lfs_vnops.c revision 1.99 1 /* $NetBSD: lfs_vnops.c,v 1.99 2003/03/22 21:31:41 perseant Exp $ */
2
3 /*-
4 * Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Konrad E. Schroder <perseant (at) hhhh.org>.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38 /*
39 * Copyright (c) 1986, 1989, 1991, 1993, 1995
40 * The Regents of the University of California. All rights reserved.
41 *
42 * Redistribution and use in source and binary forms, with or without
43 * modification, are permitted provided that the following conditions
44 * are met:
45 * 1. Redistributions of source code must retain the above copyright
46 * notice, this list of conditions and the following disclaimer.
47 * 2. Redistributions in binary form must reproduce the above copyright
48 * notice, this list of conditions and the following disclaimer in the
49 * documentation and/or other materials provided with the distribution.
50 * 3. All advertising materials mentioning features or use of this software
51 * must display the following acknowledgement:
52 * This product includes software developed by the University of
53 * California, Berkeley and its contributors.
54 * 4. Neither the name of the University nor the names of its contributors
55 * may be used to endorse or promote products derived from this software
56 * without specific prior written permission.
57 *
58 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
59 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
60 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
61 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
62 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
63 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
64 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
65 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
66 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
67 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
68 * SUCH DAMAGE.
69 *
70 * @(#)lfs_vnops.c 8.13 (Berkeley) 6/10/95
71 */
72
73 #include <sys/cdefs.h>
74 __KERNEL_RCSID(0, "$NetBSD: lfs_vnops.c,v 1.99 2003/03/22 21:31:41 perseant Exp $");
75
76 #include <sys/param.h>
77 #include <sys/systm.h>
78 #include <sys/namei.h>
79 #include <sys/resourcevar.h>
80 #include <sys/kernel.h>
81 #include <sys/file.h>
82 #include <sys/stat.h>
83 #include <sys/buf.h>
84 #include <sys/proc.h>
85 #include <sys/mount.h>
86 #include <sys/vnode.h>
87 #include <sys/malloc.h>
88 #include <sys/pool.h>
89 #include <sys/signalvar.h>
90
91 #include <miscfs/fifofs/fifo.h>
92 #include <miscfs/genfs/genfs.h>
93 #include <miscfs/specfs/specdev.h>
94
95 #include <ufs/ufs/inode.h>
96 #include <ufs/ufs/dir.h>
97 #include <ufs/ufs/ufsmount.h>
98 #include <ufs/ufs/ufs_extern.h>
99
100 #include <uvm/uvm.h>
101 #include <uvm/uvm_pmap.h>
102 #include <uvm/uvm_stat.h>
103 #include <uvm/uvm_pager.h>
104
105 #include <ufs/lfs/lfs.h>
106 #include <ufs/lfs/lfs_extern.h>
107
108 extern pid_t lfs_writer_daemon;
109 extern int lfs_subsys_pages;
110 extern int lfs_dirvcount;
111 extern struct simplelock lfs_subsys_lock;
112
113 /* Global vfs data structures for lfs. */
114 int (**lfs_vnodeop_p)(void *);
115 const struct vnodeopv_entry_desc lfs_vnodeop_entries[] = {
116 { &vop_default_desc, vn_default_error },
117 { &vop_lookup_desc, ufs_lookup }, /* lookup */
118 { &vop_create_desc, lfs_create }, /* create */
119 { &vop_whiteout_desc, ufs_whiteout }, /* whiteout */
120 { &vop_mknod_desc, lfs_mknod }, /* mknod */
121 { &vop_open_desc, ufs_open }, /* open */
122 { &vop_close_desc, lfs_close }, /* close */
123 { &vop_access_desc, ufs_access }, /* access */
124 { &vop_getattr_desc, lfs_getattr }, /* getattr */
125 { &vop_setattr_desc, lfs_setattr }, /* setattr */
126 { &vop_read_desc, lfs_read }, /* read */
127 { &vop_write_desc, lfs_write }, /* write */
128 { &vop_lease_desc, ufs_lease_check }, /* lease */
129 { &vop_ioctl_desc, ufs_ioctl }, /* ioctl */
130 { &vop_fcntl_desc, lfs_fcntl }, /* fcntl */
131 { &vop_poll_desc, ufs_poll }, /* poll */
132 { &vop_kqfilter_desc, genfs_kqfilter }, /* kqfilter */
133 { &vop_revoke_desc, ufs_revoke }, /* revoke */
134 { &vop_mmap_desc, lfs_mmap }, /* mmap */
135 { &vop_fsync_desc, lfs_fsync }, /* fsync */
136 { &vop_seek_desc, ufs_seek }, /* seek */
137 { &vop_remove_desc, lfs_remove }, /* remove */
138 { &vop_link_desc, lfs_link }, /* link */
139 { &vop_rename_desc, lfs_rename }, /* rename */
140 { &vop_mkdir_desc, lfs_mkdir }, /* mkdir */
141 { &vop_rmdir_desc, lfs_rmdir }, /* rmdir */
142 { &vop_symlink_desc, lfs_symlink }, /* symlink */
143 { &vop_readdir_desc, ufs_readdir }, /* readdir */
144 { &vop_readlink_desc, ufs_readlink }, /* readlink */
145 { &vop_abortop_desc, ufs_abortop }, /* abortop */
146 { &vop_inactive_desc, lfs_inactive }, /* inactive */
147 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
148 { &vop_lock_desc, ufs_lock }, /* lock */
149 { &vop_unlock_desc, ufs_unlock }, /* unlock */
150 { &vop_bmap_desc, ufs_bmap }, /* bmap */
151 { &vop_strategy_desc, lfs_strategy }, /* strategy */
152 { &vop_print_desc, ufs_print }, /* print */
153 { &vop_islocked_desc, ufs_islocked }, /* islocked */
154 { &vop_pathconf_desc, ufs_pathconf }, /* pathconf */
155 { &vop_advlock_desc, ufs_advlock }, /* advlock */
156 { &vop_blkatoff_desc, lfs_blkatoff }, /* blkatoff */
157 { &vop_valloc_desc, lfs_valloc }, /* valloc */
158 { &vop_balloc_desc, lfs_balloc }, /* balloc */
159 { &vop_vfree_desc, lfs_vfree }, /* vfree */
160 { &vop_truncate_desc, lfs_truncate }, /* truncate */
161 { &vop_update_desc, lfs_update }, /* update */
162 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
163 { &vop_getpages_desc, lfs_getpages }, /* getpages */
164 { &vop_putpages_desc, lfs_putpages }, /* putpages */
165 { NULL, NULL }
166 };
167 const struct vnodeopv_desc lfs_vnodeop_opv_desc =
168 { &lfs_vnodeop_p, lfs_vnodeop_entries };
169
170 int (**lfs_specop_p)(void *);
171 const struct vnodeopv_entry_desc lfs_specop_entries[] = {
172 { &vop_default_desc, vn_default_error },
173 { &vop_lookup_desc, spec_lookup }, /* lookup */
174 { &vop_create_desc, spec_create }, /* create */
175 { &vop_mknod_desc, spec_mknod }, /* mknod */
176 { &vop_open_desc, spec_open }, /* open */
177 { &vop_close_desc, lfsspec_close }, /* close */
178 { &vop_access_desc, ufs_access }, /* access */
179 { &vop_getattr_desc, lfs_getattr }, /* getattr */
180 { &vop_setattr_desc, lfs_setattr }, /* setattr */
181 { &vop_read_desc, ufsspec_read }, /* read */
182 { &vop_write_desc, ufsspec_write }, /* write */
183 { &vop_lease_desc, spec_lease_check }, /* lease */
184 { &vop_ioctl_desc, spec_ioctl }, /* ioctl */
185 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
186 { &vop_poll_desc, spec_poll }, /* poll */
187 { &vop_kqfilter_desc, spec_kqfilter }, /* kqfilter */
188 { &vop_revoke_desc, spec_revoke }, /* revoke */
189 { &vop_mmap_desc, spec_mmap }, /* mmap */
190 { &vop_fsync_desc, spec_fsync }, /* fsync */
191 { &vop_seek_desc, spec_seek }, /* seek */
192 { &vop_remove_desc, spec_remove }, /* remove */
193 { &vop_link_desc, spec_link }, /* link */
194 { &vop_rename_desc, spec_rename }, /* rename */
195 { &vop_mkdir_desc, spec_mkdir }, /* mkdir */
196 { &vop_rmdir_desc, spec_rmdir }, /* rmdir */
197 { &vop_symlink_desc, spec_symlink }, /* symlink */
198 { &vop_readdir_desc, spec_readdir }, /* readdir */
199 { &vop_readlink_desc, spec_readlink }, /* readlink */
200 { &vop_abortop_desc, spec_abortop }, /* abortop */
201 { &vop_inactive_desc, lfs_inactive }, /* inactive */
202 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
203 { &vop_lock_desc, ufs_lock }, /* lock */
204 { &vop_unlock_desc, ufs_unlock }, /* unlock */
205 { &vop_bmap_desc, spec_bmap }, /* bmap */
206 { &vop_strategy_desc, spec_strategy }, /* strategy */
207 { &vop_print_desc, ufs_print }, /* print */
208 { &vop_islocked_desc, ufs_islocked }, /* islocked */
209 { &vop_pathconf_desc, spec_pathconf }, /* pathconf */
210 { &vop_advlock_desc, spec_advlock }, /* advlock */
211 { &vop_blkatoff_desc, spec_blkatoff }, /* blkatoff */
212 { &vop_valloc_desc, spec_valloc }, /* valloc */
213 { &vop_vfree_desc, lfs_vfree }, /* vfree */
214 { &vop_truncate_desc, spec_truncate }, /* truncate */
215 { &vop_update_desc, lfs_update }, /* update */
216 { &vop_bwrite_desc, vn_bwrite }, /* bwrite */
217 { &vop_getpages_desc, spec_getpages }, /* getpages */
218 { &vop_putpages_desc, spec_putpages }, /* putpages */
219 { NULL, NULL }
220 };
221 const struct vnodeopv_desc lfs_specop_opv_desc =
222 { &lfs_specop_p, lfs_specop_entries };
223
224 int (**lfs_fifoop_p)(void *);
225 const struct vnodeopv_entry_desc lfs_fifoop_entries[] = {
226 { &vop_default_desc, vn_default_error },
227 { &vop_lookup_desc, fifo_lookup }, /* lookup */
228 { &vop_create_desc, fifo_create }, /* create */
229 { &vop_mknod_desc, fifo_mknod }, /* mknod */
230 { &vop_open_desc, fifo_open }, /* open */
231 { &vop_close_desc, lfsfifo_close }, /* close */
232 { &vop_access_desc, ufs_access }, /* access */
233 { &vop_getattr_desc, lfs_getattr }, /* getattr */
234 { &vop_setattr_desc, lfs_setattr }, /* setattr */
235 { &vop_read_desc, ufsfifo_read }, /* read */
236 { &vop_write_desc, ufsfifo_write }, /* write */
237 { &vop_lease_desc, fifo_lease_check }, /* lease */
238 { &vop_ioctl_desc, fifo_ioctl }, /* ioctl */
239 { &vop_fcntl_desc, ufs_fcntl }, /* fcntl */
240 { &vop_poll_desc, fifo_poll }, /* poll */
241 { &vop_kqfilter_desc, fifo_kqfilter }, /* kqfilter */
242 { &vop_revoke_desc, fifo_revoke }, /* revoke */
243 { &vop_mmap_desc, fifo_mmap }, /* mmap */
244 { &vop_fsync_desc, fifo_fsync }, /* fsync */
245 { &vop_seek_desc, fifo_seek }, /* seek */
246 { &vop_remove_desc, fifo_remove }, /* remove */
247 { &vop_link_desc, fifo_link }, /* link */
248 { &vop_rename_desc, fifo_rename }, /* rename */
249 { &vop_mkdir_desc, fifo_mkdir }, /* mkdir */
250 { &vop_rmdir_desc, fifo_rmdir }, /* rmdir */
251 { &vop_symlink_desc, fifo_symlink }, /* symlink */
252 { &vop_readdir_desc, fifo_readdir }, /* readdir */
253 { &vop_readlink_desc, fifo_readlink }, /* readlink */
254 { &vop_abortop_desc, fifo_abortop }, /* abortop */
255 { &vop_inactive_desc, lfs_inactive }, /* inactive */
256 { &vop_reclaim_desc, lfs_reclaim }, /* reclaim */
257 { &vop_lock_desc, ufs_lock }, /* lock */
258 { &vop_unlock_desc, ufs_unlock }, /* unlock */
259 { &vop_bmap_desc, fifo_bmap }, /* bmap */
260 { &vop_strategy_desc, fifo_strategy }, /* strategy */
261 { &vop_print_desc, ufs_print }, /* print */
262 { &vop_islocked_desc, ufs_islocked }, /* islocked */
263 { &vop_pathconf_desc, fifo_pathconf }, /* pathconf */
264 { &vop_advlock_desc, fifo_advlock }, /* advlock */
265 { &vop_blkatoff_desc, fifo_blkatoff }, /* blkatoff */
266 { &vop_valloc_desc, fifo_valloc }, /* valloc */
267 { &vop_vfree_desc, lfs_vfree }, /* vfree */
268 { &vop_truncate_desc, fifo_truncate }, /* truncate */
269 { &vop_update_desc, lfs_update }, /* update */
270 { &vop_bwrite_desc, lfs_bwrite }, /* bwrite */
271 { &vop_putpages_desc, fifo_putpages }, /* putpages */
272 { NULL, NULL }
273 };
274 const struct vnodeopv_desc lfs_fifoop_opv_desc =
275 { &lfs_fifoop_p, lfs_fifoop_entries };
276
277 /*
278 * A function version of LFS_ITIMES, for the UFS functions which call ITIMES
279 */
280 void
281 lfs_itimes(struct inode *ip, struct timespec *acc, struct timespec *mod, struct timespec *cre)
282 {
283 LFS_ITIMES(ip, acc, mod, cre);
284 }
285
286 #define LFS_READWRITE
287 #include <ufs/ufs/ufs_readwrite.c>
288 #undef LFS_READWRITE
289
290 /*
291 * Synch an open file.
292 */
293 /* ARGSUSED */
294 int
295 lfs_fsync(void *v)
296 {
297 struct vop_fsync_args /* {
298 struct vnode *a_vp;
299 struct ucred *a_cred;
300 int a_flags;
301 off_t offlo;
302 off_t offhi;
303 struct proc *a_p;
304 } */ *ap = v;
305 struct vnode *vp = ap->a_vp;
306 int error, wait;
307
308 /*
309 * Trickle sync checks for need to do a checkpoint after possible
310 * activity from the pagedaemon.
311 */
312 if (ap->a_flags & FSYNC_LAZY) {
313 wakeup(&lfs_writer_daemon);
314 return 0;
315 }
316
317 wait = (ap->a_flags & FSYNC_WAIT);
318 do {
319 #ifdef DEBUG
320 struct buf *bp;
321 #endif
322
323 simple_lock(&vp->v_interlock);
324 error = VOP_PUTPAGES(vp, trunc_page(ap->a_offlo),
325 round_page(ap->a_offhi),
326 PGO_CLEANIT | (wait ? PGO_SYNCIO : 0));
327 if (error)
328 return error;
329 error = VOP_UPDATE(vp, NULL, NULL, wait ? UPDATE_WAIT : 0);
330 if (wait && error == 0 && !VPISEMPTY(vp)) {
331 #ifdef DEBUG
332 printf("lfs_fsync: reflushing ino %d\n",
333 VTOI(vp)->i_number);
334 printf("vflags %x iflags %x npages %d\n",
335 vp->v_flag, VTOI(vp)->i_flag,
336 vp->v_uobj.uo_npages);
337 LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs)
338 printf("%" PRId64 " (%lx)", bp->b_lblkno,
339 bp->b_flags);
340 printf("\n");
341 #endif
342 LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
343 }
344 } while (wait && error == 0 && !VPISEMPTY(vp));
345
346 return error;
347 }
348
349 /*
350 * Take IN_ADIROP off, then call ufs_inactive.
351 */
352 int
353 lfs_inactive(void *v)
354 {
355 struct vop_inactive_args /* {
356 struct vnode *a_vp;
357 struct proc *a_p;
358 } */ *ap = v;
359
360 KASSERT(VTOI(ap->a_vp)->i_ffs_nlink == VTOI(ap->a_vp)->i_ffs_effnlink);
361
362 lfs_unmark_vnode(ap->a_vp);
363
364 /*
365 * The Ifile is only ever inactivated on unmount.
366 * Streamline this process by not giving it more dirty blocks.
367 */
368 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM) {
369 LFS_CLR_UINO(VTOI(ap->a_vp), IN_ALLMOD);
370 VOP_UNLOCK(ap->a_vp, 0);
371 return 0;
372 }
373
374 return ufs_inactive(v);
375 }
376
377 /*
378 * These macros are used to bracket UFS directory ops, so that we can
379 * identify all the pages touched during directory ops which need to
380 * be ordered and flushed atomically, so that they may be recovered.
381 */
382 /*
383 * XXX KS - Because we have to mark nodes VDIROP in order to prevent
384 * the cache from reclaiming them while a dirop is in progress, we must
385 * also manage the number of nodes so marked (otherwise we can run out).
386 * We do this by setting lfs_dirvcount to the number of marked vnodes; it
387 * is decremented during segment write, when VDIROP is taken off.
388 */
389 #define SET_DIROP(vp) SET_DIROP2((vp), NULL)
390 #define SET_DIROP2(vp, vp2) lfs_set_dirop((vp), (vp2))
391 static int lfs_set_dirop(struct vnode *, struct vnode *);
392 extern int lfs_dirvcount;
393 extern int lfs_do_flush;
394
395 #define NRESERVE(fs) (btofsb(fs, (NIADDR + 3 + (2 * NIADDR + 3)) << fs->lfs_bshift))
396
397 static int
398 lfs_set_dirop(struct vnode *vp, struct vnode *vp2)
399 {
400 struct lfs *fs;
401 int error;
402
403 KASSERT(VOP_ISLOCKED(vp));
404 KASSERT(vp2 == NULL || VOP_ISLOCKED(vp2));
405
406 fs = VTOI(vp)->i_lfs;
407 /*
408 * We might need one directory block plus supporting indirect blocks,
409 * plus an inode block and ifile page for the new vnode.
410 */
411 if ((error = lfs_reserve(fs, vp, vp2, NRESERVE(fs))) != 0)
412 return (error);
413
414 if (fs->lfs_dirops == 0)
415 lfs_check(vp, LFS_UNUSED_LBN, 0);
416 while (fs->lfs_writer || lfs_dirvcount > LFS_MAX_DIROP) {
417 if (fs->lfs_writer)
418 tsleep(&fs->lfs_dirops, PRIBIO + 1, "lfs_sdirop", 0);
419 if (lfs_dirvcount > LFS_MAX_DIROP && fs->lfs_dirops == 0) {
420 wakeup(&lfs_writer_daemon);
421 preempt(NULL);
422 }
423
424 if (lfs_dirvcount > LFS_MAX_DIROP) {
425 #ifdef DEBUG_LFS
426 printf("lfs_set_dirop: sleeping with dirops=%d, "
427 "dirvcount=%d\n", fs->lfs_dirops,
428 lfs_dirvcount);
429 #endif
430 if ((error = tsleep(&lfs_dirvcount, PCATCH|PUSER,
431 "lfs_maxdirop", 0)) != 0) {
432 goto unreserve;
433 }
434 }
435 }
436 ++fs->lfs_dirops;
437 fs->lfs_doifile = 1;
438
439 /* Hold a reference so SET_ENDOP will be happy */
440 vref(vp);
441 if (vp2)
442 vref(vp2);
443
444 return 0;
445
446 unreserve:
447 lfs_reserve(fs, vp, vp2, -NRESERVE(fs));
448 return error;
449 }
450
451 #define SET_ENDOP(fs, vp, str) SET_ENDOP2((fs), (vp), NULL, (str))
452 #define SET_ENDOP2(fs, vp, vp2, str) { \
453 --(fs)->lfs_dirops; \
454 if (!(fs)->lfs_dirops) { \
455 if ((fs)->lfs_nadirop) { \
456 panic("SET_ENDOP: %s: no dirops but nadirop=%d", \
457 (str), (fs)->lfs_nadirop); \
458 } \
459 wakeup(&(fs)->lfs_writer); \
460 lfs_check((vp),LFS_UNUSED_LBN,0); \
461 } \
462 lfs_reserve((fs), vp, vp2, -NRESERVE(fs)); /* XXX */ \
463 vrele(vp); \
464 if (vp2) \
465 vrele(vp2); \
466 }
467
468 #define MARK_VNODE(dvp) do { \
469 struct inode *_ip = VTOI(dvp); \
470 struct lfs *_fs = _ip->i_lfs; \
471 \
472 if (!((dvp)->v_flag & VDIROP)) { \
473 (void)lfs_vref(dvp); \
474 ++lfs_dirvcount; \
475 TAILQ_INSERT_TAIL(&_fs->lfs_dchainhd, _ip, i_lfs_dchain); \
476 } \
477 (dvp)->v_flag |= VDIROP; \
478 if (!(_ip->i_flag & IN_ADIROP)) { \
479 ++_fs->lfs_nadirop; \
480 } \
481 _ip->i_flag |= IN_ADIROP; \
482 } while (0)
483
484 #define UNMARK_VNODE(vp) lfs_unmark_vnode(vp)
485
486 void lfs_unmark_vnode(struct vnode *vp)
487 {
488 struct inode *ip;
489
490 ip = VTOI(vp);
491
492 if (ip->i_flag & IN_ADIROP)
493 --ip->i_lfs->lfs_nadirop;
494 ip->i_flag &= ~IN_ADIROP;
495 }
496
497 int
498 lfs_symlink(void *v)
499 {
500 struct vop_symlink_args /* {
501 struct vnode *a_dvp;
502 struct vnode **a_vpp;
503 struct componentname *a_cnp;
504 struct vattr *a_vap;
505 char *a_target;
506 } */ *ap = v;
507 int error;
508
509 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
510 vput(ap->a_dvp);
511 return error;
512 }
513 MARK_VNODE(ap->a_dvp);
514 error = ufs_symlink(ap);
515 UNMARK_VNODE(ap->a_dvp);
516 if (*(ap->a_vpp))
517 UNMARK_VNODE(*(ap->a_vpp));
518 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"symlink");
519 return (error);
520 }
521
522 int
523 lfs_mknod(void *v)
524 {
525 struct vop_mknod_args /* {
526 struct vnode *a_dvp;
527 struct vnode **a_vpp;
528 struct componentname *a_cnp;
529 struct vattr *a_vap;
530 } */ *ap = v;
531 struct vattr *vap = ap->a_vap;
532 struct vnode **vpp = ap->a_vpp;
533 struct inode *ip;
534 int error;
535 struct mount *mp;
536 ino_t ino;
537
538 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
539 vput(ap->a_dvp);
540 return error;
541 }
542 MARK_VNODE(ap->a_dvp);
543 error = ufs_makeinode(MAKEIMODE(vap->va_type, vap->va_mode),
544 ap->a_dvp, vpp, ap->a_cnp);
545 UNMARK_VNODE(ap->a_dvp);
546 if (*(ap->a_vpp))
547 UNMARK_VNODE(*(ap->a_vpp));
548
549 /* Either way we're done with the dirop at this point */
550 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mknod");
551
552 if (error)
553 return (error);
554
555 ip = VTOI(*vpp);
556 mp = (*vpp)->v_mount;
557 ino = ip->i_number;
558 ip->i_flag |= IN_ACCESS | IN_CHANGE | IN_UPDATE;
559 if (vap->va_rdev != VNOVAL) {
560 /*
561 * Want to be able to use this to make badblock
562 * inodes, so don't truncate the dev number.
563 */
564 #if 0
565 ip->i_ffs_rdev = ufs_rw32(vap->va_rdev,
566 UFS_MPNEEDSWAP((*vpp)->v_mount));
567 #else
568 ip->i_ffs_rdev = vap->va_rdev;
569 #endif
570 }
571 /*
572 * Call fsync to write the vnode so that we don't have to deal with
573 * flushing it when it's marked VDIROP|VXLOCK.
574 *
575 * XXX KS - If we can't flush we also can't call vgone(), so must
576 * return. But, that leaves this vnode in limbo, also not good.
577 * Can this ever happen (barring hardware failure)?
578 */
579 if ((error = VOP_FSYNC(*vpp, NOCRED, FSYNC_WAIT, 0, 0,
580 curproc)) != 0) {
581 printf("Couldn't fsync in mknod (ino %d)---what do I do?\n",
582 VTOI(*vpp)->i_number);
583 return (error);
584 }
585 /*
586 * Remove vnode so that it will be reloaded by VFS_VGET and
587 * checked to see if it is an alias of an existing entry in
588 * the inode cache.
589 */
590 /* Used to be vput, but that causes us to call VOP_INACTIVE twice. */
591 VOP_UNLOCK(*vpp, 0);
592 lfs_vunref(*vpp);
593 (*vpp)->v_type = VNON;
594 vgone(*vpp);
595 error = VFS_VGET(mp, ino, vpp);
596 if (error != 0) {
597 *vpp = NULL;
598 return (error);
599 }
600 return (0);
601 }
602
603 int
604 lfs_create(void *v)
605 {
606 struct vop_create_args /* {
607 struct vnode *a_dvp;
608 struct vnode **a_vpp;
609 struct componentname *a_cnp;
610 struct vattr *a_vap;
611 } */ *ap = v;
612 int error;
613
614 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
615 vput(ap->a_dvp);
616 return error;
617 }
618 MARK_VNODE(ap->a_dvp);
619 error = ufs_create(ap);
620 UNMARK_VNODE(ap->a_dvp);
621 if (*(ap->a_vpp))
622 UNMARK_VNODE(*(ap->a_vpp));
623 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"create");
624 return (error);
625 }
626
627 int
628 lfs_mkdir(void *v)
629 {
630 struct vop_mkdir_args /* {
631 struct vnode *a_dvp;
632 struct vnode **a_vpp;
633 struct componentname *a_cnp;
634 struct vattr *a_vap;
635 } */ *ap = v;
636 int error;
637
638 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
639 vput(ap->a_dvp);
640 return error;
641 }
642 MARK_VNODE(ap->a_dvp);
643 error = ufs_mkdir(ap);
644 UNMARK_VNODE(ap->a_dvp);
645 if (*(ap->a_vpp))
646 UNMARK_VNODE(*(ap->a_vpp));
647 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"mkdir");
648 return (error);
649 }
650
651 int
652 lfs_remove(void *v)
653 {
654 struct vop_remove_args /* {
655 struct vnode *a_dvp;
656 struct vnode *a_vp;
657 struct componentname *a_cnp;
658 } */ *ap = v;
659 struct vnode *dvp, *vp;
660 int error;
661
662 dvp = ap->a_dvp;
663 vp = ap->a_vp;
664 if ((error = SET_DIROP2(dvp, vp)) != 0) {
665 if (dvp == vp)
666 vrele(vp);
667 else
668 vput(vp);
669 vput(dvp);
670 return error;
671 }
672 MARK_VNODE(dvp);
673 MARK_VNODE(vp);
674 error = ufs_remove(ap);
675 UNMARK_VNODE(dvp);
676 UNMARK_VNODE(vp);
677
678 SET_ENDOP2(VTOI(dvp)->i_lfs, dvp, vp, "remove");
679 return (error);
680 }
681
682 int
683 lfs_rmdir(void *v)
684 {
685 struct vop_rmdir_args /* {
686 struct vnodeop_desc *a_desc;
687 struct vnode *a_dvp;
688 struct vnode *a_vp;
689 struct componentname *a_cnp;
690 } */ *ap = v;
691 struct vnode *vp;
692 int error;
693
694 vp = ap->a_vp;
695 if ((error = SET_DIROP2(ap->a_dvp, ap->a_vp)) != 0) {
696 vrele(ap->a_dvp);
697 if (ap->a_vp != ap->a_dvp)
698 VOP_UNLOCK(ap->a_dvp, 0);
699 vput(vp);
700 return error;
701 }
702 MARK_VNODE(ap->a_dvp);
703 MARK_VNODE(vp);
704 error = ufs_rmdir(ap);
705 UNMARK_VNODE(ap->a_dvp);
706 UNMARK_VNODE(vp);
707
708 SET_ENDOP2(VTOI(ap->a_dvp)->i_lfs, ap->a_dvp, vp, "rmdir");
709 return (error);
710 }
711
712 int
713 lfs_link(void *v)
714 {
715 struct vop_link_args /* {
716 struct vnode *a_dvp;
717 struct vnode *a_vp;
718 struct componentname *a_cnp;
719 } */ *ap = v;
720 int error;
721
722 if ((error = SET_DIROP(ap->a_dvp)) != 0) {
723 vput(ap->a_dvp);
724 return error;
725 }
726 MARK_VNODE(ap->a_dvp);
727 error = ufs_link(ap);
728 UNMARK_VNODE(ap->a_dvp);
729 SET_ENDOP(VTOI(ap->a_dvp)->i_lfs,ap->a_dvp,"link");
730 return (error);
731 }
732
733 int
734 lfs_rename(void *v)
735 {
736 struct vop_rename_args /* {
737 struct vnode *a_fdvp;
738 struct vnode *a_fvp;
739 struct componentname *a_fcnp;
740 struct vnode *a_tdvp;
741 struct vnode *a_tvp;
742 struct componentname *a_tcnp;
743 } */ *ap = v;
744 struct vnode *tvp, *fvp, *tdvp, *fdvp;
745 struct componentname *tcnp, *fcnp;
746 int error;
747 struct lfs *fs;
748
749 fs = VTOI(ap->a_fdvp)->i_lfs;
750 tvp = ap->a_tvp;
751 tdvp = ap->a_tdvp;
752 tcnp = ap->a_tcnp;
753 fvp = ap->a_fvp;
754 fdvp = ap->a_fdvp;
755 fcnp = ap->a_fcnp;
756
757 /*
758 * Check for cross-device rename.
759 * If it is, we don't want to set dirops, just error out.
760 * (In particular note that MARK_VNODE(tdvp) will DTWT on
761 * a cross-device rename.)
762 *
763 * Copied from ufs_rename.
764 */
765 if ((fvp->v_mount != tdvp->v_mount) ||
766 (tvp && (fvp->v_mount != tvp->v_mount))) {
767 error = EXDEV;
768 goto errout;
769 }
770
771 /*
772 * Check to make sure we're not renaming a vnode onto itself
773 * (deleting a hard link by renaming one name onto another);
774 * if we are we can't recursively call VOP_REMOVE since that
775 * would leave us with an unaccounted-for number of live dirops.
776 *
777 * Inline the relevant section of ufs_rename here, *before*
778 * calling SET_DIROP2.
779 */
780 if (tvp && ((VTOI(tvp)->i_ffs_flags & (IMMUTABLE | APPEND)) ||
781 (VTOI(tdvp)->i_ffs_flags & APPEND))) {
782 error = EPERM;
783 goto errout;
784 }
785 if (fvp == tvp) {
786 if (fvp->v_type == VDIR) {
787 error = EINVAL;
788 goto errout;
789 }
790
791 /* Release destination completely. */
792 VOP_ABORTOP(tdvp, tcnp);
793 vput(tdvp);
794 vput(tvp);
795
796 /* Delete source. */
797 vrele(fvp);
798 fcnp->cn_flags &= ~(MODMASK | SAVESTART);
799 fcnp->cn_flags |= LOCKPARENT | LOCKLEAF;
800 fcnp->cn_nameiop = DELETE;
801 if ((error = relookup(fdvp, &fvp, fcnp))){
802 /* relookup blew away fdvp */
803 return (error);
804 }
805 return (VOP_REMOVE(fdvp, fvp, fcnp));
806 }
807
808 if ((error = SET_DIROP2(tdvp, tvp)) != 0)
809 goto errout;
810 MARK_VNODE(fdvp);
811 MARK_VNODE(tdvp);
812 MARK_VNODE(fvp);
813 if (tvp) {
814 MARK_VNODE(tvp);
815 }
816
817 error = ufs_rename(ap);
818 UNMARK_VNODE(fdvp);
819 UNMARK_VNODE(tdvp);
820 UNMARK_VNODE(fvp);
821 if (tvp) {
822 UNMARK_VNODE(tvp);
823 }
824 SET_ENDOP2(fs, tdvp, tvp, "rename");
825 return (error);
826
827 errout:
828 VOP_ABORTOP(tdvp, ap->a_tcnp); /* XXX, why not in NFS? */
829 if (tdvp == tvp)
830 vrele(tdvp);
831 else
832 vput(tdvp);
833 if (tvp)
834 vput(tvp);
835 VOP_ABORTOP(fdvp, ap->a_fcnp); /* XXX, why not in NFS? */
836 vrele(fdvp);
837 vrele(fvp);
838 return (error);
839 }
840
841 /* XXX hack to avoid calling ITIMES in getattr */
842 int
843 lfs_getattr(void *v)
844 {
845 struct vop_getattr_args /* {
846 struct vnode *a_vp;
847 struct vattr *a_vap;
848 struct ucred *a_cred;
849 struct proc *a_p;
850 } */ *ap = v;
851 struct vnode *vp = ap->a_vp;
852 struct inode *ip = VTOI(vp);
853 struct vattr *vap = ap->a_vap;
854 struct lfs *fs = ip->i_lfs;
855 /*
856 * Copy from inode table
857 */
858 vap->va_fsid = ip->i_dev;
859 vap->va_fileid = ip->i_number;
860 vap->va_mode = ip->i_ffs_mode & ~IFMT;
861 vap->va_nlink = ip->i_ffs_nlink;
862 vap->va_uid = ip->i_ffs_uid;
863 vap->va_gid = ip->i_ffs_gid;
864 vap->va_rdev = (dev_t)ip->i_ffs_rdev;
865 vap->va_size = vp->v_size;
866 vap->va_atime.tv_sec = ip->i_ffs_atime;
867 vap->va_atime.tv_nsec = ip->i_ffs_atimensec;
868 vap->va_mtime.tv_sec = ip->i_ffs_mtime;
869 vap->va_mtime.tv_nsec = ip->i_ffs_mtimensec;
870 vap->va_ctime.tv_sec = ip->i_ffs_ctime;
871 vap->va_ctime.tv_nsec = ip->i_ffs_ctimensec;
872 vap->va_flags = ip->i_ffs_flags;
873 vap->va_gen = ip->i_ffs_gen;
874 /* this doesn't belong here */
875 if (vp->v_type == VBLK)
876 vap->va_blocksize = BLKDEV_IOSIZE;
877 else if (vp->v_type == VCHR)
878 vap->va_blocksize = MAXBSIZE;
879 else
880 vap->va_blocksize = vp->v_mount->mnt_stat.f_iosize;
881 vap->va_bytes = fsbtob(fs, (u_quad_t)ip->i_lfs_effnblks);
882 vap->va_type = vp->v_type;
883 vap->va_filerev = ip->i_modrev;
884 return (0);
885 }
886
887 /*
888 * Check to make sure the inode blocks won't choke the buffer
889 * cache, then call ufs_setattr as usual.
890 */
891 int
892 lfs_setattr(void *v)
893 {
894 struct vop_getattr_args /* {
895 struct vnode *a_vp;
896 struct vattr *a_vap;
897 struct ucred *a_cred;
898 struct proc *a_p;
899 } */ *ap = v;
900 struct vnode *vp = ap->a_vp;
901
902 lfs_check(vp, LFS_UNUSED_LBN, 0);
903 return ufs_setattr(v);
904 }
905
906 /*
907 * Close called
908 *
909 * XXX -- we were using ufs_close, but since it updates the
910 * times on the inode, we might need to bump the uinodes
911 * count.
912 */
913 /* ARGSUSED */
914 int
915 lfs_close(void *v)
916 {
917 struct vop_close_args /* {
918 struct vnode *a_vp;
919 int a_fflag;
920 struct ucred *a_cred;
921 struct proc *a_p;
922 } */ *ap = v;
923 struct vnode *vp = ap->a_vp;
924 struct inode *ip = VTOI(vp);
925 struct timespec ts;
926
927 if (vp == ip->i_lfs->lfs_ivnode &&
928 vp->v_mount->mnt_flag & MNT_UNMOUNT)
929 return 0;
930
931 if (vp->v_usecount > 1 && vp != ip->i_lfs->lfs_ivnode) {
932 TIMEVAL_TO_TIMESPEC(&time, &ts);
933 LFS_ITIMES(ip, &ts, &ts, &ts);
934 }
935 return (0);
936 }
937
938 /*
939 * Close wrapper for special devices.
940 *
941 * Update the times on the inode then do device close.
942 */
943 int
944 lfsspec_close(void *v)
945 {
946 struct vop_close_args /* {
947 struct vnode *a_vp;
948 int a_fflag;
949 struct ucred *a_cred;
950 struct proc *a_p;
951 } */ *ap = v;
952 struct vnode *vp;
953 struct inode *ip;
954 struct timespec ts;
955
956 vp = ap->a_vp;
957 ip = VTOI(vp);
958 if (vp->v_usecount > 1) {
959 TIMEVAL_TO_TIMESPEC(&time, &ts);
960 LFS_ITIMES(ip, &ts, &ts, &ts);
961 }
962 return (VOCALL (spec_vnodeop_p, VOFFSET(vop_close), ap));
963 }
964
965 /*
966 * Close wrapper for fifo's.
967 *
968 * Update the times on the inode then do device close.
969 */
970 int
971 lfsfifo_close(void *v)
972 {
973 struct vop_close_args /* {
974 struct vnode *a_vp;
975 int a_fflag;
976 struct ucred *a_cred;
977 struct proc *a_p;
978 } */ *ap = v;
979 struct vnode *vp;
980 struct inode *ip;
981 struct timespec ts;
982
983 vp = ap->a_vp;
984 ip = VTOI(vp);
985 if (ap->a_vp->v_usecount > 1) {
986 TIMEVAL_TO_TIMESPEC(&time, &ts);
987 LFS_ITIMES(ip, &ts, &ts, &ts);
988 }
989 return (VOCALL (fifo_vnodeop_p, VOFFSET(vop_close), ap));
990 }
991
992 /*
993 * Reclaim an inode so that it can be used for other purposes.
994 */
995 int lfs_no_inactive = 0;
996
997 int
998 lfs_reclaim(void *v)
999 {
1000 struct vop_reclaim_args /* {
1001 struct vnode *a_vp;
1002 struct proc *a_p;
1003 } */ *ap = v;
1004 struct vnode *vp = ap->a_vp;
1005 struct inode *ip = VTOI(vp);
1006 int error;
1007
1008 KASSERT(ip->i_ffs_nlink == ip->i_ffs_effnlink);
1009
1010 LFS_CLR_UINO(ip, IN_ALLMOD);
1011 if ((error = ufs_reclaim(vp, ap->a_p)))
1012 return (error);
1013 pool_put(&lfs_inoext_pool, ip->inode_ext.lfs);
1014 ip->inode_ext.lfs = NULL;
1015 pool_put(&lfs_inode_pool, vp->v_data);
1016 vp->v_data = NULL;
1017 return (0);
1018 }
1019
1020 /*
1021 * Read a block from, or write a block to, a storage device.
1022 * In order to avoid reading blocks that are in the process of being
1023 * written by the cleaner---and hence are not mutexed by the normal
1024 * buffer cache / page cache mechanisms---check for collisions before
1025 * reading.
1026 *
1027 * We inline ufs_strategy to make sure that the VOP_BMAP occurs *before*
1028 * the active cleaner test.
1029 *
1030 * XXX This code assumes that lfs_markv makes synchronous checkpoints.
1031 */
1032 int
1033 lfs_strategy(void *v)
1034 {
1035 struct vop_strategy_args /* {
1036 struct buf *a_bp;
1037 } */ *ap = v;
1038 struct buf *bp;
1039 struct lfs *fs;
1040 struct vnode *vp;
1041 struct inode *ip;
1042 daddr_t tbn;
1043 int i, sn, error, slept;
1044
1045 bp = ap->a_bp;
1046 vp = bp->b_vp;
1047 ip = VTOI(vp);
1048 fs = ip->i_lfs;
1049
1050 if (vp->v_type == VBLK || vp->v_type == VCHR)
1051 panic("lfs_strategy: spec");
1052 KASSERT(bp->b_bcount != 0);
1053 if (bp->b_blkno == bp->b_lblkno) {
1054 error = VOP_BMAP(vp, bp->b_lblkno, NULL, &bp->b_blkno,
1055 NULL);
1056 if (error) {
1057 bp->b_error = error;
1058 bp->b_flags |= B_ERROR;
1059 biodone(bp);
1060 return (error);
1061 }
1062 if ((long)bp->b_blkno == -1) /* no valid data */
1063 clrbuf(bp);
1064 }
1065 if ((long)bp->b_blkno < 0) { /* block is not on disk */
1066 biodone(bp);
1067 return (0);
1068 }
1069
1070 slept = 1;
1071 simple_lock(&fs->lfs_interlock);
1072 while (slept && bp->b_flags & B_READ && fs->lfs_seglock) {
1073 simple_unlock(&fs->lfs_interlock);
1074 /*
1075 * Look through list of intervals.
1076 * There will only be intervals to look through
1077 * if the cleaner holds the seglock.
1078 * Since the cleaner is synchronous, we can trust
1079 * the list of intervals to be current.
1080 */
1081 tbn = dbtofsb(fs, bp->b_blkno);
1082 sn = dtosn(fs, tbn);
1083 slept = 0;
1084 for (i = 0; i < fs->lfs_cleanind; i++) {
1085 if (sn == dtosn(fs, fs->lfs_cleanint[i]) &&
1086 tbn >= fs->lfs_cleanint[i]) {
1087 #ifdef DEBUG_LFS
1088 printf("lfs_strategy: ino %d lbn %" PRId64
1089 " ind %d sn %d fsb %" PRIx32
1090 " given sn %d fsb %" PRIx64 "\n",
1091 ip->i_number, bp->b_lblkno, i,
1092 dtosn(fs, fs->lfs_cleanint[i]),
1093 fs->lfs_cleanint[i], sn, tbn);
1094 printf("lfs_strategy: sleeping on ino %d lbn %"
1095 PRId64 "\n", ip->i_number, bp->b_lblkno);
1096 #endif
1097 tsleep(&fs->lfs_seglock, PRIBIO+1,
1098 "lfs_strategy", 0);
1099 /* Things may be different now; start over. */
1100 slept = 1;
1101 break;
1102 }
1103 }
1104 simple_lock(&fs->lfs_interlock);
1105 }
1106 simple_unlock(&fs->lfs_interlock);
1107
1108 vp = ip->i_devvp;
1109 bp->b_dev = vp->v_rdev;
1110 VOCALL (vp->v_op, VOFFSET(vop_strategy), ap);
1111 return (0);
1112 }
1113
1114 static void
1115 lfs_flush_dirops(struct lfs *fs)
1116 {
1117 struct inode *ip, *nip;
1118 struct vnode *vp;
1119 extern int lfs_dostats;
1120 struct segment *sp;
1121 int needunlock;
1122
1123 if (fs->lfs_ronly)
1124 return;
1125
1126 if (TAILQ_FIRST(&fs->lfs_dchainhd) == NULL)
1127 return;
1128
1129 /* XXX simplelock fs->lfs_dirops */
1130 while (fs->lfs_dirops > 0) {
1131 ++fs->lfs_diropwait;
1132 tsleep(&fs->lfs_writer, PRIBIO+1, "pndirop", 0);
1133 --fs->lfs_diropwait;
1134 }
1135 /* disallow dirops during flush */
1136 fs->lfs_writer++;
1137
1138 if (lfs_dostats)
1139 ++lfs_stats.flush_invoked;
1140
1141 /*
1142 * Inline lfs_segwrite/lfs_writevnodes, but just for dirops.
1143 * Technically this is a checkpoint (the on-disk state is valid)
1144 * even though we are leaving out all the file data.
1145 */
1146 lfs_imtime(fs);
1147 lfs_seglock(fs, SEGM_CKP);
1148 sp = fs->lfs_sp;
1149
1150 /*
1151 * lfs_writevnodes, optimized to get dirops out of the way.
1152 * Only write dirops, and don't flush files' pages, only
1153 * blocks from the directories.
1154 *
1155 * We don't need to vref these files because they are
1156 * dirops and so hold an extra reference until the
1157 * segunlock clears them of that status.
1158 *
1159 * We don't need to check for IN_ADIROP because we know that
1160 * no dirops are active.
1161 *
1162 */
1163 for (ip = TAILQ_FIRST(&fs->lfs_dchainhd); ip != NULL; ip = nip) {
1164 nip = TAILQ_NEXT(ip, i_lfs_dchain);
1165 vp = ITOV(ip);
1166
1167 /*
1168 * All writes to directories come from dirops; all
1169 * writes to files' direct blocks go through the page
1170 * cache, which we're not touching. Reads to files
1171 * and/or directories will not be affected by writing
1172 * directory blocks inodes and file inodes. So we don't
1173 * really need to lock. If we don't lock, though,
1174 * make sure that we don't clear IN_MODIFIED
1175 * unnecessarily.
1176 */
1177 if (vp->v_flag & VXLOCK)
1178 continue;
1179 if (vn_lock(vp, LK_EXCLUSIVE | LK_CANRECURSE |
1180 LK_NOWAIT) == 0) {
1181 needunlock = 1;
1182 } else {
1183 printf("lfs_flush_dirops: flushing locked ino %d\n",
1184 VTOI(vp)->i_number);
1185 needunlock = 0;
1186 }
1187 if (vp->v_type != VREG &&
1188 ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp))) {
1189 lfs_writefile(fs, sp, vp);
1190 if (!VPISEMPTY(vp) && !WRITEINPROG(vp) &&
1191 !(ip->i_flag & IN_ALLMOD)) {
1192 LFS_SET_UINO(ip, IN_MODIFIED);
1193 }
1194 }
1195 (void) lfs_writeinode(fs, sp, ip);
1196 if (needunlock)
1197 VOP_UNLOCK(vp, 0);
1198 else
1199 LFS_SET_UINO(ip, IN_MODIFIED);
1200 }
1201 /* We've written all the dirops there are */
1202 ((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
1203 (void) lfs_writeseg(fs, sp);
1204 lfs_segunlock(fs);
1205
1206 if (--fs->lfs_writer == 0)
1207 wakeup(&fs->lfs_dirops);
1208 }
1209
1210 /*
1211 * Provide a fcntl interface to sys_lfs_{segwait,bmapv,markv}.
1212 */
1213 int
1214 lfs_fcntl(void *v)
1215 {
1216 struct vop_fcntl_args /* {
1217 struct vnode *a_vp;
1218 u_long a_command;
1219 caddr_t a_data;
1220 int a_fflag;
1221 struct ucred *a_cred;
1222 struct proc *a_p;
1223 } */ *ap = v;
1224 struct timeval *tvp;
1225 BLOCK_INFO *blkiov;
1226 CLEANERINFO *cip;
1227 int blkcnt, error, oclean;
1228 struct lfs_fcntl_markv blkvp;
1229 fsid_t *fsidp;
1230 struct lfs *fs;
1231 struct buf *bp;
1232 daddr_t off;
1233
1234 /* Only respect LFS fcntls on fs root or Ifile */
1235 if (VTOI(ap->a_vp)->i_number != ROOTINO &&
1236 VTOI(ap->a_vp)->i_number != LFS_IFILE_INUM) {
1237 return ufs_fcntl(v);
1238 }
1239
1240 fsidp = &ap->a_vp->v_mount->mnt_stat.f_fsid;
1241
1242 switch (ap->a_command) {
1243 case LFCNSEGWAITALL:
1244 fsidp = NULL;
1245 /* FALLSTHROUGH */
1246 case LFCNSEGWAIT:
1247 tvp = (struct timeval *)ap->a_data;
1248 VOP_UNLOCK(ap->a_vp, 0);
1249 error = lfs_segwait(fsidp, tvp);
1250 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1251 return error;
1252
1253 case LFCNBMAPV:
1254 case LFCNMARKV:
1255 if ((error = suser(ap->a_p->p_ucred, &ap->a_p->p_acflag)) != 0)
1256 return (error);
1257 blkvp = *(struct lfs_fcntl_markv *)ap->a_data;
1258
1259 blkcnt = blkvp.blkcnt;
1260 if ((u_int) blkcnt > LFS_MARKV_MAXBLKCNT)
1261 return (EINVAL);
1262 blkiov = malloc(blkcnt * sizeof(BLOCK_INFO), M_SEGMENT, M_WAITOK);
1263 if ((error = copyin(blkvp.blkiov, blkiov,
1264 blkcnt * sizeof(BLOCK_INFO))) != 0) {
1265 free(blkiov, M_SEGMENT);
1266 return error;
1267 }
1268
1269 VOP_UNLOCK(ap->a_vp, 0);
1270 if (ap->a_command == LFCNBMAPV)
1271 error = lfs_bmapv(ap->a_p, fsidp, blkiov, blkcnt);
1272 else /* LFCNMARKV */
1273 error = lfs_markv(ap->a_p, fsidp, blkiov, blkcnt);
1274 if (error == 0)
1275 error = copyout(blkiov, blkvp.blkiov,
1276 blkcnt * sizeof(BLOCK_INFO));
1277 VOP_LOCK(ap->a_vp, LK_EXCLUSIVE);
1278 free(blkiov, M_SEGMENT);
1279 return error;
1280
1281 case LFCNRECLAIM:
1282 /*
1283 * Flush dirops and write Ifile, allowing empty segments
1284 * to be immediately reclaimed.
1285 */
1286 fs = VTOI(ap->a_vp)->i_lfs;
1287 off = fs->lfs_offset;
1288 lfs_seglock(fs, SEGM_FORCE_CKP | SEGM_CKP);
1289 lfs_flush_dirops(fs);
1290 LFS_CLEANERINFO(cip, fs, bp);
1291 oclean = cip->clean;
1292 LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
1293 lfs_segwrite(ap->a_vp->v_mount, SEGM_FORCE_CKP);
1294 lfs_segunlock(fs);
1295
1296 #ifdef DEBUG_LFS
1297 LFS_CLEANERINFO(cip, fs, bp);
1298 oclean = cip->clean;
1299 printf("lfs_fcntl: reclaim wrote %" PRId64 " blocks, cleaned "
1300 "%" PRId32 " segments (activesb %d)\n",
1301 fs->lfs_offset - off, cip->clean - oclean,
1302 fs->lfs_activesb);
1303 LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
1304 #endif
1305
1306 return 0;
1307
1308 default:
1309 return ufs_fcntl(v);
1310 }
1311 return 0;
1312 }
1313
1314 int
1315 lfs_getpages(void *v)
1316 {
1317 struct vop_getpages_args /* {
1318 struct vnode *a_vp;
1319 voff_t a_offset;
1320 struct vm_page **a_m;
1321 int *a_count;
1322 int a_centeridx;
1323 vm_prot_t a_access_type;
1324 int a_advice;
1325 int a_flags;
1326 } */ *ap = v;
1327
1328 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM &&
1329 (ap->a_access_type & VM_PROT_WRITE) != 0) {
1330 return EPERM;
1331 }
1332 if ((ap->a_access_type & VM_PROT_WRITE) != 0) {
1333 LFS_SET_UINO(VTOI(ap->a_vp), IN_MODIFIED);
1334 }
1335 return genfs_getpages(v);
1336 }
1337
1338 /*
1339 * Make sure that for all pages in every block in the given range,
1340 * either all are dirty or all are clean. If any of the pages
1341 * we've seen so far are dirty, put the vnode on the paging chain,
1342 * and mark it IN_PAGING.
1343 */
1344 static int
1345 check_dirty(struct lfs *fs, struct vnode *vp,
1346 off_t startoffset, off_t endoffset, off_t blkeof,
1347 int flags)
1348 {
1349 int by_list;
1350 struct vm_page *curpg, *pgs[MAXBSIZE / PAGE_SIZE], *pg;
1351 struct lwp *l = curlwp ? curlwp : &lwp0;
1352 off_t soff;
1353 voff_t off;
1354 int i, dirty, tdirty, nonexistent, any_dirty;
1355 int pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1356
1357 top:
1358 by_list = (vp->v_uobj.uo_npages <=
1359 ((endoffset - startoffset) >> PAGE_SHIFT) *
1360 UVM_PAGE_HASH_PENALTY);
1361 any_dirty = 0;
1362
1363 if (by_list) {
1364 curpg = TAILQ_FIRST(&vp->v_uobj.memq);
1365 PHOLD(l);
1366 } else {
1367 soff = startoffset;
1368 }
1369 while (by_list || soff < MIN(blkeof, endoffset)) {
1370 if (by_list) {
1371 if (pages_per_block > 1) {
1372 while (curpg && (curpg->offset & fs->lfs_bmask))
1373 curpg = TAILQ_NEXT(curpg, listq);
1374 }
1375 if (curpg == NULL)
1376 break;
1377 soff = curpg->offset;
1378 }
1379
1380 /*
1381 * Mark all pages in extended range busy; find out if any
1382 * of them are dirty.
1383 */
1384 nonexistent = dirty = 0;
1385 for (i = 0; i == 0 || i < pages_per_block; i++) {
1386 if (by_list && pages_per_block <= 1) {
1387 pgs[i] = pg = curpg;
1388 } else {
1389 off = soff + (i << PAGE_SHIFT);
1390 pgs[i] = pg = uvm_pagelookup(&vp->v_uobj, off);
1391 if (pg == NULL) {
1392 ++nonexistent;
1393 continue;
1394 }
1395 }
1396 KASSERT(pg != NULL);
1397 while (pg->flags & PG_BUSY) {
1398 pg->flags |= PG_WANTED;
1399 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1400 "lfsput", 0);
1401 simple_lock(&vp->v_interlock);
1402 if (by_list) {
1403 if (i > 0)
1404 uvm_page_unbusy(pgs, i);
1405 goto top;
1406 }
1407 }
1408 pg->flags |= PG_BUSY;
1409 UVM_PAGE_OWN(pg, "lfs_putpages");
1410
1411 pmap_page_protect(pg, VM_PROT_NONE);
1412 tdirty = (pmap_clear_modify(pg) ||
1413 (pg->flags & PG_CLEAN) == 0);
1414 dirty += tdirty;
1415 }
1416 if (pages_per_block > 0 && nonexistent >= pages_per_block) {
1417 if (by_list) {
1418 curpg = TAILQ_NEXT(curpg, listq);
1419 } else {
1420 soff += fs->lfs_bsize;
1421 }
1422 continue;
1423 }
1424
1425 any_dirty += dirty;
1426 KASSERT(nonexistent == 0);
1427
1428 /*
1429 * If any are dirty make all dirty; unbusy them,
1430 * but if we were asked to clean, wire them so that
1431 * the pagedaemon doesn't bother us about them while
1432 * they're on their way to disk.
1433 */
1434 for (i = 0; i == 0 || i < pages_per_block; i++) {
1435 pg = pgs[i];
1436 KASSERT(!((pg->flags & PG_CLEAN) && (pg->flags & PG_DELWRI)));
1437 if (dirty) {
1438 pg->flags &= ~PG_CLEAN;
1439 if (flags & PGO_FREE) {
1440 /* XXXUBC need better way to update */
1441 simple_lock(&lfs_subsys_lock);
1442 lfs_subsys_pages += MIN(1, pages_per_block);
1443 simple_unlock(&lfs_subsys_lock);
1444 /*
1445 * Wire the page so that
1446 * pdaemon doesn't see it again.
1447 */
1448 uvm_lock_pageq();
1449 uvm_pagewire(pg);
1450 uvm_unlock_pageq();
1451
1452 /* Suspended write flag */
1453 pg->flags |= PG_DELWRI;
1454 }
1455 }
1456 if (pg->flags & PG_WANTED)
1457 wakeup(pg);
1458 pg->flags &= ~(PG_WANTED|PG_BUSY);
1459 UVM_PAGE_OWN(pg, NULL);
1460 }
1461
1462 if (by_list) {
1463 curpg = TAILQ_NEXT(curpg, listq);
1464 } else {
1465 soff += MAX(PAGE_SIZE, fs->lfs_bsize);
1466 }
1467 }
1468 if (by_list) {
1469 PRELE(l);
1470 }
1471
1472 /*
1473 * If any pages were dirty, mark this inode as "pageout requested",
1474 * and put it on the paging queue.
1475 * XXXUBC locking (check locking on dchainhd too)
1476 */
1477 #ifdef notyet
1478 if (any_dirty) {
1479 if (!(ip->i_flags & IN_PAGING)) {
1480 ip->i_flags |= IN_PAGING;
1481 TAILQ_INSERT_TAIL(&fs->lfs_pchainhd, ip, i_lfs_pchain);
1482 }
1483 }
1484 #endif
1485 return any_dirty;
1486 }
1487
1488 /*
1489 * lfs_putpages functions like genfs_putpages except that
1490 *
1491 * (1) It needs to bounds-check the incoming requests to ensure that
1492 * they are block-aligned; if they are not, expand the range and
1493 * do the right thing in case, e.g., the requested range is clean
1494 * but the expanded range is dirty.
1495 * (2) It needs to explicitly send blocks to be written when it is done.
1496 * VOP_PUTPAGES is not ever called with the seglock held, so
1497 * we simply take the seglock and let lfs_segunlock wait for us.
1498 * XXX Actually we can be called with the seglock held, if we have
1499 * XXX to flush a vnode while lfs_markv is in operation. As of this
1500 * XXX writing we panic in this case.
1501 *
1502 * Assumptions:
1503 *
1504 * (1) The caller does not hold any pages in this vnode busy. If it does,
1505 * there is a danger that when we expand the page range and busy the
1506 * pages we will deadlock.
1507 * (2) We are called with vp->v_interlock held; we must return with it
1508 * released.
1509 * (3) We don't absolutely have to free pages right away, provided that
1510 * the request does not have PGO_SYNCIO. When the pagedaemon gives
1511 * us a request with PGO_FREE, we take the pages out of the paging
1512 * queue and wake up the writer, which will handle freeing them for us.
1513 *
1514 * We ensure that for any filesystem block, all pages for that
1515 * block are either resident or not, even if those pages are higher
1516 * than EOF; that means that we will be getting requests to free
1517 * "unused" pages above EOF all the time, and should ignore them.
1518 */
1519
1520 int
1521 lfs_putpages(void *v)
1522 {
1523 int error;
1524 struct vop_putpages_args /* {
1525 struct vnode *a_vp;
1526 voff_t a_offlo;
1527 voff_t a_offhi;
1528 int a_flags;
1529 } */ *ap = v;
1530 struct vnode *vp;
1531 struct inode *ip;
1532 struct lfs *fs;
1533 struct segment *sp;
1534 off_t origoffset, startoffset, endoffset, origendoffset, blkeof;
1535 off_t off, max_endoffset;
1536 int pages_per_block;
1537 int s, sync, dirty, pagedaemon;
1538 struct vm_page *pg;
1539 UVMHIST_FUNC("lfs_putpages"); UVMHIST_CALLED(ubchist);
1540
1541 vp = ap->a_vp;
1542 ip = VTOI(vp);
1543 fs = ip->i_lfs;
1544 sync = (ap->a_flags & PGO_SYNCIO);
1545 pagedaemon = (curproc == uvm.pagedaemon_proc);
1546
1547 /* Putpages does nothing for metadata. */
1548 if (vp == fs->lfs_ivnode || vp->v_type != VREG) {
1549 simple_unlock(&vp->v_interlock);
1550 return 0;
1551 }
1552
1553 /*
1554 * If there are no pages, don't do anything.
1555 */
1556 if (vp->v_uobj.uo_npages == 0) {
1557 s = splbio();
1558 if (LIST_FIRST(&vp->v_dirtyblkhd) == NULL &&
1559 (vp->v_flag & VONWORKLST)) {
1560 vp->v_flag &= ~VONWORKLST;
1561 LIST_REMOVE(vp, v_synclist);
1562 }
1563 splx(s);
1564 simple_unlock(&vp->v_interlock);
1565 return 0;
1566 }
1567
1568 blkeof = blkroundup(fs, ip->i_ffs_size);
1569
1570 /*
1571 * Ignore requests to free pages past EOF but in the same block
1572 * as EOF, unless the request is synchronous. (XXX why sync?)
1573 * XXXUBC Make these pages look "active" so the pagedaemon won't
1574 * XXXUBC bother us with them again.
1575 */
1576 if (!sync && ap->a_offlo >= ip->i_ffs_size && ap->a_offlo < blkeof) {
1577 origoffset = ap->a_offlo;
1578 for (off = origoffset; off < blkeof; off += fs->lfs_bsize) {
1579 pg = uvm_pagelookup(&vp->v_uobj, off);
1580 KASSERT(pg != NULL);
1581 while (pg->flags & PG_BUSY) {
1582 pg->flags |= PG_WANTED;
1583 UVM_UNLOCK_AND_WAIT(pg, &vp->v_interlock, 0,
1584 "lfsput2", 0);
1585 simple_lock(&vp->v_interlock);
1586 }
1587 uvm_lock_pageq();
1588 uvm_pageactivate(pg);
1589 uvm_unlock_pageq();
1590 }
1591 ap->a_offlo = blkeof;
1592 if (ap->a_offhi > 0 && ap->a_offhi <= ap->a_offlo) {
1593 simple_unlock(&vp->v_interlock);
1594 return 0;
1595 }
1596 }
1597
1598 /*
1599 * Extend page range to start and end at block boundaries.
1600 * (For the purposes of VOP_PUTPAGES, fragments don't exist.)
1601 */
1602 pages_per_block = fs->lfs_bsize >> PAGE_SHIFT;
1603 origoffset = ap->a_offlo;
1604 origendoffset = ap->a_offhi;
1605 startoffset = origoffset & ~(fs->lfs_bmask);
1606 max_endoffset = (trunc_page(LLONG_MAX) >> fs->lfs_bshift)
1607 << fs->lfs_bshift;
1608
1609 if (origendoffset == 0 || ap->a_flags & PGO_ALLPAGES) {
1610 endoffset = max_endoffset;
1611 origendoffset = endoffset;
1612 } else {
1613 origendoffset = round_page(ap->a_offhi);
1614 endoffset = round_page(blkroundup(fs, origendoffset));
1615 }
1616
1617 KASSERT(startoffset > 0 || endoffset >= startoffset);
1618 if (startoffset == endoffset) {
1619 /* Nothing to do, why were we called? */
1620 simple_unlock(&vp->v_interlock);
1621 #ifdef DEBUG
1622 printf("lfs_putpages: startoffset = endoffset = %" PRId64 "\n",
1623 startoffset);
1624 #endif
1625 return 0;
1626 }
1627
1628 ap->a_offlo = startoffset;
1629 ap->a_offhi = endoffset;
1630
1631 if (!(ap->a_flags & PGO_CLEANIT))
1632 return genfs_putpages(v);
1633
1634 /*
1635 * Make sure that all pages in any given block are dirty, or
1636 * none of them are. Find out if any of the pages we've been
1637 * asked about are dirty. If none are dirty, send them on
1638 * through genfs_putpages(), albeit with adjusted offsets.
1639 * XXXUBC I am assuming here that they can't be dirtied in
1640 * XXXUBC the meantime, but I bet that's wrong.
1641 */
1642 dirty = check_dirty(fs, vp, startoffset, endoffset, blkeof, ap->a_flags);
1643 if (!dirty)
1644 return genfs_putpages(v);
1645
1646 /*
1647 * Dirty and asked to clean.
1648 *
1649 * Pagedaemon can't actually write LFS pages; wake up
1650 * the writer to take care of that. The writer will
1651 * notice the pager inode queue and act on that.
1652 */
1653 if (pagedaemon) {
1654 ++fs->lfs_pdflush;
1655 wakeup(&lfs_writer_daemon);
1656 simple_unlock(&vp->v_interlock);
1657 return EWOULDBLOCK;
1658 }
1659
1660 /*
1661 * If this is a file created in a recent dirop, we can't flush its
1662 * inode until the dirop is complete. Drain dirops, then flush the
1663 * filesystem (taking care of any other pending dirops while we're
1664 * at it).
1665 */
1666 if ((ap->a_flags & (PGO_CLEANIT|PGO_LOCKED)) == PGO_CLEANIT &&
1667 (vp->v_flag & VDIROP)) {
1668 int locked;
1669
1670 /* printf("putpages to clean VDIROP, flushing\n"); */
1671 while (fs->lfs_dirops > 0) {
1672 ++fs->lfs_diropwait;
1673 tsleep(&fs->lfs_writer, PRIBIO+1, "ppdirop", 0);
1674 --fs->lfs_diropwait;
1675 }
1676 ++fs->lfs_writer;
1677 locked = VOP_ISLOCKED(vp) && /* XXX */
1678 vp->v_lock.lk_lockholder == curproc->p_pid;
1679 if (locked)
1680 VOP_UNLOCK(vp, 0);
1681 simple_unlock(&vp->v_interlock);
1682
1683 lfs_flush_fs(fs, sync ? SEGM_SYNC : 0);
1684
1685 simple_lock(&vp->v_interlock);
1686 if (locked)
1687 VOP_LOCK(vp, LK_EXCLUSIVE);
1688 if (--fs->lfs_writer == 0)
1689 wakeup(&fs->lfs_dirops);
1690
1691 /* XXX the flush should have taken care of this one too! */
1692 }
1693
1694
1695 /*
1696 * This is it. We are going to write some pages. From here on
1697 * down it's all just mechanics.
1698 *
1699 * If there are more than one page per block, we don't want to get
1700 * caught locking them backwards; so set PGO_BUSYFAIL to avoid
1701 * deadlocks. Also, don't let genfs_putpages wait;
1702 * lfs_segunlock will wait for us, if need be.
1703 */
1704 ap->a_flags &= ~PGO_SYNCIO;
1705 if (pages_per_block > 1)
1706 ap->a_flags |= PGO_BUSYFAIL;
1707
1708 /*
1709 * If we've already got the seglock, flush the node and return.
1710 * The FIP has already been set up for us by lfs_writefile,
1711 * and FIP cleanup and lfs_updatemeta will also be done there,
1712 * unless genfs_putpages returns EDEADLK; then we must flush
1713 * what we have, and correct FIP and segment header accounting.
1714 */
1715 if (ap->a_flags & PGO_LOCKED) {
1716 sp = fs->lfs_sp;
1717 sp->vp = vp;
1718
1719 while ((error = genfs_putpages(v)) == EDEADLK) {
1720 #ifdef DEBUG_LFS
1721 printf("lfs_putpages: genfs_putpages returned EDEADLK"
1722 " ino %d off %x (seg %d)\n",
1723 ip->i_number, fs->lfs_offset,
1724 dtosn(fs, fs->lfs_offset));
1725 #endif
1726 /* If nothing to write, short-circuit */
1727 if (sp->cbpp - sp->bpp == 1) {
1728 preempt(NULL);
1729 simple_lock(&vp->v_interlock);
1730 continue;
1731 }
1732 /* Write gathered pages */
1733 lfs_updatemeta(sp);
1734 (void) lfs_writeseg(fs, sp);
1735
1736 /* Reinitialize brand new FIP and add us to it */
1737 sp->vp = vp;
1738 sp->fip->fi_version = ip->i_ffs_gen;
1739 sp->fip->fi_ino = ip->i_number;
1740 /* Add us to the new segment summary. */
1741 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1742 sp->sum_bytes_left -=
1743 sizeof(struct finfo) - sizeof(int32_t);
1744
1745 /* Give the write a chance to complete */
1746 preempt(NULL);
1747 simple_lock(&vp->v_interlock);
1748 }
1749 return error;
1750 }
1751
1752 simple_unlock(&vp->v_interlock);
1753 /*
1754 * Take the seglock, because we are going to be writing pages.
1755 */
1756 if ((error = lfs_seglock(fs, SEGM_PROT | (sync ? SEGM_SYNC : 0))) != 0)
1757 return error;
1758
1759 /*
1760 * VOP_PUTPAGES should not be called while holding the seglock.
1761 * XXXUBC fix lfs_markv, or do this properly.
1762 */
1763 /* KASSERT(fs->lfs_seglock == 1); */
1764
1765 /*
1766 * We assume we're being called with sp->fip pointing at blank space.
1767 * Account for a new FIP in the segment header, and set sp->vp.
1768 * (This should duplicate the setup at the top of lfs_writefile().)
1769 */
1770 sp = fs->lfs_sp;
1771 if (sp->seg_bytes_left < fs->lfs_bsize ||
1772 sp->sum_bytes_left < sizeof(struct finfo))
1773 (void) lfs_writeseg(fs, fs->lfs_sp);
1774
1775 sp->sum_bytes_left -= sizeof(struct finfo) - sizeof(int32_t);
1776 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1777 sp->vp = vp;
1778
1779 if (vp->v_flag & VDIROP)
1780 ((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
1781
1782 sp->fip->fi_nblocks = 0;
1783 sp->fip->fi_ino = ip->i_number;
1784 sp->fip->fi_version = ip->i_ffs_gen;
1785
1786 /*
1787 * Loop through genfs_putpages until all pages are gathered.
1788 * genfs_putpages() drops the interlock, so reacquire it if necessary.
1789 */
1790 simple_lock(&vp->v_interlock);
1791 while ((error = genfs_putpages(v)) == EDEADLK) {
1792 #ifdef DEBUG_LFS
1793 printf("lfs_putpages: genfs_putpages returned EDEADLK [2]"
1794 " ino %d off %x (seg %d)\n",
1795 ip->i_number, fs->lfs_offset,
1796 dtosn(fs, fs->lfs_offset));
1797 #endif
1798 /* If nothing to write, short-circuit */
1799 if (sp->cbpp - sp->bpp == 1) {
1800 preempt(NULL);
1801 simple_lock(&vp->v_interlock);
1802 continue;
1803 }
1804 /* Write gathered pages */
1805 lfs_updatemeta(sp);
1806 (void) lfs_writeseg(fs, sp);
1807
1808 /*
1809 * Reinitialize brand new FIP and add us to it.
1810 * (This should duplicate the fixup in lfs_gatherpages().)
1811 */
1812 sp->vp = vp;
1813 sp->fip->fi_version = ip->i_ffs_gen;
1814 sp->fip->fi_ino = ip->i_number;
1815 /* Add us to the new segment summary. */
1816 ++((SEGSUM *)(sp->segsum))->ss_nfinfo;
1817 sp->sum_bytes_left -=
1818 sizeof(struct finfo) - sizeof(int32_t);
1819
1820 /* Give the write a chance to complete */
1821 preempt(NULL);
1822 simple_lock(&vp->v_interlock);
1823 }
1824
1825 /*
1826 * Blocks are now gathered into a segment waiting to be written.
1827 * All that's left to do is update metadata, and write them.
1828 */
1829 lfs_updatemeta(fs->lfs_sp);
1830 fs->lfs_sp->vp = NULL;
1831 /*
1832 * Clean up FIP, since we're done writing this file.
1833 * This should duplicate cleanup at the end of lfs_writefile().
1834 */
1835 if (sp->fip->fi_nblocks != 0) {
1836 sp->fip = (FINFO*)((caddr_t)sp->fip + sizeof(struct finfo) +
1837 sizeof(int32_t) * (sp->fip->fi_nblocks - 1));
1838 sp->start_lbp = &sp->fip->fi_blocks[0];
1839 } else {
1840 sp->sum_bytes_left += sizeof(FINFO) - sizeof(int32_t);
1841 --((SEGSUM *)(sp->segsum))->ss_nfinfo;
1842 }
1843 lfs_writeseg(fs, fs->lfs_sp);
1844
1845 /*
1846 * XXX - with the malloc/copy writeseg, the pages are freed by now
1847 * even if we don't wait (e.g. if we hold a nested lock). This
1848 * will not be true if we stop using malloc/copy.
1849 */
1850 KASSERT(fs->lfs_sp->seg_flags & SEGM_PROT);
1851 lfs_segunlock(fs);
1852
1853 /*
1854 * Wait for v_numoutput to drop to zero. The seglock should
1855 * take care of this, but there is a slight possibility that
1856 * aiodoned might not have got around to our buffers yet.
1857 */
1858 if (sync) {
1859 int s;
1860
1861 s = splbio();
1862 simple_lock(&global_v_numoutput_slock);
1863 while (vp->v_numoutput > 0) {
1864 #ifdef DEBUG
1865 printf("ino %d sleeping on num %d\n",
1866 ip->i_number, vp->v_numoutput);
1867 #endif
1868 vp->v_flag |= VBWAIT;
1869 ltsleep(&vp->v_numoutput, PRIBIO + 1, "lfs_vn", 0,
1870 &global_v_numoutput_slock);
1871 }
1872 simple_unlock(&global_v_numoutput_slock);
1873 splx(s);
1874 }
1875 return error;
1876 }
1877
1878 /*
1879 * Return the last logical file offset that should be written for this file
1880 * if we're doing a write that ends at "size". If writing, we need to know
1881 * about sizes on disk, i.e. fragments if there are any; if reading, we need
1882 * to know about entire blocks.
1883 */
1884 void
1885 lfs_gop_size(struct vnode *vp, off_t size, off_t *eobp, int flags)
1886 {
1887 struct inode *ip = VTOI(vp);
1888 struct lfs *fs = ip->i_lfs;
1889 daddr_t olbn, nlbn;
1890
1891 KASSERT(flags & (GOP_SIZE_READ | GOP_SIZE_WRITE));
1892 KASSERT((flags & (GOP_SIZE_READ | GOP_SIZE_WRITE))
1893 != (GOP_SIZE_READ | GOP_SIZE_WRITE));
1894
1895 olbn = lblkno(fs, ip->i_ffs_size);
1896 nlbn = lblkno(fs, size);
1897 if ((flags & GOP_SIZE_WRITE) && nlbn < NDADDR && olbn <= nlbn) {
1898 *eobp = fragroundup(fs, size);
1899 } else {
1900 *eobp = blkroundup(fs, size);
1901 }
1902 }
1903
1904 #ifdef DEBUG
1905 void lfs_dump_vop(void *);
1906
1907 void
1908 lfs_dump_vop(void *v)
1909 {
1910 struct vop_putpages_args /* {
1911 struct vnode *a_vp;
1912 voff_t a_offlo;
1913 voff_t a_offhi;
1914 int a_flags;
1915 } */ *ap = v;
1916
1917 vfs_vnode_print(ap->a_vp, 0, printf);
1918 lfs_dump_dinode(&VTOI(ap->a_vp)->i_din.ffs_din);
1919 }
1920 #endif
1921
1922 int
1923 lfs_mmap(void *v)
1924 {
1925 struct vop_mmap_args /* {
1926 const struct vnodeop_desc *a_desc;
1927 struct vnode *a_vp;
1928 int a_fflags;
1929 struct ucred *a_cred;
1930 struct proc *a_p;
1931 } */ *ap = v;
1932
1933 if (VTOI(ap->a_vp)->i_number == LFS_IFILE_INUM)
1934 return EOPNOTSUPP;
1935 return ufs_mmap(v);
1936 }
1937