcount);
419 #endif
420 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
421 "lfs_maxdirop", 0)) != 0) {
422 goto unreserve;
423 }
424 }
425 }
426 ++fs->lfs_dirops;
427 fs->lfs_doifile = 1;
428
429 /* Hold a reference so SET_ENDOP will be happy */
430 vref(vp);
431 if (vp2)
432 vref(vp2);
433
434 return 0;
435
436 unreserve:
437 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
438 return error;
439 }
440
441 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
442 #define SET_ENDOP2(fs, vp, vp2, str) { \
443 --(fs)->lfs_dirops; \
444 if (!(fs)->lfs_dirops) { \
445 if ((fs)->lfs_nadirop) { \
446 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
447 (str), (fs)->lfs_nadirop); \
448 } \
449 wakeup(&(fs)->lfs_writer); \
450 lfs_check((vp),LFS_UNUSED_LBN,0); \
451 } \
452 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
453 vrele(vp); \
454 if (vp2) \
455 vrele(vp2); \
456 }
457
458 #define MARK_VNODE(dvp) do { \
459 struct inode *_ip = VTOI(dvp); \
460 struct lfs *_fs = _ip->i_lfs; \
461 \
462 if (!((dvp)->v_flag & VDIROP)) { \
463 (void)lfs_vref(dvp); \
464 ++lfs_dirvcount; \
465 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
466 } \
467 (dvp)->v_flag |= VDIROP; \
468 if (!(_ip->i_flag & IN_ADIROP)) { \
469 ++_fs->lfs_nadirop; \
470 } \
471 _ip->i_flag |= IN_ADIROP; \
472 } while (0)
473
474 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
475
476 void lfs_unmark_vnode(struct vnode *vp)
477 {
478 struct inode *ip;
479
480 ip = VTOI(vp);
481
482 if (ip->i_flag & IN_ADIROP)
483 --ip->i_lfs->lfs_nadirop;
484 ip->i_flag &= ~IN_ADIROP;
485 }
486
487 int
488 lfs_symlink(void *v)
489 {
490 struct vop_symlink_args /* {
491 struct vnode *a_dvp;
492 struct vnode **a_vpp;
493 struct componentname *a_cnp;
494 struct vattr *a_vap;
495 char *a_target;
496 } */ *ap = v;
497 int error;
498
499 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
500 vput(ap->a_dvp);
501 return error;
502 }
503 MARK_VNODE(ap->a_dvp);
504 error = ufs_symlink(ap);
505 UNMARK_VNODE(ap->a_dvp);
506 if (*(ap->a_vpp))
507 UNMARK_VNODE(*(ap->a_vpp));
508 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
509 return (error);
510 }
511
512 int
513 lfs_mknod(void *v)
514 {
515 struct vop_mknod_args /* {
516 struct vnode *a_dvp;
517 struct vnode **a_vpp;
518 struct componentname *a_cnp;
519 struct vattr *a_vap;
520 } */ *ap = v;
521 struct vattr *vap = ap->a_vap;
522 struct vnode **vpp = ap->a_vpp;
523 struct inode *ip;
524 int error;
525 struct mount *mp;
526 ino_t ino;
527
528 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
529 vput(ap->a_dvp);
530 return error;
531 }
532 MARK_VNODE(ap->a_dvp);
533 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
534 ap->a_dvp, vpp, ap->a_cnp);
535 UNMARK_VNODE(ap->a_dvp);
536 if (*(ap->a_vpp))
537 UNMARK_VNODE(*(ap->a_vpp));
538
539 /* Either way we're done with the dirop at this point */
540 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
541
542 if (error)
543 return (error);
544
545 ip = VTOI(*vpp);
546 mp = (*vpp)->v_mount;
547 ino = ip->i_number;
548 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
549 if (vap->va_rdev != VNOVAL) {
550 /*
551 * Want to be able to use this to make badblock
552 * inodes, so don't truncate the dev number.
553 */
554 #if 0
555 ip->i_ffs_rdev = ufs_rw32(vap->va_rdev,
556 UFS_MPNEEDSWAP((*vpp)->v_mount));
557 #else
558 ip->i_ffs_rdev = vap->va_rdev;
559 #endif
560 }
561 /*
562 * Call fsync to write the vnode so that we don't have to deal with
563 * flushing it when it's marked VDIROP|VXLOCK.
564 *
565 * XXX KS - If we can't flush we also can't call vgone(), so must
566 * return. But, that leaves this vnode in limbo, also not good.
567 * Can this ever happen (barring hardware failure)?
568 */
569 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
570 curproc)) != 0) {
571 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
572 VTOI(*vpp)->i_number);
573 return (error);
574 }
575 /*
576 * Remove vnode so that it will be reloaded by VFS_VGET and
577 * checked to see if it is an alias of an existing entry in
578 * the inode cache.
579 */
580 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
581 VOP_UNLOCK(*vpp, 0);
582 lfs_vunref(*vpp);
583 (*vpp)->v_type = VNON;
584 vgone(*vpp);
585 error = VFS_VGET(mp, ino, vpp);
586 if (error != 0) {
587 *vpp = NULL;
588 return (error);
589 }
590 return (0);
591 }
592
593 int
594 lfs_create(void *v)
595 {
596 struct vop_create_args /* {
597 struct vnode *a_dvp;
598 struct vnode **a_vpp;
599 struct componentname *a_cnp;
600 struct vattr *a_vap;
601 } */ *ap = v;
602 int error;
603
604 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
605 vput(ap->a_dvp);
606 return error;
607 }
608 MARK_VNODE(ap->a_dvp);
609 error = ufs_create(ap);
610 UNMARK_VNODE(ap->a_dvp);
611 if (*(ap->a_vpp))
612 UNMARK_VNODE(*(ap->a_vpp));
613 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
614 return (error);
615 }
616
617 int
618 lfs_mkdir(void *v)
619 {
620 struct vop_mkdir_args /* {
621 struct vnode *a_dvp;
622 struct vnode **a_vpp;
623 struct componentname *a_cnp;
624 struct vattr *a_vap;
625 } */ *ap = v;
626 int error;
627
628 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
629 vput(ap->a_dvp);
630 return error;
631 }
632 MARK_VNODE(ap->a_dvp);
633 error = ufs_mkdir(ap);
634 UNMARK_VNODE(ap->a_dvp);
635 if (*(ap->a_vpp))
636 UNMARK_VNODE(*(ap->a_vpp));
637 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
638 return (error);
639 }
640
641 int
642 lfs_remove(void *v)
643 {
644 struct vop_remove_args /* {
645 struct vnode *a_dvp;
646 struct vnode *a_vp;
647 struct componentname *a_cnp;
648 } */ *ap = v;
649 struct vnode *dvp, *vp;
650 int error;
651
652 dvp = ap->a_dvp;
653 vp = ap->a_vp;
654 if ((error = SET_DIROP2(dvp, vp)) != 0) {
655 if (dvp == vp)
656 vrele(vp);
657 else
658 vput(vp);
659 vput(dvp);
660 return error;
661 }
662 MARK_VNODE(dvp);
663 MARK_VNODE(vp);
664 error = ufs_remove(ap);
665 UNMARK_VNODE(dvp);
666 UNMARK_VNODE(vp);
667
668 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
669 return (error);
670 }
671
672 int
673 lfs_rmdir(void *v)
674 {
675 struct vop_rmdir_args /* {
676 struct vnodeop_desc *a_desc;
677 struct vnode *a_dvp;
678 struct vnode *a_vp;
679 struct componentname *a_cnp;
680 } */ *ap = v;
681 struct vnode *vp;
682 int error;
683
684 vp = ap->a_vp;
685 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
686 vrele(ap->a_dvp);
687 if (ap->a_vp != ap->a_dvp)
688 VOP_UNLOCK(ap->a_dvp, 0);
689 vput(vp);
690 return error;
691 }
692 MARK_VNODE(ap->a_dvp);
693 MARK_VNODE(vp);
694 error = ufs_rmdir(ap);
695 UNMARK_VNODE(ap->a_dvp);
696 UNMARK_VNODE(vp);
697
698 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
699 return (error);
700 }
701
702 int
703 lfs_link(void *v)
704 {
705 struct vop_link_args /* {
706 struct vnode *a_dvp;
707 struct vnode *a_vp;
708 struct componentname *a_cnp;
709 } */ *ap = v;
710 int error;
711
712 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
713 vput(ap->a_dvp);
714 return error;
715 }
716 MARK_VNODE(ap->a_dvp);
717 error = ufs_link(ap);
718 UNMARK_VNODE(ap->a_dvp);
719 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
720 return (error);
721 }
722
723 int
724 lfs_rename(void *v)
725 {
726 struct vop_rename_args /* {
727 struct vnode *a_fdvp;
728 struct vnode *a_fvp;
729 struct componentname *a_fcnp;
730 struct vnode *a_tdvp;
731 struct vnode *a_tvp;
732 struct componentname *a_tcnp;
733 } */ *ap = v;
734 struct vnode *tvp, *fvp, *tdvp, *fdvp;
735 struct componentname *tcnp, *fcnp;
736 int error;
737 struct lfs *fs;
738
739 fs = VTOI(ap->a_fdvp)->i_lfs;
740 tvp = ap->a_tvp;
741 tdvp = ap->a_tdvp;
742 tcnp = ap->a_tcnp;
743 fvp = ap->a_fvp;
744 fdvp = ap->a_fdvp;
745 fcnp = ap->a_fcnp;
746
747 /*
748 * Check for cross-device rename.
749 * If it is, we don't want to set dirops, just error out.
750 * (In particular note that MARK_VNODE(tdvp) will DTWT on
751 * a cross-device rename.)
752 *
753 * Copied from ufs_rename.
754 */
755 if ((fvp->v_mount != tdvp->v_mount) ||
756 (tvp && (fvp->v_mount != tvp->v_mount))) {
757 error = EXDEV;
758 goto errout;
759 }
760
761 /*
762 * Check to make sure we're not renaming a vnode onto itself
763 * (deleting a hard link by renaming one name onto another);
764 * if we are we can't recursively call VOP_REMOVE since that
765 * would leave us with an unaccounted-for number of live dirops.
766 *
767 * Inline the relevant section of ufs_rename here, *before*
768 * calling SET_DIROP2.
769 */
770 if (tvp && ((VTOI(tvp)->i_ffs_flags & (IMMUTABLE | APPEND)) ||
771 (VTOI(tdvp)->i_ffs_flags & APPEND))) {
772 error = EPERM;
773 goto errout;
774 }
775 if (fvp == tvp) {
776 if (fvp->v_type == VDIR) {
777 error = EINVAL;
778 goto errout;
779 }
780
781 /* Release destination completely. */
782 VOP_ABORTOP(tdvp, tcnp);
783 vput(tdvp);
784 vput(tvp);
785
786 /* Delete source. */
787 vrele(fvp);
788 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
789 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
790 fcnp->cn_nameiop = DELETE;
791 if ((error = relookup(fdvp, &fvp, fcnp))){
792 /* relookup blew away fdvp */
793 return (error);
794 }
795 return (VOP_REMOVE(fdvp, fvp, fcnp));
796 }
797
798 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
799 goto errout;
800 MARK_VNODE(fdvp);
801 MARK_VNODE(tdvp);
802 MARK_VNODE(fvp);
803 if (tvp) {
804 MARK_VNODE(tvp);
805 }
806
807 error = ufs_rename(ap);
808 UNMARK_VNODE(fdvp);
809 UNMARK_VNODE(tdvp);
810 UNMARK_VNODE(fvp);
811 if (tvp) {
812 UNMARK_VNODE(tvp);
813 }
814 SET_ENDOP2(fs, tdvp, tvp, "rename");
815 return (error);
816
817 errout:
818 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
819 if (tdvp == tvp)
820 vrele(tdvp);
821 else
822 vput(tdvp);
823 if (tvp)
824 vput(tvp);
825 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
826 vrele(fdvp);
827 vrele(fvp);
828 return (error);
829 }
830
831 /* XXX hack to avoid calling ITIMES in getattr */
832 int
833 lfs_getattr(void *v)
834 {
835 struct vop_getattr_args /* {
836 struct vnode *a_vp;
837 struct vattr *a_vap;
838 struct ucred *a_cred;
839 struct proc *a_p;
840 } */ *ap = v;
841 struct vnode *vp = ap->a_vp;
842 struct inode *ip = VTOI(vp);
843 struct vattr *vap = ap->a_vap;
844 struct lfs *fs = ip->i_lfs;
845 /*
846 * Copy from inode table
847 */
848 vap->va_fsid = ip->i_dev;
849 vap->va_fileid = ip->i_number;
850 vap->va_mode = ip->i_ffs_mode & ~IFMT;
851 vap->va_nlink = ip->i_ffs_nlink;
852 vap->va_uid = ip->i_ffs_uid;
853 vap->va_gid = ip->i_ffs_gid;
854 vap->va_rdev = (dev_t)ip->i_ffs_rdev;
855 vap->va_size = vp->v_size;
856 vap->va_atime.tv_sec = ip->i_ffs_atime;
857 vap->va_atime.tv_nsec = ip->i_ffs_atimensec;
858 vap->va_mtime.tv_sec = ip->i_ffs_mtime;
859 vap->va_mtime.tv_nsec = ip->i_ffs_mtimensec;
860 vap->va_ctime.tv_sec = ip->i_ffs_ctime;
861 vap->va_ctime.tv_nsec = ip->i_ffs_ctimensec;
862 vap->va_flags = ip->i_ffs_flags;
863 vap->va_gen = ip->i_ffs_gen;
864 /* this doesn't belong here */
865 if (vp->v_type == VBLK)
866 vap->va_blocksize = BLKDEV_IOSIZE;
867 else if (vp->v_type == VCHR)
868 vap->va_blocksize = MAXBSIZE;
869 else
870 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
871 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
872 vap->va_type = vp->v_type;
873 vap->va_filerev = ip->i_modrev;
874 return (0);
875 }
876
877 /*
878 * Check to make sure the inode blocks won't choke the buffer
879 * cache, then call ufs_setattr as usual.
880 */
881 int
882 lfs_setattr(void *v)
883 {
884 struct vop_getattr_args /* {
885 struct vnode *a_vp;
886 struct vattr *a_vap;
887 struct ucred *a_cred;
888 struct proc *a_p;
889 } */ *ap = v;
890 struct vnode *vp = ap->a_vp;
891
892 lfs_check(vp, LFS_UNUSED_LBN, 0);
893 return ufs_setattr(v);
894 }
895
896 /*
897 * Close called
898 *
899 * XXX -- we were using ufs_close, but since it updates the
900 * times on the inode, we might need to bump the uinodes
901 * count.
902 */
903 /* ARGSUSED */
904 int
905 lfs_close(void *v)
906 {
907 struct vop_close_args /* {
908 struct vnode *a_vp;
909 int a_fflag;
910 struct ucred *a_cred;
911 struct proc *a_p;
912 } */ *ap = v;
913 struct vnode *vp = ap->a_vp;
914 struct inode *ip = VTOI(vp);
915 struct timespec ts;
916
917 if (vp->v_usecount > 1) {
918 TIMEVAL_TO_TIMESPEC(&time, &ts);
919 LFS_ITIMES(ip, &ts, &ts, &ts);
920 }
921 return (0);
922 }
923
924 /*
925 * Close wrapper for special devices.
926 *
927 * Update the times on the inode then do device close.
928 */
929 int
930 lfsspec_close(void *v)
931 {
932 struct vop_close_args /* {
933 struct vnode *a_vp;
934 int a_fflag;
935 struct ucred *a_cred;
936 struct proc *a_p;
937 } */ *ap = v;
938 struct vnode *vp;
939 struct inode *ip;
940 struct timespec ts;
941
942 vp = ap->a_vp;
943 ip = VTOI(vp);
944 if (vp->v_usecount > 1) {
945 TIMEVAL_TO_TIMESPEC(&time, &ts);
946 LFS_ITIMES(ip, &ts, &ts, &ts);
947 }
948 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
949 }
950
951 /*
952 * Close wrapper for fifo's.
953 *
954 * Update the times on the inode then do device close.
955 */
956 int
957 lfsfifo_close(void *v)
958 {
959 struct vop_close_args /* {
960 struct vnode *a_vp;
961 int a_fflag;
962 struct ucred *a_cred;
963 struct proc *a_p;
964 } */ *ap = v;
965 struct vnode *vp;
966 struct inode *ip;
967 struct timespec ts;
968
969 vp = ap->a_vp;
970 ip = VTOI(vp);
971 if (ap->a_vp->v_usecount > 1) {
972 TIMEVAL_TO_TIMESPEC(&time, &ts);
973 LFS_ITIMES(ip, &ts, &ts, &ts);
974 }
975 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
976 }
977
978 /*
979 * Reclaim an inode so that it can be used for other purposes.
980 */
981 int lfs_no_inactive = 0;
982
983 int
984 lfs_reclaim(void *v)
985 {
986 struct vop_reclaim_args /* {
987 struct vnode *a_vp;
988 struct proc *a_p;
989 } */ *ap = v;
990 struct vnode *vp = ap->a_vp;
991 struct inode *ip = VTOI(vp);
992 int error;
993
994 KASSERT(ip->i_ffs_nlink == ip->i_ffs_effnlink);
995
996 LFS_CLR_UINO(ip, IN_ALLMOD);
997 if ((error = ufs_reclaim(vp, ap->a_p)))
998 return (error);
999 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1000 ip->inode_ext.lfs = NULL;
1001 pool_put(&lfs_inode_pool, vp->v_data);
1002 vp->v_data = NULL;
1003 return (0);
1004 }
1005
1006 /*
1007 * Read a block from, or write a block to, a storage device.
1008 * In order to avoid reading blocks that are in the process of being
1009 * written by the cleaner---and hence are not mutexed by the normal
1010 * buffer cache / page cache mechanisms---check for collisions before
1011 * reading.
1012 *
1013 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1014 * the active cleaner test.
1015 *
1016 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1017 */
1018 int
1019 lfs_strategy(void *v)
1020 {
1021 struct vop_strategy_args /* {
1022 struct buf *a_bp;
1023 } */ *ap = v;
1024 struct buf *bp;
1025 struct lfs *fs;
1026 struct vnode *vp;
1027 struct inode *ip;
1028 daddr_t tbn;
1029 int i, sn, error, slept;
1030
1031 bp = ap->a_bp;
1032 vp = bp->b_vp;
1033 ip = VTOI(vp);
1034 fs = ip->i_lfs;
1035
1036 if (vp->v_type == VBLK || vp->v_type == VCHR)
1037 panic("lfs_strategy: spec");
1038 KASSERT(bp->b_bcount != 0);
1039 if (bp->b_blkno == bp->b_lblkno) {
1040 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1041 NULL);
1042 if (error) {
1043 bp->b_error = error;
1044 bp->b_flags |= B_ERROR;
1045 biodone(bp);
1046 return (error);
1047 }
1048 if ((long)bp->b_blkno == -1) /* no valid data */
1049 clrbuf(bp);
1050 }
1051 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1052 biodone(bp);
1053 return (0);
1054 }
1055
1056 slept = 1;
1057 simple_lock(&fs->lfs_interlock);
1058 while (slept && bp->b_flags & B_READ && fs->lfs_seglock) {
1059 simple_unlock(&fs->lfs_interlock);
1060 /*
1061 * Look through list of intervals.
1062 * There will only be intervals to look through
1063 * if the cleaner holds the seglock.
1064 * Since the cleaner is synchronous, we can trust
1065 * the list of intervals to be current.
1066 */
1067 tbn = dbtofsb(fs, bp->b_blkno);
1068 sn = dtosn(fs, tbn);
1069 slept = 0;
1070 for (i = 0; i < fs->lfs_cleanind; i++) {
1071 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1072 tbn >= fs->lfs_cleanint[i]) {
1073 #ifdef DEBUG_LFS
1074 printf("lfs_strategy: ino %d lbn %" PRId64
1075 " ind %d sn %d fsb %" PRIx32
1076 " given sn %d fsb %" PRIx64 "\n",
1077 ip->i_number, bp->b_lblkno, i,
1078 dtosn(fs, fs->lfs_cleanint[i]),
1079 fs->lfs_cleanint[i], sn, tbn);
1080 printf("lfs_strategy: sleeping on ino %d lbn %"
1081 PRId64 "\n", ip->i_number, bp->b_lblkno);
1082 #endif
1083 tsleep(&fs->lfs_seglock, PRIBIO+1,
1084 "lfs_strategy", 0);
1085 /* Things may be different now; start over. */
1086 slept = 1;
1087 break;
1088 }
1089 }
1090 simple_lock(&fs->lfs_interlock);
1091 }
1092 simple_unlock(&fs->lfs_interlock);
1093
1094 vp = ip->i_devvp;
1095 bp->b_dev = vp->v_rdev;
1096 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1097 return (0);
1098 }
1099
1100 static void
1101 lfs_flush_dirops(struct lfs *fs)
1102 {
1103 struct inode *ip, *nip;
1104 struct vnode *vp;
1105 extern int lfs_dostats;
1106 struct segment *sp;
1107 int needunlock;
1108
1109 if (fs->lfs_ronly)
1110 return;
1111
1112 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1113 return;
1114
1115 /* XXX simplelock fs->lfs_dirops */
1116 while (fs->lfs_dirops > 0) {
1117 ++fs->lfs_diropwait;
1118 tsleep(&fs->lfs_writer, PRIBIO+1, "pndirop", 0);
1119 --fs->lfs_diropwait;
1120 }
1121 /* disallow dirops during flush */
1122 fs->lfs_writer++;
1123
1124 if (lfs_dostats)
1125 ++lfs_stats.flush_invoked;
1126
1127 /*
1128 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1129 * Technically this is a checkpoint (the on-disk state is valid)
1130 * even though we are leaving out all the file data.
1131 */
1132 lfs_imtime(fs);
1133 lfs_seglock(fs, SEGM_CKP);
1134 sp = fs->lfs_sp;
1135
1136 /*
1137 * lfs_writevnodes, optimized to get dirops out of the way.
1138 * Only write dirops, and don't flush files' pages, only
1139 * blocks from the directories.
1140 *
1141 * We don't need to vref these files because they are
1142 * dirops and so hold an extra reference until the
1143 * segunlock clears them of that status.
1144 *
1145 * We don't need to check for IN_ADIROP because we know that
1146 * no dirops are active.
1147 *
1148 */
1149 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1150 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1151 vp = ITOV(ip);
1152
1153 /*
1154 * All writes to directories come from dirops; all
1155 * writes to files' direct blocks go through the page
1156 * cache, which we're not touching. Reads to files
1157 * and/or directories will not be affected by writing
1158 * directory blocks inodes and file inodes. So we don't
1159 * really need to lock. If we don't lock, though,
1160 * make sure that we don't clear IN_MODIFIED
1161 * unnecessarily.
1162 */
1163 if (vp->v_flag & VXLOCK)
1164 continue;
1165 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1166 LK_NOWAIT) == 0) {
1167 needunlock = 1;
1168 } else {
1169 printf("lfs_flush_dirops: flushing locked ino %d\n",
1170 VTOI(vp)->i_number);
1171 needunlock = 0;
1172 }
1173 if (vp->v_type != VREG &&
1174 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1175 lfs_writefile(fs, sp, vp);
1176 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1177 !(ip->i_flag & IN_ALLMOD)) {
1178 LFS_SET_UINO(ip, IN_MODIFIED);
1179 }
1180 }
1181 (void) lfs_writeinode(fs, sp, ip);
1182 if (needunlock)
1183 VOP_UNLOCK(vp, 0);
1184 else
1185 LFS_SET_UINO(ip, IN_MODIFIED);
1186 }
1187 /* We've written all the dirops there are */
1188 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1189 (void) lfs_writeseg(fs, sp);
1190 lfs_segunlock(fs);
1191
1192 if (--fs->lfs_writer == 0)
1193 wakeup(&fs->lfs_dirops);
1194 }
1195
1196 /*
1197 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1198 */
1199 int
1200 lfs_fcntl(void *v)
1201 {
1202 struct vop_fcntl_args /* {
1203 struct vnode *a_vp;
1204 u_long a_command;
1205 caddr_t a_data;
1206 int a_fflag;
1207 struct ucred *a_cred;
1208 struct proc *a_p;
1209 } */ *ap = v;
1210 struct timeval *tvp;
1211 BLOCK_INFO *blkiov;
1212 CLEANERINFO *cip;
1213 int blkcnt, error, oclean;
1214 struct lfs_fcntl_markv blkvp;
1215 fsid_t *fsidp;
1216 struct lfs *fs;
1217 struct buf *bp;
1218 daddr_t off;
1219
1220 /* Only respect LFS fcntls on fs root or Ifile */
1221 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1222 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1223 return ufs_fcntl(v);
1224 }
1225
1226 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1227
1228 switch(ap->a_command) {
1229 case LFCNSEGWAITALL:
1230 fsidp = NULL;
1231 /* FALLSTHROUGH */
1232 case LFCNSEGWAIT:
1233 tvp = (struct timeval *)ap->a_data;
1234 VOP_UNLOCK(ap->a_vp, 0);
1235 error = lfs_segwait(fsidp, tvp);
1236 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1237 return error;
1238
1239 case LFCNBMAPV:
1240 case LFCNMARKV:
1241 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1242 return (error);
1243 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1244
1245 blkcnt = blkvp.blkcnt;
1246 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1247 return (EINVAL);
1248 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1249 if ((error = copyin(blkvp.blkiov, blkiov,
1250 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1251 free(blkiov, M_SEGMENT);
1252 return error;
1253 }
1254
1255 VOP_UNLOCK(ap->a_vp, 0);
1256 if (ap->a_command == LFCNBMAPV)
1257 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1258 else /* LFCNMARKV */
1259 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1260 if (error == 0)
1261 error = copyout(blkiov, blkvp.blkiov,
1262 blkcnt * sizeof(BLOCK_INFO));
1263 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1264 free(blkiov, M_SEGMENT);
1265 return error;
1266
1267 case LFCNRECLAIM:
1268 /*
1269 * Flush dirops and write Ifile, allowing empty segments
1270 * to be immediately reclaimed.
1271 */
1272 fs = VTOI(ap->a_vp)->i_lfs;
1273 off = fs->lfs_offset;
1274 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1275 lfs_flush_dirops(fs);
1276 LFS_CLEANERINFO(cip, fs, bp);
1277 oclean = cip->clean;
1278 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1279 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1280 lfs_segunlock(fs);
1281
1282 #ifdef DEBUG_LFS
1283 LFS_CLEANERINFO(cip, fs, bp);
1284 oclean = cip->clean;
1285 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1286 "%" PRId32 " segments (activesb %d)\n",
1287 fs->lfs_offset - off, cip->clean - oclean,
1288 fs->lfs_activesb);
1289 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1290 #endif
1291
1292 return 0;
1293
1294 default:
1295 return ufs_fcntl(v);
1296 }
1297 return 0;
1298 }
1299
1300 int
1301 lfs_getpages(void *v)
1302 {
1303 struct vop_getpages_args /* {
1304 struct vnode *a_vp;
1305 voff_t a_offset;
1306 struct vm_page **a_m;
1307 int *a_count;
1308 int a_centeridx;
1309 vm_prot_t a_access_type;
1310 int a_advice;
1311 int a_flags;
1312 } */ *ap = v;
1313
1314 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1315 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1316 }
1317 return genfs_getpages(v);
1318 }
1319
1320 /*
1321 * Make sure that for all pages in every block in the given range,
1322 * either all are dirty or all are clean. If any of the pages
1323 * we've seen so far are dirty, put the vnode on the paging chain,
1324 * and mark it IN_PAGING.
1325 */
1326 static int
1327 check_dirty(struct lfs *fs, struct vnode *vp,
1328 off_t startoffset, off_t endoffset, off_t blkeof,
1329 int flags)
1330 {
1331 int by_list;
1332 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1333 struct lwp *l = curlwp ? curlwp : &lwp0;
1334 off_t soff;
1335 voff_t off;
1336 int i, dirty, tdirty, nonexistent, any_dirty;
1337 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1338
1339 top:
1340 by_list = (vp->v_uobj.uo_npages <=
1341 ((endoffset - startoffset) >> PAGE_SHIFT) *
1342 UVM_PAGE_HASH_PENALTY);
1343 any_dirty = 0;
1344
1345 if (by_list) {
1346 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1347 PHOLD(l);
1348 } else {
1349 soff = startoffset;
1350 }
1351 while (by_list || soff < MIN(blkeof, endoffset)) {
1352 if (by_list) {
1353 if (pages_per_block > 1) {
1354 while (curpg && (curpg->offset & fs->lfs_bmask))
1355 curpg = TAILQ_NEXT(curpg, listq);
1356 }
1357 if (curpg == NULL)
1358 break;
1359 soff = curpg->offset;
1360 }
1361
1362 /*
1363 * Mark all pages in extended range busy; find out if any
1364 * of them are dirty.
1365 */
1366 nonexistent = dirty = 0;
1367 for (i = 0; i == 0 || i < pages_per_block; i++) {
1368 if (by_list && pages_per_block <= 1) {
1369 pgs[i] = pg = curpg;
1370 } else {
1371 off = soff + (i << PAGE_SHIFT);
1372 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1373 if (pg == NULL) {
1374 ++nonexistent;
1375 continue;
1376 }
1377 }
1378 KASSERT(pg != NULL);
1379 while (pg->flags & PG_BUSY) {
1380 pg->flags |= PG_WANTED;
1381 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1382 "lfsput", 0);
1383 simple_lock(&vp->v_interlock);
1384 if (by_list) {
1385 if (i > 0)
1386 uvm_page_unbusy(pgs, i);
1387 goto top;
1388 }
1389 }
1390 pg->flags |= PG_BUSY;
1391 UVM_PAGE_OWN(pg, "lfs_putpages");
1392
1393 pmap_page_protect(pg, VM_PROT_NONE);
1394 tdirty = (pmap_clear_modify(pg) ||
1395 (pg->flags & PG_CLEAN) == 0);
1396 dirty += tdirty;
1397 }
1398 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1399 if (by_list) {
1400 curpg = TAILQ_NEXT(curpg, listq);
1401 } else {
1402 soff += fs->lfs_bsize;
1403 }
1404 continue;
1405 }
1406
1407 any_dirty += dirty;
1408 KASSERT(nonexistent == 0);
1409
1410 /*
1411 * If any are dirty make all dirty; unbusy them,
1412 * but if we were asked to clean, wire them so that
1413 * the pagedaemon doesn't bother us about them while
1414 * they're on their way to disk.
1415 */
1416 for (i = 0; i == 0 || i < pages_per_block; i++) {
1417 pg = pgs[i];
1418 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1419 if (dirty) {
1420 pg->flags &= ~PG_CLEAN;
1421 if (flags & PGO_FREE) {
1422 /* XXXUBC need better way to update */
1423 simple_lock(&lfs_subsys_lock);
1424 lfs_subsys_pages += MIN(1, pages_per_block);
1425 simple_unlock(&lfs_subsys_lock);
1426 /*
1427 * Wire the page so that
1428 * pdaemon doesn't see it again.
1429 */
1430 uvm_lock_pageq();
1431 uvm_pagewire(pg);
1432 uvm_unlock_pageq();
1433
1434 /* Suspended write flag */
1435 pg->flags |= PG_DELWRI;
1436 }
1437 }
1438 if (pg->flags & PG_WANTED)
1439 wakeup(pg);
1440 pg->flags &= ~(PG_WANTED|PG_BUSY);
1441 UVM_PAGE_OWN(pg, NULL);
1442 }
1443
1444 if (by_list) {
1445 curpg = TAILQ_NEXT(curpg, listq);
1446 } else {
1447 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1448 }
1449 }
1450 if (by_list) {
1451 PRELE(l);
1452 }
1453
1454 /*
1455 * If any pages were dirty, mark this inode as "pageout requested",
1456 * and put it on the paging queue.
1457 * XXXUBC locking (check locking on dchainhd too)
1458 */
1459 #ifdef notyet
1460 if (any_dirty) {
1461 if (!(ip->i_flags & IN_PAGING)) {
1462 ip->i_flags |= IN_PAGING;
1463 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1464 }
1465 }
1466 #endif
1467 return any_dirty;
1468 }
1469
1470 /*
1471 * lfs_putpages functions like genfs_putpages except that
1472 *
1473 * (1) It needs to bounds-check the incoming requests to ensure that
1474 * they are block-aligned; if they are not, expand the range and
1475 * do the right thing in case, e.g., the requested range is clean
1476 * but the expanded range is dirty.
1477 * (2) It needs to explicitly send blocks to be written when it is done.
1478 * VOP_PUTPAGES is not ever called with the seglock held, so
1479 * we simply take the seglock and let lfs_segunlock wait for us.
1480 * XXX Actually we can be called with the seglock held, if we have
1481 * XXX to flush a vnode while lfs_markv is in operation. As of this
1482 * XXX writing we panic in this case.
1483 *
1484 * Assumptions:
1485 *
1486 * (1) The caller does not hold any pages in this vnode busy. If it does,
1487 * there is a danger that when we expand the page range and busy the
1488 * pages we will deadlock.
1489 * (2) We are called with vp->v_interlock held; we must return with it
1490 * released.
1491 * (3) We don't absolutely have to free pages right away, provided that
1492 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1493 * us a request with PGO_FREE, we take the pages out of the paging
1494 * queue and wake up the writer, which will handle freeing them for us.
1495 *
1496 * We ensure that for any filesystem block, all pages for that
1497 * block are either resident or not, even if those pages are higher
1498 * than EOF; that means that we will be getting requests to free
1499 * "unused" pages above EOF all the time, and should ignore them.
1500 */
1501
1502 int
1503 lfs_putpages(void *v)
1504 {
1505 int error;
1506 struct vop_putpages_args /* {
1507 struct vnode *a_vp;
1508 voff_t a_offlo;
1509 voff_t a_offhi;
1510 int a_flags;
1511 } */ *ap = v;
1512 struct vnode *vp;
1513 struct inode *ip;
1514 struct lfs *fs;
1515 struct segment *sp;
1516 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1517 off_t off, max_endoffset;
1518 int pages_per_block;
1519 int s, sync, dirty, pagedaemon;
1520 struct vm_page *pg;
1521 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1522
1523 vp = ap->a_vp;
1524 ip = VTOI(vp);
1525 fs = ip->i_lfs;
1526 sync = (ap->a_flags & PGO_SYNCIO);
1527 pagedaemon = (curproc == uvm.pagedaemon_proc);
1528
1529 /* Putpages does nothing for metadata. */
1530 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1531 simple_unlock(&vp->v_interlock);
1532 return 0;
1533 }
1534
1535 /*
1536 * If there are no pages, don't do anything.
1537 */
1538 if (vp->v_uobj.uo_npages == 0) {
1539 s = splbio();
1540 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1541 (vp->v_flag & VONWORKLST)) {
1542 vp->v_flag &= ~VONWORKLST;
1543 LIST_REMOVE(vp, v_synclist);
1544 }
1545 splx(s);
1546 simple_unlock(&vp->v_interlock);
1547 return 0;
1548 }
1549
1550 blkeof = blkroundup(fs, ip->i_ffs_size);
1551
1552 /*
1553 * Ignore requests to free pages past EOF but in the same block
1554 * as EOF, unless the request is synchronous. (XXX why sync?)
1555 * XXXUBC Make these pages look "active" so the pagedaemon won't
1556 * XXXUBC bother us with them again.
1557 */
1558 if (!sync && ap->a_offlo >= ip->i_ffs_size && ap->a_offlo < blkeof) {
1559 origoffset = ap->a_offlo;
1560 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1561 pg = uvm_pagelookup(&vp->v_uobj, off);
1562 KASSERT(pg != NULL);
1563 while (pg->flags & PG_BUSY) {
1564 pg->flags |= PG_WANTED;
1565 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1566 "lfsput2", 0);
1567 simple_lock(&vp->v_interlock);
1568 }
1569 uvm_lock_pageq();
1570 uvm_pageactivate(pg);
1571 uvm_unlock_pageq();
1572 }
1573 ap->a_offlo = blkeof;
1574 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1575 simple_unlock(&vp->v_interlock);
1576 return 0;
1577 }
1578 }
1579
1580 /*
1581 * Extend page range to start and end at block boundaries.
1582 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1583 */
1584 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1585 origoffset = ap->a_offlo;
1586 origendoffset = ap->a_offhi;
1587 startoffset = origoffset & ~(fs->lfs_bmask);
1588 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1589 << fs->lfs_bshift;
1590
1591 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1592 endoffset = max_endoffset;
1593 origendoffset = endoffset;
1594 } else {
1595 origendoffset = round_page(ap->a_offhi);
1596 endoffset = round_page(blkroundup(fs, origendoffset));
1597 }
1598
1599 KASSERT(startoffset > 0 || endoffset >= startoffset);
1600 if (startoffset == endoffset) {
1601 /* Nothing to do, why were we called? */
1602 simple_unlock(&vp->v_interlock);
1603 #ifdef DEBUG
1604 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1605 startoffset);
1606 #endif
1607 return 0;
1608 }
1609
1610 ap->a_offlo = startoffset;
1611 ap->a_offhi = endoffset;
1612
1613 if (!(ap->a_flags & PGO_CLEANIT))
1614 return genfs_putpages(v);
1615
1616 /*
1617 * Make sure that all pages in any given block are dirty, or
1618 * none of them are. Find out if any of the pages we've been
1619 * asked about are dirty. If none are dirty, send them on
1620 * through genfs_putpages(), albeit with adjusted offsets.
1621 * XXXUBC I am assuming here that they can't be dirtied in
1622 * XXXUBC the meantime, but I bet that's wrong.
1623 */
1624 dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags);
1625 if (!dirty)
1626 return genfs_putpages(v);
1627
1628 /*
1629 * Dirty and asked to clean.
1630 *
1631 * Pagedaemon can't actually write LFS pages; wake up
1632 * the writer to take care of that. The writer will
1633 * notice the pager inode queue and act on that.
1634 */
1635 if (pagedaemon) {
1636 ++fs->lfs_pdflush;
1637 wakeup(&lfs_writer_daemon);
1638 simple_unlock(&vp->v_interlock);
1639 return EWOULDBLOCK;
1640 }
1641
1642 /*
1643 * If this is a file created in a recent dirop, we can't flush its
1644 * inode until the dirop is complete. Drain dirops, then flush the
1645 * filesystem (taking care of any other pending dirops while we're
1646 * at it).
1647 */
1648 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1649 (vp->v_flag & VDIROP)) {
1650 int locked;
1651
1652 /* printf("putpages to clean VDIROP, flushing\n"); */
1653 while (fs->lfs_dirops > 0) {
1654 ++fs->lfs_diropwait;
1655 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1656 --fs->lfs_diropwait;
1657 }
1658 ++fs->lfs_writer;
1659 locked = VOP_ISLOCKED(vp) && /* XXX */
1660 vp->v_lock.lk_lockholder == curproc->p_pid;
1661 if (locked)
1662 VOP_UNLOCK(vp, 0);
1663 simple_unlock(&vp->v_interlock);
1664
1665 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1666
1667 simple_lock(&vp->v_interlock);
1668 if (locked)
1669 VOP_LOCK(vp, LK_EXCLUSIVE);
1670 if (--fs->lfs_writer == 0)
1671 wakeup(&fs->lfs_dirops);
1672
1673 /* XXX the flush should have taken care of this one too! */
1674 }
1675
1676
1677 /*
1678 * This is it. We are going to write some pages. From here on
1679 * down it's all just mechanics.
1680 *
1681 * If there are more than one page per block, we don't want to get
1682 * caught locking them backwards; so set PGO_BUSYFAIL to avoid
1683 * deadlocks. Also, don't let genfs_putpages wait;
1684 * lfs_segunlock will wait for us, if need be.
1685 */
1686 ap->a_flags &= ~PGO_SYNCIO;
1687 if (pages_per_block > 1)
1688 ap->a_flags |= PGO_BUSYFAIL;
1689
1690 /*
1691 * If we've already got the seglock, flush the node and return.
1692 * The FIP has already been set up for us by lfs_writefile,
1693 * and FIP cleanup and lfs_updatemeta will also be done there,
1694 * unless genfs_putpages returns EDEADLK; then we must flush
1695 * what we have, and correct FIP and segment header accounting.
1696 */
1697 if (ap->a_flags & PGO_LOCKED) {
1698 sp = fs->lfs_sp;
1699 sp->vp = vp;
1700
1701 while ((error = genfs_putpages(v)) == EDEADLK) {
1702 #ifdef DEBUG_LFS
1703 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1704 " ino %d off %x (seg %d)\n",
1705 ip->i_number, fs->lfs_offset,
1706 dtosn(fs, fs->lfs_offset));
1707 #endif
1708 /* If nothing to write, short-circuit */
1709 if (sp->cbpp - sp->bpp == 1) {
1710 preempt(NULL);
1711 simple_lock(&vp->v_interlock);
1712 continue;
1713 }
1714 /* Write gathered pages */
1715 lfs_updatemeta(sp);
1716 (void) lfs_writeseg(fs, sp);
1717
1718 /* Reinitialize brand new FIP and add us to it */
1719 sp->vp = vp;
1720 sp->fip->fi_version = ip->i_ffs_gen;
1721 sp->fip->fi_ino = ip->i_number;
1722 /* Add us to the new segment summary. */
1723 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1724 sp->sum_bytes_left -=
1725 sizeof(struct finfo) - sizeof(int32_t);
1726
1727 /* Give the write a chance to complete */
1728 preempt(NULL);
1729 simple_lock(&vp->v_interlock);
1730 }
1731 return error;
1732 }
1733
1734 simple_unlock(&vp->v_interlock);
1735 /*
1736 * Take the seglock, because we are going to be writing pages.
1737 */
1738 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1739 return error;
1740
1741 /*
1742 * VOP_PUTPAGES should not be called while holding the seglock.
1743 * XXXUBC fix lfs_markv, or do this properly.
1744 */
1745 /* KASSERT(fs->lfs_seglock == 1); */
1746
1747 /*
1748 * We assume we're being called with sp->fip pointing at blank space.
1749 * Account for a new FIP in the segment header, and set sp->vp.
1750 * (This should duplicate the setup at the top of lfs_writefile().)
1751 */
1752 sp = fs->lfs_sp;
1753 if (sp->seg_bytes_left < fs->lfs_bsize ||
1754 sp->sum_bytes_left < sizeof(struct finfo))
1755 (void) lfs_writeseg(fs, fs->lfs_sp);
1756
1757 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1758 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1759 sp->vp = vp;
1760
1761 if (vp->v_flag & VDIROP)
1762 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1763
1764 sp->fip->fi_nblocks = 0;
1765 sp->fip->fi_ino = ip->i_number;
1766 sp->fip->fi_version = ip->i_ffs_gen;
1767
1768 /*
1769 * Loop through genfs_putpages until all pages are gathered.
1770 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1771 */
1772 simple_lock(&vp->v_interlock);
1773 while ((error = genfs_putpages(v)) == EDEADLK) {
1774 #ifdef DEBUG_LFS
1775 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1776 " ino %d off %x (seg %d)\n",
1777 ip->i_number, fs->lfs_offset,
1778 dtosn(fs, fs->lfs_offset));
1779 #endif
1780 /* If nothing to write, short-circuit */
1781 if (sp->cbpp - sp->bpp == 1) {
1782 preempt(NULL);
1783 simple_lock(&vp->v_interlock);
1784 continue;
1785 }
1786 /* Write gathered pages */
1787 lfs_updatemeta(sp);
1788 (void) lfs_writeseg(fs, sp);
1789
1790 /*
1791 * Reinitialize brand new FIP and add us to it.
1792 * (This should duplicate the fixup in lfs_gatherpages().)
1793 */
1794 sp->vp = vp;
1795 sp->fip->fi_version = ip->i_ffs_gen;
1796 sp->fip->fi_ino = ip->i_number;
1797 /* Add us to the new segment summary. */
1798 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1799 sp->sum_bytes_left -=
1800 sizeof(struct finfo) - sizeof(int32_t);
1801
1802 /* Give the write a chance to complete */
1803 preempt(NULL);
1804 simple_lock(&vp->v_interlock);
1805 }
1806
1807 /*
1808 * Blocks are now gathered into a segment waiting to be written.
1809 * All that's left to do is update metadata, and write them.
1810 */
1811 lfs_updatemeta(fs->lfs_sp);
1812 fs->lfs_sp->vp = NULL;
1813 /*
1814 * Clean up FIP, since we're done writing this file.
1815 * This should duplicate cleanup at the end of lfs_writefile().
1816 */
1817 if (sp->fip->fi_nblocks != 0) {
1818 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1819 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1820 sp->start_lbp = &sp->fip->fi_blocks[0];
1821 } else {
1822 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1823 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1824 }
1825 lfs_writeseg(fs, fs->lfs_sp);
1826
1827 /*
1828 * XXX - with the malloc/copy writeseg, the pages are freed by now
1829 * even if we don't wait (e.g. if we hold a nested lock). This
1830 * will not be true if we stop using malloc/copy.
1831 */
1832 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1833 lfs_segunlock(fs);
1834
1835 /*
1836 * Wait for v_numoutput to drop to zero. The seglock should
1837 * take care of this, but there is a slight possibility that
1838 * aiodoned might not have got around to our buffers yet.
1839 */
1840 if (sync) {
1841 int s;
1842
1843 s = splbio();
1844 simple_lock(&global_v_numoutput_slock);
1845 while(vp->v_numoutput > 0) {
1846 #ifdef DEBUG
1847 printf("ino %d sleeping on num %d\n",
1848 ip->i_number, vp->v_numoutput);
1849 #endif
1850 vp->v_flag |= VBWAIT;
1851 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1852 &global_v_numoutput_slock);
1853 }
1854 simple_unlock(&global_v_numoutput_slock);
1855 splx(s);
1856 }
1857 return error;
1858 }
1859
1860 /*
1861 * Find out whether the vnode has any blocks or pages waiting to be written.
1862 * We used to just check LIST_EMPTY(&vp->v_dirtyblkhd), but there is not
1863 * presently as simple a mechanism for the page cache.
1864 */
1865 int
1866 lfs_checkifempty(struct vnode *vp)
1867 {
1868 struct vm_page *pg;
1869 struct buf *bp;
1870 int r, s;
1871
1872 if (vp->v_type != VREG || VTOI(vp)->i_number == LFS_IFILE_INUM)
1873 return LIST_EMPTY(&vp->v_dirtyblkhd);
1874
1875 /*
1876 * For vnodes with pages it is a little more complex.
1877 * Pages that have been written (i.e. are "clean" for our purposes)
1878 * might be in seemingly dirty buffers, so we have to troll
1879 * looking for indirect block buffers as well as pages.
1880 */
1881 simple_lock(&vp->v_interlock);
1882 s = splbio();
1883 for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp;
1884 bp = LIST_NEXT(bp, b_vnbufs)) {
1885 if (bp->b_lblkno < 0) {
1886 splx(s);
1887 simple_unlock(&vp->v_interlock);
1888 return 0;
1889 }
1890 }
1891 splx(s);
1892
1893 /*
1894 * Run through the page list to find dirty pages.
1895 * Right now I just walk the memq.
1896 */
1897 pg = TAILQ_FIRST(&vp->v_uobj.memq);
1898 r = 1;
1899 while(pg) {
1900 if ((pg->flags & PG_CLEAN) == 0 || pmap_is_modified(pg)) {
1901 r = 0;
1902 break;
1903 }
1904 pg = TAILQ_NEXT(pg, listq);
1905 }
1906 #if 0
1907 if (r != !(vp->v_flag & VONWORKLST)) {
1908 printf("nope, VONWORKLST isn't good enough!\n");
1909 }
1910 #endif
1911 simple_unlock(&vp->v_interlock);
1912 return r;
1913 }
1914
1915 /*
1916 * Return the last logical file offset that should be written for this file
1917 * if we're doing a write that ends at "size". If writing, we need to know
1918 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1919 * to know about entire blocks.
1920 */
1921 void
1922 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1923 {
1924 struct inode *ip = VTOI(vp);
1925 struct lfs *fs = ip->i_lfs;
1926 daddr_t olbn, nlbn;
1927
1928 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1929 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1930 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1931
1932 olbn = lblkno(fs, ip->i_ffs_size);
1933 nlbn = lblkno(fs, size);
1934 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1935 *eobp = fragroundup(fs, size);
1936 } else {
1937 *eobp = blkroundup(fs, size);
1938 }
1939 }
1940
1941 #ifdef DEBUG
1942 void lfs_dump_vop(void *);
1943
1944 void
1945 lfs_dump_vop(void *v)
1946 {
1947 struct vop_putpages_args /* {
1948 struct vnode *a_vp;
1949 voff_t a_offlo;
1950 voff_t a_offhi;
1951 int a_flags;
1952 } */ *ap = v;
1953
1954 vfs_vnode_print(ap->a_vp, 0, printf);
1955 lfs_dump_dinode(&VTOI(ap->a_vp)->i_din.ffs_din);
1956 }
1957 #endif
1958
1959 int
1960 lfs_mmap(void *v)
1961 {
1962 struct vop_mmap_args /* {
1963 const struct vnodeop_desc *a_desc;
1964 struct vnode *a_vp;
1965 int a_fflags;
1966 struct ucred *a_cred;
1967 struct proc *a_p;
1968 } */ *ap = v;
1969
1970 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1971 return EOPNOTSUPP;
1972 return ufs_mmap(v);
1973 }
1974