pmap.c revision 1.27 1 /* $NetBSD: pmap.c,v 1.27 2016/12/23 09:16:46 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.27 2016/12/23 09:16:46 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their k0seg addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%p)", pmap, 0, 0, 0);
601
602 return pmap;
603 }
604
605 /*
606 * Retire the given physical map from service.
607 * Should only be called if the map contains
608 * no valid mappings.
609 */
610 void
611 pmap_destroy(pmap_t pmap)
612 {
613 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
614 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
615
616 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
617 PMAP_COUNT(dereference);
618 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
619 return;
620 }
621
622 PMAP_COUNT(destroy);
623 KASSERT(pmap->pm_count == 0);
624 kpreempt_disable();
625 pmap_md_tlb_miss_lock_enter();
626 pmap_tlb_asid_release_all(pmap);
627 pmap_segtab_destroy(pmap, NULL, 0);
628 pmap_md_tlb_miss_lock_exit();
629
630 #ifdef MULTIPROCESSOR
631 kcpuset_destroy(pmap->pm_active);
632 kcpuset_destroy(pmap->pm_onproc);
633 pmap->pm_active = NULL;
634 pmap->pm_onproc = NULL;
635 #endif
636
637 pool_put(&pmap_pmap_pool, pmap);
638 kpreempt_enable();
639
640 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
641 }
642
643 /*
644 * Add a reference to the specified pmap.
645 */
646 void
647 pmap_reference(pmap_t pmap)
648 {
649 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
650 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
651 PMAP_COUNT(reference);
652
653 if (pmap != NULL) {
654 atomic_inc_uint(&pmap->pm_count);
655 }
656
657 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
658 }
659
660 /*
661 * Make a new pmap (vmspace) active for the given process.
662 */
663 void
664 pmap_activate(struct lwp *l)
665 {
666 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
667 #define LNAME(l) \
668 ((l)->l_name ? (l)->l_name : (l)->l_proc->p_comm)
669
670 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
671 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p (%s))", l, pmap, LNAME(l), 0);
672 PMAP_COUNT(activate);
673
674 kpreempt_disable();
675 pmap_md_tlb_miss_lock_enter();
676 pmap_tlb_asid_acquire(pmap, l);
677 if (l == curlwp) {
678 pmap_segtab_activate(pmap, l);
679 }
680 pmap_md_tlb_miss_lock_exit();
681 kpreempt_enable();
682
683 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid, 0, 0);
684 }
685
686 /*
687 * Remove this page from all physical maps in which it resides.
688 * Reflects back modify bits to the pager.
689 */
690 void
691 pmap_page_remove(struct vm_page *pg)
692 {
693 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
694
695 kpreempt_disable();
696 VM_PAGEMD_PVLIST_LOCK(mdpg);
697 pmap_pvlist_check(mdpg);
698
699 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
700
701 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR")%s: %s",
702 pg, VM_PAGE_TO_PHYS(pg), " [page removed]", "execpage cleared");
703 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
704 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
705 #else
706 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
707 #endif
708 PMAP_COUNT(exec_uncached_remove);
709
710 pv_entry_t pv = &mdpg->mdpg_first;
711 if (pv->pv_pmap == NULL) {
712 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
713 kpreempt_enable();
714 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
715 return;
716 }
717
718 pv_entry_t npv;
719 pv_entry_t pvp = NULL;
720
721 for (; pv != NULL; pv = npv) {
722 npv = pv->pv_next;
723 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
724 if (pv->pv_va & PV_KENTER) {
725 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"
726 PRIxVADDR" skip", pv, pv->pv_pmap, pv->pv_va, 0);
727
728 KASSERT(pv->pv_pmap == pmap_kernel());
729
730 /* Assume no more - it'll get fixed if there are */
731 pv->pv_next = NULL;
732
733 /*
734 * pvp is non-null when we already have a PV_KENTER
735 * pv in pvh_first; otherwise we haven't seen a
736 * PV_KENTER pv and we need to copy this one to
737 * pvh_first
738 */
739 if (pvp) {
740 /*
741 * The previous PV_KENTER pv needs to point to
742 * this PV_KENTER pv
743 */
744 pvp->pv_next = pv;
745 } else {
746 pv_entry_t fpv = &mdpg->mdpg_first;
747 *fpv = *pv;
748 KASSERT(fpv->pv_pmap == pmap_kernel());
749 }
750 pvp = pv;
751 continue;
752 }
753 #endif
754 const pmap_t pmap = pv->pv_pmap;
755 vaddr_t va = trunc_page(pv->pv_va);
756 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
757 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
758 pmap_limits.virtual_end);
759 pt_entry_t pte = *ptep;
760 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"PRIxVADDR
761 " pte %#"PRIxPTE, pv, pmap, va, pte_value(pte));
762 if (!pte_valid_p(pte))
763 continue;
764 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
765 if (is_kernel_pmap_p) {
766 PMAP_COUNT(remove_kernel_pages);
767 } else {
768 PMAP_COUNT(remove_user_pages);
769 }
770 if (pte_wired_p(pte))
771 pmap->pm_stats.wired_count--;
772 pmap->pm_stats.resident_count--;
773
774 pmap_md_tlb_miss_lock_enter();
775 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
776 *ptep = npte;
777 /*
778 * Flush the TLB for the given address.
779 */
780 pmap_tlb_invalidate_addr(pmap, va);
781 pmap_md_tlb_miss_lock_exit();
782
783 /*
784 * non-null means this is a non-pvh_first pv, so we should
785 * free it.
786 */
787 if (pvp) {
788 KASSERT(pvp->pv_pmap == pmap_kernel());
789 KASSERT(pvp->pv_next == NULL);
790 pmap_pv_free(pv);
791 } else {
792 pv->pv_pmap = NULL;
793 pv->pv_next = NULL;
794 }
795 }
796
797 pmap_pvlist_check(mdpg);
798 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
799 kpreempt_enable();
800
801 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
802 }
803
804
805 /*
806 * Make a previously active pmap (vmspace) inactive.
807 */
808 void
809 pmap_deactivate(struct lwp *l)
810 {
811 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
812
813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
814 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p (%s))", l, pmap, LNAME(l), 0);
815 PMAP_COUNT(deactivate);
816
817 kpreempt_disable();
818 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
819 pmap_md_tlb_miss_lock_enter();
820 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
821 #ifdef _LP64
822 curcpu()->ci_pmap_user_seg0tab = NULL;
823 #endif
824 pmap_tlb_asid_deactivate(pmap);
825 pmap_md_tlb_miss_lock_exit();
826 kpreempt_enable();
827
828 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid, 0, 0);
829 }
830
831 void
832 pmap_update(struct pmap *pmap)
833 {
834 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
835 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
836 PMAP_COUNT(update);
837
838 kpreempt_disable();
839 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
840 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
841 if (pending && pmap_tlb_shootdown_bystanders(pmap))
842 PMAP_COUNT(shootdown_ipis);
843 #endif
844 pmap_md_tlb_miss_lock_enter();
845 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
846 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
847 #endif /* DEBUG */
848
849 /*
850 * If pmap_remove_all was called, we deactivated ourselves and nuked
851 * our ASID. Now we have to reactivate ourselves.
852 */
853 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
854 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
855 pmap_tlb_asid_acquire(pmap, curlwp);
856 pmap_segtab_activate(pmap, curlwp);
857 }
858 pmap_md_tlb_miss_lock_exit();
859 kpreempt_enable();
860
861 UVMHIST_LOG(pmaphist, " <-- done%s",
862 (pmap == pmap_kernel()) ? " (kernel)" : "", 0, 0, 0);
863 }
864
865 /*
866 * Remove the given range of addresses from the specified map.
867 *
868 * It is assumed that the start and end are properly
869 * rounded to the page size.
870 */
871
872 static bool
873 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
874 uintptr_t flags)
875 {
876 const pt_entry_t npte = flags;
877 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
878
879 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
880 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%#"PRIxVADDR"..%#"PRIxVADDR,
881 pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
882 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
883 ptep, flags, 0, 0);
884
885 KASSERT(kpreempt_disabled());
886
887 for (; sva < eva; sva += NBPG, ptep++) {
888 const pt_entry_t pte = *ptep;
889 if (!pte_valid_p(pte))
890 continue;
891 if (is_kernel_pmap_p) {
892 PMAP_COUNT(remove_kernel_pages);
893 } else {
894 PMAP_COUNT(remove_user_pages);
895 }
896 if (pte_wired_p(pte))
897 pmap->pm_stats.wired_count--;
898 pmap->pm_stats.resident_count--;
899 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
900 if (__predict_true(pg != NULL)) {
901 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
902 }
903 pmap_md_tlb_miss_lock_enter();
904 *ptep = npte;
905 /*
906 * Flush the TLB for the given address.
907 */
908 pmap_tlb_invalidate_addr(pmap, sva);
909 pmap_md_tlb_miss_lock_exit();
910 }
911
912 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
913
914 return false;
915 }
916
917 void
918 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
919 {
920 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
921 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
922
923 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
924 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
925 pmap, sva, eva, 0);
926
927 if (is_kernel_pmap_p) {
928 PMAP_COUNT(remove_kernel_calls);
929 } else {
930 PMAP_COUNT(remove_user_calls);
931 }
932 #ifdef PMAP_FAULTINFO
933 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
934 curpcb->pcb_faultinfo.pfi_repeats = 0;
935 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
936 #endif
937 kpreempt_disable();
938 pmap_addr_range_check(pmap, sva, eva, __func__);
939 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
940 kpreempt_enable();
941
942 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
943 }
944
945 /*
946 * pmap_page_protect:
947 *
948 * Lower the permission for all mappings to a given page.
949 */
950 void
951 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
952 {
953 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
954 pv_entry_t pv;
955 vaddr_t va;
956
957 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
958 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
959 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
960 PMAP_COUNT(page_protect);
961
962 switch (prot) {
963 case VM_PROT_READ|VM_PROT_WRITE:
964 case VM_PROT_ALL:
965 break;
966
967 /* copy_on_write */
968 case VM_PROT_READ:
969 case VM_PROT_READ|VM_PROT_EXECUTE:
970 pv = &mdpg->mdpg_first;
971 kpreempt_disable();
972 VM_PAGEMD_PVLIST_READLOCK(mdpg);
973 pmap_pvlist_check(mdpg);
974 /*
975 * Loop over all current mappings setting/clearing as apropos.
976 */
977 if (pv->pv_pmap != NULL) {
978 while (pv != NULL) {
979 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
980 if (pv->pv_va & PV_KENTER) {
981 pv = pv->pv_next;
982 continue;
983 }
984 #endif
985 const pmap_t pmap = pv->pv_pmap;
986 va = trunc_page(pv->pv_va);
987 const uintptr_t gen =
988 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
989 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
990 KASSERT(pv->pv_pmap == pmap);
991 pmap_update(pmap);
992 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
993 pv = &mdpg->mdpg_first;
994 } else {
995 pv = pv->pv_next;
996 }
997 pmap_pvlist_check(mdpg);
998 }
999 }
1000 pmap_pvlist_check(mdpg);
1001 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1002 kpreempt_enable();
1003 break;
1004
1005 /* remove_all */
1006 default:
1007 pmap_page_remove(pg);
1008 }
1009
1010 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1011 }
1012
1013 static bool
1014 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1015 uintptr_t flags)
1016 {
1017 const vm_prot_t prot = (flags & VM_PROT_ALL);
1018
1019 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1020 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%#"PRIxVADDR"..%#"PRIxVADDR,
1021 pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
1022 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
1023 ptep, flags, 0, 0);
1024
1025 KASSERT(kpreempt_disabled());
1026 /*
1027 * Change protection on every valid mapping within this segment.
1028 */
1029 for (; sva < eva; sva += NBPG, ptep++) {
1030 pt_entry_t pte = *ptep;
1031 if (!pte_valid_p(pte))
1032 continue;
1033 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1034 if (pg != NULL && pte_modified_p(pte)) {
1035 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1036 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1037 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1038 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1039 if (VM_PAGEMD_CACHED_P(mdpg)) {
1040 #endif
1041 UVMHIST_LOG(pmapexechist,
1042 "pg %p (pa %#"PRIxPADDR"): %s",
1043 pg, VM_PAGE_TO_PHYS(pg),
1044 "syncicached performed", 0);
1045 pmap_page_syncicache(pg);
1046 PMAP_COUNT(exec_synced_protect);
1047 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1048 }
1049 #endif
1050 }
1051 }
1052 pte = pte_prot_downgrade(pte, prot);
1053 if (*ptep != pte) {
1054 pmap_md_tlb_miss_lock_enter();
1055 *ptep = pte;
1056 /*
1057 * Update the TLB if needed.
1058 */
1059 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1060 pmap_md_tlb_miss_lock_exit();
1061 }
1062 }
1063
1064 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1065
1066 return false;
1067 }
1068
1069 /*
1070 * Set the physical protection on the
1071 * specified range of this map as requested.
1072 */
1073 void
1074 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1075 {
1076 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1077 UVMHIST_LOG(pmaphist,
1078 "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR", prot=%u)",
1079 pmap, sva, eva, prot);
1080 PMAP_COUNT(protect);
1081
1082 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1083 pmap_remove(pmap, sva, eva);
1084 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1085 return;
1086 }
1087
1088 /*
1089 * Change protection on every valid mapping within this segment.
1090 */
1091 kpreempt_disable();
1092 pmap_addr_range_check(pmap, sva, eva, __func__);
1093 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1094 kpreempt_enable();
1095
1096 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1097 }
1098
1099 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1100 /*
1101 * pmap_page_cache:
1102 *
1103 * Change all mappings of a managed page to cached/uncached.
1104 */
1105 void
1106 pmap_page_cache(struct vm_page *pg, bool cached)
1107 {
1108 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1109
1110 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1111 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
1112 pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
1113
1114 KASSERT(kpreempt_disabled());
1115 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1116
1117 if (cached) {
1118 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1119 PMAP_COUNT(page_cache_restorations);
1120 } else {
1121 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1122 PMAP_COUNT(page_cache_evictions);
1123 }
1124
1125 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1126 pmap_t pmap = pv->pv_pmap;
1127 vaddr_t va = trunc_page(pv->pv_va);
1128
1129 KASSERT(pmap != NULL);
1130 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1131 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1132 if (ptep == NULL)
1133 continue;
1134 pt_entry_t pte = *ptep;
1135 if (pte_valid_p(pte)) {
1136 pte = pte_cached_change(pte, cached);
1137 pmap_md_tlb_miss_lock_enter();
1138 *ptep = pte;
1139 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1140 pmap_md_tlb_miss_lock_exit();
1141 }
1142 }
1143
1144 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1145 }
1146 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1147
1148 /*
1149 * Insert the given physical page (p) at
1150 * the specified virtual address (v) in the
1151 * target physical map with the protection requested.
1152 *
1153 * If specified, the page will be wired down, meaning
1154 * that the related pte can not be reclaimed.
1155 *
1156 * NB: This is the only routine which MAY NOT lazy-evaluate
1157 * or lose information. That is, this routine must actually
1158 * insert this page into the given map NOW.
1159 */
1160 int
1161 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1162 {
1163 const bool wired = (flags & PMAP_WIRED) != 0;
1164 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1165 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1166 #ifdef UVMHIST
1167 struct kern_history * const histp =
1168 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1169 #endif
1170
1171 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1172 #define VM_PROT_STRING(prot) \
1173 &"\0 " \
1174 "(R)\0 " \
1175 "(W)\0 " \
1176 "(RW)\0 " \
1177 "(X)\0 " \
1178 "(RX)\0 " \
1179 "(WX)\0 " \
1180 "(RWX)\0"[UVM_PROTECTION(prot)*6]
1181 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
1182 pmap, va, pa, 0);
1183 UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
1184 prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
1185
1186 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1187 if (is_kernel_pmap_p) {
1188 PMAP_COUNT(kernel_mappings);
1189 if (!good_color)
1190 PMAP_COUNT(kernel_mappings_bad);
1191 } else {
1192 PMAP_COUNT(user_mappings);
1193 if (!good_color)
1194 PMAP_COUNT(user_mappings_bad);
1195 }
1196 pmap_addr_range_check(pmap, va, va, __func__);
1197
1198 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1199 VM_PROT_READ, prot);
1200
1201 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1202 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1203
1204 if (pg) {
1205 /* Set page referenced/modified status based on flags */
1206 if (flags & VM_PROT_WRITE) {
1207 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1208 } else if (flags & VM_PROT_ALL) {
1209 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1210 }
1211
1212 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1213 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1214 flags |= PMAP_NOCACHE;
1215 PMAP_COUNT(uncached_mappings);
1216 }
1217 #endif
1218
1219 PMAP_COUNT(managed_mappings);
1220 } else {
1221 /*
1222 * Assumption: if it is not part of our managed memory
1223 * then it must be device memory which may be volatile.
1224 */
1225 if ((flags & PMAP_CACHE_MASK) == 0)
1226 flags |= PMAP_NOCACHE;
1227 PMAP_COUNT(unmanaged_mappings);
1228 }
1229
1230 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1231 is_kernel_pmap_p);
1232
1233 kpreempt_disable();
1234
1235 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1236 if (__predict_false(ptep == NULL)) {
1237 kpreempt_enable();
1238 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1239 return ENOMEM;
1240 }
1241 const pt_entry_t opte = *ptep;
1242 const bool resident = pte_valid_p(opte);
1243 bool remap = false;
1244 if (resident) {
1245 if (pte_to_paddr(opte) != pa) {
1246 KASSERT(!is_kernel_pmap_p);
1247 const pt_entry_t rpte = pte_nv_entry(false);
1248
1249 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1250 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1251 rpte);
1252 PMAP_COUNT(user_mappings_changed);
1253 remap = true;
1254 }
1255 update_flags |= PMAP_TLB_NEED_IPI;
1256 }
1257
1258 if (!resident || remap) {
1259 pmap->pm_stats.resident_count++;
1260 }
1261
1262 /* Done after case that may sleep/return. */
1263 if (pg)
1264 pmap_enter_pv(pmap, va, pg, &npte, 0);
1265
1266 /*
1267 * Now validate mapping with desired protection/wiring.
1268 * Assume uniform modified and referenced status for all
1269 * MIPS pages in a MACH page.
1270 */
1271 if (wired) {
1272 pmap->pm_stats.wired_count++;
1273 npte = pte_wire_entry(npte);
1274 }
1275
1276 UVMHIST_LOG(*histp, "new pte %#"PRIxPTE" (pa %#"PRIxPADDR")",
1277 pte_value(npte), pa, 0, 0);
1278
1279 KASSERT(pte_valid_p(npte));
1280
1281 pmap_md_tlb_miss_lock_enter();
1282 *ptep = npte;
1283 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1284 pmap_md_tlb_miss_lock_exit();
1285 kpreempt_enable();
1286
1287 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1288 KASSERT(mdpg != NULL);
1289 PMAP_COUNT(exec_mappings);
1290 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1291 if (!pte_deferred_exec_p(npte)) {
1292 UVMHIST_LOG(*histp,
1293 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1294 va, pg, "immediate", "");
1295 pmap_page_syncicache(pg);
1296 pmap_page_set_attributes(mdpg,
1297 VM_PAGEMD_EXECPAGE);
1298 PMAP_COUNT(exec_synced_mappings);
1299 } else {
1300 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1301 " pg %p: %s syncicache: pte %#x",
1302 va, pg, "defer", npte);
1303 }
1304 } else {
1305 UVMHIST_LOG(*histp,
1306 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1307 va, pg, "no",
1308 (pte_cached_p(npte)
1309 ? " (already exec)"
1310 : " (uncached)"));
1311 }
1312 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1313 KASSERT(mdpg != NULL);
1314 KASSERT(prot & VM_PROT_WRITE);
1315 PMAP_COUNT(exec_mappings);
1316 pmap_page_syncicache(pg);
1317 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1318 UVMHIST_LOG(*histp,
1319 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1320 va, pg, "immediate", " (writeable)");
1321 }
1322
1323 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1324 return 0;
1325 }
1326
1327 void
1328 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1329 {
1330 pmap_t pmap = pmap_kernel();
1331 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1332 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1333
1334 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1335 UVMHIST_LOG(pmaphist,
1336 "(va=%#"PRIxVADDR", pa=%#"PRIxPADDR", prot=%u, flags=%#x)",
1337 va, pa, prot, flags);
1338 PMAP_COUNT(kenter_pa);
1339
1340 if (mdpg == NULL) {
1341 PMAP_COUNT(kenter_pa_unmanaged);
1342 if ((flags & PMAP_CACHE_MASK) == 0)
1343 flags |= PMAP_NOCACHE;
1344 } else {
1345 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1346 PMAP_COUNT(kenter_pa_bad);
1347 }
1348
1349 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1350 kpreempt_disable();
1351 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1352 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1353 pmap_limits.virtual_end);
1354 KASSERT(!pte_valid_p(*ptep));
1355
1356 /*
1357 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1358 */
1359 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1360 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1361 && pmap_md_virtual_cache_aliasing_p()) {
1362 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1363 }
1364 #endif
1365
1366 /*
1367 * We have the option to force this mapping into the TLB but we
1368 * don't. Instead let the next reference to the page do it.
1369 */
1370 pmap_md_tlb_miss_lock_enter();
1371 *ptep = npte;
1372 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1373 pmap_md_tlb_miss_lock_exit();
1374 kpreempt_enable();
1375 #if DEBUG > 1
1376 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1377 if (((long *)va)[i] != ((long *)pa)[i])
1378 panic("%s: contents (%lx) of va %#"PRIxVADDR
1379 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1380 ((long *)va)[i], va, ((long *)pa)[i], pa);
1381 }
1382 #endif
1383
1384 UVMHIST_LOG(pmaphist, " <-- done (ptep=%p)", ptep, 0, 0, 0);
1385 }
1386
1387 /*
1388 * Remove the given range of addresses from the kernel map.
1389 *
1390 * It is assumed that the start and end are properly
1391 * rounded to the page size.
1392 */
1393
1394 static bool
1395 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1396 uintptr_t flags)
1397 {
1398 const pt_entry_t new_pte = pte_nv_entry(true);
1399
1400 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1401 UVMHIST_LOG(pmaphist,
1402 "(pmap=%p, sva=%#"PRIxVADDR", eva=%#"PRIxVADDR", ptep=%p)",
1403 pmap, sva, eva, ptep);
1404
1405 KASSERT(kpreempt_disabled());
1406
1407 for (; sva < eva; sva += NBPG, ptep++) {
1408 pt_entry_t pte = *ptep;
1409 if (!pte_valid_p(pte))
1410 continue;
1411
1412 PMAP_COUNT(kremove_pages);
1413 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1414 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1415 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1416 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1417 }
1418 #endif
1419
1420 pmap_md_tlb_miss_lock_enter();
1421 *ptep = new_pte;
1422 pmap_tlb_invalidate_addr(pmap, sva);
1423 pmap_md_tlb_miss_lock_exit();
1424 }
1425
1426 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1427
1428 return false;
1429 }
1430
1431 void
1432 pmap_kremove(vaddr_t va, vsize_t len)
1433 {
1434 const vaddr_t sva = trunc_page(va);
1435 const vaddr_t eva = round_page(va + len);
1436
1437 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1438 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR", len=%#"PRIxVSIZE")",
1439 va, len, 0, 0);
1440
1441 kpreempt_disable();
1442 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1443 kpreempt_enable();
1444
1445 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1446 }
1447
1448 void
1449 pmap_remove_all(struct pmap *pmap)
1450 {
1451 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1452 UVMHIST_LOG(pmaphist, "(pm=%p)", pmap, 0, 0, 0);
1453
1454 KASSERT(pmap != pmap_kernel());
1455
1456 kpreempt_disable();
1457 /*
1458 * Free all of our ASIDs which means we can skip doing all the
1459 * tlb_invalidate_addrs().
1460 */
1461 pmap_md_tlb_miss_lock_enter();
1462 #ifdef MULTIPROCESSOR
1463 // This should be the last CPU with this pmap onproc
1464 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1465 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1466 #endif
1467 pmap_tlb_asid_deactivate(pmap);
1468 #ifdef MULTIPROCESSOR
1469 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1470 #endif
1471 pmap_tlb_asid_release_all(pmap);
1472 pmap_md_tlb_miss_lock_exit();
1473 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1474
1475 #ifdef PMAP_FAULTINFO
1476 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1477 curpcb->pcb_faultinfo.pfi_repeats = 0;
1478 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1479 #endif
1480 kpreempt_enable();
1481
1482 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1483 }
1484
1485 /*
1486 * Routine: pmap_unwire
1487 * Function: Clear the wired attribute for a map/virtual-address
1488 * pair.
1489 * In/out conditions:
1490 * The mapping must already exist in the pmap.
1491 */
1492 void
1493 pmap_unwire(pmap_t pmap, vaddr_t va)
1494 {
1495 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1496 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR")", pmap, va, 0, 0);
1497 PMAP_COUNT(unwire);
1498
1499 /*
1500 * Don't need to flush the TLB since PG_WIRED is only in software.
1501 */
1502 kpreempt_disable();
1503 pmap_addr_range_check(pmap, va, va, __func__);
1504 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1505 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1506 pmap, va);
1507 pt_entry_t pte = *ptep;
1508 KASSERTMSG(pte_valid_p(pte),
1509 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1510 pmap, va, pte_value(pte), ptep);
1511
1512 if (pte_wired_p(pte)) {
1513 pmap_md_tlb_miss_lock_enter();
1514 *ptep = pte_unwire_entry(pte);
1515 pmap_md_tlb_miss_lock_exit();
1516 pmap->pm_stats.wired_count--;
1517 }
1518 #ifdef DIAGNOSTIC
1519 else {
1520 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1521 __func__, pmap, va);
1522 }
1523 #endif
1524 kpreempt_enable();
1525
1526 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1527 }
1528
1529 /*
1530 * Routine: pmap_extract
1531 * Function:
1532 * Extract the physical page address associated
1533 * with the given map/virtual_address pair.
1534 */
1535 bool
1536 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1537 {
1538 paddr_t pa;
1539
1540 if (pmap == pmap_kernel()) {
1541 if (pmap_md_direct_mapped_vaddr_p(va)) {
1542 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1543 goto done;
1544 }
1545 if (pmap_md_io_vaddr_p(va))
1546 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1547
1548 if (va >= pmap_limits.virtual_end)
1549 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1550 __func__, va);
1551 }
1552 kpreempt_disable();
1553 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1554 if (ptep == NULL || !pte_valid_p(*ptep)) {
1555 kpreempt_enable();
1556 return false;
1557 }
1558 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1559 kpreempt_enable();
1560 done:
1561 if (pap != NULL) {
1562 *pap = pa;
1563 }
1564 return true;
1565 }
1566
1567 /*
1568 * Copy the range specified by src_addr/len
1569 * from the source map to the range dst_addr/len
1570 * in the destination map.
1571 *
1572 * This routine is only advisory and need not do anything.
1573 */
1574 void
1575 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1576 vaddr_t src_addr)
1577 {
1578 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1579 PMAP_COUNT(copy);
1580 }
1581
1582 /*
1583 * pmap_clear_reference:
1584 *
1585 * Clear the reference bit on the specified physical page.
1586 */
1587 bool
1588 pmap_clear_reference(struct vm_page *pg)
1589 {
1590 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1591
1592 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1593 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1594 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1595
1596 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1597
1598 UVMHIST_LOG(pmaphist, " <-- %s", rv ? "true" : "false", 0, 0, 0);
1599
1600 return rv;
1601 }
1602
1603 /*
1604 * pmap_is_referenced:
1605 *
1606 * Return whether or not the specified physical page is referenced
1607 * by any physical maps.
1608 */
1609 bool
1610 pmap_is_referenced(struct vm_page *pg)
1611 {
1612 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1613 }
1614
1615 /*
1616 * Clear the modify bits on the specified physical page.
1617 */
1618 bool
1619 pmap_clear_modify(struct vm_page *pg)
1620 {
1621 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1622 pv_entry_t pv = &mdpg->mdpg_first;
1623 pv_entry_t pv_next;
1624
1625 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1626 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1627 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1628 PMAP_COUNT(clear_modify);
1629
1630 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1631 if (pv->pv_pmap == NULL) {
1632 UVMHIST_LOG(pmapexechist,
1633 "pg %p (pa %#"PRIxPADDR"): %s",
1634 pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1635 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1636 PMAP_COUNT(exec_uncached_clear_modify);
1637 } else {
1638 UVMHIST_LOG(pmapexechist,
1639 "pg %p (pa %#"PRIxPADDR"): %s",
1640 pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1641 pmap_page_syncicache(pg);
1642 PMAP_COUNT(exec_synced_clear_modify);
1643 }
1644 }
1645 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1646 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1647 return false;
1648 }
1649 if (pv->pv_pmap == NULL) {
1650 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1651 return true;
1652 }
1653
1654 /*
1655 * remove write access from any pages that are dirty
1656 * so we can tell if they are written to again later.
1657 * flush the VAC first if there is one.
1658 */
1659 kpreempt_disable();
1660 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1661 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1662 pmap_pvlist_check(mdpg);
1663 for (; pv != NULL; pv = pv_next) {
1664 pmap_t pmap = pv->pv_pmap;
1665 vaddr_t va = trunc_page(pv->pv_va);
1666
1667 pv_next = pv->pv_next;
1668 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1669 if (pv->pv_va & PV_KENTER)
1670 continue;
1671 #endif
1672 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1673 KASSERT(ptep);
1674 pt_entry_t pte = pte_prot_nowrite(*ptep);
1675 if (*ptep == pte) {
1676 continue;
1677 }
1678 KASSERT(pte_valid_p(pte));
1679 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1680 pmap_md_tlb_miss_lock_enter();
1681 *ptep = pte;
1682 pmap_tlb_invalidate_addr(pmap, va);
1683 pmap_md_tlb_miss_lock_exit();
1684 pmap_update(pmap);
1685 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1686 /*
1687 * The list changed! So restart from the beginning.
1688 */
1689 pv_next = &mdpg->mdpg_first;
1690 pmap_pvlist_check(mdpg);
1691 }
1692 }
1693 pmap_pvlist_check(mdpg);
1694 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1695 kpreempt_enable();
1696
1697 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1698 return true;
1699 }
1700
1701 /*
1702 * pmap_is_modified:
1703 *
1704 * Return whether or not the specified physical page is modified
1705 * by any physical maps.
1706 */
1707 bool
1708 pmap_is_modified(struct vm_page *pg)
1709 {
1710 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1711 }
1712
1713 /*
1714 * pmap_set_modified:
1715 *
1716 * Sets the page modified reference bit for the specified page.
1717 */
1718 void
1719 pmap_set_modified(paddr_t pa)
1720 {
1721 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1722 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1723 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1724 }
1725
1726 /******************** pv_entry management ********************/
1727
1728 static void
1729 pmap_pvlist_check(struct vm_page_md *mdpg)
1730 {
1731 #ifdef DEBUG
1732 pv_entry_t pv = &mdpg->mdpg_first;
1733 if (pv->pv_pmap != NULL) {
1734 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1735 const u_int colormask = uvmexp.colormask;
1736 u_int colors = 0;
1737 #endif
1738 for (; pv != NULL; pv = pv->pv_next) {
1739 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1740 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1741 colors |= __BIT(atop(pv->pv_va) & colormask);
1742 #endif
1743 }
1744 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1745 // Assert there if there more than 1 color mapped, that they
1746 // are uncached.
1747 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1748 || colors == 0 || (colors & (colors-1)) == 0
1749 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1750 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1751 #endif
1752 }
1753 #endif /* DEBUG */
1754 }
1755
1756 /*
1757 * Enter the pmap and virtual address into the
1758 * physical to virtual map table.
1759 */
1760 void
1761 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1762 u_int flags)
1763 {
1764 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1765 pv_entry_t pv, npv, apv;
1766 #ifdef UVMHIST
1767 bool first = false;
1768 #endif
1769
1770 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1771 UVMHIST_LOG(pmaphist,
1772 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1773 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1774 UVMHIST_LOG(pmaphist, "nptep=%p (%#"PRIxPTE"))",
1775 nptep, pte_value(*nptep), 0, 0);
1776
1777 KASSERT(kpreempt_disabled());
1778 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1779 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1780 "va %#"PRIxVADDR, va);
1781
1782 apv = NULL;
1783 VM_PAGEMD_PVLIST_LOCK(mdpg);
1784 again:
1785 pv = &mdpg->mdpg_first;
1786 pmap_pvlist_check(mdpg);
1787 if (pv->pv_pmap == NULL) {
1788 KASSERT(pv->pv_next == NULL);
1789 /*
1790 * No entries yet, use header as the first entry
1791 */
1792 PMAP_COUNT(primary_mappings);
1793 PMAP_COUNT(mappings);
1794 #ifdef UVMHIST
1795 first = true;
1796 #endif
1797 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1798 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1799 // If the new mapping has an incompatible color the last
1800 // mapping of this page, clean the page before using it.
1801 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1802 pmap_md_vca_clean(pg, PMAP_WBINV);
1803 }
1804 #endif
1805 pv->pv_pmap = pmap;
1806 pv->pv_va = va | flags;
1807 } else {
1808 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1809 if (pmap_md_vca_add(pg, va, nptep)) {
1810 goto again;
1811 }
1812 #endif
1813
1814 /*
1815 * There is at least one other VA mapping this page.
1816 * Place this entry after the header.
1817 *
1818 * Note: the entry may already be in the table if
1819 * we are only changing the protection bits.
1820 */
1821
1822 #ifdef PARANOIADIAG
1823 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1824 #endif
1825 for (npv = pv; npv; npv = npv->pv_next) {
1826 if (pmap == npv->pv_pmap
1827 && va == trunc_page(npv->pv_va)) {
1828 #ifdef PARANOIADIAG
1829 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1830 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1831 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1832 printf("%s: found va %#"PRIxVADDR
1833 " pa %#"PRIxPADDR
1834 " in pv_table but != %#"PRIxPTE"\n",
1835 __func__, va, pa, pte_value(pte));
1836 #endif
1837 PMAP_COUNT(remappings);
1838 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1839 if (__predict_false(apv != NULL))
1840 pmap_pv_free(apv);
1841
1842 UVMHIST_LOG(pmaphist, " <-- done pv=%p%s",
1843 pv, " (reused)", 0, 0);
1844 return;
1845 }
1846 }
1847 if (__predict_true(apv == NULL)) {
1848 /*
1849 * To allocate a PV, we have to release the PVLIST lock
1850 * so get the page generation. We allocate the PV, and
1851 * then reacquire the lock.
1852 */
1853 pmap_pvlist_check(mdpg);
1854 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1855
1856 apv = (pv_entry_t)pmap_pv_alloc();
1857 if (apv == NULL)
1858 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1859
1860 /*
1861 * If the generation has changed, then someone else
1862 * tinkered with this page so we should start over.
1863 */
1864 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1865 goto again;
1866 }
1867 npv = apv;
1868 apv = NULL;
1869 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1870 /*
1871 * If need to deal with virtual cache aliases, keep mappings
1872 * in the kernel pmap at the head of the list. This allows
1873 * the VCA code to easily use them for cache operations if
1874 * present.
1875 */
1876 pmap_t kpmap = pmap_kernel();
1877 if (pmap != kpmap) {
1878 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1879 pv = pv->pv_next;
1880 }
1881 }
1882 #endif
1883 npv->pv_va = va | flags;
1884 npv->pv_pmap = pmap;
1885 npv->pv_next = pv->pv_next;
1886 pv->pv_next = npv;
1887 PMAP_COUNT(mappings);
1888 }
1889 pmap_pvlist_check(mdpg);
1890 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1891 if (__predict_false(apv != NULL))
1892 pmap_pv_free(apv);
1893
1894 UVMHIST_LOG(pmaphist, " <-- done pv=%p%s",
1895 pv, first ? " (first pv)" : "",0,0);
1896 }
1897
1898 /*
1899 * Remove a physical to virtual address translation.
1900 * If cache was inhibited on this page, and there are no more cache
1901 * conflicts, restore caching.
1902 * Flush the cache if the last page is removed (should always be cached
1903 * at this point).
1904 */
1905 void
1906 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1907 {
1908 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1909 pv_entry_t pv, npv;
1910 bool last;
1911
1912 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1913 UVMHIST_LOG(pmaphist,
1914 "(pmap=%p, va=%#"PRIxVADDR", pg=%p (pa %#"PRIxPADDR")",
1915 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1916 UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0, 0, 0);
1917
1918 KASSERT(kpreempt_disabled());
1919 KASSERT((va & PAGE_MASK) == 0);
1920 pv = &mdpg->mdpg_first;
1921
1922 VM_PAGEMD_PVLIST_LOCK(mdpg);
1923 pmap_pvlist_check(mdpg);
1924
1925 /*
1926 * If it is the first entry on the list, it is actually
1927 * in the header and we must copy the following entry up
1928 * to the header. Otherwise we must search the list for
1929 * the entry. In either case we free the now unused entry.
1930 */
1931
1932 last = false;
1933 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1934 npv = pv->pv_next;
1935 if (npv) {
1936 *pv = *npv;
1937 KASSERT(pv->pv_pmap != NULL);
1938 } else {
1939 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1940 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1941 #endif
1942 pv->pv_pmap = NULL;
1943 last = true; /* Last mapping removed */
1944 }
1945 PMAP_COUNT(remove_pvfirst);
1946 } else {
1947 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1948 PMAP_COUNT(remove_pvsearch);
1949 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1950 break;
1951 }
1952 if (npv) {
1953 pv->pv_next = npv->pv_next;
1954 }
1955 }
1956
1957 pmap_pvlist_check(mdpg);
1958 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1959
1960 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1961 pmap_md_vca_remove(pg, va, dirty, last);
1962 #endif
1963
1964 /*
1965 * Free the pv_entry if needed.
1966 */
1967 if (npv)
1968 pmap_pv_free(npv);
1969 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1970 if (last) {
1971 /*
1972 * If this was the page's last mapping, we no longer
1973 * care about its execness.
1974 */
1975 UVMHIST_LOG(pmapexechist,
1976 "pg %p (pa %#"PRIxPADDR")%s: %s",
1977 pg, VM_PAGE_TO_PHYS(pg),
1978 last ? " [last mapping]" : "",
1979 "execpage cleared");
1980 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1981 PMAP_COUNT(exec_uncached_remove);
1982 } else {
1983 /*
1984 * Someone still has it mapped as an executable page
1985 * so we must sync it.
1986 */
1987 UVMHIST_LOG(pmapexechist,
1988 "pg %p (pa %#"PRIxPADDR")%s: %s",
1989 pg, VM_PAGE_TO_PHYS(pg),
1990 last ? " [last mapping]" : "",
1991 "performed syncicache");
1992 pmap_page_syncicache(pg);
1993 PMAP_COUNT(exec_synced_remove);
1994 }
1995 }
1996
1997 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1998 }
1999
2000 #if defined(MULTIPROCESSOR)
2001 struct pmap_pvlist_info {
2002 kmutex_t *pli_locks[PAGE_SIZE / 32];
2003 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2004 volatile u_int pli_lock_index;
2005 u_int pli_lock_mask;
2006 } pmap_pvlist_info;
2007
2008 void
2009 pmap_pvlist_lock_init(size_t cache_line_size)
2010 {
2011 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2012 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2013 vaddr_t lock_va = lock_page;
2014 if (sizeof(kmutex_t) > cache_line_size) {
2015 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2016 }
2017 const size_t nlocks = PAGE_SIZE / cache_line_size;
2018 KASSERT((nlocks & (nlocks - 1)) == 0);
2019 /*
2020 * Now divide the page into a number of mutexes, one per cacheline.
2021 */
2022 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2023 kmutex_t * const lock = (kmutex_t *)lock_va;
2024 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2025 pli->pli_locks[i] = lock;
2026 }
2027 pli->pli_lock_mask = nlocks - 1;
2028 }
2029
2030 kmutex_t *
2031 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2032 {
2033 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2034 kmutex_t *lock = mdpg->mdpg_lock;
2035
2036 /*
2037 * Allocate a lock on an as-needed basis. This will hopefully give us
2038 * semi-random distribution not based on page color.
2039 */
2040 if (__predict_false(lock == NULL)) {
2041 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2042 size_t lockid = locknum & pli->pli_lock_mask;
2043 kmutex_t * const new_lock = pli->pli_locks[lockid];
2044 /*
2045 * Set the lock. If some other thread already did, just use
2046 * the one they assigned.
2047 */
2048 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2049 if (lock == NULL) {
2050 lock = new_lock;
2051 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2052 }
2053 }
2054
2055 /*
2056 * Now finally provide the lock.
2057 */
2058 return lock;
2059 }
2060 #else /* !MULTIPROCESSOR */
2061 void
2062 pmap_pvlist_lock_init(size_t cache_line_size)
2063 {
2064 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2065 }
2066
2067 #ifdef MODULAR
2068 kmutex_t *
2069 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2070 {
2071 /*
2072 * We just use a global lock.
2073 */
2074 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2075 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2076 }
2077
2078 /*
2079 * Now finally provide the lock.
2080 */
2081 return mdpg->mdpg_lock;
2082 }
2083 #endif /* MODULAR */
2084 #endif /* !MULTIPROCESSOR */
2085
2086 /*
2087 * pmap_pv_page_alloc:
2088 *
2089 * Allocate a page for the pv_entry pool.
2090 */
2091 void *
2092 pmap_pv_page_alloc(struct pool *pp, int flags)
2093 {
2094 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2095 if (pg == NULL)
2096 return NULL;
2097
2098 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2099 }
2100
2101 /*
2102 * pmap_pv_page_free:
2103 *
2104 * Free a pv_entry pool page.
2105 */
2106 void
2107 pmap_pv_page_free(struct pool *pp, void *v)
2108 {
2109 vaddr_t va = (vaddr_t)v;
2110
2111 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2112 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2113 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2114 KASSERT(pg != NULL);
2115 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2116 kpreempt_disable();
2117 pmap_md_vca_remove(pg, va, true, true);
2118 kpreempt_enable();
2119 #endif
2120 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2121 uvm_pagefree(pg);
2122 }
2123
2124 #ifdef PMAP_PREFER
2125 /*
2126 * Find first virtual address >= *vap that doesn't cause
2127 * a cache alias conflict.
2128 */
2129 void
2130 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2131 {
2132 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2133
2134 PMAP_COUNT(prefer_requests);
2135
2136 prefer_mask |= pmap_md_cache_prefer_mask();
2137
2138 if (prefer_mask) {
2139 vaddr_t va = *vap;
2140 vsize_t d = (foff - va) & prefer_mask;
2141 if (d) {
2142 if (td)
2143 *vap = trunc_page(va - ((-d) & prefer_mask));
2144 else
2145 *vap = round_page(va + d);
2146 PMAP_COUNT(prefer_adjustments);
2147 }
2148 }
2149 }
2150 #endif /* PMAP_PREFER */
2151
2152 #ifdef PMAP_MAP_POOLPAGE
2153 vaddr_t
2154 pmap_map_poolpage(paddr_t pa)
2155 {
2156 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2157 KASSERT(pg);
2158 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2159 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2160
2161 return pmap_md_map_poolpage(pa, NBPG);
2162 }
2163
2164 paddr_t
2165 pmap_unmap_poolpage(vaddr_t va)
2166 {
2167 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2168 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2169
2170 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2171 KASSERT(pg != NULL);
2172 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2173 pmap_md_unmap_poolpage(va, NBPG);
2174
2175 return pa;
2176 }
2177 #endif /* PMAP_MAP_POOLPAGE */
2178