pmap.c revision 1.14 1 /* $NetBSD: pmap.c,v 1.14 2016/07/07 06:55:44 msaitoh Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.14 2016/07/07 06:55:44 msaitoh Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/pool.h>
109 #include <sys/atomic.h>
110 #include <sys/mutex.h>
111 #include <sys/atomic.h>
112 #include <sys/socketvar.h> /* XXX: for sock_loan_thresh */
113
114 #include <uvm/uvm.h>
115
116 #define PMAP_COUNT(name) (pmap_evcnt_##name.ev_count++ + 0)
117 #define PMAP_COUNTER(name, desc) \
118 static struct evcnt pmap_evcnt_##name = \
119 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc); \
120 EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
121
122 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
123 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
124 PMAP_COUNTER(remove_user_calls, "remove user calls");
125 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
126 PMAP_COUNTER(remove_flushes, "remove cache flushes");
127 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
128 PMAP_COUNTER(remove_pvfirst, "remove pv first");
129 PMAP_COUNTER(remove_pvsearch, "remove pv search");
130
131 PMAP_COUNTER(prefer_requests, "prefer requests");
132 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
133
134 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
135 PMAP_COUNTER(zeroed_pages, "pages zeroed");
136 PMAP_COUNTER(copied_pages, "pages copied");
137
138 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
139 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
140 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
141 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
142
143 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
144 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
145
146 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
147 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
148 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
149 PMAP_COUNTER(user_mappings, "user pages mapped");
150 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
151 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
152 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
153 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
154 PMAP_COUNTER(managed_mappings, "managed pages mapped");
155 PMAP_COUNTER(mappings, "pages mapped");
156 PMAP_COUNTER(remappings, "pages remapped");
157 PMAP_COUNTER(unmappings, "pages unmapped");
158 PMAP_COUNTER(primary_mappings, "page initial mappings");
159 PMAP_COUNTER(primary_unmappings, "page final unmappings");
160 PMAP_COUNTER(tlb_hit, "page mapping");
161
162 PMAP_COUNTER(exec_mappings, "exec pages mapped");
163 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
164 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
165 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
166 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
167 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
168 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
169 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
170 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
171 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
172 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
173
174 PMAP_COUNTER(create, "creates");
175 PMAP_COUNTER(reference, "references");
176 PMAP_COUNTER(dereference, "dereferences");
177 PMAP_COUNTER(destroy, "destroyed");
178 PMAP_COUNTER(activate, "activations");
179 PMAP_COUNTER(deactivate, "deactivations");
180 PMAP_COUNTER(update, "updates");
181 #ifdef MULTIPROCESSOR
182 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
183 #endif
184 PMAP_COUNTER(unwire, "unwires");
185 PMAP_COUNTER(copy, "copies");
186 PMAP_COUNTER(clear_modify, "clear_modifies");
187 PMAP_COUNTER(protect, "protects");
188 PMAP_COUNTER(page_protect, "page_protects");
189
190 #define PMAP_ASID_RESERVED 0
191 CTASSERT(PMAP_ASID_RESERVED == 0);
192
193 /*
194 * Initialize the kernel pmap.
195 */
196 #ifdef MULTIPROCESSOR
197 #define PMAP_SIZE offsetof(struct pmap, pm_pai[PMAP_TLB_MAX])
198 #else
199 #define PMAP_SIZE sizeof(struct pmap)
200 kmutex_t pmap_pvlist_mutex __aligned(COHERENCY_UNIT);
201 #endif
202
203 struct pmap_kernel kernel_pmap_store = {
204 .kernel_pmap = {
205 .pm_count = 1,
206 .pm_segtab = PMAP_INVALID_SEGTAB_ADDRESS,
207 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
208 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
209 },
210 };
211
212 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
213
214 struct pmap_limits pmap_limits = {
215 .virtual_start = VM_MIN_KERNEL_ADDRESS,
216 };
217
218 #ifdef UVMHIST
219 static struct kern_history_ent pmapexechistbuf[10000];
220 static struct kern_history_ent pmaphistbuf[10000];
221 UVMHIST_DEFINE(pmapexechist);
222 UVMHIST_DEFINE(pmaphist);
223 #endif
224
225 /*
226 * The pools from which pmap structures and sub-structures are allocated.
227 */
228 struct pool pmap_pmap_pool;
229 struct pool pmap_pv_pool;
230
231 #ifndef PMAP_PV_LOWAT
232 #define PMAP_PV_LOWAT 16
233 #endif
234 int pmap_pv_lowat = PMAP_PV_LOWAT;
235
236 bool pmap_initialized = false;
237 #define PMAP_PAGE_COLOROK_P(a, b) \
238 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
239 u_int pmap_page_colormask;
240
241 #define PAGE_IS_MANAGED(pa) \
242 (pmap_initialized == true && vm_physseg_find(atop(pa), NULL) != -1)
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
250 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, u_int *);
251
252 /*
253 * PV table management functions.
254 */
255 void *pmap_pv_page_alloc(struct pool *, int);
256 void pmap_pv_page_free(struct pool *, void *);
257
258 struct pool_allocator pmap_pv_page_allocator = {
259 pmap_pv_page_alloc, pmap_pv_page_free, 0,
260 };
261
262 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
263 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
264
265 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
266 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
267 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
268 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
269
270 /*
271 * Misc. functions.
272 */
273
274 bool
275 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
276 {
277 volatile u_int * const attrp = &mdpg->mdpg_attrs;
278 #ifdef MULTIPROCESSOR
279 for (;;) {
280 u_int old_attr = *attrp;
281 if ((old_attr & clear_attributes) == 0)
282 return false;
283 u_int new_attr = old_attr & ~clear_attributes;
284 if (old_attr == atomic_cas_uint(attrp, old_attr, new_attr))
285 return true;
286 }
287 #else
288 u_int old_attr = *attrp;
289 if ((old_attr & clear_attributes) == 0)
290 return false;
291 *attrp &= ~clear_attributes;
292 return true;
293 #endif
294 }
295
296 void
297 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
298 {
299 #ifdef MULTIPROCESSOR
300 atomic_or_uint(&mdpg->mdpg_attrs, set_attributes);
301 #else
302 mdpg->mdpg_attrs |= set_attributes;
303 #endif
304 }
305
306 static void
307 pmap_page_syncicache(struct vm_page *pg)
308 {
309 #ifndef MULTIPROCESSOR
310 struct pmap * const curpmap = curcpu()->ci_curpm;
311 #endif
312 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
313 pv_entry_t pv = &mdpg->mdpg_first;
314 kcpuset_t *onproc;
315 #ifdef MULTIPROCESSOR
316 kcpuset_create(&onproc, true);
317 #else
318 onproc = NULL;
319 #endif
320 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
321
322 if (pv->pv_pmap != NULL) {
323 for (; pv != NULL; pv = pv->pv_next) {
324 #ifdef MULTIPROCESSOR
325 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
326 if (kcpuset_match(onproc, kcpuset_running)) {
327 break;
328 }
329 #else
330 if (pv->pv_pmap == curpmap) {
331 onproc = curcpu()->ci_data.cpu_kcpuset;
332 break;
333 }
334 #endif
335 }
336 }
337 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
338 kpreempt_disable();
339 pmap_md_page_syncicache(pg, onproc);
340 #ifdef MULTIPROCESSOR
341 kcpuset_destroy(onproc);
342 #endif
343 kpreempt_enable();
344 }
345
346 /*
347 * Define the initial bounds of the kernel virtual address space.
348 */
349 void
350 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
351 {
352
353 *vstartp = pmap_limits.virtual_start;
354 *vendp = pmap_limits.virtual_end;
355 }
356
357 vaddr_t
358 pmap_growkernel(vaddr_t maxkvaddr)
359 {
360 vaddr_t virtual_end = pmap_limits.virtual_end;
361 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
362
363 /*
364 * Reserve PTEs for the new KVA space.
365 */
366 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
367 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
368 }
369
370 /*
371 * Don't exceed VM_MAX_KERNEL_ADDRESS!
372 */
373 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
374 virtual_end = VM_MAX_KERNEL_ADDRESS;
375
376 /*
377 * Update new end.
378 */
379 pmap_limits.virtual_end = virtual_end;
380 return virtual_end;
381 }
382
383 /*
384 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
385 * This function allows for early dynamic memory allocation until the virtual
386 * memory system has been bootstrapped. After that point, either kmem_alloc
387 * or malloc should be used. This function works by stealing pages from the
388 * (to be) managed page pool, then implicitly mapping the pages (by using
389 * their k0seg addresses) and zeroing them.
390 *
391 * It may be used once the physical memory segments have been pre-loaded
392 * into the vm_physmem[] array. Early memory allocation MUST use this
393 * interface! This cannot be used after vm_page_startup(), and will
394 * generate a panic if tried.
395 *
396 * Note that this memory will never be freed, and in essence it is wired
397 * down.
398 *
399 * We must adjust *vstartp and/or *vendp iff we use address space
400 * from the kernel virtual address range defined by pmap_virtual_space().
401 */
402 vaddr_t
403 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
404 {
405 u_int npgs;
406 paddr_t pa;
407 vaddr_t va;
408
409 size = round_page(size);
410 npgs = atop(size);
411
412 for (u_int bank = 0; bank < vm_nphysseg; bank++) {
413 struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
414 if (uvm.page_init_done == true)
415 panic("pmap_steal_memory: called _after_ bootstrap");
416
417 if (seg->avail_start != seg->start ||
418 seg->avail_start >= seg->avail_end)
419 continue;
420
421 if ((seg->avail_end - seg->avail_start) < npgs)
422 continue;
423
424 /*
425 * There are enough pages here; steal them!
426 */
427 pa = ptoa(seg->avail_start);
428 seg->avail_start += npgs;
429 seg->start += npgs;
430
431 /*
432 * Have we used up this segment?
433 */
434 if (seg->avail_start == seg->end) {
435 if (vm_nphysseg == 1)
436 panic("pmap_steal_memory: out of memory!");
437
438 /* Remove this segment from the list. */
439 vm_nphysseg--;
440 if (bank < vm_nphysseg)
441 memmove(seg, seg+1,
442 sizeof(*seg) * (vm_nphysseg - bank));
443 }
444
445 va = pmap_md_map_poolpage(pa, size);
446 memset((void *)va, 0, size);
447 return va;
448 }
449
450 /*
451 * If we got here, there was no memory left.
452 */
453 panic("pmap_steal_memory: no memory to steal");
454 }
455
456 /*
457 * Initialize the pmap module.
458 * Called by vm_init, to initialize any structures that the pmap
459 * system needs to map virtual memory.
460 */
461 void
462 pmap_init(void)
463 {
464 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
465 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
466
467 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
468
469 /*
470 * Initialize the segtab lock.
471 */
472 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
473
474 /*
475 * Set a low water mark on the pv_entry pool, so that we are
476 * more likely to have these around even in extreme memory
477 * starvation.
478 */
479 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
480
481 pmap_md_init();
482
483 /*
484 * Now it is safe to enable pv entry recording.
485 */
486 pmap_initialized = true;
487 }
488
489 /*
490 * Create and return a physical map.
491 *
492 * If the size specified for the map
493 * is zero, the map is an actual physical
494 * map, and may be referenced by the
495 * hardware.
496 *
497 * If the size specified is non-zero,
498 * the map will be used in software only, and
499 * is bounded by that size.
500 */
501 pmap_t
502 pmap_create(void)
503 {
504 pmap_t pmap;
505
506 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
507 PMAP_COUNT(create);
508
509 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
510 memset(pmap, 0, PMAP_SIZE);
511
512 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
513
514 pmap->pm_count = 1;
515 pmap->pm_minaddr = VM_MIN_ADDRESS;
516 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
517
518 pmap_segtab_init(pmap);
519
520 #ifdef MULTIPROCESSOR
521 kcpuset_create(&pmap->pm_active, true);
522 kcpuset_create(&pmap->pm_onproc, true);
523 #endif
524
525 UVMHIST_LOG(pmaphist, "<- pmap %p", pmap,0,0,0);
526 return pmap;
527 }
528
529 /*
530 * Retire the given physical map from service.
531 * Should only be called if the map contains
532 * no valid mappings.
533 */
534 void
535 pmap_destroy(pmap_t pmap)
536 {
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
539
540 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
541 PMAP_COUNT(dereference);
542 return;
543 }
544
545 KASSERT(pmap->pm_count == 0);
546 PMAP_COUNT(destroy);
547 kpreempt_disable();
548 pmap_md_tlb_miss_lock_enter();
549 pmap_tlb_asid_release_all(pmap);
550 pmap_segtab_destroy(pmap, NULL, 0);
551 pmap_md_tlb_miss_lock_exit();
552
553 #ifdef MULTIPROCESSOR
554 kcpuset_destroy(pmap->pm_active);
555 kcpuset_destroy(pmap->pm_onproc);
556 #endif
557
558 pool_put(&pmap_pmap_pool, pmap);
559 kpreempt_enable();
560
561 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
562 }
563
564 /*
565 * Add a reference to the specified pmap.
566 */
567 void
568 pmap_reference(pmap_t pmap)
569 {
570
571 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
572 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
573 PMAP_COUNT(reference);
574
575 if (pmap != NULL) {
576 atomic_inc_uint(&pmap->pm_count);
577 }
578
579 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
580 }
581
582 /*
583 * Make a new pmap (vmspace) active for the given process.
584 */
585 void
586 pmap_activate(struct lwp *l)
587 {
588 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
589
590 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
591 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
592 PMAP_COUNT(activate);
593
594 kpreempt_disable();
595 pmap_md_tlb_miss_lock_enter();
596 pmap_tlb_asid_acquire(pmap, l);
597 if (l == curlwp) {
598 pmap_segtab_activate(pmap, l);
599 }
600 pmap_md_tlb_miss_lock_exit();
601 kpreempt_enable();
602
603 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
604 }
605
606 /*
607 * Make a previously active pmap (vmspace) inactive.
608 */
609 void
610 pmap_deactivate(struct lwp *l)
611 {
612 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
613
614 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
615 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
616 PMAP_COUNT(deactivate);
617
618 kpreempt_disable();
619 pmap_md_tlb_miss_lock_enter();
620 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
621 pmap_tlb_asid_deactivate(pmap);
622 pmap_md_tlb_miss_lock_exit();
623 kpreempt_enable();
624
625 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
626 }
627
628 void
629 pmap_update(struct pmap *pmap)
630 {
631
632 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
633 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
634 PMAP_COUNT(update);
635
636 kpreempt_disable();
637 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
638 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
639 if (pending && pmap_tlb_shootdown_bystanders(pmap))
640 PMAP_COUNT(shootdown_ipis);
641 #endif
642 pmap_md_tlb_miss_lock_enter();
643 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
644 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
645 #endif /* DEBUG */
646
647 /*
648 * If pmap_remove_all was called, we deactivated ourselves and nuked
649 * our ASID. Now we have to reactivate ourselves.
650 */
651 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
652 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
653 pmap_tlb_asid_acquire(pmap, curlwp);
654 pmap_segtab_activate(pmap, curlwp);
655 }
656 pmap_md_tlb_miss_lock_exit();
657 kpreempt_enable();
658
659 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
660 }
661
662 /*
663 * Remove the given range of addresses from the specified map.
664 *
665 * It is assumed that the start and end are properly
666 * rounded to the page size.
667 */
668
669 static bool
670 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
671 uintptr_t flags)
672 {
673 const pt_entry_t npte = flags;
674 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
675
676 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
677 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
678 pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
679 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
680 ptep, flags, 0, 0);
681
682 KASSERT(kpreempt_disabled());
683
684 for (; sva < eva; sva += NBPG, ptep++) {
685 pt_entry_t pt_entry = *ptep;
686 if (!pte_valid_p(pt_entry))
687 continue;
688 if (is_kernel_pmap_p)
689 PMAP_COUNT(remove_kernel_calls);
690 else
691 PMAP_COUNT(remove_user_pages);
692 if (pte_wired_p(pt_entry))
693 pmap->pm_stats.wired_count--;
694 pmap->pm_stats.resident_count--;
695 struct vm_page *pg = PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
696 if (__predict_true(pg != NULL)) {
697 pmap_remove_pv(pmap, sva, pg,
698 pte_modified_p(pt_entry));
699 }
700 pmap_md_tlb_miss_lock_enter();
701 *ptep = npte;
702 /*
703 * Flush the TLB for the given address.
704 */
705 pmap_tlb_invalidate_addr(pmap, sva);
706 pmap_md_tlb_miss_lock_exit();
707 }
708 return false;
709 }
710
711 void
712 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
713 {
714 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
715 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
716
717 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
718 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
719 pmap, sva, eva, 0);
720
721 if (is_kernel_pmap_p)
722 PMAP_COUNT(remove_kernel_calls);
723 else
724 PMAP_COUNT(remove_user_calls);
725 #ifdef PARANOIADIAG
726 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
727 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
728 __func__, sva, eva - 1);
729 if (PMAP_IS_ACTIVE(pmap)) {
730 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
731 uint32_t asid = tlb_get_asid();
732 if (asid != pai->pai_asid) {
733 panic("%s: inconsistency for active TLB flush"
734 ": %d <-> %d", __func__, asid, pai->pai_asid);
735 }
736 }
737 #endif
738 kpreempt_disable();
739 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
740 kpreempt_enable();
741
742 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
743 }
744
745 /*
746 * pmap_page_protect:
747 *
748 * Lower the permission for all mappings to a given page.
749 */
750 void
751 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
752 {
753 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
754 pv_entry_t pv;
755 vaddr_t va;
756
757 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
758 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
759 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
760 PMAP_COUNT(page_protect);
761
762 switch (prot) {
763 case VM_PROT_READ|VM_PROT_WRITE:
764 case VM_PROT_ALL:
765 break;
766
767 /* copy_on_write */
768 case VM_PROT_READ:
769 case VM_PROT_READ|VM_PROT_EXECUTE:
770 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
771 pv = &mdpg->mdpg_first;
772 /*
773 * Loop over all current mappings setting/clearing as appropriate.
774 */
775 if (pv->pv_pmap != NULL) {
776 while (pv != NULL) {
777 const pmap_t pmap = pv->pv_pmap;
778 const uint16_t gen = VM_PAGEMD_PVLIST_GEN(mdpg);
779 va = pv->pv_va;
780 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
781 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
782 KASSERT(pv->pv_pmap == pmap);
783 pmap_update(pmap);
784 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false)) {
785 pv = &mdpg->mdpg_first;
786 } else {
787 pv = pv->pv_next;
788 }
789 }
790 }
791 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
792 break;
793
794 /* remove_all */
795 default:
796 /*
797 * Do this first so that for each unmapping, pmap_remove_pv
798 * won't try to sync the icache.
799 */
800 if (pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE)) {
801 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR
802 "): execpage cleared", pg, VM_PAGE_TO_PHYS(pg),0,0);
803 PMAP_COUNT(exec_uncached_page_protect);
804 }
805 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
806 pv = &mdpg->mdpg_first;
807 while (pv->pv_pmap != NULL) {
808 const pmap_t pmap = pv->pv_pmap;
809 va = pv->pv_va;
810 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
811 pmap_remove(pmap, va, va + PAGE_SIZE);
812 pmap_update(pmap);
813 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
814 }
815 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
816 }
817
818 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
819 }
820
821 static bool
822 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
823 uintptr_t flags)
824 {
825 const vm_prot_t prot = (flags & VM_PROT_ALL);
826
827 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
828 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
829 pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
830 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
831 ptep, flags, 0, 0);
832
833 KASSERT(kpreempt_disabled());
834 /*
835 * Change protection on every valid mapping within this segment.
836 */
837 for (; sva < eva; sva += NBPG, ptep++) {
838 pt_entry_t pt_entry = *ptep;
839 if (!pte_valid_p(pt_entry))
840 continue;
841 struct vm_page * const pg =
842 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
843 if (pg != NULL && pte_modified_p(pt_entry)) {
844 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
845 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
846 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
847 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
848 if (pte_cached_p(pt_entry)) {
849 UVMHIST_LOG(pmapexechist,
850 "pg %p (pa %#"PRIxPADDR"): %s",
851 pg, VM_PAGE_TO_PHYS(pg),
852 "syncicached performed", 0);
853 pmap_page_syncicache(pg);
854 PMAP_COUNT(exec_synced_protect);
855 }
856 }
857 }
858 pt_entry = pte_prot_downgrade(pt_entry, prot);
859 if (*ptep != pt_entry) {
860 pmap_md_tlb_miss_lock_enter();
861 *ptep = pt_entry;
862 /*
863 * Update the TLB if needed.
864 */
865 pmap_tlb_update_addr(pmap, sva, pt_entry,
866 PMAP_TLB_NEED_IPI);
867 pmap_md_tlb_miss_lock_exit();
868 }
869 }
870 return false;
871 }
872
873 /*
874 * Set the physical protection on the
875 * specified range of this map as requested.
876 */
877 void
878 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
879 {
880
881 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
882 UVMHIST_LOG(pmaphist,
883 " pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR" port=%#x)",
884 pmap, sva, eva, prot);
885 PMAP_COUNT(protect);
886
887 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
888 pmap_remove(pmap, sva, eva);
889 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
890 return;
891 }
892
893 #ifdef PARANOIADIAG
894 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
895 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
896 __func__, sva, eva - 1);
897 if (PMAP_IS_ACTIVE(pmap)) {
898 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
899 uint32_t asid = tlb_get_asid();
900 if (asid != pai->pai_asid) {
901 panic("%s: inconsistency for active TLB update"
902 ": %d <-> %d", __func__, asid, pai->pai_asid);
903 }
904 }
905 #endif
906
907 /*
908 * Change protection on every valid mapping within this segment.
909 */
910 kpreempt_disable();
911 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
912 kpreempt_enable();
913
914 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
915 }
916
917 #if defined(__PMAP_VIRTUAL_CACHE_ALIASES)
918 /*
919 * pmap_page_cache:
920 *
921 * Change all mappings of a managed page to cached/uncached.
922 */
923 static void
924 pmap_page_cache(struct vm_page *pg, bool cached)
925 {
926 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
927 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
928 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
929 pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
930 KASSERT(kpreempt_disabled());
931
932 if (cached) {
933 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
934 PMAP_COUNT(page_cache_restorations);
935 } else {
936 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
937 PMAP_COUNT(page_cache_evictions);
938 }
939
940 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
941 KASSERT(kpreempt_disabled());
942 for (pv_entry_t pv = &mdpg->mdpg_first;
943 pv != NULL;
944 pv = pv->pv_next) {
945 pmap_t pmap = pv->pv_pmap;
946 vaddr_t va = pv->pv_va;
947
948 KASSERT(pmap != NULL);
949 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
950 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
951 if (ptep == NULL)
952 continue;
953 pt_entry_t pt_entry = *ptep;
954 if (pte_valid_p(pt_entry)) {
955 pt_entry = pte_cached_change(pt_entry, cached);
956 pmap_md_tlb_miss_lock_enter();
957 *ptep = pt_entry;
958 pmap_tlb_update_addr(pmap, va, pt_entry,
959 PMAP_TLB_NEED_IPI);
960 pmap_md_tlb_miss_lock_exit();
961 }
962 }
963 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
964 }
965 #endif /* __PMAP_VIRTUAL_CACHE_ALIASES */
966
967 /*
968 * Insert the given physical page (p) at
969 * the specified virtual address (v) in the
970 * target physical map with the protection requested.
971 *
972 * If specified, the page will be wired down, meaning
973 * that the related pte can not be reclaimed.
974 *
975 * NB: This is the only routine which MAY NOT lazy-evaluate
976 * or lose information. That is, this routine must actually
977 * insert this page into the given map NOW.
978 */
979 int
980 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
981 {
982 pt_entry_t npte;
983 const bool wired = (flags & PMAP_WIRED) != 0;
984 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
985 #ifdef UVMHIST
986 struct kern_history * const histp =
987 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
988 #endif
989
990 UVMHIST_FUNC(__func__);
991 #define VM_PROT_STRING(prot) \
992 &"\0 (R)\0 (W)\0 (RW)\0 (X)\0 (RX)\0 (WX)\0 (RWX)\0"[UVM_PROTECTION(prot)*6]
993 UVMHIST_CALLED(*histp);
994 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
995 pmap, va, pa, 0);
996 UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
997 prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
998
999 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1000 if (is_kernel_pmap_p) {
1001 PMAP_COUNT(kernel_mappings);
1002 if (!good_color)
1003 PMAP_COUNT(kernel_mappings_bad);
1004 } else {
1005 PMAP_COUNT(user_mappings);
1006 if (!good_color)
1007 PMAP_COUNT(user_mappings_bad);
1008 }
1009 #if defined(DEBUG) || defined(DIAGNOSTIC) || defined(PARANOIADIAG)
1010 if (va < pmap->pm_minaddr || va >= pmap->pm_maxaddr)
1011 panic("%s: %s %#"PRIxVADDR" too big",
1012 __func__, is_kernel_pmap_p ? "kva" : "uva", va);
1013 #endif
1014
1015 KASSERTMSG(prot & VM_PROT_READ,
1016 "%s: no READ (%#x) in prot %#x", __func__, VM_PROT_READ, prot);
1017
1018 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1019 struct vm_page_md *mdpg;
1020
1021 if (pg) {
1022 mdpg = VM_PAGE_TO_MD(pg);
1023 /* Set page referenced/modified status based on flags */
1024 if (flags & VM_PROT_WRITE)
1025 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1026 else if (flags & VM_PROT_ALL)
1027 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1028
1029 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1030 if (!VM_PAGEMD_CACHED(pg))
1031 flags |= PMAP_NOCACHE;
1032 #endif
1033
1034 PMAP_COUNT(managed_mappings);
1035 } else {
1036 /*
1037 * Assumption: if it is not part of our managed memory
1038 * then it must be device memory which may be volatile.
1039 */
1040 mdpg = NULL;
1041 flags |= PMAP_NOCACHE;
1042 PMAP_COUNT(unmanaged_mappings);
1043 }
1044
1045 npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p);
1046
1047 kpreempt_disable();
1048 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1049 if (__predict_false(ptep == NULL)) {
1050 kpreempt_enable();
1051 UVMHIST_LOG(*histp, "<- ENOMEM", 0,0,0,0);
1052 return ENOMEM;
1053 }
1054 pt_entry_t opte = *ptep;
1055
1056 /* Done after case that may sleep/return. */
1057 if (pg)
1058 pmap_enter_pv(pmap, va, pg, &npte);
1059
1060 /*
1061 * Now validate mapping with desired protection/wiring.
1062 * Assume uniform modified and referenced status for all
1063 * MIPS pages in a MACH page.
1064 */
1065 if (wired) {
1066 pmap->pm_stats.wired_count++;
1067 npte = pte_wire_entry(npte);
1068 }
1069
1070 UVMHIST_LOG(*histp, "new pte %#x (pa %#"PRIxPADDR")", npte, pa, 0,0);
1071
1072 if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
1073 pmap_remove(pmap, va, va + NBPG);
1074 PMAP_COUNT(user_mappings_changed);
1075 }
1076
1077 KASSERT(pte_valid_p(npte));
1078 bool resident = pte_valid_p(opte);
1079 if (!resident)
1080 pmap->pm_stats.resident_count++;
1081 pmap_md_tlb_miss_lock_enter();
1082 *ptep = npte;
1083
1084 pmap_tlb_update_addr(pmap, va, npte,
1085 ((flags & VM_PROT_ALL) ? PMAP_TLB_INSERT : 0)
1086 | (resident ? PMAP_TLB_NEED_IPI : 0));
1087 pmap_md_tlb_miss_lock_exit();
1088 kpreempt_enable();
1089
1090 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1091 KASSERT(mdpg != NULL);
1092 PMAP_COUNT(exec_mappings);
1093 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1094 if (!pte_deferred_exec_p(npte)) {
1095 UVMHIST_LOG(*histp,
1096 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1097 va, pg, "immediate", "");
1098 pmap_page_syncicache(pg);
1099 pmap_page_set_attributes(mdpg,
1100 VM_PAGEMD_EXECPAGE);
1101 PMAP_COUNT(exec_synced_mappings);
1102 } else {
1103 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1104 " pg %p: %s syncicache: pte %#x",
1105 va, pg, "defer", npte);
1106 }
1107 } else {
1108 UVMHIST_LOG(*histp,
1109 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1110 va, pg, "no",
1111 (pte_cached_p(npte)
1112 ? " (already exec)"
1113 : " (uncached)"));
1114 }
1115 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1116 KASSERT(mdpg != NULL);
1117 KASSERT(prot & VM_PROT_WRITE);
1118 PMAP_COUNT(exec_mappings);
1119 pmap_page_syncicache(pg);
1120 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1121 UVMHIST_LOG(pmapexechist,
1122 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1123 va, pg, "immediate", " (writeable)");
1124 }
1125
1126 if (prot & VM_PROT_EXECUTE) {
1127 UVMHIST_LOG(pmapexechist, "<- 0 (OK)", 0,0,0,0);
1128 } else {
1129 UVMHIST_LOG(pmaphist, "<- 0 (OK)", 0,0,0,0);
1130 }
1131 return 0;
1132 }
1133
1134 void
1135 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1136 {
1137 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1138 struct vm_page_md *mdpg;
1139
1140 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1141 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" pa=%#"PRIxPADDR
1142 ", prot=%#x, flags=%#x)", va, pa, prot, flags);
1143 PMAP_COUNT(kenter_pa);
1144
1145 if (pg == NULL) {
1146 mdpg = NULL;
1147 PMAP_COUNT(kenter_pa_unmanaged);
1148 flags |= PMAP_NOCACHE;
1149 } else {
1150 mdpg = VM_PAGE_TO_MD(pg);
1151 }
1152
1153 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1154 PMAP_COUNT(kenter_pa_bad);
1155
1156 const pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1157 kpreempt_disable();
1158 pt_entry_t * const ptep = pmap_pte_reserve(pmap_kernel(), va, 0);
1159 KASSERT(ptep != NULL);
1160 KASSERT(!pte_valid_p(*ptep));
1161 pmap_md_tlb_miss_lock_enter();
1162 *ptep = npte;
1163 /*
1164 * We have the option to force this mapping into the TLB but we
1165 * don't. Instead let the next reference to the page do it.
1166 */
1167 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1168 pmap_md_tlb_miss_lock_exit();
1169 kpreempt_enable();
1170 #if DEBUG > 1
1171 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1172 if (((long *)va)[i] != ((long *)pa)[i])
1173 panic("%s: contents (%lx) of va %#"PRIxVADDR
1174 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1175 ((long *)va)[i], va, ((long *)pa)[i], pa);
1176 }
1177 #endif
1178 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1179 }
1180
1181 static bool
1182 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1183 uintptr_t flags)
1184 {
1185 const pt_entry_t new_pt_entry = pte_nv_entry(true);
1186
1187 KASSERT(kpreempt_disabled());
1188
1189 /*
1190 * Set every pt on every valid mapping within this segment.
1191 */
1192 for (; sva < eva; sva += NBPG, ptep++) {
1193 pt_entry_t pt_entry = *ptep;
1194 if (!pte_valid_p(pt_entry)) {
1195 continue;
1196 }
1197
1198 PMAP_COUNT(kremove_pages);
1199 struct vm_page * const pg =
1200 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
1201 if (pg != NULL)
1202 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
1203
1204 pmap_md_tlb_miss_lock_enter();
1205 *ptep = new_pt_entry;
1206 pmap_tlb_invalidate_addr(pmap_kernel(), sva);
1207 pmap_md_tlb_miss_lock_exit();
1208 }
1209
1210 return false;
1211 }
1212
1213 void
1214 pmap_kremove(vaddr_t va, vsize_t len)
1215 {
1216 const vaddr_t sva = trunc_page(va);
1217 const vaddr_t eva = round_page(va + len);
1218
1219 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1220 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" len=%#"PRIxVSIZE")",
1221 va, len, 0,0);
1222
1223 kpreempt_disable();
1224 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1225 kpreempt_enable();
1226
1227 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1228 }
1229
1230 void
1231 pmap_remove_all(struct pmap *pmap)
1232 {
1233 KASSERT(pmap != pmap_kernel());
1234
1235 kpreempt_disable();
1236 /*
1237 * Free all of our ASIDs which means we can skip doing all the
1238 * tlb_invalidate_addrs().
1239 */
1240 pmap_md_tlb_miss_lock_enter();
1241 pmap_tlb_asid_deactivate(pmap);
1242 pmap_tlb_asid_release_all(pmap);
1243 pmap_md_tlb_miss_lock_exit();
1244 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1245
1246 kpreempt_enable();
1247 }
1248
1249 /*
1250 * Routine: pmap_unwire
1251 * Function: Clear the wired attribute for a map/virtual-address
1252 * pair.
1253 * In/out conditions:
1254 * The mapping must already exist in the pmap.
1255 */
1256 void
1257 pmap_unwire(pmap_t pmap, vaddr_t va)
1258 {
1259
1260 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1261 UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1262 PMAP_COUNT(unwire);
1263
1264 /*
1265 * Don't need to flush the TLB since PG_WIRED is only in software.
1266 */
1267 #ifdef PARANOIADIAG
1268 if (va < pmap->pm_minaddr || pmap->pm_maxaddr <= va)
1269 panic("pmap_unwire");
1270 #endif
1271 kpreempt_disable();
1272 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1273 pt_entry_t pt_entry = *ptep;
1274 #ifdef DIAGNOSTIC
1275 if (ptep == NULL)
1276 panic("%s: pmap %p va %#"PRIxVADDR" invalid STE",
1277 __func__, pmap, va);
1278 #endif
1279
1280 #ifdef DIAGNOSTIC
1281 if (!pte_valid_p(pt_entry))
1282 panic("pmap_unwire: pmap %p va %#"PRIxVADDR" invalid PTE",
1283 pmap, va);
1284 #endif
1285
1286 if (pte_wired_p(pt_entry)) {
1287 pmap_md_tlb_miss_lock_enter();
1288 *ptep = pte_unwire_entry(*ptep);
1289 pmap_md_tlb_miss_lock_exit();
1290 pmap->pm_stats.wired_count--;
1291 }
1292 #ifdef DIAGNOSTIC
1293 else {
1294 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1295 __func__, pmap, va);
1296 }
1297 #endif
1298 kpreempt_enable();
1299 }
1300
1301 /*
1302 * Routine: pmap_extract
1303 * Function:
1304 * Extract the physical page address associated
1305 * with the given map/virtual_address pair.
1306 */
1307 bool
1308 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1309 {
1310 paddr_t pa;
1311
1312 //UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1313 //UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1314 if (pmap == pmap_kernel()) {
1315 if (pmap_md_direct_mapped_vaddr_p(va)) {
1316 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1317 goto done;
1318 }
1319 if (pmap_md_io_vaddr_p(va))
1320 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1321 }
1322 kpreempt_disable();
1323 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1324 if (ptep == NULL) {
1325 //UVMHIST_LOG(pmaphist, "<- false (not in segmap)", 0,0,0,0);
1326 kpreempt_enable();
1327 return false;
1328 }
1329 if (!pte_valid_p(*ptep)) {
1330 //UVMHIST_LOG(pmaphist, "<- false (PTE not valid)", 0,0,0,0);
1331 kpreempt_enable();
1332 return false;
1333 }
1334 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1335 kpreempt_enable();
1336 done:
1337 if (pap != NULL) {
1338 *pap = pa;
1339 }
1340 //UVMHIST_LOG(pmaphist, "<- true (pa %#"PRIxPADDR")", pa, 0,0,0);
1341 return true;
1342 }
1343
1344 /*
1345 * Copy the range specified by src_addr/len
1346 * from the source map to the range dst_addr/len
1347 * in the destination map.
1348 *
1349 * This routine is only advisory and need not do anything.
1350 */
1351 void
1352 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1353 vaddr_t src_addr)
1354 {
1355
1356 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1357 PMAP_COUNT(copy);
1358 }
1359
1360 /*
1361 * pmap_clear_reference:
1362 *
1363 * Clear the reference bit on the specified physical page.
1364 */
1365 bool
1366 pmap_clear_reference(struct vm_page *pg)
1367 {
1368 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1369
1370 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1371 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1372 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1373
1374 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1375
1376 UVMHIST_LOG(pmaphist, "<- %s", rv ? "true" : "false", 0,0,0);
1377
1378 return rv;
1379 }
1380
1381 /*
1382 * pmap_is_referenced:
1383 *
1384 * Return whether or not the specified physical page is referenced
1385 * by any physical maps.
1386 */
1387 bool
1388 pmap_is_referenced(struct vm_page *pg)
1389 {
1390
1391 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1392 }
1393
1394 /*
1395 * Clear the modify bits on the specified physical page.
1396 */
1397 bool
1398 pmap_clear_modify(struct vm_page *pg)
1399 {
1400 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1401 pv_entry_t pv = &mdpg->mdpg_first;
1402 pv_entry_t pv_next;
1403 uint16_t gen;
1404
1405 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1406 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1407 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1408 PMAP_COUNT(clear_modify);
1409
1410 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1411 if (pv->pv_pmap == NULL) {
1412 UVMHIST_LOG(pmapexechist,
1413 "pg %p (pa %#"PRIxPADDR"): %s",
1414 pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1415 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1416 PMAP_COUNT(exec_uncached_clear_modify);
1417 } else {
1418 UVMHIST_LOG(pmapexechist,
1419 "pg %p (pa %#"PRIxPADDR"): %s",
1420 pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1421 pmap_page_syncicache(pg);
1422 PMAP_COUNT(exec_synced_clear_modify);
1423 }
1424 }
1425 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1426 UVMHIST_LOG(pmaphist, "<- false", 0,0,0,0);
1427 return false;
1428 }
1429 if (pv->pv_pmap == NULL) {
1430 UVMHIST_LOG(pmaphist, "<- true (no mappings)", 0,0,0,0);
1431 return true;
1432 }
1433
1434 /*
1435 * remove write access from any pages that are dirty
1436 * so we can tell if they are written to again later.
1437 * flush the VAC first if there is one.
1438 */
1439 kpreempt_disable();
1440 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, false);
1441 for (; pv != NULL; pv = pv_next) {
1442 pmap_t pmap = pv->pv_pmap;
1443 vaddr_t va = pv->pv_va;
1444 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1445 KASSERT(ptep);
1446 pv_next = pv->pv_next;
1447 pt_entry_t pt_entry = pte_prot_nowrite(*ptep);
1448 if (*ptep == pt_entry) {
1449 continue;
1450 }
1451 pmap_md_vca_clean(pg, va, PMAP_WBINV);
1452 pmap_md_tlb_miss_lock_enter();
1453 *ptep = pt_entry;
1454 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1455 pmap_tlb_invalidate_addr(pmap, va);
1456 pmap_md_tlb_miss_lock_exit();
1457 pmap_update(pmap);
1458 if (__predict_false(gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false))) {
1459 /*
1460 * The list changed! So restart from the beginning.
1461 */
1462 pv_next = &mdpg->mdpg_first;
1463 }
1464 }
1465 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1466 kpreempt_enable();
1467
1468 UVMHIST_LOG(pmaphist, "<- true (mappings changed)", 0,0,0,0);
1469 return true;
1470 }
1471
1472 /*
1473 * pmap_is_modified:
1474 *
1475 * Return whether or not the specified physical page is modified
1476 * by any physical maps.
1477 */
1478 bool
1479 pmap_is_modified(struct vm_page *pg)
1480 {
1481
1482 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1483 }
1484
1485 /*
1486 * pmap_set_modified:
1487 *
1488 * Sets the page modified reference bit for the specified page.
1489 */
1490 void
1491 pmap_set_modified(paddr_t pa)
1492 {
1493 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1494 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1495 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1496 }
1497
1498 /******************** pv_entry management ********************/
1499
1500 static void
1501 pmap_check_pvlist(struct vm_page *pg)
1502 {
1503 #ifdef PARANOIADIAG
1504 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1505 pt_entry_t pv = &mdpg->mdpg_first;
1506 if (pv->pv_pmap != NULL) {
1507 for (; pv != NULL; pv = pv->pv_next) {
1508 KASSERT(!pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1509 }
1510 }
1511 #endif /* PARANOIADIAG */
1512 }
1513
1514 /*
1515 * Enter the pmap and virtual address into the
1516 * physical to virtual map table.
1517 */
1518 void
1519 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, u_int *npte)
1520 {
1521 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1522 pv_entry_t pv, npv, apv;
1523 int16_t gen;
1524 bool first __unused = false;
1525
1526 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1527 UVMHIST_LOG(pmaphist,
1528 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1529 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1530 UVMHIST_LOG(pmaphist, "nptep=%p (%#x))", npte, *npte, 0, 0);
1531
1532 KASSERT(kpreempt_disabled());
1533 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1534
1535 apv = NULL;
1536 pv = &mdpg->mdpg_first;
1537 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1538 pmap_check_pvlist(pg);
1539 again:
1540 if (pv->pv_pmap == NULL) {
1541 KASSERT(pv->pv_next == NULL);
1542 /*
1543 * No entries yet, use header as the first entry
1544 */
1545 PMAP_COUNT(primary_mappings);
1546 PMAP_COUNT(mappings);
1547 first = true;
1548 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1549 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1550 #endif
1551 pv->pv_pmap = pmap;
1552 pv->pv_va = va;
1553 } else {
1554 if (pmap_md_vca_add(pg, va, npte))
1555 goto again;
1556
1557 /*
1558 * There is at least one other VA mapping this page.
1559 * Place this entry after the header.
1560 *
1561 * Note: the entry may already be in the table if
1562 * we are only changing the protection bits.
1563 */
1564
1565 #ifdef PARANOIADIAG
1566 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1567 #endif
1568 for (npv = pv; npv; npv = npv->pv_next) {
1569 if (pmap == npv->pv_pmap && va == npv->pv_va) {
1570 #ifdef PARANOIADIAG
1571 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1572 pt_entry_t pt_entry = (ptep ? *ptep : 0);
1573 if (!pte_valid_p(pt_entry)
1574 || pte_to_paddr(pt_entry) != pa)
1575 printf(
1576 "pmap_enter_pv: found va %#"PRIxVADDR" pa %#"PRIxPADDR" in pv_table but != %x\n",
1577 va, pa, pt_entry);
1578 #endif
1579 PMAP_COUNT(remappings);
1580 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1581 if (__predict_false(apv != NULL))
1582 pmap_pv_free(apv);
1583 return;
1584 }
1585 }
1586 if (__predict_true(apv == NULL)) {
1587 /*
1588 * To allocate a PV, we have to release the PVLIST lock
1589 * so get the page generation. We allocate the PV, and
1590 * then reacquire the lock.
1591 */
1592 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1593
1594 apv = (pv_entry_t)pmap_pv_alloc();
1595 if (apv == NULL)
1596 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1597
1598 /*
1599 * If the generation has changed, then someone else
1600 * tinkered with this page so we should
1601 * start over.
1602 */
1603 uint16_t oldgen = gen;
1604 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1605 if (gen != oldgen)
1606 goto again;
1607 }
1608 npv = apv;
1609 apv = NULL;
1610 npv->pv_va = va;
1611 npv->pv_pmap = pmap;
1612 npv->pv_next = pv->pv_next;
1613 pv->pv_next = npv;
1614 PMAP_COUNT(mappings);
1615 }
1616 pmap_check_pvlist(pg);
1617 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1618 if (__predict_false(apv != NULL))
1619 pmap_pv_free(apv);
1620
1621 UVMHIST_LOG(pmaphist, "<- done pv=%p%s",
1622 pv, first ? " (first pv)" : "",0,0);
1623 }
1624
1625 /*
1626 * Remove a physical to virtual address translation.
1627 * If cache was inhibited on this page, and there are no more cache
1628 * conflicts, restore caching.
1629 * Flush the cache if the last page is removed (should always be cached
1630 * at this point).
1631 */
1632 void
1633 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1634 {
1635 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1636 pv_entry_t pv, npv;
1637 bool last;
1638
1639 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1640 UVMHIST_LOG(pmaphist,
1641 "(pmap=%p va=%#"PRIxVADDR" pg=%p (pa %#"PRIxPADDR")\n",
1642 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1643 UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0,0,0);
1644
1645 KASSERT(kpreempt_disabled());
1646 pv = &mdpg->mdpg_first;
1647
1648 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1649 pmap_check_pvlist(pg);
1650
1651 /*
1652 * If it is the first entry on the list, it is actually
1653 * in the header and we must copy the following entry up
1654 * to the header. Otherwise we must search the list for
1655 * the entry. In either case we free the now unused entry.
1656 */
1657
1658 last = false;
1659 if (pmap == pv->pv_pmap && va == pv->pv_va) {
1660 npv = pv->pv_next;
1661 if (npv) {
1662 *pv = *npv;
1663 KASSERT(pv->pv_pmap != NULL);
1664 } else {
1665 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1666 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1667 #endif
1668 pv->pv_pmap = NULL;
1669 last = true; /* Last mapping removed */
1670 }
1671 PMAP_COUNT(remove_pvfirst);
1672 } else {
1673 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1674 PMAP_COUNT(remove_pvsearch);
1675 if (pmap == npv->pv_pmap && va == npv->pv_va)
1676 break;
1677 }
1678 if (npv) {
1679 pv->pv_next = npv->pv_next;
1680 }
1681 }
1682 pmap_md_vca_remove(pg, va);
1683
1684 pmap_check_pvlist(pg);
1685 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1686
1687 /*
1688 * Free the pv_entry if needed.
1689 */
1690 if (npv)
1691 pmap_pv_free(npv);
1692 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1693 if (last) {
1694 /*
1695 * If this was the page's last mapping, we no longer
1696 * care about its execness.
1697 */
1698 UVMHIST_LOG(pmapexechist,
1699 "pg %p (pa %#"PRIxPADDR")%s: %s",
1700 pg, VM_PAGE_TO_PHYS(pg),
1701 last ? " [last mapping]" : "",
1702 "execpage cleared");
1703 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1704 PMAP_COUNT(exec_uncached_remove);
1705 } else {
1706 /*
1707 * Someone still has it mapped as an executable page
1708 * so we must sync it.
1709 */
1710 UVMHIST_LOG(pmapexechist,
1711 "pg %p (pa %#"PRIxPADDR")%s: %s",
1712 pg, VM_PAGE_TO_PHYS(pg),
1713 last ? " [last mapping]" : "",
1714 "performed syncicache");
1715 pmap_page_syncicache(pg);
1716 PMAP_COUNT(exec_synced_remove);
1717 }
1718 }
1719 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1720 }
1721
1722 #if defined(MULTIPROCESSOR)
1723 struct pmap_pvlist_info {
1724 kmutex_t *pli_locks[PAGE_SIZE / 32];
1725 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1726 volatile u_int pli_lock_index;
1727 u_int pli_lock_mask;
1728 } pmap_pvlist_info;
1729
1730 void
1731 pmap_pvlist_lock_init(size_t cache_line_size)
1732 {
1733 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1734 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1735 vaddr_t lock_va = lock_page;
1736 if (sizeof(kmutex_t) > cache_line_size) {
1737 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
1738 }
1739 const size_t nlocks = PAGE_SIZE / cache_line_size;
1740 KASSERT((nlocks & (nlocks - 1)) == 0);
1741 /*
1742 * Now divide the page into a number of mutexes, one per cacheline.
1743 */
1744 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
1745 kmutex_t * const lock = (kmutex_t *)lock_va;
1746 mutex_init(lock, MUTEX_DEFAULT, IPL_VM);
1747 pli->pli_locks[i] = lock;
1748 }
1749 pli->pli_lock_mask = nlocks - 1;
1750 }
1751
1752 uint16_t
1753 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1754 {
1755 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1756 kmutex_t *lock = mdpg->mdpg_lock;
1757 int16_t gen;
1758
1759 /*
1760 * Allocate a lock on an as-needed basis. This will hopefully give us
1761 * semi-random distribution not based on page color.
1762 */
1763 if (__predict_false(lock == NULL)) {
1764 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
1765 size_t lockid = locknum & pli->pli_lock_mask;
1766 kmutex_t * const new_lock = pli->pli_locks[lockid];
1767 /*
1768 * Set the lock. If some other thread already did, just use
1769 * the one they assigned.
1770 */
1771 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
1772 if (lock == NULL) {
1773 lock = new_lock;
1774 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
1775 }
1776 }
1777
1778 /*
1779 * Now finally lock the pvlists.
1780 */
1781 mutex_spin_enter(lock);
1782
1783 /*
1784 * If the locker will be changing the list, increment the high 16 bits
1785 * of attrs so we use that as a generation number.
1786 */
1787 gen = VM_PAGEMD_PVLIST_GEN(mdpg); /* get old value */
1788 if (list_change)
1789 atomic_add_int(&mdpg->mdpg_attrs, 0x10000);
1790
1791 /*
1792 * Return the generation number.
1793 */
1794 return gen;
1795 }
1796 #else /* !MULTIPROCESSOR */
1797 void
1798 pmap_pvlist_lock_init(size_t cache_line_size)
1799 {
1800 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_VM);
1801 }
1802
1803 #ifdef MODULAR
1804 uint16_t
1805 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1806 {
1807 /*
1808 * We just use a global lock.
1809 */
1810 if (__predict_false(mdpg->mdpg_lock == NULL)) {
1811 mdpg->mdpg_lock = &pmap_pvlist_mutex;
1812 }
1813
1814 /*
1815 * Now finally lock the pvlists.
1816 */
1817 mutex_spin_enter(mdpg->mdpg_lock);
1818
1819 return 0;
1820 }
1821 #endif /* MODULAR */
1822 #endif /* !MULTIPROCESSOR */
1823
1824 /*
1825 * pmap_pv_page_alloc:
1826 *
1827 * Allocate a page for the pv_entry pool.
1828 */
1829 void *
1830 pmap_pv_page_alloc(struct pool *pp, int flags)
1831 {
1832 struct vm_page *pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
1833 if (pg == NULL)
1834 return NULL;
1835
1836 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
1837 }
1838
1839 /*
1840 * pmap_pv_page_free:
1841 *
1842 * Free a pv_entry pool page.
1843 */
1844 void
1845 pmap_pv_page_free(struct pool *pp, void *v)
1846 {
1847 vaddr_t va = (vaddr_t)v;
1848
1849 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1850 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1851 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1852 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1853 pmap_md_vca_remove(pg, va);
1854 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1855 uvm_pagefree(pg);
1856 }
1857
1858 #ifdef PMAP_PREFER
1859 /*
1860 * Find first virtual address >= *vap that doesn't cause
1861 * a cache alias conflict.
1862 */
1863 void
1864 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
1865 {
1866 vaddr_t va;
1867 vsize_t d;
1868 vsize_t prefer_mask = ptoa(uvmexp.colormask);
1869
1870 PMAP_COUNT(prefer_requests);
1871
1872 prefer_mask |= pmap_md_cache_prefer_mask();
1873
1874 if (prefer_mask) {
1875 va = *vap;
1876
1877 d = foff - va;
1878 d &= prefer_mask;
1879 if (d) {
1880 if (td)
1881 *vap = trunc_page(va -((-d) & prefer_mask));
1882 else
1883 *vap = round_page(va + d);
1884 PMAP_COUNT(prefer_adjustments);
1885 }
1886 }
1887 }
1888 #endif /* PMAP_PREFER */
1889
1890 #ifdef PMAP_MAP_POOLPAGE
1891 vaddr_t
1892 pmap_map_poolpage(paddr_t pa)
1893 {
1894
1895 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1896 KASSERT(pg);
1897 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1898 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1899
1900 const vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
1901 pmap_md_vca_add(pg, va, NULL);
1902 return va;
1903 }
1904
1905 paddr_t
1906 pmap_unmap_poolpage(vaddr_t va)
1907 {
1908
1909 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1910 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1911
1912 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1913 KASSERT(pg);
1914 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1915 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1916 pmap_md_unmap_poolpage(va, NBPG);
1917 pmap_md_vca_remove(pg, va);
1918
1919 return pa;
1920 }
1921 #endif /* PMAP_MAP_POOLPAGE */
1922