pmap.c revision 1.30 1 /* $NetBSD: pmap.c,v 1.30 2017/04/22 20:20:19 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.30 2017/04/22 20:20:19 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their k0seg addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%p)", pmap, 0, 0, 0);
601
602 return pmap;
603 }
604
605 /*
606 * Retire the given physical map from service.
607 * Should only be called if the map contains
608 * no valid mappings.
609 */
610 void
611 pmap_destroy(pmap_t pmap)
612 {
613 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
614 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
615
616 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
617 PMAP_COUNT(dereference);
618 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
619 return;
620 }
621
622 PMAP_COUNT(destroy);
623 KASSERT(pmap->pm_count == 0);
624 kpreempt_disable();
625 pmap_md_tlb_miss_lock_enter();
626 pmap_tlb_asid_release_all(pmap);
627 pmap_segtab_destroy(pmap, NULL, 0);
628 pmap_md_tlb_miss_lock_exit();
629
630 #ifdef MULTIPROCESSOR
631 kcpuset_destroy(pmap->pm_active);
632 kcpuset_destroy(pmap->pm_onproc);
633 pmap->pm_active = NULL;
634 pmap->pm_onproc = NULL;
635 #endif
636
637 pool_put(&pmap_pmap_pool, pmap);
638 kpreempt_enable();
639
640 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
641 }
642
643 /*
644 * Add a reference to the specified pmap.
645 */
646 void
647 pmap_reference(pmap_t pmap)
648 {
649 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
650 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
651 PMAP_COUNT(reference);
652
653 if (pmap != NULL) {
654 atomic_inc_uint(&pmap->pm_count);
655 }
656
657 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
658 }
659
660 /*
661 * Make a new pmap (vmspace) active for the given process.
662 */
663 void
664 pmap_activate(struct lwp *l)
665 {
666 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
667 #define LNAME(l) \
668 ((l)->l_name ? (l)->l_name : (l)->l_proc->p_comm)
669
670 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
671 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
672 PMAP_COUNT(activate);
673
674 kpreempt_disable();
675 pmap_md_tlb_miss_lock_enter();
676 pmap_tlb_asid_acquire(pmap, l);
677 if (l == curlwp) {
678 pmap_segtab_activate(pmap, l);
679 }
680 pmap_md_tlb_miss_lock_exit();
681 kpreempt_enable();
682
683 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
684 0, 0);
685 }
686
687 /*
688 * Remove this page from all physical maps in which it resides.
689 * Reflects back modify bits to the pager.
690 */
691 void
692 pmap_page_remove(struct vm_page *pg)
693 {
694 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
695
696 kpreempt_disable();
697 VM_PAGEMD_PVLIST_LOCK(mdpg);
698 pmap_pvlist_check(mdpg);
699
700 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
701
702 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR") [page removed]: "
703 "execpage cleared", pg, VM_PAGE_TO_PHYS(pg),
704 0, 0);
705 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
706 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
707 #else
708 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
709 #endif
710 PMAP_COUNT(exec_uncached_remove);
711
712 pv_entry_t pv = &mdpg->mdpg_first;
713 if (pv->pv_pmap == NULL) {
714 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
715 kpreempt_enable();
716 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
717 return;
718 }
719
720 pv_entry_t npv;
721 pv_entry_t pvp = NULL;
722
723 for (; pv != NULL; pv = npv) {
724 npv = pv->pv_next;
725 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
726 if (pv->pv_va & PV_KENTER) {
727 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"
728 PRIxVADDR" skip", pv, pv->pv_pmap, pv->pv_va, 0);
729
730 KASSERT(pv->pv_pmap == pmap_kernel());
731
732 /* Assume no more - it'll get fixed if there are */
733 pv->pv_next = NULL;
734
735 /*
736 * pvp is non-null when we already have a PV_KENTER
737 * pv in pvh_first; otherwise we haven't seen a
738 * PV_KENTER pv and we need to copy this one to
739 * pvh_first
740 */
741 if (pvp) {
742 /*
743 * The previous PV_KENTER pv needs to point to
744 * this PV_KENTER pv
745 */
746 pvp->pv_next = pv;
747 } else {
748 pv_entry_t fpv = &mdpg->mdpg_first;
749 *fpv = *pv;
750 KASSERT(fpv->pv_pmap == pmap_kernel());
751 }
752 pvp = pv;
753 continue;
754 }
755 #endif
756 const pmap_t pmap = pv->pv_pmap;
757 vaddr_t va = trunc_page(pv->pv_va);
758 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
759 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
760 pmap_limits.virtual_end);
761 pt_entry_t pte = *ptep;
762 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"PRIxVADDR
763 " pte %#"PRIxPTE, pv, pmap, va, pte_value(pte));
764 if (!pte_valid_p(pte))
765 continue;
766 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
767 if (is_kernel_pmap_p) {
768 PMAP_COUNT(remove_kernel_pages);
769 } else {
770 PMAP_COUNT(remove_user_pages);
771 }
772 if (pte_wired_p(pte))
773 pmap->pm_stats.wired_count--;
774 pmap->pm_stats.resident_count--;
775
776 pmap_md_tlb_miss_lock_enter();
777 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
778 *ptep = npte;
779 /*
780 * Flush the TLB for the given address.
781 */
782 pmap_tlb_invalidate_addr(pmap, va);
783 pmap_md_tlb_miss_lock_exit();
784
785 /*
786 * non-null means this is a non-pvh_first pv, so we should
787 * free it.
788 */
789 if (pvp) {
790 KASSERT(pvp->pv_pmap == pmap_kernel());
791 KASSERT(pvp->pv_next == NULL);
792 pmap_pv_free(pv);
793 } else {
794 pv->pv_pmap = NULL;
795 pv->pv_next = NULL;
796 }
797 }
798
799 pmap_pvlist_check(mdpg);
800 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
801 kpreempt_enable();
802
803 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
804 }
805
806
807 /*
808 * Make a previously active pmap (vmspace) inactive.
809 */
810 void
811 pmap_deactivate(struct lwp *l)
812 {
813 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
814
815 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
816 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
817 PMAP_COUNT(deactivate);
818
819 kpreempt_disable();
820 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
821 pmap_md_tlb_miss_lock_enter();
822 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
823 #ifdef _LP64
824 curcpu()->ci_pmap_user_seg0tab = NULL;
825 #endif
826 pmap_tlb_asid_deactivate(pmap);
827 pmap_md_tlb_miss_lock_exit();
828 kpreempt_enable();
829
830 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
831 0, 0);
832 }
833
834 void
835 pmap_update(struct pmap *pmap)
836 {
837 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
838 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
839 PMAP_COUNT(update);
840
841 kpreempt_disable();
842 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
843 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
844 if (pending && pmap_tlb_shootdown_bystanders(pmap))
845 PMAP_COUNT(shootdown_ipis);
846 #endif
847 pmap_md_tlb_miss_lock_enter();
848 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
849 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
850 #endif /* DEBUG */
851
852 /*
853 * If pmap_remove_all was called, we deactivated ourselves and nuked
854 * our ASID. Now we have to reactivate ourselves.
855 */
856 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
857 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
858 pmap_tlb_asid_acquire(pmap, curlwp);
859 pmap_segtab_activate(pmap, curlwp);
860 }
861 pmap_md_tlb_miss_lock_exit();
862 kpreempt_enable();
863
864 UVMHIST_LOG(pmaphist, " <-- done (%c)",
865 (pmap == pmap_kernel() ? 'k' : 'u'), 0, 0, 0);
866 }
867
868 /*
869 * Remove the given range of addresses from the specified map.
870 *
871 * It is assumed that the start and end are properly
872 * rounded to the page size.
873 */
874
875 static bool
876 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
877 uintptr_t flags)
878 {
879 const pt_entry_t npte = flags;
880 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
881
882 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
883 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR,
884 pmap, (is_kernel_pmap_p ? 'k' : 'u'), sva, eva);
885 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
886 ptep, flags, 0, 0);
887
888 KASSERT(kpreempt_disabled());
889
890 for (; sva < eva; sva += NBPG, ptep++) {
891 const pt_entry_t pte = *ptep;
892 if (!pte_valid_p(pte))
893 continue;
894 if (is_kernel_pmap_p) {
895 PMAP_COUNT(remove_kernel_pages);
896 } else {
897 PMAP_COUNT(remove_user_pages);
898 }
899 if (pte_wired_p(pte))
900 pmap->pm_stats.wired_count--;
901 pmap->pm_stats.resident_count--;
902 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
903 if (__predict_true(pg != NULL)) {
904 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
905 }
906 pmap_md_tlb_miss_lock_enter();
907 *ptep = npte;
908 /*
909 * Flush the TLB for the given address.
910 */
911 pmap_tlb_invalidate_addr(pmap, sva);
912 pmap_md_tlb_miss_lock_exit();
913 }
914
915 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
916
917 return false;
918 }
919
920 void
921 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
922 {
923 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
924 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
925
926 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
927 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
928 pmap, sva, eva, 0);
929
930 if (is_kernel_pmap_p) {
931 PMAP_COUNT(remove_kernel_calls);
932 } else {
933 PMAP_COUNT(remove_user_calls);
934 }
935 #ifdef PMAP_FAULTINFO
936 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
937 curpcb->pcb_faultinfo.pfi_repeats = 0;
938 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
939 #endif
940 kpreempt_disable();
941 pmap_addr_range_check(pmap, sva, eva, __func__);
942 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
943 kpreempt_enable();
944
945 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
946 }
947
948 /*
949 * pmap_page_protect:
950 *
951 * Lower the permission for all mappings to a given page.
952 */
953 void
954 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
955 {
956 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
957 pv_entry_t pv;
958 vaddr_t va;
959
960 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
961 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
962 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
963 PMAP_COUNT(page_protect);
964
965 switch (prot) {
966 case VM_PROT_READ|VM_PROT_WRITE:
967 case VM_PROT_ALL:
968 break;
969
970 /* copy_on_write */
971 case VM_PROT_READ:
972 case VM_PROT_READ|VM_PROT_EXECUTE:
973 pv = &mdpg->mdpg_first;
974 kpreempt_disable();
975 VM_PAGEMD_PVLIST_READLOCK(mdpg);
976 pmap_pvlist_check(mdpg);
977 /*
978 * Loop over all current mappings setting/clearing as apropos.
979 */
980 if (pv->pv_pmap != NULL) {
981 while (pv != NULL) {
982 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
983 if (pv->pv_va & PV_KENTER) {
984 pv = pv->pv_next;
985 continue;
986 }
987 #endif
988 const pmap_t pmap = pv->pv_pmap;
989 va = trunc_page(pv->pv_va);
990 const uintptr_t gen =
991 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
992 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
993 KASSERT(pv->pv_pmap == pmap);
994 pmap_update(pmap);
995 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
996 pv = &mdpg->mdpg_first;
997 } else {
998 pv = pv->pv_next;
999 }
1000 pmap_pvlist_check(mdpg);
1001 }
1002 }
1003 pmap_pvlist_check(mdpg);
1004 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1005 kpreempt_enable();
1006 break;
1007
1008 /* remove_all */
1009 default:
1010 pmap_page_remove(pg);
1011 }
1012
1013 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1014 }
1015
1016 static bool
1017 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1018 uintptr_t flags)
1019 {
1020 const vm_prot_t prot = (flags & VM_PROT_ALL);
1021
1022 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1023 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR")",
1024 pmap, (pmap == pmap_kernel() ? 'k' : 'u'), sva, eva);
1025 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
1026 ptep, flags, 0, 0);
1027
1028 KASSERT(kpreempt_disabled());
1029 /*
1030 * Change protection on every valid mapping within this segment.
1031 */
1032 for (; sva < eva; sva += NBPG, ptep++) {
1033 pt_entry_t pte = *ptep;
1034 if (!pte_valid_p(pte))
1035 continue;
1036 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1037 if (pg != NULL && pte_modified_p(pte)) {
1038 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1039 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1040 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1041 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1042 if (VM_PAGEMD_CACHED_P(mdpg)) {
1043 #endif
1044 UVMHIST_LOG(pmapexechist,
1045 "pg %p (pa %#"PRIxPADDR"): "
1046 "syncicached performed",
1047 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1048 pmap_page_syncicache(pg);
1049 PMAP_COUNT(exec_synced_protect);
1050 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1051 }
1052 #endif
1053 }
1054 }
1055 pte = pte_prot_downgrade(pte, prot);
1056 if (*ptep != pte) {
1057 pmap_md_tlb_miss_lock_enter();
1058 *ptep = pte;
1059 /*
1060 * Update the TLB if needed.
1061 */
1062 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1063 pmap_md_tlb_miss_lock_exit();
1064 }
1065 }
1066
1067 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1068
1069 return false;
1070 }
1071
1072 /*
1073 * Set the physical protection on the
1074 * specified range of this map as requested.
1075 */
1076 void
1077 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1078 {
1079 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1080 UVMHIST_LOG(pmaphist,
1081 "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR", prot=%u)",
1082 pmap, sva, eva, prot);
1083 PMAP_COUNT(protect);
1084
1085 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1086 pmap_remove(pmap, sva, eva);
1087 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1088 return;
1089 }
1090
1091 /*
1092 * Change protection on every valid mapping within this segment.
1093 */
1094 kpreempt_disable();
1095 pmap_addr_range_check(pmap, sva, eva, __func__);
1096 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1097 kpreempt_enable();
1098
1099 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1100 }
1101
1102 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1103 /*
1104 * pmap_page_cache:
1105 *
1106 * Change all mappings of a managed page to cached/uncached.
1107 */
1108 void
1109 pmap_page_cache(struct vm_page *pg, bool cached)
1110 {
1111 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1112
1113 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1114 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%d)",
1115 pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1116
1117 KASSERT(kpreempt_disabled());
1118 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1119
1120 if (cached) {
1121 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1122 PMAP_COUNT(page_cache_restorations);
1123 } else {
1124 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1125 PMAP_COUNT(page_cache_evictions);
1126 }
1127
1128 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1129 pmap_t pmap = pv->pv_pmap;
1130 vaddr_t va = trunc_page(pv->pv_va);
1131
1132 KASSERT(pmap != NULL);
1133 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1134 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1135 if (ptep == NULL)
1136 continue;
1137 pt_entry_t pte = *ptep;
1138 if (pte_valid_p(pte)) {
1139 pte = pte_cached_change(pte, cached);
1140 pmap_md_tlb_miss_lock_enter();
1141 *ptep = pte;
1142 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1143 pmap_md_tlb_miss_lock_exit();
1144 }
1145 }
1146
1147 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1148 }
1149 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1150
1151 /*
1152 * Insert the given physical page (p) at
1153 * the specified virtual address (v) in the
1154 * target physical map with the protection requested.
1155 *
1156 * If specified, the page will be wired down, meaning
1157 * that the related pte can not be reclaimed.
1158 *
1159 * NB: This is the only routine which MAY NOT lazy-evaluate
1160 * or lose information. That is, this routine must actually
1161 * insert this page into the given map NOW.
1162 */
1163 int
1164 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1165 {
1166 const bool wired = (flags & PMAP_WIRED) != 0;
1167 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1168 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1169 #ifdef UVMHIST
1170 struct kern_history * const histp =
1171 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1172 #endif
1173
1174 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1175 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
1176 pmap, va, pa, 0);
1177 UVMHIST_LOG(*histp, "prot=%#x flags=%#x)", prot, flags, 0, 0);
1178
1179 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1180 if (is_kernel_pmap_p) {
1181 PMAP_COUNT(kernel_mappings);
1182 if (!good_color)
1183 PMAP_COUNT(kernel_mappings_bad);
1184 } else {
1185 PMAP_COUNT(user_mappings);
1186 if (!good_color)
1187 PMAP_COUNT(user_mappings_bad);
1188 }
1189 pmap_addr_range_check(pmap, va, va, __func__);
1190
1191 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1192 VM_PROT_READ, prot);
1193
1194 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1195 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1196
1197 if (pg) {
1198 /* Set page referenced/modified status based on flags */
1199 if (flags & VM_PROT_WRITE) {
1200 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1201 } else if (flags & VM_PROT_ALL) {
1202 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1203 }
1204
1205 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1206 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1207 flags |= PMAP_NOCACHE;
1208 PMAP_COUNT(uncached_mappings);
1209 }
1210 #endif
1211
1212 PMAP_COUNT(managed_mappings);
1213 } else {
1214 /*
1215 * Assumption: if it is not part of our managed memory
1216 * then it must be device memory which may be volatile.
1217 */
1218 if ((flags & PMAP_CACHE_MASK) == 0)
1219 flags |= PMAP_NOCACHE;
1220 PMAP_COUNT(unmanaged_mappings);
1221 }
1222
1223 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1224 is_kernel_pmap_p);
1225
1226 kpreempt_disable();
1227
1228 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1229 if (__predict_false(ptep == NULL)) {
1230 kpreempt_enable();
1231 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1232 return ENOMEM;
1233 }
1234 const pt_entry_t opte = *ptep;
1235 const bool resident = pte_valid_p(opte);
1236 bool remap = false;
1237 if (resident) {
1238 if (pte_to_paddr(opte) != pa) {
1239 KASSERT(!is_kernel_pmap_p);
1240 const pt_entry_t rpte = pte_nv_entry(false);
1241
1242 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1243 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1244 rpte);
1245 PMAP_COUNT(user_mappings_changed);
1246 remap = true;
1247 }
1248 update_flags |= PMAP_TLB_NEED_IPI;
1249 }
1250
1251 if (!resident || remap) {
1252 pmap->pm_stats.resident_count++;
1253 }
1254
1255 /* Done after case that may sleep/return. */
1256 if (pg)
1257 pmap_enter_pv(pmap, va, pg, &npte, 0);
1258
1259 /*
1260 * Now validate mapping with desired protection/wiring.
1261 * Assume uniform modified and referenced status for all
1262 * MIPS pages in a MACH page.
1263 */
1264 if (wired) {
1265 pmap->pm_stats.wired_count++;
1266 npte = pte_wire_entry(npte);
1267 }
1268
1269 UVMHIST_LOG(*histp, "new pte %#"PRIxPTE" (pa %#"PRIxPADDR")",
1270 pte_value(npte), pa, 0, 0);
1271
1272 KASSERT(pte_valid_p(npte));
1273
1274 pmap_md_tlb_miss_lock_enter();
1275 *ptep = npte;
1276 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1277 pmap_md_tlb_miss_lock_exit();
1278 kpreempt_enable();
1279
1280 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1281 KASSERT(mdpg != NULL);
1282 PMAP_COUNT(exec_mappings);
1283 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1284 if (!pte_deferred_exec_p(npte)) {
1285 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1286 " pg %p: immediate syncicache",
1287 va, pg, 0, 0);
1288 pmap_page_syncicache(pg);
1289 pmap_page_set_attributes(mdpg,
1290 VM_PAGEMD_EXECPAGE);
1291 PMAP_COUNT(exec_synced_mappings);
1292 } else {
1293 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1294 " pg %p: defer syncicache: pte %#x",
1295 va, pg, npte, 0);
1296 }
1297 } else {
1298 UVMHIST_LOG(*histp,
1299 "va=%#"PRIxVADDR" pg %p: no syncicache cached %d",
1300 va, pg, "no", pte_cached_p(npte));
1301 }
1302 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1303 KASSERT(mdpg != NULL);
1304 KASSERT(prot & VM_PROT_WRITE);
1305 PMAP_COUNT(exec_mappings);
1306 pmap_page_syncicache(pg);
1307 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1308 UVMHIST_LOG(*histp,
1309 "va=%#"PRIxVADDR" pg %p: immediate syncicache (writeable)",
1310 va, pg, 0, 0);
1311 }
1312
1313 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1314 return 0;
1315 }
1316
1317 void
1318 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1319 {
1320 pmap_t pmap = pmap_kernel();
1321 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1322 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1323
1324 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1325 UVMHIST_LOG(pmaphist,
1326 "(va=%#"PRIxVADDR", pa=%#"PRIxPADDR", prot=%u, flags=%#x)",
1327 va, pa, prot, flags);
1328 PMAP_COUNT(kenter_pa);
1329
1330 if (mdpg == NULL) {
1331 PMAP_COUNT(kenter_pa_unmanaged);
1332 if ((flags & PMAP_CACHE_MASK) == 0)
1333 flags |= PMAP_NOCACHE;
1334 } else {
1335 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1336 PMAP_COUNT(kenter_pa_bad);
1337 }
1338
1339 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1340 kpreempt_disable();
1341 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1342 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1343 pmap_limits.virtual_end);
1344 KASSERT(!pte_valid_p(*ptep));
1345
1346 /*
1347 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1348 */
1349 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1350 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1351 && pmap_md_virtual_cache_aliasing_p()) {
1352 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1353 }
1354 #endif
1355
1356 /*
1357 * We have the option to force this mapping into the TLB but we
1358 * don't. Instead let the next reference to the page do it.
1359 */
1360 pmap_md_tlb_miss_lock_enter();
1361 *ptep = npte;
1362 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1363 pmap_md_tlb_miss_lock_exit();
1364 kpreempt_enable();
1365 #if DEBUG > 1
1366 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1367 if (((long *)va)[i] != ((long *)pa)[i])
1368 panic("%s: contents (%lx) of va %#"PRIxVADDR
1369 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1370 ((long *)va)[i], va, ((long *)pa)[i], pa);
1371 }
1372 #endif
1373
1374 UVMHIST_LOG(pmaphist, " <-- done (ptep=%p)", ptep, 0, 0, 0);
1375 }
1376
1377 /*
1378 * Remove the given range of addresses from the kernel map.
1379 *
1380 * It is assumed that the start and end are properly
1381 * rounded to the page size.
1382 */
1383
1384 static bool
1385 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1386 uintptr_t flags)
1387 {
1388 const pt_entry_t new_pte = pte_nv_entry(true);
1389
1390 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1391 UVMHIST_LOG(pmaphist,
1392 "(pmap=%p, sva=%#"PRIxVADDR", eva=%#"PRIxVADDR", ptep=%p)",
1393 pmap, sva, eva, ptep);
1394
1395 KASSERT(kpreempt_disabled());
1396
1397 for (; sva < eva; sva += NBPG, ptep++) {
1398 pt_entry_t pte = *ptep;
1399 if (!pte_valid_p(pte))
1400 continue;
1401
1402 PMAP_COUNT(kremove_pages);
1403 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1404 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1405 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1406 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1407 }
1408 #endif
1409
1410 pmap_md_tlb_miss_lock_enter();
1411 *ptep = new_pte;
1412 pmap_tlb_invalidate_addr(pmap, sva);
1413 pmap_md_tlb_miss_lock_exit();
1414 }
1415
1416 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1417
1418 return false;
1419 }
1420
1421 void
1422 pmap_kremove(vaddr_t va, vsize_t len)
1423 {
1424 const vaddr_t sva = trunc_page(va);
1425 const vaddr_t eva = round_page(va + len);
1426
1427 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1428 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR", len=%#"PRIxVSIZE")",
1429 va, len, 0, 0);
1430
1431 kpreempt_disable();
1432 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1433 kpreempt_enable();
1434
1435 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1436 }
1437
1438 void
1439 pmap_remove_all(struct pmap *pmap)
1440 {
1441 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1442 UVMHIST_LOG(pmaphist, "(pm=%p)", pmap, 0, 0, 0);
1443
1444 KASSERT(pmap != pmap_kernel());
1445
1446 kpreempt_disable();
1447 /*
1448 * Free all of our ASIDs which means we can skip doing all the
1449 * tlb_invalidate_addrs().
1450 */
1451 pmap_md_tlb_miss_lock_enter();
1452 #ifdef MULTIPROCESSOR
1453 // This should be the last CPU with this pmap onproc
1454 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1455 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1456 #endif
1457 pmap_tlb_asid_deactivate(pmap);
1458 #ifdef MULTIPROCESSOR
1459 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1460 #endif
1461 pmap_tlb_asid_release_all(pmap);
1462 pmap_md_tlb_miss_lock_exit();
1463 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1464
1465 #ifdef PMAP_FAULTINFO
1466 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1467 curpcb->pcb_faultinfo.pfi_repeats = 0;
1468 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1469 #endif
1470 kpreempt_enable();
1471
1472 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1473 }
1474
1475 /*
1476 * Routine: pmap_unwire
1477 * Function: Clear the wired attribute for a map/virtual-address
1478 * pair.
1479 * In/out conditions:
1480 * The mapping must already exist in the pmap.
1481 */
1482 void
1483 pmap_unwire(pmap_t pmap, vaddr_t va)
1484 {
1485 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1486 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR")", pmap, va, 0, 0);
1487 PMAP_COUNT(unwire);
1488
1489 /*
1490 * Don't need to flush the TLB since PG_WIRED is only in software.
1491 */
1492 kpreempt_disable();
1493 pmap_addr_range_check(pmap, va, va, __func__);
1494 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1495 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1496 pmap, va);
1497 pt_entry_t pte = *ptep;
1498 KASSERTMSG(pte_valid_p(pte),
1499 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1500 pmap, va, pte_value(pte), ptep);
1501
1502 if (pte_wired_p(pte)) {
1503 pmap_md_tlb_miss_lock_enter();
1504 *ptep = pte_unwire_entry(pte);
1505 pmap_md_tlb_miss_lock_exit();
1506 pmap->pm_stats.wired_count--;
1507 }
1508 #ifdef DIAGNOSTIC
1509 else {
1510 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1511 __func__, pmap, va);
1512 }
1513 #endif
1514 kpreempt_enable();
1515
1516 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1517 }
1518
1519 /*
1520 * Routine: pmap_extract
1521 * Function:
1522 * Extract the physical page address associated
1523 * with the given map/virtual_address pair.
1524 */
1525 bool
1526 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1527 {
1528 paddr_t pa;
1529
1530 if (pmap == pmap_kernel()) {
1531 if (pmap_md_direct_mapped_vaddr_p(va)) {
1532 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1533 goto done;
1534 }
1535 if (pmap_md_io_vaddr_p(va))
1536 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1537
1538 if (va >= pmap_limits.virtual_end)
1539 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1540 __func__, va);
1541 }
1542 kpreempt_disable();
1543 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1544 if (ptep == NULL || !pte_valid_p(*ptep)) {
1545 kpreempt_enable();
1546 return false;
1547 }
1548 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1549 kpreempt_enable();
1550 done:
1551 if (pap != NULL) {
1552 *pap = pa;
1553 }
1554 return true;
1555 }
1556
1557 /*
1558 * Copy the range specified by src_addr/len
1559 * from the source map to the range dst_addr/len
1560 * in the destination map.
1561 *
1562 * This routine is only advisory and need not do anything.
1563 */
1564 void
1565 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1566 vaddr_t src_addr)
1567 {
1568 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1569 PMAP_COUNT(copy);
1570 }
1571
1572 /*
1573 * pmap_clear_reference:
1574 *
1575 * Clear the reference bit on the specified physical page.
1576 */
1577 bool
1578 pmap_clear_reference(struct vm_page *pg)
1579 {
1580 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1581
1582 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1583 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1584 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1585
1586 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1587
1588 UVMHIST_LOG(pmaphist, " <-- wasref %u", rv, 0, 0, 0);
1589
1590 return rv;
1591 }
1592
1593 /*
1594 * pmap_is_referenced:
1595 *
1596 * Return whether or not the specified physical page is referenced
1597 * by any physical maps.
1598 */
1599 bool
1600 pmap_is_referenced(struct vm_page *pg)
1601 {
1602 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1603 }
1604
1605 /*
1606 * Clear the modify bits on the specified physical page.
1607 */
1608 bool
1609 pmap_clear_modify(struct vm_page *pg)
1610 {
1611 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1612 pv_entry_t pv = &mdpg->mdpg_first;
1613 pv_entry_t pv_next;
1614
1615 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1616 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1617 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1618 PMAP_COUNT(clear_modify);
1619
1620 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1621 if (pv->pv_pmap == NULL) {
1622 UVMHIST_LOG(pmapexechist,
1623 "pg %p (pa %#"PRIxPADDR"): execpage cleared",
1624 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1625 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1626 PMAP_COUNT(exec_uncached_clear_modify);
1627 } else {
1628 UVMHIST_LOG(pmapexechist,
1629 "pg %p (pa %#"PRIxPADDR"): syncicache performed",
1630 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1631 pmap_page_syncicache(pg);
1632 PMAP_COUNT(exec_synced_clear_modify);
1633 }
1634 }
1635 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1636 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1637 return false;
1638 }
1639 if (pv->pv_pmap == NULL) {
1640 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1641 return true;
1642 }
1643
1644 /*
1645 * remove write access from any pages that are dirty
1646 * so we can tell if they are written to again later.
1647 * flush the VAC first if there is one.
1648 */
1649 kpreempt_disable();
1650 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1651 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1652 pmap_pvlist_check(mdpg);
1653 for (; pv != NULL; pv = pv_next) {
1654 pmap_t pmap = pv->pv_pmap;
1655 vaddr_t va = trunc_page(pv->pv_va);
1656
1657 pv_next = pv->pv_next;
1658 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1659 if (pv->pv_va & PV_KENTER)
1660 continue;
1661 #endif
1662 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1663 KASSERT(ptep);
1664 pt_entry_t pte = pte_prot_nowrite(*ptep);
1665 if (*ptep == pte) {
1666 continue;
1667 }
1668 KASSERT(pte_valid_p(pte));
1669 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1670 pmap_md_tlb_miss_lock_enter();
1671 *ptep = pte;
1672 pmap_tlb_invalidate_addr(pmap, va);
1673 pmap_md_tlb_miss_lock_exit();
1674 pmap_update(pmap);
1675 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1676 /*
1677 * The list changed! So restart from the beginning.
1678 */
1679 pv_next = &mdpg->mdpg_first;
1680 pmap_pvlist_check(mdpg);
1681 }
1682 }
1683 pmap_pvlist_check(mdpg);
1684 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1685 kpreempt_enable();
1686
1687 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1688 return true;
1689 }
1690
1691 /*
1692 * pmap_is_modified:
1693 *
1694 * Return whether or not the specified physical page is modified
1695 * by any physical maps.
1696 */
1697 bool
1698 pmap_is_modified(struct vm_page *pg)
1699 {
1700 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1701 }
1702
1703 /*
1704 * pmap_set_modified:
1705 *
1706 * Sets the page modified reference bit for the specified page.
1707 */
1708 void
1709 pmap_set_modified(paddr_t pa)
1710 {
1711 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1712 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1713 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1714 }
1715
1716 /******************** pv_entry management ********************/
1717
1718 static void
1719 pmap_pvlist_check(struct vm_page_md *mdpg)
1720 {
1721 #ifdef DEBUG
1722 pv_entry_t pv = &mdpg->mdpg_first;
1723 if (pv->pv_pmap != NULL) {
1724 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1725 const u_int colormask = uvmexp.colormask;
1726 u_int colors = 0;
1727 #endif
1728 for (; pv != NULL; pv = pv->pv_next) {
1729 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1730 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1731 colors |= __BIT(atop(pv->pv_va) & colormask);
1732 #endif
1733 }
1734 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1735 // Assert that if there is more than 1 color mapped, that the
1736 // page is uncached.
1737 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1738 || colors == 0 || (colors & (colors-1)) == 0
1739 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1740 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1741 #endif
1742 }
1743 #endif /* DEBUG */
1744 }
1745
1746 /*
1747 * Enter the pmap and virtual address into the
1748 * physical to virtual map table.
1749 */
1750 void
1751 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1752 u_int flags)
1753 {
1754 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1755 pv_entry_t pv, npv, apv;
1756 #ifdef UVMHIST
1757 bool first = false;
1758 #endif
1759
1760 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1761 UVMHIST_LOG(pmaphist,
1762 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1763 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1764 UVMHIST_LOG(pmaphist, "nptep=%p (%#"PRIxPTE"))",
1765 nptep, pte_value(*nptep), 0, 0);
1766
1767 KASSERT(kpreempt_disabled());
1768 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1769 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1770 "va %#"PRIxVADDR, va);
1771
1772 apv = NULL;
1773 VM_PAGEMD_PVLIST_LOCK(mdpg);
1774 again:
1775 pv = &mdpg->mdpg_first;
1776 pmap_pvlist_check(mdpg);
1777 if (pv->pv_pmap == NULL) {
1778 KASSERT(pv->pv_next == NULL);
1779 /*
1780 * No entries yet, use header as the first entry
1781 */
1782 PMAP_COUNT(primary_mappings);
1783 PMAP_COUNT(mappings);
1784 #ifdef UVMHIST
1785 first = true;
1786 #endif
1787 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1788 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1789 // If the new mapping has an incompatible color the last
1790 // mapping of this page, clean the page before using it.
1791 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1792 pmap_md_vca_clean(pg, PMAP_WBINV);
1793 }
1794 #endif
1795 pv->pv_pmap = pmap;
1796 pv->pv_va = va | flags;
1797 } else {
1798 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1799 if (pmap_md_vca_add(pg, va, nptep)) {
1800 goto again;
1801 }
1802 #endif
1803
1804 /*
1805 * There is at least one other VA mapping this page.
1806 * Place this entry after the header.
1807 *
1808 * Note: the entry may already be in the table if
1809 * we are only changing the protection bits.
1810 */
1811
1812 #ifdef PARANOIADIAG
1813 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1814 #endif
1815 for (npv = pv; npv; npv = npv->pv_next) {
1816 if (pmap == npv->pv_pmap
1817 && va == trunc_page(npv->pv_va)) {
1818 #ifdef PARANOIADIAG
1819 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1820 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1821 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1822 printf("%s: found va %#"PRIxVADDR
1823 " pa %#"PRIxPADDR
1824 " in pv_table but != %#"PRIxPTE"\n",
1825 __func__, va, pa, pte_value(pte));
1826 #endif
1827 PMAP_COUNT(remappings);
1828 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1829 if (__predict_false(apv != NULL))
1830 pmap_pv_free(apv);
1831
1832 UVMHIST_LOG(pmaphist, " <-- done pv=%p (reused)",
1833 pv, 0, 0, 0);
1834 return;
1835 }
1836 }
1837 if (__predict_true(apv == NULL)) {
1838 /*
1839 * To allocate a PV, we have to release the PVLIST lock
1840 * so get the page generation. We allocate the PV, and
1841 * then reacquire the lock.
1842 */
1843 pmap_pvlist_check(mdpg);
1844 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1845
1846 apv = (pv_entry_t)pmap_pv_alloc();
1847 if (apv == NULL)
1848 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1849
1850 /*
1851 * If the generation has changed, then someone else
1852 * tinkered with this page so we should start over.
1853 */
1854 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1855 goto again;
1856 }
1857 npv = apv;
1858 apv = NULL;
1859 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1860 /*
1861 * If need to deal with virtual cache aliases, keep mappings
1862 * in the kernel pmap at the head of the list. This allows
1863 * the VCA code to easily use them for cache operations if
1864 * present.
1865 */
1866 pmap_t kpmap = pmap_kernel();
1867 if (pmap != kpmap) {
1868 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1869 pv = pv->pv_next;
1870 }
1871 }
1872 #endif
1873 npv->pv_va = va | flags;
1874 npv->pv_pmap = pmap;
1875 npv->pv_next = pv->pv_next;
1876 pv->pv_next = npv;
1877 PMAP_COUNT(mappings);
1878 }
1879 pmap_pvlist_check(mdpg);
1880 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1881 if (__predict_false(apv != NULL))
1882 pmap_pv_free(apv);
1883
1884 UVMHIST_LOG(pmaphist, " <-- done pv=%p (first %u)", pv, first, 0, 0);
1885 }
1886
1887 /*
1888 * Remove a physical to virtual address translation.
1889 * If cache was inhibited on this page, and there are no more cache
1890 * conflicts, restore caching.
1891 * Flush the cache if the last page is removed (should always be cached
1892 * at this point).
1893 */
1894 void
1895 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1896 {
1897 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1898 pv_entry_t pv, npv;
1899 bool last;
1900
1901 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1902 UVMHIST_LOG(pmaphist,
1903 "(pmap=%p, va=%#"PRIxVADDR", pg=%p (pa %#"PRIxPADDR")",
1904 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1905 UVMHIST_LOG(pmaphist, "dirty=%u)", dirty, 0, 0, 0);
1906
1907 KASSERT(kpreempt_disabled());
1908 KASSERT((va & PAGE_MASK) == 0);
1909 pv = &mdpg->mdpg_first;
1910
1911 VM_PAGEMD_PVLIST_LOCK(mdpg);
1912 pmap_pvlist_check(mdpg);
1913
1914 /*
1915 * If it is the first entry on the list, it is actually
1916 * in the header and we must copy the following entry up
1917 * to the header. Otherwise we must search the list for
1918 * the entry. In either case we free the now unused entry.
1919 */
1920
1921 last = false;
1922 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1923 npv = pv->pv_next;
1924 if (npv) {
1925 *pv = *npv;
1926 KASSERT(pv->pv_pmap != NULL);
1927 } else {
1928 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1929 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1930 #endif
1931 pv->pv_pmap = NULL;
1932 last = true; /* Last mapping removed */
1933 }
1934 PMAP_COUNT(remove_pvfirst);
1935 } else {
1936 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1937 PMAP_COUNT(remove_pvsearch);
1938 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1939 break;
1940 }
1941 if (npv) {
1942 pv->pv_next = npv->pv_next;
1943 }
1944 }
1945
1946 pmap_pvlist_check(mdpg);
1947 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1948
1949 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1950 pmap_md_vca_remove(pg, va, dirty, last);
1951 #endif
1952
1953 /*
1954 * Free the pv_entry if needed.
1955 */
1956 if (npv)
1957 pmap_pv_free(npv);
1958 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1959 if (last) {
1960 /*
1961 * If this was the page's last mapping, we no longer
1962 * care about its execness.
1963 */
1964 UVMHIST_LOG(pmapexechist,
1965 "pg %p (pa %#"PRIxPADDR")last %u: execpage cleared",
1966 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1967 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1968 PMAP_COUNT(exec_uncached_remove);
1969 } else {
1970 /*
1971 * Someone still has it mapped as an executable page
1972 * so we must sync it.
1973 */
1974 UVMHIST_LOG(pmapexechist,
1975 "pg %p (pa %#"PRIxPADDR")last %u: performed syncicache",
1976 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1977 pmap_page_syncicache(pg);
1978 PMAP_COUNT(exec_synced_remove);
1979 }
1980 }
1981
1982 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1983 }
1984
1985 #if defined(MULTIPROCESSOR)
1986 struct pmap_pvlist_info {
1987 kmutex_t *pli_locks[PAGE_SIZE / 32];
1988 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1989 volatile u_int pli_lock_index;
1990 u_int pli_lock_mask;
1991 } pmap_pvlist_info;
1992
1993 void
1994 pmap_pvlist_lock_init(size_t cache_line_size)
1995 {
1996 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1997 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1998 vaddr_t lock_va = lock_page;
1999 if (sizeof(kmutex_t) > cache_line_size) {
2000 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2001 }
2002 const size_t nlocks = PAGE_SIZE / cache_line_size;
2003 KASSERT((nlocks & (nlocks - 1)) == 0);
2004 /*
2005 * Now divide the page into a number of mutexes, one per cacheline.
2006 */
2007 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2008 kmutex_t * const lock = (kmutex_t *)lock_va;
2009 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2010 pli->pli_locks[i] = lock;
2011 }
2012 pli->pli_lock_mask = nlocks - 1;
2013 }
2014
2015 kmutex_t *
2016 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2017 {
2018 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2019 kmutex_t *lock = mdpg->mdpg_lock;
2020
2021 /*
2022 * Allocate a lock on an as-needed basis. This will hopefully give us
2023 * semi-random distribution not based on page color.
2024 */
2025 if (__predict_false(lock == NULL)) {
2026 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2027 size_t lockid = locknum & pli->pli_lock_mask;
2028 kmutex_t * const new_lock = pli->pli_locks[lockid];
2029 /*
2030 * Set the lock. If some other thread already did, just use
2031 * the one they assigned.
2032 */
2033 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2034 if (lock == NULL) {
2035 lock = new_lock;
2036 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2037 }
2038 }
2039
2040 /*
2041 * Now finally provide the lock.
2042 */
2043 return lock;
2044 }
2045 #else /* !MULTIPROCESSOR */
2046 void
2047 pmap_pvlist_lock_init(size_t cache_line_size)
2048 {
2049 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2050 }
2051
2052 #ifdef MODULAR
2053 kmutex_t *
2054 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2055 {
2056 /*
2057 * We just use a global lock.
2058 */
2059 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2060 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2061 }
2062
2063 /*
2064 * Now finally provide the lock.
2065 */
2066 return mdpg->mdpg_lock;
2067 }
2068 #endif /* MODULAR */
2069 #endif /* !MULTIPROCESSOR */
2070
2071 /*
2072 * pmap_pv_page_alloc:
2073 *
2074 * Allocate a page for the pv_entry pool.
2075 */
2076 void *
2077 pmap_pv_page_alloc(struct pool *pp, int flags)
2078 {
2079 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2080 if (pg == NULL)
2081 return NULL;
2082
2083 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2084 }
2085
2086 /*
2087 * pmap_pv_page_free:
2088 *
2089 * Free a pv_entry pool page.
2090 */
2091 void
2092 pmap_pv_page_free(struct pool *pp, void *v)
2093 {
2094 vaddr_t va = (vaddr_t)v;
2095
2096 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2097 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2098 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2099 KASSERT(pg != NULL);
2100 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2101 kpreempt_disable();
2102 pmap_md_vca_remove(pg, va, true, true);
2103 kpreempt_enable();
2104 #endif
2105 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2106 uvm_pagefree(pg);
2107 }
2108
2109 #ifdef PMAP_PREFER
2110 /*
2111 * Find first virtual address >= *vap that doesn't cause
2112 * a cache alias conflict.
2113 */
2114 void
2115 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2116 {
2117 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2118
2119 PMAP_COUNT(prefer_requests);
2120
2121 prefer_mask |= pmap_md_cache_prefer_mask();
2122
2123 if (prefer_mask) {
2124 vaddr_t va = *vap;
2125 vsize_t d = (foff - va) & prefer_mask;
2126 if (d) {
2127 if (td)
2128 *vap = trunc_page(va - ((-d) & prefer_mask));
2129 else
2130 *vap = round_page(va + d);
2131 PMAP_COUNT(prefer_adjustments);
2132 }
2133 }
2134 }
2135 #endif /* PMAP_PREFER */
2136
2137 #ifdef PMAP_MAP_POOLPAGE
2138 vaddr_t
2139 pmap_map_poolpage(paddr_t pa)
2140 {
2141 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2142 KASSERT(pg);
2143 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2144 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2145
2146 return pmap_md_map_poolpage(pa, NBPG);
2147 }
2148
2149 paddr_t
2150 pmap_unmap_poolpage(vaddr_t va)
2151 {
2152 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2153 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2154
2155 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2156 KASSERT(pg != NULL);
2157 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2158 pmap_md_unmap_poolpage(va, NBPG);
2159
2160 return pa;
2161 }
2162 #endif /* PMAP_MAP_POOLPAGE */
2163