pmap.c revision 1.10 1 /* $NetBSD: pmap.c,v 1.10 2015/01/26 04:47:53 nonaka Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.10 2015/01/26 04:47:53 nonaka Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/pool.h>
109 #include <sys/atomic.h>
110 #include <sys/mutex.h>
111 #include <sys/atomic.h>
112 #ifdef SYSVSHM
113 #include <sys/shm.h>
114 #endif
115 #include <sys/socketvar.h> /* XXX: for sock_loan_thresh */
116
117 #include <uvm/uvm.h>
118
119 #define PMAP_COUNT(name) (pmap_evcnt_##name.ev_count++ + 0)
120 #define PMAP_COUNTER(name, desc) \
121 static struct evcnt pmap_evcnt_##name = \
122 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc); \
123 EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
124
125 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
126 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
127 PMAP_COUNTER(remove_user_calls, "remove user calls");
128 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
129 PMAP_COUNTER(remove_flushes, "remove cache flushes");
130 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
131 PMAP_COUNTER(remove_pvfirst, "remove pv first");
132 PMAP_COUNTER(remove_pvsearch, "remove pv search");
133
134 PMAP_COUNTER(prefer_requests, "prefer requests");
135 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
136
137 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
138 PMAP_COUNTER(zeroed_pages, "pages zeroed");
139 PMAP_COUNTER(copied_pages, "pages copied");
140
141 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
142 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
143 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
144 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
145
146 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
147 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
148
149 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
150 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
151 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
152 PMAP_COUNTER(user_mappings, "user pages mapped");
153 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
154 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
155 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
156 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
157 PMAP_COUNTER(managed_mappings, "managed pages mapped");
158 PMAP_COUNTER(mappings, "pages mapped");
159 PMAP_COUNTER(remappings, "pages remapped");
160 PMAP_COUNTER(unmappings, "pages unmapped");
161 PMAP_COUNTER(primary_mappings, "page initial mappings");
162 PMAP_COUNTER(primary_unmappings, "page final unmappings");
163 PMAP_COUNTER(tlb_hit, "page mapping");
164
165 PMAP_COUNTER(exec_mappings, "exec pages mapped");
166 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
167 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
168 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
169 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
170 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
171 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
172 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
173 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
174 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
175 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
176
177 PMAP_COUNTER(create, "creates");
178 PMAP_COUNTER(reference, "references");
179 PMAP_COUNTER(dereference, "dereferences");
180 PMAP_COUNTER(destroy, "destroyed");
181 PMAP_COUNTER(activate, "activations");
182 PMAP_COUNTER(deactivate, "deactivations");
183 PMAP_COUNTER(update, "updates");
184 #ifdef MULTIPROCESSOR
185 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
186 #endif
187 PMAP_COUNTER(unwire, "unwires");
188 PMAP_COUNTER(copy, "copies");
189 PMAP_COUNTER(clear_modify, "clear_modifies");
190 PMAP_COUNTER(protect, "protects");
191 PMAP_COUNTER(page_protect, "page_protects");
192
193 #define PMAP_ASID_RESERVED 0
194 CTASSERT(PMAP_ASID_RESERVED == 0);
195
196 /*
197 * Initialize the kernel pmap.
198 */
199 #ifdef MULTIPROCESSOR
200 #define PMAP_SIZE offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
201 #else
202 #define PMAP_SIZE sizeof(struct pmap)
203 kmutex_t pmap_pvlist_mutex __aligned(COHERENCY_UNIT);
204 #endif
205
206 struct pmap_kernel kernel_pmap_store = {
207 .kernel_pmap = {
208 .pm_count = 1,
209 .pm_segtab = PMAP_INVALID_SEGTAB_ADDRESS,
210 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
211 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
212 },
213 };
214
215 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
216
217 struct pmap_limits pmap_limits;
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) \
243 (pmap_initialized == true && vm_physseg_find(atop(pa), NULL) != -1)
244
245 #define PMAP_IS_ACTIVE(pm) \
246 ((pm) == pmap_kernel() || \
247 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
248
249 /* Forward function declarations */
250 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
251 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, u_int *);
252
253 /*
254 * PV table management functions.
255 */
256 void *pmap_pv_page_alloc(struct pool *, int);
257 void pmap_pv_page_free(struct pool *, void *);
258
259 struct pool_allocator pmap_pv_page_allocator = {
260 pmap_pv_page_alloc, pmap_pv_page_free, 0,
261 };
262
263 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
264 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
265
266 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
267 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
268 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
269 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
270
271 /*
272 * Misc. functions.
273 */
274
275 bool
276 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
277 {
278 volatile u_int * const attrp = &mdpg->mdpg_attrs;
279 #ifdef MULTIPROCESSOR
280 for (;;) {
281 u_int old_attr = *attrp;
282 if ((old_attr & clear_attributes) == 0)
283 return false;
284 u_int new_attr = old_attr & ~clear_attributes;
285 if (old_attr == atomic_cas_uint(attrp, old_attr, new_attr))
286 return true;
287 }
288 #else
289 u_int old_attr = *attrp;
290 if ((old_attr & clear_attributes) == 0)
291 return false;
292 *attrp &= ~clear_attributes;
293 return true;
294 #endif
295 }
296
297 void
298 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
299 {
300 #ifdef MULTIPROCESSOR
301 atomic_or_uint(&mdpg->mdpg_attrs, set_attributes);
302 #else
303 mdpg->mdpg_attrs |= set_attributes;
304 #endif
305 }
306
307 static void
308 pmap_page_syncicache(struct vm_page *pg)
309 {
310 #ifndef MULTIPROCESSOR
311 struct pmap * const curpmap = curcpu()->ci_curpm;
312 #endif
313 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
314 pv_entry_t pv = &mdpg->mdpg_first;
315 kcpuset_t *onproc;
316 #ifdef MULTIPROCESSOR
317 kcpuset_create(&onproc, true);
318 #else
319 onproc = NULL;
320 #endif
321 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
322
323 if (pv->pv_pmap != NULL) {
324 for (; pv != NULL; pv = pv->pv_next) {
325 #ifdef MULTIPROCESSOR
326 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
327 if (kcpuset_match(onproc, kcpuset_running)) {
328 break;
329 }
330 #else
331 if (pv->pv_pmap == curpmap) {
332 onproc = curcpu()->ci_data.cpu_kcpuset;
333 break;
334 }
335 #endif
336 }
337 }
338 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
339 kpreempt_disable();
340 pmap_md_page_syncicache(pg, onproc);
341 #ifdef MULTIPROCESSOR
342 kcpuset_destroy(onproc);
343 #endif
344 kpreempt_enable();
345 }
346
347 /*
348 * Define the initial bounds of the kernel virtual address space.
349 */
350 void
351 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
352 {
353
354 *vstartp = VM_MIN_KERNEL_ADDRESS;
355 *vendp = VM_MAX_KERNEL_ADDRESS;
356 }
357
358 vaddr_t
359 pmap_growkernel(vaddr_t maxkvaddr)
360 {
361 vaddr_t virtual_end = pmap_limits.virtual_end;
362 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
363
364 /*
365 * Reserve PTEs for the new KVA space.
366 */
367 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
368 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
369 }
370
371 /*
372 * Don't exceed VM_MAX_KERNEL_ADDRESS!
373 */
374 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
375 virtual_end = VM_MAX_KERNEL_ADDRESS;
376
377 /*
378 * Update new end.
379 */
380 pmap_limits.virtual_end = virtual_end;
381 return virtual_end;
382 }
383
384 /*
385 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
386 * This function allows for early dynamic memory allocation until the virtual
387 * memory system has been bootstrapped. After that point, either kmem_alloc
388 * or malloc should be used. This function works by stealing pages from the
389 * (to be) managed page pool, then implicitly mapping the pages (by using
390 * their k0seg addresses) and zeroing them.
391 *
392 * It may be used once the physical memory segments have been pre-loaded
393 * into the vm_physmem[] array. Early memory allocation MUST use this
394 * interface! This cannot be used after vm_page_startup(), and will
395 * generate a panic if tried.
396 *
397 * Note that this memory will never be freed, and in essence it is wired
398 * down.
399 *
400 * We must adjust *vstartp and/or *vendp iff we use address space
401 * from the kernel virtual address range defined by pmap_virtual_space().
402 */
403 vaddr_t
404 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
405 {
406 u_int npgs;
407 paddr_t pa;
408 vaddr_t va;
409
410 size = round_page(size);
411 npgs = atop(size);
412
413 for (u_int bank = 0; bank < vm_nphysseg; bank++) {
414 struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
415 if (uvm.page_init_done == true)
416 panic("pmap_steal_memory: called _after_ bootstrap");
417
418 if (seg->avail_start != seg->start ||
419 seg->avail_start >= seg->avail_end)
420 continue;
421
422 if ((seg->avail_end - seg->avail_start) < npgs)
423 continue;
424
425 /*
426 * There are enough pages here; steal them!
427 */
428 pa = ptoa(seg->avail_start);
429 seg->avail_start += npgs;
430 seg->start += npgs;
431
432 /*
433 * Have we used up this segment?
434 */
435 if (seg->avail_start == seg->end) {
436 if (vm_nphysseg == 1)
437 panic("pmap_steal_memory: out of memory!");
438
439 /* Remove this segment from the list. */
440 vm_nphysseg--;
441 if (bank < vm_nphysseg)
442 memmove(seg, seg+1,
443 sizeof(*seg) * (vm_nphysseg - bank));
444 }
445
446 va = pmap_md_map_poolpage(pa, size);
447 memset((void *)va, 0, size);
448 return va;
449 }
450
451 /*
452 * If we got here, there was no memory left.
453 */
454 panic("pmap_steal_memory: no memory to steal");
455 }
456
457 /*
458 * Initialize the pmap module.
459 * Called by vm_init, to initialize any structures that the pmap
460 * system needs to map virtual memory.
461 */
462 void
463 pmap_init(void)
464 {
465 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
466 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
467
468 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
469
470 /*
471 * Initialize the segtab lock.
472 */
473 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
474
475 /*
476 * Set a low water mark on the pv_entry pool, so that we are
477 * more likely to have these around even in extreme memory
478 * starvation.
479 */
480 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
481
482 pmap_md_init();
483
484 /*
485 * Now it is safe to enable pv entry recording.
486 */
487 pmap_initialized = true;
488 }
489
490 /*
491 * Create and return a physical map.
492 *
493 * If the size specified for the map
494 * is zero, the map is an actual physical
495 * map, and may be referenced by the
496 * hardware.
497 *
498 * If the size specified is non-zero,
499 * the map will be used in software only, and
500 * is bounded by that size.
501 */
502 pmap_t
503 pmap_create(void)
504 {
505 pmap_t pmap;
506
507 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
508 PMAP_COUNT(create);
509
510 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
511 memset(pmap, 0, PMAP_SIZE);
512
513 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
514
515 pmap->pm_count = 1;
516 pmap->pm_minaddr = VM_MIN_ADDRESS;
517 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
518
519 pmap_segtab_init(pmap);
520
521 #ifdef MULTIPROCESSOR
522 kcpuset_create(&pmap->pm_active, true);
523 kcpuset_create(&pmap->pm_onproc, true);
524 #endif
525
526 UVMHIST_LOG(pmaphist, "<- pmap %p", pmap,0,0,0);
527 return pmap;
528 }
529
530 /*
531 * Retire the given physical map from service.
532 * Should only be called if the map contains
533 * no valid mappings.
534 */
535 void
536 pmap_destroy(pmap_t pmap)
537 {
538 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
539 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
540
541 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
542 PMAP_COUNT(dereference);
543 return;
544 }
545
546 KASSERT(pmap->pm_count == 0);
547 PMAP_COUNT(destroy);
548 kpreempt_disable();
549 pmap_md_tlb_miss_lock_enter();
550 pmap_tlb_asid_release_all(pmap);
551 pmap_segtab_destroy(pmap, NULL, 0);
552 pmap_md_tlb_miss_lock_exit();
553
554 #ifdef MULTIPROCESSOR
555 kcpuset_destroy(pmap->pm_active);
556 kcpuset_destroy(pmap->pm_onproc);
557 #endif
558
559 pool_put(&pmap_pmap_pool, pmap);
560 kpreempt_enable();
561
562 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
563 }
564
565 /*
566 * Add a reference to the specified pmap.
567 */
568 void
569 pmap_reference(pmap_t pmap)
570 {
571
572 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
573 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
574 PMAP_COUNT(reference);
575
576 if (pmap != NULL) {
577 atomic_inc_uint(&pmap->pm_count);
578 }
579
580 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
581 }
582
583 /*
584 * Make a new pmap (vmspace) active for the given process.
585 */
586 void
587 pmap_activate(struct lwp *l)
588 {
589 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
590
591 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
592 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
593 PMAP_COUNT(activate);
594
595 kpreempt_disable();
596 pmap_md_tlb_miss_lock_enter();
597 pmap_tlb_asid_acquire(pmap, l);
598 if (l == curlwp) {
599 pmap_segtab_activate(pmap, l);
600 }
601 pmap_md_tlb_miss_lock_exit();
602 kpreempt_enable();
603
604 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
605 }
606
607 /*
608 * Make a previously active pmap (vmspace) inactive.
609 */
610 void
611 pmap_deactivate(struct lwp *l)
612 {
613 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
614
615 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
616 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
617 PMAP_COUNT(deactivate);
618
619 kpreempt_disable();
620 pmap_md_tlb_miss_lock_enter();
621 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
622 pmap_tlb_asid_deactivate(pmap);
623 pmap_md_tlb_miss_lock_exit();
624 kpreempt_enable();
625
626 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
627 }
628
629 void
630 pmap_update(struct pmap *pmap)
631 {
632
633 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
634 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
635 PMAP_COUNT(update);
636
637 kpreempt_disable();
638 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
639 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
640 if (pending && pmap_tlb_shootdown_bystanders(pmap))
641 PMAP_COUNT(shootdown_ipis);
642 #endif
643 pmap_md_tlb_miss_lock_enter();
644 #ifdef DEBUG
645 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
646 #endif /* DEBUG */
647
648 /*
649 * If pmap_remove_all was called, we deactivated ourselves and nuked
650 * our ASID. Now we have to reactivate ourselves.
651 */
652 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
653 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
654 pmap_tlb_asid_acquire(pmap, curlwp);
655 pmap_segtab_activate(pmap, curlwp);
656 }
657 pmap_md_tlb_miss_lock_exit();
658 kpreempt_enable();
659
660 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
661 }
662
663 /*
664 * Remove the given range of addresses from the specified map.
665 *
666 * It is assumed that the start and end are properly
667 * rounded to the page size.
668 */
669
670 static bool
671 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
672 uintptr_t flags)
673 {
674 const pt_entry_t npte = flags;
675 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
676
677 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
678 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
679 pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
680 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
681 ptep, flags, 0, 0);
682
683 KASSERT(kpreempt_disabled());
684
685 for (; sva < eva; sva += NBPG, ptep++) {
686 pt_entry_t pt_entry = *ptep;
687 if (!pte_valid_p(pt_entry))
688 continue;
689 if (is_kernel_pmap_p)
690 PMAP_COUNT(remove_kernel_calls);
691 else
692 PMAP_COUNT(remove_user_pages);
693 if (pte_wired_p(pt_entry))
694 pmap->pm_stats.wired_count--;
695 pmap->pm_stats.resident_count--;
696 struct vm_page *pg = PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
697 if (__predict_true(pg != NULL)) {
698 pmap_remove_pv(pmap, sva, pg,
699 pte_modified_p(pt_entry));
700 }
701 pmap_md_tlb_miss_lock_enter();
702 *ptep = npte;
703 /*
704 * Flush the TLB for the given address.
705 */
706 pmap_tlb_invalidate_addr(pmap, sva);
707 pmap_md_tlb_miss_lock_exit();
708 }
709 return false;
710 }
711
712 void
713 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
714 {
715 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
716 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
717
718 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
719 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
720 pmap, sva, eva, 0);
721
722 if (is_kernel_pmap_p)
723 PMAP_COUNT(remove_kernel_calls);
724 else
725 PMAP_COUNT(remove_user_calls);
726 #ifdef PARANOIADIAG
727 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
728 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
729 __func__, sva, eva - 1);
730 if (PMAP_IS_ACTIVE(pmap)) {
731 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
732 uint32_t asid = tlb_get_asid();
733 if (asid != pai->pai_asid) {
734 panic("%s: inconsistency for active TLB flush"
735 ": %d <-> %d", __func__, asid, pai->pai_asid);
736 }
737 }
738 #endif
739 kpreempt_disable();
740 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
741 kpreempt_enable();
742
743 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
744 }
745
746 /*
747 * pmap_page_protect:
748 *
749 * Lower the permission for all mappings to a given page.
750 */
751 void
752 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
753 {
754 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
755 pv_entry_t pv;
756 vaddr_t va;
757
758 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
759 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
760 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
761 PMAP_COUNT(page_protect);
762
763 switch (prot) {
764 case VM_PROT_READ|VM_PROT_WRITE:
765 case VM_PROT_ALL:
766 break;
767
768 /* copy_on_write */
769 case VM_PROT_READ:
770 case VM_PROT_READ|VM_PROT_EXECUTE:
771 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
772 pv = &mdpg->mdpg_first;
773 /*
774 * Loop over all current mappings setting/clearing as appropriate.
775 */
776 if (pv->pv_pmap != NULL) {
777 while (pv != NULL) {
778 const pmap_t pmap = pv->pv_pmap;
779 const uint16_t gen = VM_PAGEMD_PVLIST_GEN(mdpg);
780 va = pv->pv_va;
781 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
782 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
783 KASSERT(pv->pv_pmap == pmap);
784 pmap_update(pmap);
785 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false)) {
786 pv = &mdpg->mdpg_first;
787 } else {
788 pv = pv->pv_next;
789 }
790 }
791 }
792 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
793 break;
794
795 /* remove_all */
796 default:
797 /*
798 * Do this first so that for each unmapping, pmap_remove_pv
799 * won't try to sync the icache.
800 */
801 if (pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE)) {
802 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR
803 "): execpage cleared", pg, VM_PAGE_TO_PHYS(pg),0,0);
804 PMAP_COUNT(exec_uncached_page_protect);
805 }
806 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
807 pv = &mdpg->mdpg_first;
808 while (pv->pv_pmap != NULL) {
809 const pmap_t pmap = pv->pv_pmap;
810 va = pv->pv_va;
811 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
812 pmap_remove(pmap, va, va + PAGE_SIZE);
813 pmap_update(pmap);
814 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
815 }
816 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
817 }
818
819 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
820 }
821
822 static bool
823 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
824 uintptr_t flags)
825 {
826 const vm_prot_t prot = (flags & VM_PROT_ALL);
827
828 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
829 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
830 pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
831 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
832 ptep, flags, 0, 0);
833
834 KASSERT(kpreempt_disabled());
835 /*
836 * Change protection on every valid mapping within this segment.
837 */
838 for (; sva < eva; sva += NBPG, ptep++) {
839 pt_entry_t pt_entry = *ptep;
840 if (!pte_valid_p(pt_entry))
841 continue;
842 struct vm_page * const pg =
843 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
844 if (pg != NULL && pte_modified_p(pt_entry)) {
845 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
846 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
847 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
848 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
849 if (pte_cached_p(pt_entry)) {
850 UVMHIST_LOG(pmapexechist,
851 "pg %p (pa %#"PRIxPADDR"): %s",
852 pg, VM_PAGE_TO_PHYS(pg),
853 "syncicached performed", 0);
854 pmap_page_syncicache(pg);
855 PMAP_COUNT(exec_synced_protect);
856 }
857 }
858 }
859 pt_entry = pte_prot_downgrade(pt_entry, prot);
860 if (*ptep != pt_entry) {
861 pmap_md_tlb_miss_lock_enter();
862 *ptep = pt_entry;
863 /*
864 * Update the TLB if needed.
865 */
866 pmap_tlb_update_addr(pmap, sva, pt_entry,
867 PMAP_TLB_NEED_IPI);
868 pmap_md_tlb_miss_lock_exit();
869 }
870 }
871 return false;
872 }
873
874 /*
875 * Set the physical protection on the
876 * specified range of this map as requested.
877 */
878 void
879 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
880 {
881
882 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
883 UVMHIST_LOG(pmaphist,
884 " pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR" port=%#x)",
885 pmap, sva, eva, prot);
886 PMAP_COUNT(protect);
887
888 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
889 pmap_remove(pmap, sva, eva);
890 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
891 return;
892 }
893
894 #ifdef PARANOIADIAG
895 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
896 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
897 __func__, sva, eva - 1);
898 if (PMAP_IS_ACTIVE(pmap)) {
899 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
900 uint32_t asid = tlb_get_asid();
901 if (asid != pai->pai_asid) {
902 panic("%s: inconsistency for active TLB update"
903 ": %d <-> %d", __func__, asid, pai->pai_asid);
904 }
905 }
906 #endif
907
908 /*
909 * Change protection on every valid mapping within this segment.
910 */
911 kpreempt_disable();
912 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
913 kpreempt_enable();
914
915 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
916 }
917
918 #if defined(__PMAP_VIRTUAL_CACHE_ALIASES)
919 /*
920 * pmap_page_cache:
921 *
922 * Change all mappings of a managed page to cached/uncached.
923 */
924 static void
925 pmap_page_cache(struct vm_page *pg, bool cached)
926 {
927 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
928 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
929 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
930 pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
931 KASSERT(kpreempt_disabled());
932
933 if (cached) {
934 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
935 PMAP_COUNT(page_cache_restorations);
936 } else {
937 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
938 PMAP_COUNT(page_cache_evictions);
939 }
940
941 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
942 KASSERT(kpreempt_disabled());
943 for (pv_entry_t pv = &mdpg->mdpg_first;
944 pv != NULL;
945 pv = pv->pv_next) {
946 pmap_t pmap = pv->pv_pmap;
947 vaddr_t va = pv->pv_va;
948
949 KASSERT(pmap != NULL);
950 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
951 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
952 if (ptep == NULL)
953 continue;
954 pt_entry_t pt_entry = *ptep;
955 if (pte_valid_p(pt_entry)) {
956 pt_entry = pte_cached_change(pt_entry, cached);
957 pmap_md_tlb_miss_lock_enter();
958 *ptep = pt_entry;
959 pmap_tlb_update_addr(pmap, va, pt_entry,
960 PMAP_TLB_NEED_IPI);
961 pmap_md_tlb_miss_lock_exit();
962 }
963 }
964 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
965 }
966 #endif /* __PMAP_VIRTUAL_CACHE_ALIASES */
967
968 /*
969 * Insert the given physical page (p) at
970 * the specified virtual address (v) in the
971 * target physical map with the protection requested.
972 *
973 * If specified, the page will be wired down, meaning
974 * that the related pte can not be reclaimed.
975 *
976 * NB: This is the only routine which MAY NOT lazy-evaluate
977 * or lose information. That is, this routine must actually
978 * insert this page into the given map NOW.
979 */
980 int
981 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
982 {
983 pt_entry_t npte;
984 const bool wired = (flags & PMAP_WIRED) != 0;
985 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
986 #ifdef UVMHIST
987 struct kern_history * const histp =
988 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
989 #endif
990
991 UVMHIST_FUNC(__func__);
992 #define VM_PROT_STRING(prot) \
993 &"\0 (R)\0 (W)\0 (RW)\0 (X)\0 (RX)\0 (WX)\0 (RWX)\0"[UVM_PROTECTION(prot)*6]
994 UVMHIST_CALLED(*histp);
995 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
996 pmap, va, pa, 0);
997 UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
998 prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
999
1000 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1001 if (is_kernel_pmap_p) {
1002 PMAP_COUNT(kernel_mappings);
1003 if (!good_color)
1004 PMAP_COUNT(kernel_mappings_bad);
1005 } else {
1006 PMAP_COUNT(user_mappings);
1007 if (!good_color)
1008 PMAP_COUNT(user_mappings_bad);
1009 }
1010 #if defined(DEBUG) || defined(DIAGNOSTIC) || defined(PARANOIADIAG)
1011 if (va < pmap->pm_minaddr || va >= pmap->pm_maxaddr)
1012 panic("%s: %s %#"PRIxVADDR" too big",
1013 __func__, is_kernel_pmap_p ? "kva" : "uva", va);
1014 #endif
1015
1016 KASSERTMSG(prot & VM_PROT_READ,
1017 "%s: no READ (%#x) in prot %#x", __func__, VM_PROT_READ, prot);
1018
1019 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1020 struct vm_page_md *mdpg;
1021
1022 if (pg) {
1023 mdpg = VM_PAGE_TO_MD(pg);
1024 /* Set page referenced/modified status based on flags */
1025 if (flags & VM_PROT_WRITE)
1026 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1027 else if (flags & VM_PROT_ALL)
1028 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1029
1030 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1031 if (!VM_PAGEMD_CACHED(pg))
1032 flags |= PMAP_NOCACHE;
1033 #endif
1034
1035 PMAP_COUNT(managed_mappings);
1036 } else {
1037 /*
1038 * Assumption: if it is not part of our managed memory
1039 * then it must be device memory which may be volatile.
1040 */
1041 mdpg = NULL;
1042 flags |= PMAP_NOCACHE;
1043 PMAP_COUNT(unmanaged_mappings);
1044 }
1045
1046 npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p);
1047
1048 kpreempt_disable();
1049 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1050 if (__predict_false(ptep == NULL)) {
1051 kpreempt_enable();
1052 UVMHIST_LOG(*histp, "<- ENOMEM", 0,0,0,0);
1053 return ENOMEM;
1054 }
1055 pt_entry_t opte = *ptep;
1056
1057 /* Done after case that may sleep/return. */
1058 if (pg)
1059 pmap_enter_pv(pmap, va, pg, &npte);
1060
1061 /*
1062 * Now validate mapping with desired protection/wiring.
1063 * Assume uniform modified and referenced status for all
1064 * MIPS pages in a MACH page.
1065 */
1066 if (wired) {
1067 pmap->pm_stats.wired_count++;
1068 npte = pte_wire_entry(npte);
1069 }
1070
1071 UVMHIST_LOG(*histp, "new pte %#x (pa %#"PRIxPADDR")", npte, pa, 0,0);
1072
1073 if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
1074 pmap_remove(pmap, va, va + NBPG);
1075 PMAP_COUNT(user_mappings_changed);
1076 }
1077
1078 KASSERT(pte_valid_p(npte));
1079 bool resident = pte_valid_p(opte);
1080 if (!resident)
1081 pmap->pm_stats.resident_count++;
1082 pmap_md_tlb_miss_lock_enter();
1083 *ptep = npte;
1084
1085 pmap_tlb_update_addr(pmap, va, npte,
1086 ((flags & VM_PROT_ALL) ? PMAP_TLB_INSERT : 0)
1087 | (resident ? PMAP_TLB_NEED_IPI : 0));
1088 pmap_md_tlb_miss_lock_exit();
1089 kpreempt_enable();
1090
1091 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1092 KASSERT(mdpg != NULL);
1093 PMAP_COUNT(exec_mappings);
1094 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1095 if (!pte_deferred_exec_p(npte)) {
1096 UVMHIST_LOG(*histp,
1097 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1098 va, pg, "immediate", "");
1099 pmap_page_syncicache(pg);
1100 pmap_page_set_attributes(mdpg,
1101 VM_PAGEMD_EXECPAGE);
1102 PMAP_COUNT(exec_synced_mappings);
1103 } else {
1104 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1105 " pg %p: %s syncicache: pte %#x",
1106 va, pg, "defer", npte);
1107 }
1108 } else {
1109 UVMHIST_LOG(*histp,
1110 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1111 va, pg, "no",
1112 (pte_cached_p(npte)
1113 ? " (already exec)"
1114 : " (uncached)"));
1115 }
1116 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1117 KASSERT(mdpg != NULL);
1118 KASSERT(prot & VM_PROT_WRITE);
1119 PMAP_COUNT(exec_mappings);
1120 pmap_page_syncicache(pg);
1121 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1122 UVMHIST_LOG(pmapexechist,
1123 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1124 va, pg, "immediate", " (writeable)");
1125 }
1126
1127 if (prot & VM_PROT_EXECUTE) {
1128 UVMHIST_LOG(pmapexechist, "<- 0 (OK)", 0,0,0,0);
1129 } else {
1130 UVMHIST_LOG(pmaphist, "<- 0 (OK)", 0,0,0,0);
1131 }
1132 return 0;
1133 }
1134
1135 void
1136 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1137 {
1138 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1139 struct vm_page_md *mdpg;
1140
1141 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1142 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" pa=%#"PRIxPADDR
1143 ", prot=%#x, flags=%#x)", va, pa, prot, flags);
1144 PMAP_COUNT(kenter_pa);
1145
1146 if (pg == NULL) {
1147 mdpg = NULL;
1148 PMAP_COUNT(kenter_pa_unmanaged);
1149 flags |= PMAP_NOCACHE;
1150 } else {
1151 mdpg = VM_PAGE_TO_MD(pg);
1152 }
1153
1154 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1155 PMAP_COUNT(kenter_pa_bad);
1156
1157 const pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1158 kpreempt_disable();
1159 pt_entry_t * const ptep = pmap_pte_reserve(pmap_kernel(), va, 0);
1160 KASSERT(ptep != NULL);
1161 KASSERT(!pte_valid_p(*ptep));
1162 pmap_md_tlb_miss_lock_enter();
1163 *ptep = npte;
1164 /*
1165 * We have the option to force this mapping into the TLB but we
1166 * don't. Instead let the next reference to the page do it.
1167 */
1168 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1169 pmap_md_tlb_miss_lock_exit();
1170 kpreempt_enable();
1171 #if DEBUG > 1
1172 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1173 if (((long *)va)[i] != ((long *)pa)[i])
1174 panic("%s: contents (%lx) of va %#"PRIxVADDR
1175 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1176 ((long *)va)[i], va, ((long *)pa)[i], pa);
1177 }
1178 #endif
1179 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1180 }
1181
1182 static bool
1183 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1184 uintptr_t flags)
1185 {
1186 const pt_entry_t new_pt_entry = pte_nv_entry(true);
1187
1188 KASSERT(kpreempt_disabled());
1189
1190 /*
1191 * Set every pt on every valid mapping within this segment.
1192 */
1193 for (; sva < eva; sva += NBPG, ptep++) {
1194 pt_entry_t pt_entry = *ptep;
1195 if (!pte_valid_p(pt_entry)) {
1196 continue;
1197 }
1198
1199 PMAP_COUNT(kremove_pages);
1200 struct vm_page * const pg =
1201 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
1202 if (pg != NULL)
1203 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
1204
1205 pmap_md_tlb_miss_lock_enter();
1206 *ptep = new_pt_entry;
1207 pmap_tlb_invalidate_addr(pmap_kernel(), sva);
1208 pmap_md_tlb_miss_lock_exit();
1209 }
1210
1211 return false;
1212 }
1213
1214 void
1215 pmap_kremove(vaddr_t va, vsize_t len)
1216 {
1217 const vaddr_t sva = trunc_page(va);
1218 const vaddr_t eva = round_page(va + len);
1219
1220 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1221 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" len=%#"PRIxVSIZE")",
1222 va, len, 0,0);
1223
1224 kpreempt_disable();
1225 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1226 kpreempt_enable();
1227
1228 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1229 }
1230
1231 void
1232 pmap_remove_all(struct pmap *pmap)
1233 {
1234 KASSERT(pmap != pmap_kernel());
1235
1236 kpreempt_disable();
1237 /*
1238 * Free all of our ASIDs which means we can skip doing all the
1239 * tlb_invalidate_addrs().
1240 */
1241 pmap_md_tlb_miss_lock_enter();
1242 pmap_tlb_asid_deactivate(pmap);
1243 pmap_tlb_asid_release_all(pmap);
1244 pmap_md_tlb_miss_lock_exit();
1245 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1246
1247 kpreempt_enable();
1248 }
1249
1250 /*
1251 * Routine: pmap_unwire
1252 * Function: Clear the wired attribute for a map/virtual-address
1253 * pair.
1254 * In/out conditions:
1255 * The mapping must already exist in the pmap.
1256 */
1257 void
1258 pmap_unwire(pmap_t pmap, vaddr_t va)
1259 {
1260
1261 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1262 UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1263 PMAP_COUNT(unwire);
1264
1265 /*
1266 * Don't need to flush the TLB since PG_WIRED is only in software.
1267 */
1268 #ifdef PARANOIADIAG
1269 if (va < pmap->pm_minaddr || pmap->pm_maxaddr <= va)
1270 panic("pmap_unwire");
1271 #endif
1272 kpreempt_disable();
1273 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1274 pt_entry_t pt_entry = *ptep;
1275 #ifdef DIAGNOSTIC
1276 if (ptep == NULL)
1277 panic("%s: pmap %p va %#"PRIxVADDR" invalid STE",
1278 __func__, pmap, va);
1279 #endif
1280
1281 #ifdef DIAGNOSTIC
1282 if (!pte_valid_p(pt_entry))
1283 panic("pmap_unwire: pmap %p va %#"PRIxVADDR" invalid PTE",
1284 pmap, va);
1285 #endif
1286
1287 if (pte_wired_p(pt_entry)) {
1288 pmap_md_tlb_miss_lock_enter();
1289 *ptep = pte_unwire_entry(*ptep);
1290 pmap_md_tlb_miss_lock_exit();
1291 pmap->pm_stats.wired_count--;
1292 }
1293 #ifdef DIAGNOSTIC
1294 else {
1295 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1296 __func__, pmap, va);
1297 }
1298 #endif
1299 kpreempt_enable();
1300 }
1301
1302 /*
1303 * Routine: pmap_extract
1304 * Function:
1305 * Extract the physical page address associated
1306 * with the given map/virtual_address pair.
1307 */
1308 bool
1309 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1310 {
1311 paddr_t pa;
1312
1313 //UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1314 //UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1315 if (pmap == pmap_kernel()) {
1316 if (pmap_md_direct_mapped_vaddr_p(va)) {
1317 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1318 goto done;
1319 }
1320 if (pmap_md_io_vaddr_p(va))
1321 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1322 }
1323 kpreempt_disable();
1324 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1325 if (ptep == NULL) {
1326 //UVMHIST_LOG(pmaphist, "<- false (not in segmap)", 0,0,0,0);
1327 kpreempt_enable();
1328 return false;
1329 }
1330 if (!pte_valid_p(*ptep)) {
1331 //UVMHIST_LOG(pmaphist, "<- false (PTE not valid)", 0,0,0,0);
1332 kpreempt_enable();
1333 return false;
1334 }
1335 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1336 kpreempt_enable();
1337 done:
1338 if (pap != NULL) {
1339 *pap = pa;
1340 }
1341 //UVMHIST_LOG(pmaphist, "<- true (pa %#"PRIxPADDR")", pa, 0,0,0);
1342 return true;
1343 }
1344
1345 /*
1346 * Copy the range specified by src_addr/len
1347 * from the source map to the range dst_addr/len
1348 * in the destination map.
1349 *
1350 * This routine is only advisory and need not do anything.
1351 */
1352 void
1353 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1354 vaddr_t src_addr)
1355 {
1356
1357 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1358 PMAP_COUNT(copy);
1359 }
1360
1361 /*
1362 * pmap_clear_reference:
1363 *
1364 * Clear the reference bit on the specified physical page.
1365 */
1366 bool
1367 pmap_clear_reference(struct vm_page *pg)
1368 {
1369 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1370
1371 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1372 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1373 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1374
1375 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1376
1377 UVMHIST_LOG(pmaphist, "<- %s", rv ? "true" : "false", 0,0,0);
1378
1379 return rv;
1380 }
1381
1382 /*
1383 * pmap_is_referenced:
1384 *
1385 * Return whether or not the specified physical page is referenced
1386 * by any physical maps.
1387 */
1388 bool
1389 pmap_is_referenced(struct vm_page *pg)
1390 {
1391
1392 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1393 }
1394
1395 /*
1396 * Clear the modify bits on the specified physical page.
1397 */
1398 bool
1399 pmap_clear_modify(struct vm_page *pg)
1400 {
1401 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1402 pv_entry_t pv = &mdpg->mdpg_first;
1403 pv_entry_t pv_next;
1404 uint16_t gen;
1405
1406 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1407 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1408 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1409 PMAP_COUNT(clear_modify);
1410
1411 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1412 if (pv->pv_pmap == NULL) {
1413 UVMHIST_LOG(pmapexechist,
1414 "pg %p (pa %#"PRIxPADDR"): %s",
1415 pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1416 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1417 PMAP_COUNT(exec_uncached_clear_modify);
1418 } else {
1419 UVMHIST_LOG(pmapexechist,
1420 "pg %p (pa %#"PRIxPADDR"): %s",
1421 pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1422 pmap_page_syncicache(pg);
1423 PMAP_COUNT(exec_synced_clear_modify);
1424 }
1425 }
1426 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1427 UVMHIST_LOG(pmaphist, "<- false", 0,0,0,0);
1428 return false;
1429 }
1430 if (pv->pv_pmap == NULL) {
1431 UVMHIST_LOG(pmaphist, "<- true (no mappings)", 0,0,0,0);
1432 return true;
1433 }
1434
1435 /*
1436 * remove write access from any pages that are dirty
1437 * so we can tell if they are written to again later.
1438 * flush the VAC first if there is one.
1439 */
1440 kpreempt_disable();
1441 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, false);
1442 for (; pv != NULL; pv = pv_next) {
1443 pmap_t pmap = pv->pv_pmap;
1444 vaddr_t va = pv->pv_va;
1445 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1446 KASSERT(ptep);
1447 pv_next = pv->pv_next;
1448 pt_entry_t pt_entry = pte_prot_nowrite(*ptep);
1449 if (*ptep == pt_entry) {
1450 continue;
1451 }
1452 pmap_md_vca_clean(pg, va, PMAP_WBINV);
1453 pmap_md_tlb_miss_lock_enter();
1454 *ptep = pt_entry;
1455 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1456 pmap_tlb_invalidate_addr(pmap, va);
1457 pmap_md_tlb_miss_lock_exit();
1458 pmap_update(pmap);
1459 if (__predict_false(gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false))) {
1460 /*
1461 * The list changed! So restart from the beginning.
1462 */
1463 pv_next = &mdpg->mdpg_first;
1464 }
1465 }
1466 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1467 kpreempt_enable();
1468
1469 UVMHIST_LOG(pmaphist, "<- true (mappings changed)", 0,0,0,0);
1470 return true;
1471 }
1472
1473 /*
1474 * pmap_is_modified:
1475 *
1476 * Return whether or not the specified physical page is modified
1477 * by any physical maps.
1478 */
1479 bool
1480 pmap_is_modified(struct vm_page *pg)
1481 {
1482
1483 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1484 }
1485
1486 /*
1487 * pmap_set_modified:
1488 *
1489 * Sets the page modified reference bit for the specified page.
1490 */
1491 void
1492 pmap_set_modified(paddr_t pa)
1493 {
1494 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1495 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1496 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1497 }
1498
1499 /******************** pv_entry management ********************/
1500
1501 static void
1502 pmap_check_pvlist(struct vm_page *pg)
1503 {
1504 #ifdef PARANOIADIAG
1505 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1506 pt_entry_t pv = &mdpg->mdpg_first;
1507 if (pv->pv_pmap != NULL) {
1508 for (; pv != NULL; pv = pv->pv_next) {
1509 KASSERT(!pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1510 }
1511 }
1512 #endif /* PARANOIADIAG */
1513 }
1514
1515 /*
1516 * Enter the pmap and virtual address into the
1517 * physical to virtual map table.
1518 */
1519 void
1520 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, u_int *npte)
1521 {
1522 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1523 pv_entry_t pv, npv, apv;
1524 int16_t gen;
1525 bool first __unused = false;
1526
1527 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1528 UVMHIST_LOG(pmaphist,
1529 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1530 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1531 UVMHIST_LOG(pmaphist, "nptep=%p (%#x))", npte, *npte, 0, 0);
1532
1533 KASSERT(kpreempt_disabled());
1534 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1535
1536 apv = NULL;
1537 pv = &mdpg->mdpg_first;
1538 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1539 pmap_check_pvlist(pg);
1540 again:
1541 if (pv->pv_pmap == NULL) {
1542 KASSERT(pv->pv_next == NULL);
1543 /*
1544 * No entries yet, use header as the first entry
1545 */
1546 PMAP_COUNT(primary_mappings);
1547 PMAP_COUNT(mappings);
1548 first = true;
1549 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1550 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1551 #endif
1552 pv->pv_pmap = pmap;
1553 pv->pv_va = va;
1554 } else {
1555 if (pmap_md_vca_add(pg, va, npte))
1556 goto again;
1557
1558 /*
1559 * There is at least one other VA mapping this page.
1560 * Place this entry after the header.
1561 *
1562 * Note: the entry may already be in the table if
1563 * we are only changing the protection bits.
1564 */
1565
1566 #ifdef PARANOIADIAG
1567 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1568 #endif
1569 for (npv = pv; npv; npv = npv->pv_next) {
1570 if (pmap == npv->pv_pmap && va == npv->pv_va) {
1571 #ifdef PARANOIADIAG
1572 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1573 pt_entry_t pt_entry = (ptep ? *ptep : 0);
1574 if (!pte_valid_p(pt_entry)
1575 || pte_to_paddr(pt_entry) != pa)
1576 printf(
1577 "pmap_enter_pv: found va %#"PRIxVADDR" pa %#"PRIxPADDR" in pv_table but != %x\n",
1578 va, pa, pt_entry);
1579 #endif
1580 PMAP_COUNT(remappings);
1581 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1582 if (__predict_false(apv != NULL))
1583 pmap_pv_free(apv);
1584 return;
1585 }
1586 }
1587 if (__predict_true(apv == NULL)) {
1588 /*
1589 * To allocate a PV, we have to release the PVLIST lock
1590 * so get the page generation. We allocate the PV, and
1591 * then reacquire the lock.
1592 */
1593 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1594
1595 apv = (pv_entry_t)pmap_pv_alloc();
1596 if (apv == NULL)
1597 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1598
1599 /*
1600 * If the generation has changed, then someone else
1601 * tinkered with this page so we should
1602 * start over.
1603 */
1604 uint16_t oldgen = gen;
1605 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1606 if (gen != oldgen)
1607 goto again;
1608 }
1609 npv = apv;
1610 apv = NULL;
1611 npv->pv_va = va;
1612 npv->pv_pmap = pmap;
1613 npv->pv_next = pv->pv_next;
1614 pv->pv_next = npv;
1615 PMAP_COUNT(mappings);
1616 }
1617 pmap_check_pvlist(pg);
1618 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1619 if (__predict_false(apv != NULL))
1620 pmap_pv_free(apv);
1621
1622 UVMHIST_LOG(pmaphist, "<- done pv=%p%s",
1623 pv, first ? " (first pv)" : "",0,0);
1624 }
1625
1626 /*
1627 * Remove a physical to virtual address translation.
1628 * If cache was inhibited on this page, and there are no more cache
1629 * conflicts, restore caching.
1630 * Flush the cache if the last page is removed (should always be cached
1631 * at this point).
1632 */
1633 void
1634 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1635 {
1636 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1637 pv_entry_t pv, npv;
1638 bool last;
1639
1640 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1641 UVMHIST_LOG(pmaphist,
1642 "(pmap=%p va=%#"PRIxVADDR" pg=%p (pa %#"PRIxPADDR")\n",
1643 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1644 UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0,0,0);
1645
1646 KASSERT(kpreempt_disabled());
1647 pv = &mdpg->mdpg_first;
1648
1649 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1650 pmap_check_pvlist(pg);
1651
1652 /*
1653 * If it is the first entry on the list, it is actually
1654 * in the header and we must copy the following entry up
1655 * to the header. Otherwise we must search the list for
1656 * the entry. In either case we free the now unused entry.
1657 */
1658
1659 last = false;
1660 if (pmap == pv->pv_pmap && va == pv->pv_va) {
1661 npv = pv->pv_next;
1662 if (npv) {
1663 *pv = *npv;
1664 KASSERT(pv->pv_pmap != NULL);
1665 } else {
1666 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1667 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1668 #endif
1669 pv->pv_pmap = NULL;
1670 last = true; /* Last mapping removed */
1671 }
1672 PMAP_COUNT(remove_pvfirst);
1673 } else {
1674 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1675 PMAP_COUNT(remove_pvsearch);
1676 if (pmap == npv->pv_pmap && va == npv->pv_va)
1677 break;
1678 }
1679 if (npv) {
1680 pv->pv_next = npv->pv_next;
1681 }
1682 }
1683 pmap_md_vca_remove(pg, va);
1684
1685 pmap_check_pvlist(pg);
1686 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1687
1688 /*
1689 * Free the pv_entry if needed.
1690 */
1691 if (npv)
1692 pmap_pv_free(npv);
1693 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1694 if (last) {
1695 /*
1696 * If this was the page's last mapping, we no longer
1697 * care about its execness.
1698 */
1699 UVMHIST_LOG(pmapexechist,
1700 "pg %p (pa %#"PRIxPADDR")%s: %s",
1701 pg, VM_PAGE_TO_PHYS(pg),
1702 last ? " [last mapping]" : "",
1703 "execpage cleared");
1704 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1705 PMAP_COUNT(exec_uncached_remove);
1706 } else {
1707 /*
1708 * Someone still has it mapped as an executable page
1709 * so we must sync it.
1710 */
1711 UVMHIST_LOG(pmapexechist,
1712 "pg %p (pa %#"PRIxPADDR")%s: %s",
1713 pg, VM_PAGE_TO_PHYS(pg),
1714 last ? " [last mapping]" : "",
1715 "performed syncicache");
1716 pmap_page_syncicache(pg);
1717 PMAP_COUNT(exec_synced_remove);
1718 }
1719 }
1720 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1721 }
1722
1723 #if defined(MULTIPROCESSOR)
1724 struct pmap_pvlist_info {
1725 kmutex_t *pli_locks[PAGE_SIZE / 32];
1726 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1727 volatile u_int pli_lock_index;
1728 u_int pli_lock_mask;
1729 } pmap_pvlist_info;
1730
1731 void
1732 pmap_pvlist_lock_init(size_t cache_line_size)
1733 {
1734 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1735 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1736 vaddr_t lock_va = lock_page;
1737 if (sizeof(kmutex_t) > cache_line_size) {
1738 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
1739 }
1740 const size_t nlocks = PAGE_SIZE / cache_line_size;
1741 KASSERT((nlocks & (nlocks - 1)) == 0);
1742 /*
1743 * Now divide the page into a number of mutexes, one per cacheline.
1744 */
1745 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
1746 kmutex_t * const lock = (kmutex_t *)lock_va;
1747 mutex_init(lock, MUTEX_DEFAULT, IPL_VM);
1748 pli->pli_locks[i] = lock;
1749 }
1750 pli->pli_lock_mask = nlocks - 1;
1751 }
1752
1753 uint16_t
1754 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1755 {
1756 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1757 kmutex_t *lock = mdpg->mdpg_lock;
1758 int16_t gen;
1759
1760 /*
1761 * Allocate a lock on an as-needed basis. This will hopefully give us
1762 * semi-random distribution not based on page color.
1763 */
1764 if (__predict_false(lock == NULL)) {
1765 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
1766 size_t lockid = locknum & pli->pli_lock_mask;
1767 kmutex_t * const new_lock = pli->pli_locks[lockid];
1768 /*
1769 * Set the lock. If some other thread already did, just use
1770 * the one they assigned.
1771 */
1772 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
1773 if (lock == NULL) {
1774 lock = new_lock;
1775 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
1776 }
1777 }
1778
1779 /*
1780 * Now finally lock the pvlists.
1781 */
1782 mutex_spin_enter(lock);
1783
1784 /*
1785 * If the locker will be changing the list, increment the high 16 bits
1786 * of attrs so we use that as a generation number.
1787 */
1788 gen = VM_PAGEMD_PVLIST_GEN(mdpg); /* get old value */
1789 if (list_change)
1790 atomic_add_int(&mdpg->mdpg_attrs, 0x10000);
1791
1792 /*
1793 * Return the generation number.
1794 */
1795 return gen;
1796 }
1797 #else /* !MULTIPROCESSOR */
1798 void
1799 pmap_pvlist_lock_init(size_t cache_line_size)
1800 {
1801 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_VM);
1802 }
1803
1804 #ifdef MODULAR
1805 uint16_t
1806 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1807 {
1808 /*
1809 * We just use a global lock.
1810 */
1811 if (__predict_false(mdpg->mdpg_lock == NULL)) {
1812 mdpg->mdpg_lock = &pmap_pvlist_mutex;
1813 }
1814
1815 /*
1816 * Now finally lock the pvlists.
1817 */
1818 mutex_spin_enter(mdpg->mdpg_lock);
1819
1820 return 0;
1821 }
1822 #endif /* MODULAR */
1823 #endif /* !MULTIPROCESSOR */
1824
1825 /*
1826 * pmap_pv_page_alloc:
1827 *
1828 * Allocate a page for the pv_entry pool.
1829 */
1830 void *
1831 pmap_pv_page_alloc(struct pool *pp, int flags)
1832 {
1833 struct vm_page *pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
1834 if (pg == NULL)
1835 return NULL;
1836
1837 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
1838 }
1839
1840 /*
1841 * pmap_pv_page_free:
1842 *
1843 * Free a pv_entry pool page.
1844 */
1845 void
1846 pmap_pv_page_free(struct pool *pp, void *v)
1847 {
1848 vaddr_t va = (vaddr_t)v;
1849
1850 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1851 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1852 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1853 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1854 pmap_md_vca_remove(pg, va);
1855 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1856 uvm_pagefree(pg);
1857 }
1858
1859 #ifdef PMAP_PREFER
1860 /*
1861 * Find first virtual address >= *vap that doesn't cause
1862 * a cache alias conflict.
1863 */
1864 void
1865 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
1866 {
1867 vaddr_t va;
1868 vsize_t d;
1869 vsize_t prefer_mask = ptoa(uvmexp.colormask);
1870
1871 PMAP_COUNT(prefer_requests);
1872
1873 prefer_mask |= pmap_md_cache_prefer_mask();
1874
1875 if (prefer_mask) {
1876 va = *vap;
1877
1878 d = foff - va;
1879 d &= prefer_mask;
1880 if (d) {
1881 if (td)
1882 *vap = trunc_page(va -((-d) & prefer_mask));
1883 else
1884 *vap = round_page(va + d);
1885 PMAP_COUNT(prefer_adjustments);
1886 }
1887 }
1888 }
1889 #endif /* PMAP_PREFER */
1890
1891 #ifdef PMAP_MAP_POOLPAGE
1892 vaddr_t
1893 pmap_map_poolpage(paddr_t pa)
1894 {
1895
1896 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1897 KASSERT(pg);
1898 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1899 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1900
1901 const vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
1902 pmap_md_vca_add(pg, va, NULL);
1903 return va;
1904 }
1905
1906 paddr_t
1907 pmap_unmap_poolpage(vaddr_t va)
1908 {
1909
1910 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1911 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1912
1913 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1914 KASSERT(pg);
1915 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1916 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1917 pmap_md_unmap_poolpage(va, NBPG);
1918 pmap_md_vca_remove(pg, va);
1919
1920 return pa;
1921 }
1922 #endif /* PMAP_MAP_POOLPAGE */
1923