pmap.c revision 1.22 1 1.22 matt /* $NetBSD: pmap.c,v 1.22 2016/09/16 17:27:09 matt Exp $ */
2 1.1 christos
3 1.1 christos /*-
4 1.1 christos * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * This code is derived from software contributed to The NetBSD Foundation
8 1.1 christos * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 1.1 christos * NASA Ames Research Center and by Chris G. Demetriou.
10 1.1 christos *
11 1.1 christos * Redistribution and use in source and binary forms, with or without
12 1.1 christos * modification, are permitted provided that the following conditions
13 1.1 christos * are met:
14 1.1 christos * 1. Redistributions of source code must retain the above copyright
15 1.1 christos * notice, this list of conditions and the following disclaimer.
16 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
17 1.1 christos * notice, this list of conditions and the following disclaimer in the
18 1.1 christos * documentation and/or other materials provided with the distribution.
19 1.1 christos *
20 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 1.1 christos * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 1.1 christos * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 1.1 christos * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 1.1 christos * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 1.1 christos * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 1.1 christos * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 1.1 christos * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 1.1 christos * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 1.1 christos * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 1.1 christos * POSSIBILITY OF SUCH DAMAGE.
31 1.1 christos */
32 1.1 christos
33 1.1 christos /*
34 1.1 christos * Copyright (c) 1992, 1993
35 1.1 christos * The Regents of the University of California. All rights reserved.
36 1.1 christos *
37 1.1 christos * This code is derived from software contributed to Berkeley by
38 1.1 christos * the Systems Programming Group of the University of Utah Computer
39 1.1 christos * Science Department and Ralph Campbell.
40 1.1 christos *
41 1.1 christos * Redistribution and use in source and binary forms, with or without
42 1.1 christos * modification, are permitted provided that the following conditions
43 1.1 christos * are met:
44 1.1 christos * 1. Redistributions of source code must retain the above copyright
45 1.1 christos * notice, this list of conditions and the following disclaimer.
46 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
47 1.1 christos * notice, this list of conditions and the following disclaimer in the
48 1.1 christos * documentation and/or other materials provided with the distribution.
49 1.1 christos * 3. Neither the name of the University nor the names of its contributors
50 1.1 christos * may be used to endorse or promote products derived from this software
51 1.1 christos * without specific prior written permission.
52 1.1 christos *
53 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 1.1 christos * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 1.1 christos * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 1.1 christos * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 1.1 christos * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 1.1 christos * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 1.1 christos * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 1.1 christos * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 1.1 christos * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 1.1 christos * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 1.1 christos * SUCH DAMAGE.
64 1.1 christos *
65 1.1 christos * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 1.1 christos */
67 1.1 christos
68 1.1 christos #include <sys/cdefs.h>
69 1.1 christos
70 1.22 matt __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.22 2016/09/16 17:27:09 matt Exp $");
71 1.1 christos
72 1.1 christos /*
73 1.1 christos * Manages physical address maps.
74 1.1 christos *
75 1.1 christos * In addition to hardware address maps, this
76 1.1 christos * module is called upon to provide software-use-only
77 1.1 christos * maps which may or may not be stored in the same
78 1.1 christos * form as hardware maps. These pseudo-maps are
79 1.1 christos * used to store intermediate results from copy
80 1.1 christos * operations to and from address spaces.
81 1.1 christos *
82 1.1 christos * Since the information managed by this module is
83 1.1 christos * also stored by the logical address mapping module,
84 1.1 christos * this module may throw away valid virtual-to-physical
85 1.1 christos * mappings at almost any time. However, invalidations
86 1.1 christos * of virtual-to-physical mappings must be done as
87 1.1 christos * requested.
88 1.1 christos *
89 1.1 christos * In order to cope with hardware architectures which
90 1.1 christos * make virtual-to-physical map invalidates expensive,
91 1.1 christos * this module may delay invalidate or reduced protection
92 1.1 christos * operations until such time as they are actually
93 1.1 christos * necessary. This module is given full information as
94 1.1 christos * to which processors are currently using which maps,
95 1.1 christos * and to when physical maps must be made correct.
96 1.1 christos */
97 1.1 christos
98 1.1 christos #include "opt_modular.h"
99 1.1 christos #include "opt_multiprocessor.h"
100 1.1 christos #include "opt_sysv.h"
101 1.1 christos
102 1.1 christos #define __PMAP_PRIVATE
103 1.1 christos
104 1.1 christos #include <sys/param.h>
105 1.15 matt #include <sys/atomic.h>
106 1.1 christos #include <sys/buf.h>
107 1.15 matt #include <sys/cpu.h>
108 1.15 matt #include <sys/mutex.h>
109 1.1 christos #include <sys/pool.h>
110 1.1 christos #include <sys/atomic.h>
111 1.1 christos #include <sys/mutex.h>
112 1.1 christos #include <sys/atomic.h>
113 1.1 christos
114 1.1 christos #include <uvm/uvm.h>
115 1.1 christos
116 1.15 matt #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
117 1.15 matt && !defined(PMAP_NO_PV_UNCACHED)
118 1.15 matt #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
119 1.15 matt PMAP_NO_PV_UNCACHED to be defined
120 1.15 matt #endif
121 1.1 christos
122 1.1 christos PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
123 1.1 christos PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
124 1.1 christos PMAP_COUNTER(remove_user_calls, "remove user calls");
125 1.1 christos PMAP_COUNTER(remove_user_pages, "user pages unmapped");
126 1.1 christos PMAP_COUNTER(remove_flushes, "remove cache flushes");
127 1.1 christos PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
128 1.1 christos PMAP_COUNTER(remove_pvfirst, "remove pv first");
129 1.1 christos PMAP_COUNTER(remove_pvsearch, "remove pv search");
130 1.1 christos
131 1.1 christos PMAP_COUNTER(prefer_requests, "prefer requests");
132 1.1 christos PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
133 1.1 christos
134 1.1 christos PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
135 1.1 christos
136 1.1 christos PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
137 1.1 christos PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
138 1.1 christos PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
139 1.1 christos PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
140 1.1 christos
141 1.1 christos PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
142 1.1 christos PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
143 1.1 christos
144 1.1 christos PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
145 1.1 christos PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
146 1.1 christos PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
147 1.1 christos PMAP_COUNTER(user_mappings, "user pages mapped");
148 1.1 christos PMAP_COUNTER(user_mappings_changed, "user mapping changed");
149 1.1 christos PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
150 1.1 christos PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
151 1.1 christos PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
152 1.1 christos PMAP_COUNTER(managed_mappings, "managed pages mapped");
153 1.1 christos PMAP_COUNTER(mappings, "pages mapped");
154 1.1 christos PMAP_COUNTER(remappings, "pages remapped");
155 1.1 christos PMAP_COUNTER(unmappings, "pages unmapped");
156 1.1 christos PMAP_COUNTER(primary_mappings, "page initial mappings");
157 1.1 christos PMAP_COUNTER(primary_unmappings, "page final unmappings");
158 1.1 christos PMAP_COUNTER(tlb_hit, "page mapping");
159 1.1 christos
160 1.1 christos PMAP_COUNTER(exec_mappings, "exec pages mapped");
161 1.1 christos PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
162 1.1 christos PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
163 1.1 christos PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
164 1.1 christos PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
165 1.1 christos PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
166 1.1 christos PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
167 1.1 christos PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
168 1.1 christos PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
169 1.1 christos PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
170 1.1 christos PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
171 1.1 christos
172 1.1 christos PMAP_COUNTER(create, "creates");
173 1.1 christos PMAP_COUNTER(reference, "references");
174 1.1 christos PMAP_COUNTER(dereference, "dereferences");
175 1.1 christos PMAP_COUNTER(destroy, "destroyed");
176 1.1 christos PMAP_COUNTER(activate, "activations");
177 1.1 christos PMAP_COUNTER(deactivate, "deactivations");
178 1.1 christos PMAP_COUNTER(update, "updates");
179 1.1 christos #ifdef MULTIPROCESSOR
180 1.1 christos PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
181 1.1 christos #endif
182 1.1 christos PMAP_COUNTER(unwire, "unwires");
183 1.1 christos PMAP_COUNTER(copy, "copies");
184 1.1 christos PMAP_COUNTER(clear_modify, "clear_modifies");
185 1.1 christos PMAP_COUNTER(protect, "protects");
186 1.1 christos PMAP_COUNTER(page_protect, "page_protects");
187 1.1 christos
188 1.1 christos #define PMAP_ASID_RESERVED 0
189 1.1 christos CTASSERT(PMAP_ASID_RESERVED == 0);
190 1.1 christos
191 1.15 matt #ifndef PMAP_SEGTAB_ALIGN
192 1.15 matt #define PMAP_SEGTAB_ALIGN /* nothing */
193 1.15 matt #endif
194 1.15 matt #ifdef _LP64
195 1.15 matt pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
196 1.15 matt #endif
197 1.15 matt pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
198 1.15 matt #ifdef _LP64
199 1.15 matt .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
200 1.1 christos #endif
201 1.15 matt };
202 1.1 christos
203 1.1 christos struct pmap_kernel kernel_pmap_store = {
204 1.1 christos .kernel_pmap = {
205 1.1 christos .pm_count = 1,
206 1.15 matt .pm_segtab = &pmap_kern_segtab,
207 1.1 christos .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
208 1.1 christos .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
209 1.1 christos },
210 1.1 christos };
211 1.1 christos
212 1.1 christos struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
213 1.1 christos
214 1.15 matt struct pmap_limits pmap_limits = { /* VA and PA limits */
215 1.12 matt .virtual_start = VM_MIN_KERNEL_ADDRESS,
216 1.12 matt };
217 1.1 christos
218 1.1 christos #ifdef UVMHIST
219 1.1 christos static struct kern_history_ent pmapexechistbuf[10000];
220 1.1 christos static struct kern_history_ent pmaphistbuf[10000];
221 1.8 nonaka UVMHIST_DEFINE(pmapexechist);
222 1.8 nonaka UVMHIST_DEFINE(pmaphist);
223 1.1 christos #endif
224 1.1 christos
225 1.1 christos /*
226 1.1 christos * The pools from which pmap structures and sub-structures are allocated.
227 1.1 christos */
228 1.1 christos struct pool pmap_pmap_pool;
229 1.1 christos struct pool pmap_pv_pool;
230 1.1 christos
231 1.1 christos #ifndef PMAP_PV_LOWAT
232 1.1 christos #define PMAP_PV_LOWAT 16
233 1.1 christos #endif
234 1.15 matt int pmap_pv_lowat = PMAP_PV_LOWAT;
235 1.1 christos
236 1.15 matt bool pmap_initialized = false;
237 1.1 christos #define PMAP_PAGE_COLOROK_P(a, b) \
238 1.1 christos ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
239 1.15 matt u_int pmap_page_colormask;
240 1.1 christos
241 1.15 matt #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
242 1.1 christos
243 1.1 christos #define PMAP_IS_ACTIVE(pm) \
244 1.1 christos ((pm) == pmap_kernel() || \
245 1.1 christos (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
246 1.1 christos
247 1.1 christos /* Forward function declarations */
248 1.15 matt void pmap_page_remove(struct vm_page *);
249 1.15 matt static void pmap_pvlist_check(struct vm_page_md *);
250 1.1 christos void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
251 1.15 matt void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
252 1.1 christos
253 1.1 christos /*
254 1.1 christos * PV table management functions.
255 1.1 christos */
256 1.1 christos void *pmap_pv_page_alloc(struct pool *, int);
257 1.1 christos void pmap_pv_page_free(struct pool *, void *);
258 1.1 christos
259 1.1 christos struct pool_allocator pmap_pv_page_allocator = {
260 1.1 christos pmap_pv_page_alloc, pmap_pv_page_free, 0,
261 1.1 christos };
262 1.1 christos
263 1.1 christos #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
264 1.1 christos #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
265 1.1 christos
266 1.10 nonaka #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
267 1.10 nonaka #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
268 1.10 nonaka #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
269 1.15 matt #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
270 1.15 matt
271 1.15 matt #ifndef MULTIPROCESSOR
272 1.15 matt kmutex_t pmap_pvlist_mutex __cacheline_aligned;
273 1.15 matt #endif
274 1.15 matt
275 1.15 matt /*
276 1.15 matt * Debug functions.
277 1.15 matt */
278 1.15 matt
279 1.19 jakllsch #ifdef DEBUG
280 1.15 matt static inline void
281 1.15 matt pmap_asid_check(pmap_t pm, const char *func)
282 1.15 matt {
283 1.15 matt if (!PMAP_IS_ACTIVE(pm))
284 1.15 matt return;
285 1.15 matt
286 1.15 matt struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
287 1.15 matt tlb_asid_t asid = tlb_get_asid();
288 1.15 matt if (asid != pai->pai_asid)
289 1.15 matt panic("%s: inconsistency for active TLB update: %u <-> %u",
290 1.15 matt func, asid, pai->pai_asid);
291 1.19 jakllsch }
292 1.15 matt #endif
293 1.15 matt
294 1.15 matt static void
295 1.15 matt pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
296 1.15 matt {
297 1.15 matt #ifdef DEBUG
298 1.15 matt if (pmap == pmap_kernel()) {
299 1.15 matt if (sva < VM_MIN_KERNEL_ADDRESS)
300 1.15 matt panic("%s: kva %#"PRIxVADDR" not in range",
301 1.15 matt func, sva);
302 1.15 matt if (eva >= pmap_limits.virtual_end)
303 1.15 matt panic("%s: kva %#"PRIxVADDR" not in range",
304 1.15 matt func, eva);
305 1.15 matt } else {
306 1.15 matt if (eva > VM_MAXUSER_ADDRESS)
307 1.15 matt panic("%s: uva %#"PRIxVADDR" not in range",
308 1.15 matt func, eva);
309 1.15 matt pmap_asid_check(pmap, func);
310 1.15 matt }
311 1.15 matt #endif
312 1.15 matt }
313 1.10 nonaka
314 1.1 christos /*
315 1.1 christos * Misc. functions.
316 1.1 christos */
317 1.1 christos
318 1.1 christos bool
319 1.1 christos pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
320 1.1 christos {
321 1.15 matt volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
322 1.1 christos #ifdef MULTIPROCESSOR
323 1.1 christos for (;;) {
324 1.1 christos u_int old_attr = *attrp;
325 1.1 christos if ((old_attr & clear_attributes) == 0)
326 1.1 christos return false;
327 1.1 christos u_int new_attr = old_attr & ~clear_attributes;
328 1.15 matt if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
329 1.1 christos return true;
330 1.1 christos }
331 1.1 christos #else
332 1.15 matt unsigned long old_attr = *attrp;
333 1.1 christos if ((old_attr & clear_attributes) == 0)
334 1.1 christos return false;
335 1.1 christos *attrp &= ~clear_attributes;
336 1.1 christos return true;
337 1.1 christos #endif
338 1.1 christos }
339 1.1 christos
340 1.1 christos void
341 1.1 christos pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
342 1.1 christos {
343 1.1 christos #ifdef MULTIPROCESSOR
344 1.15 matt atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
345 1.1 christos #else
346 1.1 christos mdpg->mdpg_attrs |= set_attributes;
347 1.1 christos #endif
348 1.1 christos }
349 1.1 christos
350 1.1 christos static void
351 1.1 christos pmap_page_syncicache(struct vm_page *pg)
352 1.1 christos {
353 1.1 christos #ifndef MULTIPROCESSOR
354 1.15 matt struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
355 1.1 christos #endif
356 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
357 1.1 christos pv_entry_t pv = &mdpg->mdpg_first;
358 1.2 matt kcpuset_t *onproc;
359 1.2 matt #ifdef MULTIPROCESSOR
360 1.2 matt kcpuset_create(&onproc, true);
361 1.15 matt KASSERT(onproc != NULL);
362 1.3 matt #else
363 1.3 matt onproc = NULL;
364 1.2 matt #endif
365 1.15 matt VM_PAGEMD_PVLIST_READLOCK(mdpg);
366 1.15 matt pmap_pvlist_check(mdpg);
367 1.2 matt
368 1.1 christos if (pv->pv_pmap != NULL) {
369 1.1 christos for (; pv != NULL; pv = pv->pv_next) {
370 1.1 christos #ifdef MULTIPROCESSOR
371 1.2 matt kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
372 1.2 matt if (kcpuset_match(onproc, kcpuset_running)) {
373 1.1 christos break;
374 1.1 christos }
375 1.1 christos #else
376 1.1 christos if (pv->pv_pmap == curpmap) {
377 1.2 matt onproc = curcpu()->ci_data.cpu_kcpuset;
378 1.1 christos break;
379 1.1 christos }
380 1.1 christos #endif
381 1.1 christos }
382 1.1 christos }
383 1.15 matt pmap_pvlist_check(mdpg);
384 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
385 1.1 christos kpreempt_disable();
386 1.1 christos pmap_md_page_syncicache(pg, onproc);
387 1.15 matt kpreempt_enable();
388 1.2 matt #ifdef MULTIPROCESSOR
389 1.2 matt kcpuset_destroy(onproc);
390 1.2 matt #endif
391 1.1 christos }
392 1.1 christos
393 1.1 christos /*
394 1.1 christos * Define the initial bounds of the kernel virtual address space.
395 1.1 christos */
396 1.1 christos void
397 1.1 christos pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
398 1.1 christos {
399 1.1 christos
400 1.12 matt *vstartp = pmap_limits.virtual_start;
401 1.12 matt *vendp = pmap_limits.virtual_end;
402 1.1 christos }
403 1.1 christos
404 1.1 christos vaddr_t
405 1.1 christos pmap_growkernel(vaddr_t maxkvaddr)
406 1.1 christos {
407 1.14 msaitoh vaddr_t virtual_end = pmap_limits.virtual_end;
408 1.1 christos maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
409 1.1 christos
410 1.1 christos /*
411 1.1 christos * Reserve PTEs for the new KVA space.
412 1.1 christos */
413 1.1 christos for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
414 1.1 christos pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
415 1.1 christos }
416 1.1 christos
417 1.1 christos /*
418 1.1 christos * Don't exceed VM_MAX_KERNEL_ADDRESS!
419 1.1 christos */
420 1.1 christos if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
421 1.1 christos virtual_end = VM_MAX_KERNEL_ADDRESS;
422 1.1 christos
423 1.1 christos /*
424 1.1 christos * Update new end.
425 1.1 christos */
426 1.1 christos pmap_limits.virtual_end = virtual_end;
427 1.1 christos return virtual_end;
428 1.1 christos }
429 1.1 christos
430 1.1 christos /*
431 1.1 christos * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
432 1.1 christos * This function allows for early dynamic memory allocation until the virtual
433 1.1 christos * memory system has been bootstrapped. After that point, either kmem_alloc
434 1.1 christos * or malloc should be used. This function works by stealing pages from the
435 1.1 christos * (to be) managed page pool, then implicitly mapping the pages (by using
436 1.1 christos * their k0seg addresses) and zeroing them.
437 1.1 christos *
438 1.1 christos * It may be used once the physical memory segments have been pre-loaded
439 1.1 christos * into the vm_physmem[] array. Early memory allocation MUST use this
440 1.1 christos * interface! This cannot be used after vm_page_startup(), and will
441 1.1 christos * generate a panic if tried.
442 1.1 christos *
443 1.1 christos * Note that this memory will never be freed, and in essence it is wired
444 1.1 christos * down.
445 1.1 christos *
446 1.1 christos * We must adjust *vstartp and/or *vendp iff we use address space
447 1.1 christos * from the kernel virtual address range defined by pmap_virtual_space().
448 1.1 christos */
449 1.1 christos vaddr_t
450 1.1 christos pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
451 1.1 christos {
452 1.15 matt size_t npgs;
453 1.1 christos paddr_t pa;
454 1.1 christos vaddr_t va;
455 1.15 matt struct vm_physseg *maybe_seg = NULL;
456 1.15 matt u_int maybe_bank = vm_nphysseg;
457 1.1 christos
458 1.1 christos size = round_page(size);
459 1.1 christos npgs = atop(size);
460 1.1 christos
461 1.15 matt aprint_debug("%s: need %zu pages\n", __func__, npgs);
462 1.15 matt
463 1.1 christos for (u_int bank = 0; bank < vm_nphysseg; bank++) {
464 1.1 christos struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
465 1.1 christos if (uvm.page_init_done == true)
466 1.1 christos panic("pmap_steal_memory: called _after_ bootstrap");
467 1.1 christos
468 1.15 matt aprint_debug("%s: seg %u: %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
469 1.15 matt __func__, bank,
470 1.15 matt seg->avail_start, seg->start,
471 1.15 matt seg->avail_end, seg->end);
472 1.15 matt
473 1.15 matt if (seg->avail_start != seg->start
474 1.15 matt || seg->avail_start >= seg->avail_end) {
475 1.15 matt aprint_debug("%s: seg %u: bad start\n", __func__, bank);
476 1.1 christos continue;
477 1.15 matt }
478 1.1 christos
479 1.15 matt if (seg->avail_end - seg->avail_start < npgs) {
480 1.15 matt aprint_debug("%s: seg %u: too small for %zu pages\n",
481 1.15 matt __func__, bank, npgs);
482 1.1 christos continue;
483 1.15 matt }
484 1.15 matt
485 1.15 matt if (!pmap_md_ok_to_steal_p(seg, npgs)) {
486 1.15 matt continue;
487 1.15 matt }
488 1.15 matt
489 1.15 matt /*
490 1.15 matt * Always try to allocate from the segment with the least
491 1.15 matt * amount of space left.
492 1.15 matt */
493 1.15 matt #define VM_PHYSMEM_SPACE(s) ((s)->avail_end - (s)->avail_start)
494 1.17 skrll if (maybe_seg == NULL
495 1.15 matt || VM_PHYSMEM_SPACE(seg) < VM_PHYSMEM_SPACE(maybe_seg)) {
496 1.15 matt maybe_seg = seg;
497 1.15 matt maybe_bank = bank;
498 1.15 matt }
499 1.15 matt }
500 1.15 matt
501 1.15 matt if (maybe_seg) {
502 1.15 matt struct vm_physseg * const seg = maybe_seg;
503 1.15 matt u_int bank = maybe_bank;
504 1.1 christos
505 1.1 christos /*
506 1.1 christos * There are enough pages here; steal them!
507 1.1 christos */
508 1.1 christos pa = ptoa(seg->avail_start);
509 1.1 christos seg->avail_start += npgs;
510 1.1 christos seg->start += npgs;
511 1.1 christos
512 1.1 christos /*
513 1.1 christos * Have we used up this segment?
514 1.1 christos */
515 1.1 christos if (seg->avail_start == seg->end) {
516 1.1 christos if (vm_nphysseg == 1)
517 1.1 christos panic("pmap_steal_memory: out of memory!");
518 1.1 christos
519 1.15 matt aprint_debug("%s: seg %u: %zu pages stolen (removed)\n",
520 1.15 matt __func__, bank, npgs);
521 1.1 christos /* Remove this segment from the list. */
522 1.1 christos vm_nphysseg--;
523 1.15 matt for (u_int x = bank; x < vm_nphysseg; x++) {
524 1.15 matt /* structure copy */
525 1.15 matt VM_PHYSMEM_PTR_SWAP(x, x + 1);
526 1.15 matt }
527 1.15 matt } else {
528 1.15 matt aprint_debug("%s: seg %u: %zu pages stolen (%#"PRIxPADDR" left)\n",
529 1.15 matt __func__, bank, npgs, VM_PHYSMEM_SPACE(seg));
530 1.1 christos }
531 1.1 christos
532 1.1 christos va = pmap_md_map_poolpage(pa, size);
533 1.1 christos memset((void *)va, 0, size);
534 1.1 christos return va;
535 1.1 christos }
536 1.1 christos
537 1.1 christos /*
538 1.1 christos * If we got here, there was no memory left.
539 1.1 christos */
540 1.15 matt panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
541 1.1 christos }
542 1.1 christos
543 1.1 christos /*
544 1.1 christos * Initialize the pmap module.
545 1.1 christos * Called by vm_init, to initialize any structures that the pmap
546 1.1 christos * system needs to map virtual memory.
547 1.1 christos */
548 1.1 christos void
549 1.1 christos pmap_init(void)
550 1.1 christos {
551 1.1 christos UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
552 1.1 christos UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
553 1.1 christos
554 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
555 1.1 christos
556 1.1 christos /*
557 1.1 christos * Initialize the segtab lock.
558 1.1 christos */
559 1.1 christos mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
560 1.1 christos
561 1.1 christos /*
562 1.1 christos * Set a low water mark on the pv_entry pool, so that we are
563 1.1 christos * more likely to have these around even in extreme memory
564 1.1 christos * starvation.
565 1.1 christos */
566 1.1 christos pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
567 1.1 christos
568 1.15 matt /*
569 1.15 matt * Set the page colormask but allow pmap_md_init to override it.
570 1.15 matt */
571 1.15 matt pmap_page_colormask = ptoa(uvmexp.colormask);
572 1.15 matt
573 1.1 christos pmap_md_init();
574 1.1 christos
575 1.1 christos /*
576 1.1 christos * Now it is safe to enable pv entry recording.
577 1.1 christos */
578 1.1 christos pmap_initialized = true;
579 1.1 christos }
580 1.1 christos
581 1.1 christos /*
582 1.1 christos * Create and return a physical map.
583 1.1 christos *
584 1.1 christos * If the size specified for the map
585 1.1 christos * is zero, the map is an actual physical
586 1.1 christos * map, and may be referenced by the
587 1.1 christos * hardware.
588 1.1 christos *
589 1.1 christos * If the size specified is non-zero,
590 1.1 christos * the map will be used in software only, and
591 1.1 christos * is bounded by that size.
592 1.1 christos */
593 1.1 christos pmap_t
594 1.1 christos pmap_create(void)
595 1.1 christos {
596 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
597 1.1 christos PMAP_COUNT(create);
598 1.1 christos
599 1.15 matt pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
600 1.1 christos memset(pmap, 0, PMAP_SIZE);
601 1.1 christos
602 1.1 christos KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
603 1.1 christos
604 1.1 christos pmap->pm_count = 1;
605 1.1 christos pmap->pm_minaddr = VM_MIN_ADDRESS;
606 1.1 christos pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
607 1.1 christos
608 1.1 christos pmap_segtab_init(pmap);
609 1.1 christos
610 1.5 nonaka #ifdef MULTIPROCESSOR
611 1.5 nonaka kcpuset_create(&pmap->pm_active, true);
612 1.5 nonaka kcpuset_create(&pmap->pm_onproc, true);
613 1.15 matt KASSERT(pmap->pm_active != NULL);
614 1.15 matt KASSERT(pmap->pm_onproc != NULL);
615 1.5 nonaka #endif
616 1.5 nonaka
617 1.15 matt UVMHIST_LOG(pmaphist, " <-- done (pmap=%p)", pmap, 0, 0, 0);
618 1.15 matt
619 1.1 christos return pmap;
620 1.1 christos }
621 1.1 christos
622 1.1 christos /*
623 1.1 christos * Retire the given physical map from service.
624 1.1 christos * Should only be called if the map contains
625 1.1 christos * no valid mappings.
626 1.1 christos */
627 1.1 christos void
628 1.1 christos pmap_destroy(pmap_t pmap)
629 1.1 christos {
630 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
631 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
632 1.1 christos
633 1.1 christos if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
634 1.1 christos PMAP_COUNT(dereference);
635 1.15 matt UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
636 1.1 christos return;
637 1.1 christos }
638 1.1 christos
639 1.15 matt PMAP_COUNT(destroy);
640 1.1 christos KASSERT(pmap->pm_count == 0);
641 1.1 christos kpreempt_disable();
642 1.10 nonaka pmap_md_tlb_miss_lock_enter();
643 1.1 christos pmap_tlb_asid_release_all(pmap);
644 1.1 christos pmap_segtab_destroy(pmap, NULL, 0);
645 1.10 nonaka pmap_md_tlb_miss_lock_exit();
646 1.1 christos
647 1.6 nonaka #ifdef MULTIPROCESSOR
648 1.7 nonaka kcpuset_destroy(pmap->pm_active);
649 1.7 nonaka kcpuset_destroy(pmap->pm_onproc);
650 1.15 matt pmap->pm_active = NULL;
651 1.15 matt pmap->pm_onproc = NULL;
652 1.6 nonaka #endif
653 1.6 nonaka
654 1.1 christos pool_put(&pmap_pmap_pool, pmap);
655 1.1 christos kpreempt_enable();
656 1.1 christos
657 1.15 matt UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
658 1.1 christos }
659 1.1 christos
660 1.1 christos /*
661 1.1 christos * Add a reference to the specified pmap.
662 1.1 christos */
663 1.1 christos void
664 1.1 christos pmap_reference(pmap_t pmap)
665 1.1 christos {
666 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
667 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
668 1.1 christos PMAP_COUNT(reference);
669 1.1 christos
670 1.1 christos if (pmap != NULL) {
671 1.1 christos atomic_inc_uint(&pmap->pm_count);
672 1.1 christos }
673 1.1 christos
674 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
675 1.1 christos }
676 1.1 christos
677 1.1 christos /*
678 1.1 christos * Make a new pmap (vmspace) active for the given process.
679 1.1 christos */
680 1.1 christos void
681 1.1 christos pmap_activate(struct lwp *l)
682 1.1 christos {
683 1.1 christos pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
684 1.1 christos
685 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
686 1.15 matt UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0, 0);
687 1.1 christos PMAP_COUNT(activate);
688 1.1 christos
689 1.1 christos kpreempt_disable();
690 1.10 nonaka pmap_md_tlb_miss_lock_enter();
691 1.1 christos pmap_tlb_asid_acquire(pmap, l);
692 1.1 christos if (l == curlwp) {
693 1.1 christos pmap_segtab_activate(pmap, l);
694 1.1 christos }
695 1.10 nonaka pmap_md_tlb_miss_lock_exit();
696 1.1 christos kpreempt_enable();
697 1.1 christos
698 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
699 1.15 matt }
700 1.15 matt
701 1.15 matt /*
702 1.15 matt * Remove this page from all physical maps in which it resides.
703 1.15 matt * Reflects back modify bits to the pager.
704 1.15 matt */
705 1.15 matt void
706 1.15 matt pmap_page_remove(struct vm_page *pg)
707 1.15 matt {
708 1.15 matt struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
709 1.15 matt
710 1.15 matt kpreempt_disable();
711 1.15 matt VM_PAGEMD_PVLIST_LOCK(mdpg);
712 1.15 matt pmap_pvlist_check(mdpg);
713 1.15 matt
714 1.15 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
715 1.15 matt
716 1.22 matt UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR")%s: %s",
717 1.22 matt pg, VM_PAGE_TO_PHYS(pg), " [page removed]", "execpage cleared");
718 1.22 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
719 1.22 matt pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
720 1.22 matt #else
721 1.22 matt pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
722 1.22 matt #endif
723 1.22 matt PMAP_COUNT(exec_uncached_remove);
724 1.22 matt
725 1.15 matt pv_entry_t pv = &mdpg->mdpg_first;
726 1.15 matt if (pv->pv_pmap == NULL) {
727 1.15 matt VM_PAGEMD_PVLIST_UNLOCK(mdpg);
728 1.15 matt kpreempt_enable();
729 1.15 matt UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
730 1.15 matt return;
731 1.15 matt }
732 1.15 matt
733 1.15 matt pv_entry_t npv;
734 1.15 matt pv_entry_t pvp = NULL;
735 1.15 matt
736 1.15 matt for (; pv != NULL; pv = npv) {
737 1.15 matt npv = pv->pv_next;
738 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
739 1.15 matt if (pv->pv_va & PV_KENTER) {
740 1.15 matt UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"
741 1.15 matt PRIxVADDR" skip", pv, pv->pv_pmap, pv->pv_va, 0);
742 1.15 matt
743 1.15 matt KASSERT(pv->pv_pmap == pmap_kernel());
744 1.15 matt
745 1.15 matt /* Assume no more - it'll get fixed if there are */
746 1.15 matt pv->pv_next = NULL;
747 1.15 matt
748 1.15 matt /*
749 1.15 matt * pvp is non-null when we already have a PV_KENTER
750 1.15 matt * pv in pvh_first; otherwise we haven't seen a
751 1.15 matt * PV_KENTER pv and we need to copy this one to
752 1.15 matt * pvh_first
753 1.15 matt */
754 1.15 matt if (pvp) {
755 1.15 matt /*
756 1.15 matt * The previous PV_KENTER pv needs to point to
757 1.15 matt * this PV_KENTER pv
758 1.15 matt */
759 1.15 matt pvp->pv_next = pv;
760 1.15 matt } else {
761 1.15 matt pv_entry_t fpv = &mdpg->mdpg_first;
762 1.15 matt *fpv = *pv;
763 1.15 matt KASSERT(fpv->pv_pmap == pmap_kernel());
764 1.15 matt }
765 1.15 matt pvp = pv;
766 1.15 matt continue;
767 1.15 matt }
768 1.15 matt #endif
769 1.15 matt const pmap_t pmap = pv->pv_pmap;
770 1.15 matt vaddr_t va = trunc_page(pv->pv_va);
771 1.15 matt pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
772 1.15 matt KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
773 1.15 matt pmap_limits.virtual_end);
774 1.15 matt pt_entry_t pte = *ptep;
775 1.15 matt UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"PRIxVADDR
776 1.15 matt " pte %#"PRIxPTE, pv, pmap, va, pte_value(pte));
777 1.15 matt if (!pte_valid_p(pte))
778 1.15 matt continue;
779 1.15 matt const bool is_kernel_pmap_p = (pmap == pmap_kernel());
780 1.15 matt if (is_kernel_pmap_p) {
781 1.15 matt PMAP_COUNT(remove_kernel_pages);
782 1.15 matt } else {
783 1.15 matt PMAP_COUNT(remove_user_pages);
784 1.15 matt }
785 1.15 matt if (pte_wired_p(pte))
786 1.15 matt pmap->pm_stats.wired_count--;
787 1.15 matt pmap->pm_stats.resident_count--;
788 1.15 matt
789 1.15 matt pmap_md_tlb_miss_lock_enter();
790 1.15 matt const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
791 1.15 matt *ptep = npte;
792 1.15 matt /*
793 1.15 matt * Flush the TLB for the given address.
794 1.15 matt */
795 1.15 matt pmap_tlb_invalidate_addr(pmap, va);
796 1.15 matt pmap_md_tlb_miss_lock_exit();
797 1.15 matt
798 1.15 matt /*
799 1.15 matt * non-null means this is a non-pvh_first pv, so we should
800 1.15 matt * free it.
801 1.15 matt */
802 1.15 matt if (pvp) {
803 1.15 matt KASSERT(pvp->pv_pmap == pmap_kernel());
804 1.15 matt KASSERT(pvp->pv_next == NULL);
805 1.15 matt pmap_pv_free(pv);
806 1.15 matt } else {
807 1.15 matt pv->pv_pmap = NULL;
808 1.15 matt pv->pv_next = NULL;
809 1.15 matt }
810 1.15 matt }
811 1.15 matt
812 1.15 matt pmap_pvlist_check(mdpg);
813 1.15 matt VM_PAGEMD_PVLIST_UNLOCK(mdpg);
814 1.15 matt kpreempt_enable();
815 1.15 matt
816 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
817 1.1 christos }
818 1.1 christos
819 1.15 matt
820 1.1 christos /*
821 1.1 christos * Make a previously active pmap (vmspace) inactive.
822 1.1 christos */
823 1.1 christos void
824 1.1 christos pmap_deactivate(struct lwp *l)
825 1.1 christos {
826 1.1 christos pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
827 1.1 christos
828 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
829 1.15 matt UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0, 0);
830 1.1 christos PMAP_COUNT(deactivate);
831 1.1 christos
832 1.1 christos kpreempt_disable();
833 1.15 matt KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
834 1.10 nonaka pmap_md_tlb_miss_lock_enter();
835 1.1 christos curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
836 1.15 matt #ifdef _LP64
837 1.15 matt curcpu()->ci_pmap_user_seg0tab = NULL;
838 1.15 matt #endif
839 1.1 christos pmap_tlb_asid_deactivate(pmap);
840 1.10 nonaka pmap_md_tlb_miss_lock_exit();
841 1.1 christos kpreempt_enable();
842 1.1 christos
843 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
844 1.1 christos }
845 1.1 christos
846 1.1 christos void
847 1.1 christos pmap_update(struct pmap *pmap)
848 1.1 christos {
849 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
850 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
851 1.1 christos PMAP_COUNT(update);
852 1.1 christos
853 1.1 christos kpreempt_disable();
854 1.18 skrll #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
855 1.1 christos u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
856 1.1 christos if (pending && pmap_tlb_shootdown_bystanders(pmap))
857 1.1 christos PMAP_COUNT(shootdown_ipis);
858 1.1 christos #endif
859 1.10 nonaka pmap_md_tlb_miss_lock_enter();
860 1.11 nonaka #if defined(DEBUG) && !defined(MULTIPROCESSOR)
861 1.1 christos pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
862 1.1 christos #endif /* DEBUG */
863 1.1 christos
864 1.1 christos /*
865 1.1 christos * If pmap_remove_all was called, we deactivated ourselves and nuked
866 1.1 christos * our ASID. Now we have to reactivate ourselves.
867 1.1 christos */
868 1.1 christos if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
869 1.1 christos pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
870 1.1 christos pmap_tlb_asid_acquire(pmap, curlwp);
871 1.1 christos pmap_segtab_activate(pmap, curlwp);
872 1.1 christos }
873 1.10 nonaka pmap_md_tlb_miss_lock_exit();
874 1.1 christos kpreempt_enable();
875 1.1 christos
876 1.15 matt UVMHIST_LOG(pmaphist, " <-- done%s",
877 1.15 matt (pmap == pmap_kernel()) ? " (kernel)" : "", 0, 0, 0);
878 1.1 christos }
879 1.1 christos
880 1.1 christos /*
881 1.1 christos * Remove the given range of addresses from the specified map.
882 1.1 christos *
883 1.1 christos * It is assumed that the start and end are properly
884 1.1 christos * rounded to the page size.
885 1.1 christos */
886 1.1 christos
887 1.1 christos static bool
888 1.1 christos pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
889 1.1 christos uintptr_t flags)
890 1.1 christos {
891 1.1 christos const pt_entry_t npte = flags;
892 1.1 christos const bool is_kernel_pmap_p = (pmap == pmap_kernel());
893 1.1 christos
894 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
895 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%#"PRIxVADDR"..%#"PRIxVADDR,
896 1.1 christos pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
897 1.1 christos UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
898 1.1 christos ptep, flags, 0, 0);
899 1.1 christos
900 1.1 christos KASSERT(kpreempt_disabled());
901 1.1 christos
902 1.1 christos for (; sva < eva; sva += NBPG, ptep++) {
903 1.15 matt const pt_entry_t pte = *ptep;
904 1.15 matt if (!pte_valid_p(pte))
905 1.1 christos continue;
906 1.15 matt if (is_kernel_pmap_p) {
907 1.15 matt PMAP_COUNT(remove_kernel_pages);
908 1.15 matt } else {
909 1.1 christos PMAP_COUNT(remove_user_pages);
910 1.15 matt }
911 1.15 matt if (pte_wired_p(pte))
912 1.1 christos pmap->pm_stats.wired_count--;
913 1.1 christos pmap->pm_stats.resident_count--;
914 1.15 matt struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
915 1.1 christos if (__predict_true(pg != NULL)) {
916 1.15 matt pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
917 1.1 christos }
918 1.10 nonaka pmap_md_tlb_miss_lock_enter();
919 1.1 christos *ptep = npte;
920 1.1 christos /*
921 1.1 christos * Flush the TLB for the given address.
922 1.1 christos */
923 1.1 christos pmap_tlb_invalidate_addr(pmap, sva);
924 1.10 nonaka pmap_md_tlb_miss_lock_exit();
925 1.1 christos }
926 1.15 matt
927 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
928 1.15 matt
929 1.1 christos return false;
930 1.1 christos }
931 1.1 christos
932 1.1 christos void
933 1.1 christos pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
934 1.1 christos {
935 1.1 christos const bool is_kernel_pmap_p = (pmap == pmap_kernel());
936 1.1 christos const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
937 1.1 christos
938 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
939 1.1 christos UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
940 1.1 christos pmap, sva, eva, 0);
941 1.1 christos
942 1.15 matt if (is_kernel_pmap_p) {
943 1.1 christos PMAP_COUNT(remove_kernel_calls);
944 1.15 matt } else {
945 1.1 christos PMAP_COUNT(remove_user_calls);
946 1.1 christos }
947 1.15 matt #ifdef PMAP_FAULTINFO
948 1.15 matt curpcb->pcb_faultinfo.pfi_faultaddr = 0;
949 1.15 matt curpcb->pcb_faultinfo.pfi_repeats = 0;
950 1.15 matt curpcb->pcb_faultinfo.pfi_faultpte = NULL;
951 1.1 christos #endif
952 1.1 christos kpreempt_disable();
953 1.15 matt pmap_addr_range_check(pmap, sva, eva, __func__);
954 1.1 christos pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
955 1.1 christos kpreempt_enable();
956 1.1 christos
957 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
958 1.1 christos }
959 1.1 christos
960 1.1 christos /*
961 1.1 christos * pmap_page_protect:
962 1.1 christos *
963 1.1 christos * Lower the permission for all mappings to a given page.
964 1.1 christos */
965 1.1 christos void
966 1.1 christos pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
967 1.1 christos {
968 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
969 1.1 christos pv_entry_t pv;
970 1.1 christos vaddr_t va;
971 1.1 christos
972 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
973 1.1 christos UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
974 1.1 christos pg, VM_PAGE_TO_PHYS(pg), prot, 0);
975 1.1 christos PMAP_COUNT(page_protect);
976 1.1 christos
977 1.1 christos switch (prot) {
978 1.1 christos case VM_PROT_READ|VM_PROT_WRITE:
979 1.1 christos case VM_PROT_ALL:
980 1.1 christos break;
981 1.1 christos
982 1.1 christos /* copy_on_write */
983 1.1 christos case VM_PROT_READ:
984 1.1 christos case VM_PROT_READ|VM_PROT_EXECUTE:
985 1.1 christos pv = &mdpg->mdpg_first;
986 1.15 matt kpreempt_disable();
987 1.15 matt VM_PAGEMD_PVLIST_READLOCK(mdpg);
988 1.15 matt pmap_pvlist_check(mdpg);
989 1.1 christos /*
990 1.15 matt * Loop over all current mappings setting/clearing as apropos.
991 1.1 christos */
992 1.1 christos if (pv->pv_pmap != NULL) {
993 1.1 christos while (pv != NULL) {
994 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
995 1.15 matt if (pv->pv_va & PV_KENTER) {
996 1.15 matt pv = pv->pv_next;
997 1.15 matt continue;
998 1.15 matt }
999 1.15 matt #endif
1000 1.1 christos const pmap_t pmap = pv->pv_pmap;
1001 1.15 matt va = trunc_page(pv->pv_va);
1002 1.15 matt const uintptr_t gen =
1003 1.15 matt VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1004 1.1 christos pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1005 1.1 christos KASSERT(pv->pv_pmap == pmap);
1006 1.1 christos pmap_update(pmap);
1007 1.15 matt if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1008 1.1 christos pv = &mdpg->mdpg_first;
1009 1.1 christos } else {
1010 1.1 christos pv = pv->pv_next;
1011 1.1 christos }
1012 1.15 matt pmap_pvlist_check(mdpg);
1013 1.1 christos }
1014 1.1 christos }
1015 1.15 matt pmap_pvlist_check(mdpg);
1016 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1017 1.15 matt kpreempt_enable();
1018 1.1 christos break;
1019 1.1 christos
1020 1.1 christos /* remove_all */
1021 1.1 christos default:
1022 1.15 matt pmap_page_remove(pg);
1023 1.1 christos }
1024 1.1 christos
1025 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1026 1.1 christos }
1027 1.1 christos
1028 1.1 christos static bool
1029 1.1 christos pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1030 1.1 christos uintptr_t flags)
1031 1.1 christos {
1032 1.1 christos const vm_prot_t prot = (flags & VM_PROT_ALL);
1033 1.1 christos
1034 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1035 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%#"PRIxVADDR"..%#"PRIxVADDR,
1036 1.1 christos pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
1037 1.1 christos UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
1038 1.1 christos ptep, flags, 0, 0);
1039 1.1 christos
1040 1.1 christos KASSERT(kpreempt_disabled());
1041 1.1 christos /*
1042 1.1 christos * Change protection on every valid mapping within this segment.
1043 1.1 christos */
1044 1.1 christos for (; sva < eva; sva += NBPG, ptep++) {
1045 1.15 matt pt_entry_t pte = *ptep;
1046 1.15 matt if (!pte_valid_p(pte))
1047 1.1 christos continue;
1048 1.15 matt struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1049 1.15 matt if (pg != NULL && pte_modified_p(pte)) {
1050 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1051 1.1 christos if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1052 1.1 christos KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1053 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1054 1.15 matt if (VM_PAGEMD_CACHED_P(mdpg)) {
1055 1.15 matt #endif
1056 1.1 christos UVMHIST_LOG(pmapexechist,
1057 1.1 christos "pg %p (pa %#"PRIxPADDR"): %s",
1058 1.1 christos pg, VM_PAGE_TO_PHYS(pg),
1059 1.1 christos "syncicached performed", 0);
1060 1.1 christos pmap_page_syncicache(pg);
1061 1.1 christos PMAP_COUNT(exec_synced_protect);
1062 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1063 1.1 christos }
1064 1.15 matt #endif
1065 1.1 christos }
1066 1.1 christos }
1067 1.15 matt pte = pte_prot_downgrade(pte, prot);
1068 1.15 matt if (*ptep != pte) {
1069 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1070 1.15 matt *ptep = pte;
1071 1.1 christos /*
1072 1.1 christos * Update the TLB if needed.
1073 1.1 christos */
1074 1.15 matt pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1075 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1076 1.1 christos }
1077 1.1 christos }
1078 1.15 matt
1079 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1080 1.15 matt
1081 1.1 christos return false;
1082 1.1 christos }
1083 1.1 christos
1084 1.1 christos /*
1085 1.1 christos * Set the physical protection on the
1086 1.1 christos * specified range of this map as requested.
1087 1.1 christos */
1088 1.1 christos void
1089 1.1 christos pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1090 1.1 christos {
1091 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1092 1.1 christos UVMHIST_LOG(pmaphist,
1093 1.15 matt "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR", prot=%u)",
1094 1.1 christos pmap, sva, eva, prot);
1095 1.1 christos PMAP_COUNT(protect);
1096 1.1 christos
1097 1.1 christos if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1098 1.1 christos pmap_remove(pmap, sva, eva);
1099 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1100 1.1 christos return;
1101 1.1 christos }
1102 1.1 christos
1103 1.1 christos /*
1104 1.1 christos * Change protection on every valid mapping within this segment.
1105 1.1 christos */
1106 1.1 christos kpreempt_disable();
1107 1.15 matt pmap_addr_range_check(pmap, sva, eva, __func__);
1108 1.1 christos pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1109 1.1 christos kpreempt_enable();
1110 1.1 christos
1111 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1112 1.1 christos }
1113 1.1 christos
1114 1.15 matt #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1115 1.1 christos /*
1116 1.1 christos * pmap_page_cache:
1117 1.1 christos *
1118 1.1 christos * Change all mappings of a managed page to cached/uncached.
1119 1.1 christos */
1120 1.15 matt void
1121 1.1 christos pmap_page_cache(struct vm_page *pg, bool cached)
1122 1.1 christos {
1123 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1124 1.15 matt
1125 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1126 1.1 christos UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
1127 1.1 christos pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
1128 1.15 matt
1129 1.1 christos KASSERT(kpreempt_disabled());
1130 1.15 matt KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1131 1.1 christos
1132 1.1 christos if (cached) {
1133 1.1 christos pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1134 1.1 christos PMAP_COUNT(page_cache_restorations);
1135 1.1 christos } else {
1136 1.1 christos pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1137 1.1 christos PMAP_COUNT(page_cache_evictions);
1138 1.1 christos }
1139 1.1 christos
1140 1.15 matt for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1141 1.1 christos pmap_t pmap = pv->pv_pmap;
1142 1.15 matt vaddr_t va = trunc_page(pv->pv_va);
1143 1.1 christos
1144 1.1 christos KASSERT(pmap != NULL);
1145 1.1 christos KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1146 1.1 christos pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1147 1.1 christos if (ptep == NULL)
1148 1.1 christos continue;
1149 1.15 matt pt_entry_t pte = *ptep;
1150 1.15 matt if (pte_valid_p(pte)) {
1151 1.15 matt pte = pte_cached_change(pte, cached);
1152 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1153 1.15 matt *ptep = pte;
1154 1.15 matt pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1155 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1156 1.1 christos }
1157 1.1 christos }
1158 1.15 matt
1159 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1160 1.1 christos }
1161 1.15 matt #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1162 1.1 christos
1163 1.1 christos /*
1164 1.1 christos * Insert the given physical page (p) at
1165 1.1 christos * the specified virtual address (v) in the
1166 1.1 christos * target physical map with the protection requested.
1167 1.1 christos *
1168 1.1 christos * If specified, the page will be wired down, meaning
1169 1.1 christos * that the related pte can not be reclaimed.
1170 1.1 christos *
1171 1.1 christos * NB: This is the only routine which MAY NOT lazy-evaluate
1172 1.1 christos * or lose information. That is, this routine must actually
1173 1.1 christos * insert this page into the given map NOW.
1174 1.1 christos */
1175 1.1 christos int
1176 1.1 christos pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1177 1.1 christos {
1178 1.1 christos const bool wired = (flags & PMAP_WIRED) != 0;
1179 1.1 christos const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1180 1.15 matt u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1181 1.1 christos #ifdef UVMHIST
1182 1.15 matt struct kern_history * const histp =
1183 1.1 christos ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1184 1.1 christos #endif
1185 1.1 christos
1186 1.15 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1187 1.1 christos #define VM_PROT_STRING(prot) \
1188 1.15 matt &"\0 " \
1189 1.15 matt "(R)\0 " \
1190 1.15 matt "(W)\0 " \
1191 1.15 matt "(RW)\0 " \
1192 1.15 matt "(X)\0 " \
1193 1.15 matt "(RX)\0 " \
1194 1.15 matt "(WX)\0 " \
1195 1.15 matt "(RWX)\0"[UVM_PROTECTION(prot)*6]
1196 1.1 christos UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
1197 1.1 christos pmap, va, pa, 0);
1198 1.1 christos UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
1199 1.1 christos prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
1200 1.1 christos
1201 1.1 christos const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1202 1.1 christos if (is_kernel_pmap_p) {
1203 1.1 christos PMAP_COUNT(kernel_mappings);
1204 1.1 christos if (!good_color)
1205 1.1 christos PMAP_COUNT(kernel_mappings_bad);
1206 1.1 christos } else {
1207 1.1 christos PMAP_COUNT(user_mappings);
1208 1.1 christos if (!good_color)
1209 1.1 christos PMAP_COUNT(user_mappings_bad);
1210 1.1 christos }
1211 1.15 matt pmap_addr_range_check(pmap, va, va, __func__);
1212 1.1 christos
1213 1.15 matt KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1214 1.15 matt VM_PROT_READ, prot);
1215 1.1 christos
1216 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1217 1.15 matt struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1218 1.1 christos
1219 1.1 christos if (pg) {
1220 1.1 christos /* Set page referenced/modified status based on flags */
1221 1.15 matt if (flags & VM_PROT_WRITE) {
1222 1.1 christos pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1223 1.15 matt } else if (flags & VM_PROT_ALL) {
1224 1.1 christos pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1225 1.15 matt }
1226 1.1 christos
1227 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1228 1.15 matt if (!VM_PAGEMD_CACHED_P(mdpg)) {
1229 1.1 christos flags |= PMAP_NOCACHE;
1230 1.15 matt PMAP_COUNT(uncached_mappings);
1231 1.15 matt }
1232 1.1 christos #endif
1233 1.1 christos
1234 1.1 christos PMAP_COUNT(managed_mappings);
1235 1.1 christos } else {
1236 1.1 christos /*
1237 1.1 christos * Assumption: if it is not part of our managed memory
1238 1.1 christos * then it must be device memory which may be volatile.
1239 1.1 christos */
1240 1.15 matt if ((flags & PMAP_CACHE_MASK) == 0)
1241 1.15 matt flags |= PMAP_NOCACHE;
1242 1.1 christos PMAP_COUNT(unmanaged_mappings);
1243 1.1 christos }
1244 1.1 christos
1245 1.15 matt pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1246 1.15 matt is_kernel_pmap_p);
1247 1.1 christos
1248 1.1 christos kpreempt_disable();
1249 1.15 matt
1250 1.1 christos pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1251 1.1 christos if (__predict_false(ptep == NULL)) {
1252 1.1 christos kpreempt_enable();
1253 1.15 matt UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1254 1.1 christos return ENOMEM;
1255 1.1 christos }
1256 1.15 matt const pt_entry_t opte = *ptep;
1257 1.1 christos
1258 1.1 christos /* Done after case that may sleep/return. */
1259 1.1 christos if (pg)
1260 1.15 matt pmap_enter_pv(pmap, va, pg, &npte, 0);
1261 1.1 christos
1262 1.1 christos /*
1263 1.1 christos * Now validate mapping with desired protection/wiring.
1264 1.1 christos * Assume uniform modified and referenced status for all
1265 1.1 christos * MIPS pages in a MACH page.
1266 1.1 christos */
1267 1.1 christos if (wired) {
1268 1.1 christos pmap->pm_stats.wired_count++;
1269 1.1 christos npte = pte_wire_entry(npte);
1270 1.1 christos }
1271 1.1 christos
1272 1.15 matt UVMHIST_LOG(*histp, "new pte %#"PRIxPTE" (pa %#"PRIxPADDR")",
1273 1.15 matt pte_value(npte), pa, 0, 0);
1274 1.1 christos
1275 1.1 christos if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
1276 1.1 christos pmap_remove(pmap, va, va + NBPG);
1277 1.1 christos PMAP_COUNT(user_mappings_changed);
1278 1.1 christos }
1279 1.1 christos
1280 1.1 christos KASSERT(pte_valid_p(npte));
1281 1.15 matt const bool resident = pte_valid_p(opte);
1282 1.15 matt if (resident) {
1283 1.15 matt update_flags |= PMAP_TLB_NEED_IPI;
1284 1.15 matt } else {
1285 1.1 christos pmap->pm_stats.resident_count++;
1286 1.15 matt }
1287 1.15 matt
1288 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1289 1.1 christos *ptep = npte;
1290 1.15 matt pmap_tlb_update_addr(pmap, va, npte, update_flags);
1291 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1292 1.1 christos kpreempt_enable();
1293 1.1 christos
1294 1.1 christos if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1295 1.1 christos KASSERT(mdpg != NULL);
1296 1.1 christos PMAP_COUNT(exec_mappings);
1297 1.1 christos if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1298 1.1 christos if (!pte_deferred_exec_p(npte)) {
1299 1.1 christos UVMHIST_LOG(*histp,
1300 1.1 christos "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1301 1.1 christos va, pg, "immediate", "");
1302 1.1 christos pmap_page_syncicache(pg);
1303 1.1 christos pmap_page_set_attributes(mdpg,
1304 1.1 christos VM_PAGEMD_EXECPAGE);
1305 1.1 christos PMAP_COUNT(exec_synced_mappings);
1306 1.1 christos } else {
1307 1.1 christos UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1308 1.1 christos " pg %p: %s syncicache: pte %#x",
1309 1.1 christos va, pg, "defer", npte);
1310 1.1 christos }
1311 1.1 christos } else {
1312 1.1 christos UVMHIST_LOG(*histp,
1313 1.1 christos "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1314 1.1 christos va, pg, "no",
1315 1.1 christos (pte_cached_p(npte)
1316 1.1 christos ? " (already exec)"
1317 1.1 christos : " (uncached)"));
1318 1.1 christos }
1319 1.1 christos } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1320 1.1 christos KASSERT(mdpg != NULL);
1321 1.1 christos KASSERT(prot & VM_PROT_WRITE);
1322 1.1 christos PMAP_COUNT(exec_mappings);
1323 1.1 christos pmap_page_syncicache(pg);
1324 1.1 christos pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1325 1.15 matt UVMHIST_LOG(*histp,
1326 1.1 christos "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1327 1.1 christos va, pg, "immediate", " (writeable)");
1328 1.1 christos }
1329 1.1 christos
1330 1.15 matt UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1331 1.1 christos return 0;
1332 1.1 christos }
1333 1.1 christos
1334 1.1 christos void
1335 1.1 christos pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1336 1.1 christos {
1337 1.15 matt pmap_t pmap = pmap_kernel();
1338 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1339 1.15 matt struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1340 1.1 christos
1341 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1342 1.15 matt UVMHIST_LOG(pmaphist,
1343 1.15 matt "(va=%#"PRIxVADDR", pa=%#"PRIxPADDR", prot=%u, flags=%#x)",
1344 1.15 matt va, pa, prot, flags);
1345 1.1 christos PMAP_COUNT(kenter_pa);
1346 1.1 christos
1347 1.15 matt if (mdpg == NULL) {
1348 1.1 christos PMAP_COUNT(kenter_pa_unmanaged);
1349 1.15 matt if ((flags & PMAP_CACHE_MASK) == 0)
1350 1.15 matt flags |= PMAP_NOCACHE;
1351 1.1 christos } else {
1352 1.15 matt if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1353 1.15 matt PMAP_COUNT(kenter_pa_bad);
1354 1.1 christos }
1355 1.1 christos
1356 1.15 matt pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1357 1.1 christos kpreempt_disable();
1358 1.15 matt pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1359 1.15 matt KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1360 1.15 matt pmap_limits.virtual_end);
1361 1.1 christos KASSERT(!pte_valid_p(*ptep));
1362 1.15 matt
1363 1.15 matt /*
1364 1.15 matt * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1365 1.15 matt */
1366 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1367 1.20 matt if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1368 1.20 matt && pmap_md_virtual_cache_aliasing_p()) {
1369 1.15 matt pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1370 1.15 matt }
1371 1.15 matt #endif
1372 1.15 matt
1373 1.1 christos /*
1374 1.1 christos * We have the option to force this mapping into the TLB but we
1375 1.1 christos * don't. Instead let the next reference to the page do it.
1376 1.1 christos */
1377 1.15 matt pmap_md_tlb_miss_lock_enter();
1378 1.15 matt *ptep = npte;
1379 1.1 christos pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1380 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1381 1.1 christos kpreempt_enable();
1382 1.1 christos #if DEBUG > 1
1383 1.1 christos for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1384 1.1 christos if (((long *)va)[i] != ((long *)pa)[i])
1385 1.1 christos panic("%s: contents (%lx) of va %#"PRIxVADDR
1386 1.1 christos " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1387 1.1 christos ((long *)va)[i], va, ((long *)pa)[i], pa);
1388 1.1 christos }
1389 1.1 christos #endif
1390 1.15 matt
1391 1.15 matt UVMHIST_LOG(pmaphist, " <-- done (ptep=%p)", ptep, 0, 0, 0);
1392 1.1 christos }
1393 1.1 christos
1394 1.15 matt /*
1395 1.15 matt * Remove the given range of addresses from the kernel map.
1396 1.15 matt *
1397 1.15 matt * It is assumed that the start and end are properly
1398 1.15 matt * rounded to the page size.
1399 1.15 matt */
1400 1.15 matt
1401 1.1 christos static bool
1402 1.1 christos pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1403 1.1 christos uintptr_t flags)
1404 1.1 christos {
1405 1.15 matt const pt_entry_t new_pte = pte_nv_entry(true);
1406 1.15 matt
1407 1.15 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1408 1.15 matt UVMHIST_LOG(pmaphist,
1409 1.15 matt "(pmap=%p, sva=%#"PRIxVADDR", eva=%#"PRIxVADDR", ptep=%p)",
1410 1.15 matt pmap, sva, eva, ptep);
1411 1.1 christos
1412 1.1 christos KASSERT(kpreempt_disabled());
1413 1.1 christos
1414 1.1 christos for (; sva < eva; sva += NBPG, ptep++) {
1415 1.15 matt pt_entry_t pte = *ptep;
1416 1.15 matt if (!pte_valid_p(pte))
1417 1.1 christos continue;
1418 1.1 christos
1419 1.1 christos PMAP_COUNT(kremove_pages);
1420 1.21 mrg #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1421 1.15 matt struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1422 1.20 matt if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1423 1.15 matt pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1424 1.15 matt }
1425 1.20 matt #endif
1426 1.1 christos
1427 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1428 1.15 matt *ptep = new_pte;
1429 1.15 matt pmap_tlb_invalidate_addr(pmap, sva);
1430 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1431 1.1 christos }
1432 1.1 christos
1433 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1434 1.15 matt
1435 1.1 christos return false;
1436 1.1 christos }
1437 1.1 christos
1438 1.1 christos void
1439 1.1 christos pmap_kremove(vaddr_t va, vsize_t len)
1440 1.1 christos {
1441 1.1 christos const vaddr_t sva = trunc_page(va);
1442 1.1 christos const vaddr_t eva = round_page(va + len);
1443 1.1 christos
1444 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1445 1.15 matt UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR", len=%#"PRIxVSIZE")",
1446 1.15 matt va, len, 0, 0);
1447 1.1 christos
1448 1.1 christos kpreempt_disable();
1449 1.1 christos pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1450 1.1 christos kpreempt_enable();
1451 1.1 christos
1452 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1453 1.1 christos }
1454 1.1 christos
1455 1.1 christos void
1456 1.1 christos pmap_remove_all(struct pmap *pmap)
1457 1.1 christos {
1458 1.15 matt UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1459 1.15 matt UVMHIST_LOG(pmaphist, "(pm=%p)", pmap, 0, 0, 0);
1460 1.15 matt
1461 1.1 christos KASSERT(pmap != pmap_kernel());
1462 1.1 christos
1463 1.1 christos kpreempt_disable();
1464 1.1 christos /*
1465 1.1 christos * Free all of our ASIDs which means we can skip doing all the
1466 1.1 christos * tlb_invalidate_addrs().
1467 1.1 christos */
1468 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1469 1.15 matt #ifdef MULTIPROCESSOR
1470 1.15 matt // This should be the last CPU with this pmap onproc
1471 1.15 matt KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1472 1.15 matt if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1473 1.15 matt #endif
1474 1.15 matt pmap_tlb_asid_deactivate(pmap);
1475 1.15 matt #ifdef MULTIPROCESSOR
1476 1.15 matt KASSERT(kcpuset_iszero(pmap->pm_onproc));
1477 1.15 matt #endif
1478 1.1 christos pmap_tlb_asid_release_all(pmap);
1479 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1480 1.1 christos pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1481 1.1 christos
1482 1.15 matt #ifdef PMAP_FAULTINFO
1483 1.15 matt curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1484 1.15 matt curpcb->pcb_faultinfo.pfi_repeats = 0;
1485 1.15 matt curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1486 1.15 matt #endif
1487 1.1 christos kpreempt_enable();
1488 1.15 matt
1489 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1490 1.1 christos }
1491 1.1 christos
1492 1.1 christos /*
1493 1.1 christos * Routine: pmap_unwire
1494 1.1 christos * Function: Clear the wired attribute for a map/virtual-address
1495 1.1 christos * pair.
1496 1.1 christos * In/out conditions:
1497 1.1 christos * The mapping must already exist in the pmap.
1498 1.1 christos */
1499 1.1 christos void
1500 1.1 christos pmap_unwire(pmap_t pmap, vaddr_t va)
1501 1.1 christos {
1502 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1503 1.15 matt UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR")", pmap, va, 0, 0);
1504 1.1 christos PMAP_COUNT(unwire);
1505 1.1 christos
1506 1.1 christos /*
1507 1.1 christos * Don't need to flush the TLB since PG_WIRED is only in software.
1508 1.1 christos */
1509 1.1 christos kpreempt_disable();
1510 1.15 matt pmap_addr_range_check(pmap, va, va, __func__);
1511 1.1 christos pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1512 1.15 matt KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1513 1.15 matt pmap, va);
1514 1.15 matt pt_entry_t pte = *ptep;
1515 1.15 matt KASSERTMSG(pte_valid_p(pte),
1516 1.15 matt "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1517 1.15 matt pmap, va, pte_value(pte), ptep);
1518 1.1 christos
1519 1.15 matt if (pte_wired_p(pte)) {
1520 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1521 1.15 matt *ptep = pte_unwire_entry(pte);
1522 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1523 1.1 christos pmap->pm_stats.wired_count--;
1524 1.1 christos }
1525 1.1 christos #ifdef DIAGNOSTIC
1526 1.1 christos else {
1527 1.1 christos printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1528 1.1 christos __func__, pmap, va);
1529 1.1 christos }
1530 1.1 christos #endif
1531 1.1 christos kpreempt_enable();
1532 1.15 matt
1533 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1534 1.1 christos }
1535 1.1 christos
1536 1.1 christos /*
1537 1.1 christos * Routine: pmap_extract
1538 1.1 christos * Function:
1539 1.1 christos * Extract the physical page address associated
1540 1.1 christos * with the given map/virtual_address pair.
1541 1.1 christos */
1542 1.1 christos bool
1543 1.1 christos pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1544 1.1 christos {
1545 1.1 christos paddr_t pa;
1546 1.1 christos
1547 1.1 christos if (pmap == pmap_kernel()) {
1548 1.1 christos if (pmap_md_direct_mapped_vaddr_p(va)) {
1549 1.1 christos pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1550 1.1 christos goto done;
1551 1.1 christos }
1552 1.1 christos if (pmap_md_io_vaddr_p(va))
1553 1.1 christos panic("pmap_extract: io address %#"PRIxVADDR"", va);
1554 1.15 matt
1555 1.15 matt if (va >= pmap_limits.virtual_end)
1556 1.15 matt panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1557 1.15 matt __func__, va);
1558 1.1 christos }
1559 1.1 christos kpreempt_disable();
1560 1.15 matt const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1561 1.15 matt if (ptep == NULL || !pte_valid_p(*ptep)) {
1562 1.1 christos kpreempt_enable();
1563 1.1 christos return false;
1564 1.1 christos }
1565 1.1 christos pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1566 1.1 christos kpreempt_enable();
1567 1.1 christos done:
1568 1.1 christos if (pap != NULL) {
1569 1.1 christos *pap = pa;
1570 1.1 christos }
1571 1.1 christos return true;
1572 1.1 christos }
1573 1.1 christos
1574 1.1 christos /*
1575 1.1 christos * Copy the range specified by src_addr/len
1576 1.1 christos * from the source map to the range dst_addr/len
1577 1.1 christos * in the destination map.
1578 1.1 christos *
1579 1.1 christos * This routine is only advisory and need not do anything.
1580 1.1 christos */
1581 1.1 christos void
1582 1.1 christos pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1583 1.1 christos vaddr_t src_addr)
1584 1.1 christos {
1585 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1586 1.1 christos PMAP_COUNT(copy);
1587 1.1 christos }
1588 1.1 christos
1589 1.1 christos /*
1590 1.1 christos * pmap_clear_reference:
1591 1.1 christos *
1592 1.1 christos * Clear the reference bit on the specified physical page.
1593 1.1 christos */
1594 1.1 christos bool
1595 1.1 christos pmap_clear_reference(struct vm_page *pg)
1596 1.1 christos {
1597 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1598 1.1 christos
1599 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1600 1.1 christos UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1601 1.1 christos pg, VM_PAGE_TO_PHYS(pg), 0,0);
1602 1.1 christos
1603 1.1 christos bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1604 1.1 christos
1605 1.15 matt UVMHIST_LOG(pmaphist, " <-- %s", rv ? "true" : "false", 0, 0, 0);
1606 1.1 christos
1607 1.1 christos return rv;
1608 1.1 christos }
1609 1.1 christos
1610 1.1 christos /*
1611 1.1 christos * pmap_is_referenced:
1612 1.1 christos *
1613 1.1 christos * Return whether or not the specified physical page is referenced
1614 1.1 christos * by any physical maps.
1615 1.1 christos */
1616 1.1 christos bool
1617 1.1 christos pmap_is_referenced(struct vm_page *pg)
1618 1.1 christos {
1619 1.1 christos return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1620 1.1 christos }
1621 1.1 christos
1622 1.1 christos /*
1623 1.1 christos * Clear the modify bits on the specified physical page.
1624 1.1 christos */
1625 1.1 christos bool
1626 1.1 christos pmap_clear_modify(struct vm_page *pg)
1627 1.1 christos {
1628 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1629 1.1 christos pv_entry_t pv = &mdpg->mdpg_first;
1630 1.1 christos pv_entry_t pv_next;
1631 1.1 christos
1632 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1633 1.1 christos UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1634 1.1 christos pg, VM_PAGE_TO_PHYS(pg), 0,0);
1635 1.1 christos PMAP_COUNT(clear_modify);
1636 1.1 christos
1637 1.1 christos if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1638 1.1 christos if (pv->pv_pmap == NULL) {
1639 1.1 christos UVMHIST_LOG(pmapexechist,
1640 1.1 christos "pg %p (pa %#"PRIxPADDR"): %s",
1641 1.1 christos pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1642 1.1 christos pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1643 1.1 christos PMAP_COUNT(exec_uncached_clear_modify);
1644 1.1 christos } else {
1645 1.1 christos UVMHIST_LOG(pmapexechist,
1646 1.1 christos "pg %p (pa %#"PRIxPADDR"): %s",
1647 1.1 christos pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1648 1.1 christos pmap_page_syncicache(pg);
1649 1.1 christos PMAP_COUNT(exec_synced_clear_modify);
1650 1.1 christos }
1651 1.1 christos }
1652 1.1 christos if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1653 1.15 matt UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1654 1.1 christos return false;
1655 1.1 christos }
1656 1.1 christos if (pv->pv_pmap == NULL) {
1657 1.15 matt UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1658 1.1 christos return true;
1659 1.1 christos }
1660 1.1 christos
1661 1.1 christos /*
1662 1.1 christos * remove write access from any pages that are dirty
1663 1.1 christos * so we can tell if they are written to again later.
1664 1.1 christos * flush the VAC first if there is one.
1665 1.1 christos */
1666 1.1 christos kpreempt_disable();
1667 1.15 matt KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1668 1.15 matt VM_PAGEMD_PVLIST_READLOCK(mdpg);
1669 1.15 matt pmap_pvlist_check(mdpg);
1670 1.1 christos for (; pv != NULL; pv = pv_next) {
1671 1.1 christos pmap_t pmap = pv->pv_pmap;
1672 1.15 matt vaddr_t va = trunc_page(pv->pv_va);
1673 1.15 matt
1674 1.15 matt pv_next = pv->pv_next;
1675 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1676 1.15 matt if (pv->pv_va & PV_KENTER)
1677 1.15 matt continue;
1678 1.15 matt #endif
1679 1.1 christos pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1680 1.1 christos KASSERT(ptep);
1681 1.15 matt pt_entry_t pte = pte_prot_nowrite(*ptep);
1682 1.15 matt if (*ptep == pte) {
1683 1.1 christos continue;
1684 1.1 christos }
1685 1.15 matt KASSERT(pte_valid_p(pte));
1686 1.15 matt const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1687 1.10 nonaka pmap_md_tlb_miss_lock_enter();
1688 1.15 matt *ptep = pte;
1689 1.1 christos pmap_tlb_invalidate_addr(pmap, va);
1690 1.10 nonaka pmap_md_tlb_miss_lock_exit();
1691 1.1 christos pmap_update(pmap);
1692 1.15 matt if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1693 1.1 christos /*
1694 1.1 christos * The list changed! So restart from the beginning.
1695 1.1 christos */
1696 1.1 christos pv_next = &mdpg->mdpg_first;
1697 1.15 matt pmap_pvlist_check(mdpg);
1698 1.1 christos }
1699 1.1 christos }
1700 1.15 matt pmap_pvlist_check(mdpg);
1701 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1702 1.1 christos kpreempt_enable();
1703 1.1 christos
1704 1.15 matt UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1705 1.1 christos return true;
1706 1.1 christos }
1707 1.1 christos
1708 1.1 christos /*
1709 1.1 christos * pmap_is_modified:
1710 1.1 christos *
1711 1.1 christos * Return whether or not the specified physical page is modified
1712 1.1 christos * by any physical maps.
1713 1.1 christos */
1714 1.1 christos bool
1715 1.1 christos pmap_is_modified(struct vm_page *pg)
1716 1.1 christos {
1717 1.1 christos return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1718 1.1 christos }
1719 1.1 christos
1720 1.1 christos /*
1721 1.1 christos * pmap_set_modified:
1722 1.1 christos *
1723 1.1 christos * Sets the page modified reference bit for the specified page.
1724 1.1 christos */
1725 1.1 christos void
1726 1.1 christos pmap_set_modified(paddr_t pa)
1727 1.1 christos {
1728 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1729 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1730 1.1 christos pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1731 1.1 christos }
1732 1.1 christos
1733 1.1 christos /******************** pv_entry management ********************/
1734 1.1 christos
1735 1.1 christos static void
1736 1.15 matt pmap_pvlist_check(struct vm_page_md *mdpg)
1737 1.1 christos {
1738 1.15 matt #ifdef DEBUG
1739 1.15 matt pv_entry_t pv = &mdpg->mdpg_first;
1740 1.1 christos if (pv->pv_pmap != NULL) {
1741 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1742 1.15 matt const u_int colormask = uvmexp.colormask;
1743 1.15 matt u_int colors = 0;
1744 1.15 matt #endif
1745 1.1 christos for (; pv != NULL; pv = pv->pv_next) {
1746 1.15 matt KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1747 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1748 1.15 matt colors |= __BIT(atop(pv->pv_va) & colormask);
1749 1.15 matt #endif
1750 1.1 christos }
1751 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1752 1.15 matt // Assert there if there more than 1 color mapped, that they
1753 1.15 matt // are uncached.
1754 1.15 matt KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1755 1.15 matt || colors == 0 || (colors & (colors-1)) == 0
1756 1.15 matt || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1757 1.15 matt colors, VM_PAGEMD_UNCACHED_P(mdpg));
1758 1.15 matt #endif
1759 1.1 christos }
1760 1.15 matt #endif /* DEBUG */
1761 1.1 christos }
1762 1.1 christos
1763 1.1 christos /*
1764 1.1 christos * Enter the pmap and virtual address into the
1765 1.1 christos * physical to virtual map table.
1766 1.1 christos */
1767 1.1 christos void
1768 1.15 matt pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1769 1.15 matt u_int flags)
1770 1.1 christos {
1771 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1772 1.1 christos pv_entry_t pv, npv, apv;
1773 1.15 matt #ifdef UVMHIST
1774 1.15 matt bool first = false;
1775 1.15 matt #endif
1776 1.1 christos
1777 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1778 1.1 christos UVMHIST_LOG(pmaphist,
1779 1.1 christos "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1780 1.1 christos pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1781 1.15 matt UVMHIST_LOG(pmaphist, "nptep=%p (%#"PRIxPTE"))",
1782 1.15 matt nptep, pte_value(*nptep), 0, 0);
1783 1.1 christos
1784 1.1 christos KASSERT(kpreempt_disabled());
1785 1.1 christos KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1786 1.15 matt KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1787 1.15 matt "va %#"PRIxVADDR, va);
1788 1.1 christos
1789 1.1 christos apv = NULL;
1790 1.15 matt VM_PAGEMD_PVLIST_LOCK(mdpg);
1791 1.15 matt again:
1792 1.1 christos pv = &mdpg->mdpg_first;
1793 1.15 matt pmap_pvlist_check(mdpg);
1794 1.1 christos if (pv->pv_pmap == NULL) {
1795 1.1 christos KASSERT(pv->pv_next == NULL);
1796 1.1 christos /*
1797 1.1 christos * No entries yet, use header as the first entry
1798 1.1 christos */
1799 1.1 christos PMAP_COUNT(primary_mappings);
1800 1.1 christos PMAP_COUNT(mappings);
1801 1.15 matt #ifdef UVMHIST
1802 1.1 christos first = true;
1803 1.15 matt #endif
1804 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1805 1.15 matt KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1806 1.15 matt // If the new mapping has an incompatible color the last
1807 1.15 matt // mapping of this page, clean the page before using it.
1808 1.15 matt if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1809 1.15 matt pmap_md_vca_clean(pg, PMAP_WBINV);
1810 1.15 matt }
1811 1.1 christos #endif
1812 1.1 christos pv->pv_pmap = pmap;
1813 1.15 matt pv->pv_va = va | flags;
1814 1.1 christos } else {
1815 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1816 1.15 matt if (pmap_md_vca_add(pg, va, nptep)) {
1817 1.1 christos goto again;
1818 1.15 matt }
1819 1.15 matt #endif
1820 1.1 christos
1821 1.1 christos /*
1822 1.1 christos * There is at least one other VA mapping this page.
1823 1.1 christos * Place this entry after the header.
1824 1.1 christos *
1825 1.1 christos * Note: the entry may already be in the table if
1826 1.1 christos * we are only changing the protection bits.
1827 1.1 christos */
1828 1.1 christos
1829 1.1 christos #ifdef PARANOIADIAG
1830 1.1 christos const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1831 1.1 christos #endif
1832 1.1 christos for (npv = pv; npv; npv = npv->pv_next) {
1833 1.15 matt if (pmap == npv->pv_pmap
1834 1.15 matt && va == trunc_page(npv->pv_va)) {
1835 1.1 christos #ifdef PARANOIADIAG
1836 1.1 christos pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1837 1.15 matt pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1838 1.15 matt if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1839 1.15 matt printf("%s: found va %#"PRIxVADDR
1840 1.15 matt " pa %#"PRIxPADDR
1841 1.15 matt " in pv_table but != %#"PRIxPTE"\n",
1842 1.15 matt __func__, va, pa, pte_value(pte));
1843 1.1 christos #endif
1844 1.1 christos PMAP_COUNT(remappings);
1845 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1846 1.1 christos if (__predict_false(apv != NULL))
1847 1.1 christos pmap_pv_free(apv);
1848 1.15 matt
1849 1.15 matt UVMHIST_LOG(pmaphist, " <-- done pv=%p%s",
1850 1.15 matt pv, " (reused)", 0, 0);
1851 1.1 christos return;
1852 1.1 christos }
1853 1.1 christos }
1854 1.1 christos if (__predict_true(apv == NULL)) {
1855 1.1 christos /*
1856 1.1 christos * To allocate a PV, we have to release the PVLIST lock
1857 1.1 christos * so get the page generation. We allocate the PV, and
1858 1.15 matt * then reacquire the lock.
1859 1.1 christos */
1860 1.15 matt pmap_pvlist_check(mdpg);
1861 1.15 matt const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1862 1.1 christos
1863 1.1 christos apv = (pv_entry_t)pmap_pv_alloc();
1864 1.1 christos if (apv == NULL)
1865 1.1 christos panic("pmap_enter_pv: pmap_pv_alloc() failed");
1866 1.1 christos
1867 1.1 christos /*
1868 1.1 christos * If the generation has changed, then someone else
1869 1.15 matt * tinkered with this page so we should start over.
1870 1.1 christos */
1871 1.15 matt if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1872 1.1 christos goto again;
1873 1.1 christos }
1874 1.1 christos npv = apv;
1875 1.1 christos apv = NULL;
1876 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1877 1.15 matt /*
1878 1.15 matt * If need to deal with virtual cache aliases, keep mappings
1879 1.15 matt * in the kernel pmap at the head of the list. This allows
1880 1.15 matt * the VCA code to easily use them for cache operations if
1881 1.15 matt * present.
1882 1.15 matt */
1883 1.15 matt pmap_t kpmap = pmap_kernel();
1884 1.15 matt if (pmap != kpmap) {
1885 1.15 matt while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1886 1.15 matt pv = pv->pv_next;
1887 1.15 matt }
1888 1.15 matt }
1889 1.15 matt #endif
1890 1.15 matt npv->pv_va = va | flags;
1891 1.1 christos npv->pv_pmap = pmap;
1892 1.1 christos npv->pv_next = pv->pv_next;
1893 1.1 christos pv->pv_next = npv;
1894 1.1 christos PMAP_COUNT(mappings);
1895 1.1 christos }
1896 1.15 matt pmap_pvlist_check(mdpg);
1897 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1898 1.1 christos if (__predict_false(apv != NULL))
1899 1.1 christos pmap_pv_free(apv);
1900 1.1 christos
1901 1.15 matt UVMHIST_LOG(pmaphist, " <-- done pv=%p%s",
1902 1.1 christos pv, first ? " (first pv)" : "",0,0);
1903 1.1 christos }
1904 1.1 christos
1905 1.1 christos /*
1906 1.1 christos * Remove a physical to virtual address translation.
1907 1.1 christos * If cache was inhibited on this page, and there are no more cache
1908 1.1 christos * conflicts, restore caching.
1909 1.1 christos * Flush the cache if the last page is removed (should always be cached
1910 1.1 christos * at this point).
1911 1.1 christos */
1912 1.1 christos void
1913 1.1 christos pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1914 1.1 christos {
1915 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1916 1.1 christos pv_entry_t pv, npv;
1917 1.1 christos bool last;
1918 1.1 christos
1919 1.1 christos UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1920 1.1 christos UVMHIST_LOG(pmaphist,
1921 1.15 matt "(pmap=%p, va=%#"PRIxVADDR", pg=%p (pa %#"PRIxPADDR")",
1922 1.1 christos pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1923 1.15 matt UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0, 0, 0);
1924 1.1 christos
1925 1.1 christos KASSERT(kpreempt_disabled());
1926 1.15 matt KASSERT((va & PAGE_MASK) == 0);
1927 1.1 christos pv = &mdpg->mdpg_first;
1928 1.1 christos
1929 1.15 matt VM_PAGEMD_PVLIST_LOCK(mdpg);
1930 1.15 matt pmap_pvlist_check(mdpg);
1931 1.1 christos
1932 1.1 christos /*
1933 1.1 christos * If it is the first entry on the list, it is actually
1934 1.1 christos * in the header and we must copy the following entry up
1935 1.1 christos * to the header. Otherwise we must search the list for
1936 1.1 christos * the entry. In either case we free the now unused entry.
1937 1.1 christos */
1938 1.1 christos
1939 1.1 christos last = false;
1940 1.15 matt if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1941 1.1 christos npv = pv->pv_next;
1942 1.1 christos if (npv) {
1943 1.1 christos *pv = *npv;
1944 1.1 christos KASSERT(pv->pv_pmap != NULL);
1945 1.1 christos } else {
1946 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1947 1.15 matt pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1948 1.1 christos #endif
1949 1.1 christos pv->pv_pmap = NULL;
1950 1.1 christos last = true; /* Last mapping removed */
1951 1.1 christos }
1952 1.1 christos PMAP_COUNT(remove_pvfirst);
1953 1.1 christos } else {
1954 1.1 christos for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1955 1.1 christos PMAP_COUNT(remove_pvsearch);
1956 1.15 matt if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1957 1.1 christos break;
1958 1.1 christos }
1959 1.1 christos if (npv) {
1960 1.1 christos pv->pv_next = npv->pv_next;
1961 1.1 christos }
1962 1.1 christos }
1963 1.1 christos
1964 1.15 matt pmap_pvlist_check(mdpg);
1965 1.1 christos VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1966 1.1 christos
1967 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1968 1.15 matt pmap_md_vca_remove(pg, va, dirty, last);
1969 1.15 matt #endif
1970 1.15 matt
1971 1.1 christos /*
1972 1.1 christos * Free the pv_entry if needed.
1973 1.1 christos */
1974 1.1 christos if (npv)
1975 1.1 christos pmap_pv_free(npv);
1976 1.1 christos if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1977 1.1 christos if (last) {
1978 1.1 christos /*
1979 1.1 christos * If this was the page's last mapping, we no longer
1980 1.1 christos * care about its execness.
1981 1.1 christos */
1982 1.1 christos UVMHIST_LOG(pmapexechist,
1983 1.1 christos "pg %p (pa %#"PRIxPADDR")%s: %s",
1984 1.1 christos pg, VM_PAGE_TO_PHYS(pg),
1985 1.1 christos last ? " [last mapping]" : "",
1986 1.1 christos "execpage cleared");
1987 1.1 christos pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1988 1.1 christos PMAP_COUNT(exec_uncached_remove);
1989 1.1 christos } else {
1990 1.1 christos /*
1991 1.1 christos * Someone still has it mapped as an executable page
1992 1.1 christos * so we must sync it.
1993 1.1 christos */
1994 1.1 christos UVMHIST_LOG(pmapexechist,
1995 1.1 christos "pg %p (pa %#"PRIxPADDR")%s: %s",
1996 1.1 christos pg, VM_PAGE_TO_PHYS(pg),
1997 1.1 christos last ? " [last mapping]" : "",
1998 1.1 christos "performed syncicache");
1999 1.1 christos pmap_page_syncicache(pg);
2000 1.1 christos PMAP_COUNT(exec_synced_remove);
2001 1.1 christos }
2002 1.1 christos }
2003 1.15 matt
2004 1.15 matt UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2005 1.1 christos }
2006 1.1 christos
2007 1.1 christos #if defined(MULTIPROCESSOR)
2008 1.1 christos struct pmap_pvlist_info {
2009 1.1 christos kmutex_t *pli_locks[PAGE_SIZE / 32];
2010 1.1 christos volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2011 1.1 christos volatile u_int pli_lock_index;
2012 1.1 christos u_int pli_lock_mask;
2013 1.1 christos } pmap_pvlist_info;
2014 1.1 christos
2015 1.1 christos void
2016 1.1 christos pmap_pvlist_lock_init(size_t cache_line_size)
2017 1.1 christos {
2018 1.1 christos struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2019 1.1 christos const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2020 1.1 christos vaddr_t lock_va = lock_page;
2021 1.1 christos if (sizeof(kmutex_t) > cache_line_size) {
2022 1.1 christos cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2023 1.1 christos }
2024 1.1 christos const size_t nlocks = PAGE_SIZE / cache_line_size;
2025 1.1 christos KASSERT((nlocks & (nlocks - 1)) == 0);
2026 1.1 christos /*
2027 1.1 christos * Now divide the page into a number of mutexes, one per cacheline.
2028 1.1 christos */
2029 1.1 christos for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2030 1.1 christos kmutex_t * const lock = (kmutex_t *)lock_va;
2031 1.15 matt mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2032 1.1 christos pli->pli_locks[i] = lock;
2033 1.1 christos }
2034 1.1 christos pli->pli_lock_mask = nlocks - 1;
2035 1.1 christos }
2036 1.1 christos
2037 1.15 matt kmutex_t *
2038 1.15 matt pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2039 1.1 christos {
2040 1.1 christos struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2041 1.1 christos kmutex_t *lock = mdpg->mdpg_lock;
2042 1.1 christos
2043 1.1 christos /*
2044 1.1 christos * Allocate a lock on an as-needed basis. This will hopefully give us
2045 1.1 christos * semi-random distribution not based on page color.
2046 1.1 christos */
2047 1.1 christos if (__predict_false(lock == NULL)) {
2048 1.1 christos size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2049 1.1 christos size_t lockid = locknum & pli->pli_lock_mask;
2050 1.1 christos kmutex_t * const new_lock = pli->pli_locks[lockid];
2051 1.1 christos /*
2052 1.1 christos * Set the lock. If some other thread already did, just use
2053 1.1 christos * the one they assigned.
2054 1.1 christos */
2055 1.1 christos lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2056 1.1 christos if (lock == NULL) {
2057 1.1 christos lock = new_lock;
2058 1.1 christos atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2059 1.1 christos }
2060 1.1 christos }
2061 1.1 christos
2062 1.1 christos /*
2063 1.15 matt * Now finally provide the lock.
2064 1.1 christos */
2065 1.15 matt return lock;
2066 1.1 christos }
2067 1.1 christos #else /* !MULTIPROCESSOR */
2068 1.1 christos void
2069 1.1 christos pmap_pvlist_lock_init(size_t cache_line_size)
2070 1.1 christos {
2071 1.15 matt mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2072 1.1 christos }
2073 1.1 christos
2074 1.1 christos #ifdef MODULAR
2075 1.15 matt kmutex_t *
2076 1.15 matt pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2077 1.1 christos {
2078 1.1 christos /*
2079 1.1 christos * We just use a global lock.
2080 1.1 christos */
2081 1.1 christos if (__predict_false(mdpg->mdpg_lock == NULL)) {
2082 1.1 christos mdpg->mdpg_lock = &pmap_pvlist_mutex;
2083 1.1 christos }
2084 1.1 christos
2085 1.1 christos /*
2086 1.15 matt * Now finally provide the lock.
2087 1.1 christos */
2088 1.15 matt return mdpg->mdpg_lock;
2089 1.1 christos }
2090 1.1 christos #endif /* MODULAR */
2091 1.1 christos #endif /* !MULTIPROCESSOR */
2092 1.1 christos
2093 1.1 christos /*
2094 1.1 christos * pmap_pv_page_alloc:
2095 1.1 christos *
2096 1.1 christos * Allocate a page for the pv_entry pool.
2097 1.1 christos */
2098 1.1 christos void *
2099 1.1 christos pmap_pv_page_alloc(struct pool *pp, int flags)
2100 1.1 christos {
2101 1.15 matt struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2102 1.1 christos if (pg == NULL)
2103 1.1 christos return NULL;
2104 1.1 christos
2105 1.1 christos return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2106 1.1 christos }
2107 1.1 christos
2108 1.1 christos /*
2109 1.1 christos * pmap_pv_page_free:
2110 1.1 christos *
2111 1.1 christos * Free a pv_entry pool page.
2112 1.1 christos */
2113 1.1 christos void
2114 1.1 christos pmap_pv_page_free(struct pool *pp, void *v)
2115 1.1 christos {
2116 1.1 christos vaddr_t va = (vaddr_t)v;
2117 1.1 christos
2118 1.1 christos KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2119 1.1 christos const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2120 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2121 1.15 matt KASSERT(pg != NULL);
2122 1.15 matt #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2123 1.15 matt kpreempt_disable();
2124 1.15 matt pmap_md_vca_remove(pg, va, true, true);
2125 1.15 matt kpreempt_enable();
2126 1.15 matt #endif
2127 1.15 matt pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2128 1.1 christos uvm_pagefree(pg);
2129 1.1 christos }
2130 1.1 christos
2131 1.1 christos #ifdef PMAP_PREFER
2132 1.1 christos /*
2133 1.1 christos * Find first virtual address >= *vap that doesn't cause
2134 1.1 christos * a cache alias conflict.
2135 1.1 christos */
2136 1.1 christos void
2137 1.1 christos pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2138 1.1 christos {
2139 1.1 christos vsize_t prefer_mask = ptoa(uvmexp.colormask);
2140 1.1 christos
2141 1.1 christos PMAP_COUNT(prefer_requests);
2142 1.1 christos
2143 1.1 christos prefer_mask |= pmap_md_cache_prefer_mask();
2144 1.1 christos
2145 1.1 christos if (prefer_mask) {
2146 1.15 matt vaddr_t va = *vap;
2147 1.15 matt vsize_t d = (foff - va) & prefer_mask;
2148 1.1 christos if (d) {
2149 1.1 christos if (td)
2150 1.15 matt *vap = trunc_page(va - ((-d) & prefer_mask));
2151 1.1 christos else
2152 1.1 christos *vap = round_page(va + d);
2153 1.1 christos PMAP_COUNT(prefer_adjustments);
2154 1.1 christos }
2155 1.1 christos }
2156 1.1 christos }
2157 1.1 christos #endif /* PMAP_PREFER */
2158 1.1 christos
2159 1.1 christos #ifdef PMAP_MAP_POOLPAGE
2160 1.1 christos vaddr_t
2161 1.1 christos pmap_map_poolpage(paddr_t pa)
2162 1.1 christos {
2163 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2164 1.1 christos KASSERT(pg);
2165 1.1 christos struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2166 1.1 christos pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2167 1.1 christos
2168 1.15 matt return pmap_md_map_poolpage(pa, NBPG);
2169 1.1 christos }
2170 1.1 christos
2171 1.1 christos paddr_t
2172 1.1 christos pmap_unmap_poolpage(vaddr_t va)
2173 1.1 christos {
2174 1.1 christos KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2175 1.1 christos paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2176 1.1 christos
2177 1.1 christos struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2178 1.15 matt KASSERT(pg != NULL);
2179 1.15 matt pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2180 1.1 christos pmap_md_unmap_poolpage(va, NBPG);
2181 1.1 christos
2182 1.1 christos return pa;
2183 1.1 christos }
2184 1.1 christos #endif /* PMAP_MAP_POOLPAGE */
2185