pmap.c revision 1.35 1 /* $NetBSD: pmap.c,v 1.35 2017/06/24 07:30:17 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.35 2017/06/24 07:30:17 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their k0seg addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%p)", pmap, 0, 0, 0);
601
602 return pmap;
603 }
604
605 /*
606 * Retire the given physical map from service.
607 * Should only be called if the map contains
608 * no valid mappings.
609 */
610 void
611 pmap_destroy(pmap_t pmap)
612 {
613 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
614 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
615
616 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
617 PMAP_COUNT(dereference);
618 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
619 return;
620 }
621
622 PMAP_COUNT(destroy);
623 KASSERT(pmap->pm_count == 0);
624 kpreempt_disable();
625 pmap_md_tlb_miss_lock_enter();
626 pmap_tlb_asid_release_all(pmap);
627 pmap_segtab_destroy(pmap, NULL, 0);
628 pmap_md_tlb_miss_lock_exit();
629
630 #ifdef MULTIPROCESSOR
631 kcpuset_destroy(pmap->pm_active);
632 kcpuset_destroy(pmap->pm_onproc);
633 pmap->pm_active = NULL;
634 pmap->pm_onproc = NULL;
635 #endif
636
637 pool_put(&pmap_pmap_pool, pmap);
638 kpreempt_enable();
639
640 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
641 }
642
643 /*
644 * Add a reference to the specified pmap.
645 */
646 void
647 pmap_reference(pmap_t pmap)
648 {
649 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
650 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
651 PMAP_COUNT(reference);
652
653 if (pmap != NULL) {
654 atomic_inc_uint(&pmap->pm_count);
655 }
656
657 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
658 }
659
660 /*
661 * Make a new pmap (vmspace) active for the given process.
662 */
663 void
664 pmap_activate(struct lwp *l)
665 {
666 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
667
668 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
669 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
670 PMAP_COUNT(activate);
671
672 kpreempt_disable();
673 pmap_md_tlb_miss_lock_enter();
674 pmap_tlb_asid_acquire(pmap, l);
675 if (l == curlwp) {
676 pmap_segtab_activate(pmap, l);
677 }
678 pmap_md_tlb_miss_lock_exit();
679 kpreempt_enable();
680
681 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
682 0, 0);
683 }
684
685 /*
686 * Remove this page from all physical maps in which it resides.
687 * Reflects back modify bits to the pager.
688 */
689 void
690 pmap_page_remove(struct vm_page *pg)
691 {
692 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
693
694 kpreempt_disable();
695 VM_PAGEMD_PVLIST_LOCK(mdpg);
696 pmap_pvlist_check(mdpg);
697
698 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
699
700 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR") [page removed]: "
701 "execpage cleared", pg, VM_PAGE_TO_PHYS(pg),
702 0, 0);
703 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
704 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
705 #else
706 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
707 #endif
708 PMAP_COUNT(exec_uncached_remove);
709
710 pv_entry_t pv = &mdpg->mdpg_first;
711 if (pv->pv_pmap == NULL) {
712 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
713 kpreempt_enable();
714 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
715 return;
716 }
717
718 pv_entry_t npv;
719 pv_entry_t pvp = NULL;
720
721 for (; pv != NULL; pv = npv) {
722 npv = pv->pv_next;
723 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
724 if (pv->pv_va & PV_KENTER) {
725 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"
726 PRIxVADDR" skip", pv, pv->pv_pmap, pv->pv_va, 0);
727
728 KASSERT(pv->pv_pmap == pmap_kernel());
729
730 /* Assume no more - it'll get fixed if there are */
731 pv->pv_next = NULL;
732
733 /*
734 * pvp is non-null when we already have a PV_KENTER
735 * pv in pvh_first; otherwise we haven't seen a
736 * PV_KENTER pv and we need to copy this one to
737 * pvh_first
738 */
739 if (pvp) {
740 /*
741 * The previous PV_KENTER pv needs to point to
742 * this PV_KENTER pv
743 */
744 pvp->pv_next = pv;
745 } else {
746 pv_entry_t fpv = &mdpg->mdpg_first;
747 *fpv = *pv;
748 KASSERT(fpv->pv_pmap == pmap_kernel());
749 }
750 pvp = pv;
751 continue;
752 }
753 #endif
754 const pmap_t pmap = pv->pv_pmap;
755 vaddr_t va = trunc_page(pv->pv_va);
756 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
757 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
758 pmap_limits.virtual_end);
759 pt_entry_t pte = *ptep;
760 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"PRIxVADDR
761 " pte %#"PRIxPTE, pv, pmap, va, pte_value(pte));
762 if (!pte_valid_p(pte))
763 continue;
764 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
765 if (is_kernel_pmap_p) {
766 PMAP_COUNT(remove_kernel_pages);
767 } else {
768 PMAP_COUNT(remove_user_pages);
769 }
770 if (pte_wired_p(pte))
771 pmap->pm_stats.wired_count--;
772 pmap->pm_stats.resident_count--;
773
774 pmap_md_tlb_miss_lock_enter();
775 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
776 pte_set(ptep, npte);
777 /*
778 * Flush the TLB for the given address.
779 */
780 pmap_tlb_invalidate_addr(pmap, va);
781 pmap_md_tlb_miss_lock_exit();
782
783 /*
784 * non-null means this is a non-pvh_first pv, so we should
785 * free it.
786 */
787 if (pvp) {
788 KASSERT(pvp->pv_pmap == pmap_kernel());
789 KASSERT(pvp->pv_next == NULL);
790 pmap_pv_free(pv);
791 } else {
792 pv->pv_pmap = NULL;
793 pv->pv_next = NULL;
794 }
795 }
796
797 pmap_pvlist_check(mdpg);
798 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
799 kpreempt_enable();
800
801 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
802 }
803
804
805 /*
806 * Make a previously active pmap (vmspace) inactive.
807 */
808 void
809 pmap_deactivate(struct lwp *l)
810 {
811 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
812
813 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
814 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
815 PMAP_COUNT(deactivate);
816
817 kpreempt_disable();
818 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
819 pmap_md_tlb_miss_lock_enter();
820 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
821 #ifdef _LP64
822 curcpu()->ci_pmap_user_seg0tab = NULL;
823 #endif
824 pmap_tlb_asid_deactivate(pmap);
825 pmap_md_tlb_miss_lock_exit();
826 kpreempt_enable();
827
828 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
829 0, 0);
830 }
831
832 void
833 pmap_update(struct pmap *pmap)
834 {
835 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
836 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
837 PMAP_COUNT(update);
838
839 kpreempt_disable();
840 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
841 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
842 if (pending && pmap_tlb_shootdown_bystanders(pmap))
843 PMAP_COUNT(shootdown_ipis);
844 #endif
845 pmap_md_tlb_miss_lock_enter();
846 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
847 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
848 #endif /* DEBUG */
849
850 /*
851 * If pmap_remove_all was called, we deactivated ourselves and nuked
852 * our ASID. Now we have to reactivate ourselves.
853 */
854 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
855 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
856 pmap_tlb_asid_acquire(pmap, curlwp);
857 pmap_segtab_activate(pmap, curlwp);
858 }
859 pmap_md_tlb_miss_lock_exit();
860 kpreempt_enable();
861
862 UVMHIST_LOG(pmaphist, " <-- done (%c)",
863 (pmap == pmap_kernel() ? 'k' : 'u'), 0, 0, 0);
864 }
865
866 /*
867 * Remove the given range of addresses from the specified map.
868 *
869 * It is assumed that the start and end are properly
870 * rounded to the page size.
871 */
872
873 static bool
874 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
875 uintptr_t flags)
876 {
877 const pt_entry_t npte = flags;
878 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
879
880 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
881 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR,
882 pmap, (is_kernel_pmap_p ? 'k' : 'u'), sva, eva);
883 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
884 ptep, flags, 0, 0);
885
886 KASSERT(kpreempt_disabled());
887
888 for (; sva < eva; sva += NBPG, ptep++) {
889 const pt_entry_t pte = *ptep;
890 if (!pte_valid_p(pte))
891 continue;
892 if (is_kernel_pmap_p) {
893 PMAP_COUNT(remove_kernel_pages);
894 } else {
895 PMAP_COUNT(remove_user_pages);
896 }
897 if (pte_wired_p(pte))
898 pmap->pm_stats.wired_count--;
899 pmap->pm_stats.resident_count--;
900 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
901 if (__predict_true(pg != NULL)) {
902 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
903 }
904 pmap_md_tlb_miss_lock_enter();
905 pte_set(ptep, npte);
906 /*
907 * Flush the TLB for the given address.
908 */
909 pmap_tlb_invalidate_addr(pmap, sva);
910 pmap_md_tlb_miss_lock_exit();
911 }
912
913 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
914
915 return false;
916 }
917
918 void
919 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
920 {
921 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
922 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
923
924 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
925 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
926 pmap, sva, eva, 0);
927
928 if (is_kernel_pmap_p) {
929 PMAP_COUNT(remove_kernel_calls);
930 } else {
931 PMAP_COUNT(remove_user_calls);
932 }
933 #ifdef PMAP_FAULTINFO
934 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
935 curpcb->pcb_faultinfo.pfi_repeats = 0;
936 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
937 #endif
938 kpreempt_disable();
939 pmap_addr_range_check(pmap, sva, eva, __func__);
940 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
941 kpreempt_enable();
942
943 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
944 }
945
946 /*
947 * pmap_page_protect:
948 *
949 * Lower the permission for all mappings to a given page.
950 */
951 void
952 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
953 {
954 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
955 pv_entry_t pv;
956 vaddr_t va;
957
958 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
959 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
960 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
961 PMAP_COUNT(page_protect);
962
963 switch (prot) {
964 case VM_PROT_READ|VM_PROT_WRITE:
965 case VM_PROT_ALL:
966 break;
967
968 /* copy_on_write */
969 case VM_PROT_READ:
970 case VM_PROT_READ|VM_PROT_EXECUTE:
971 pv = &mdpg->mdpg_first;
972 kpreempt_disable();
973 VM_PAGEMD_PVLIST_READLOCK(mdpg);
974 pmap_pvlist_check(mdpg);
975 /*
976 * Loop over all current mappings setting/clearing as
977 * appropriate.
978 */
979 if (pv->pv_pmap != NULL) {
980 while (pv != NULL) {
981 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
982 if (pv->pv_va & PV_KENTER) {
983 pv = pv->pv_next;
984 continue;
985 }
986 #endif
987 const pmap_t pmap = pv->pv_pmap;
988 va = trunc_page(pv->pv_va);
989 const uintptr_t gen =
990 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
991 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
992 KASSERT(pv->pv_pmap == pmap);
993 pmap_update(pmap);
994 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
995 pv = &mdpg->mdpg_first;
996 } else {
997 pv = pv->pv_next;
998 }
999 pmap_pvlist_check(mdpg);
1000 }
1001 }
1002 pmap_pvlist_check(mdpg);
1003 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1004 kpreempt_enable();
1005 break;
1006
1007 /* remove_all */
1008 default:
1009 pmap_page_remove(pg);
1010 }
1011
1012 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1013 }
1014
1015 static bool
1016 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1017 uintptr_t flags)
1018 {
1019 const vm_prot_t prot = (flags & VM_PROT_ALL);
1020
1021 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1022 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR")",
1023 pmap, (pmap == pmap_kernel() ? 'k' : 'u'), sva, eva);
1024 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
1025 ptep, flags, 0, 0);
1026
1027 KASSERT(kpreempt_disabled());
1028 /*
1029 * Change protection on every valid mapping within this segment.
1030 */
1031 for (; sva < eva; sva += NBPG, ptep++) {
1032 pt_entry_t pte = *ptep;
1033 if (!pte_valid_p(pte))
1034 continue;
1035 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1036 if (pg != NULL && pte_modified_p(pte)) {
1037 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1038 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1039 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1040 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1041 if (VM_PAGEMD_CACHED_P(mdpg)) {
1042 #endif
1043 UVMHIST_LOG(pmapexechist,
1044 "pg %p (pa %#"PRIxPADDR"): "
1045 "syncicached performed",
1046 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1047 pmap_page_syncicache(pg);
1048 PMAP_COUNT(exec_synced_protect);
1049 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1050 }
1051 #endif
1052 }
1053 }
1054 pte = pte_prot_downgrade(pte, prot);
1055 if (*ptep != pte) {
1056 pmap_md_tlb_miss_lock_enter();
1057 pte_set(ptep, pte);
1058 /*
1059 * Update the TLB if needed.
1060 */
1061 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1062 pmap_md_tlb_miss_lock_exit();
1063 }
1064 }
1065
1066 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1067
1068 return false;
1069 }
1070
1071 /*
1072 * Set the physical protection on the
1073 * specified range of this map as requested.
1074 */
1075 void
1076 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1077 {
1078 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1079 UVMHIST_LOG(pmaphist,
1080 "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR", prot=%u)",
1081 pmap, sva, eva, prot);
1082 PMAP_COUNT(protect);
1083
1084 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1085 pmap_remove(pmap, sva, eva);
1086 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1087 return;
1088 }
1089
1090 /*
1091 * Change protection on every valid mapping within this segment.
1092 */
1093 kpreempt_disable();
1094 pmap_addr_range_check(pmap, sva, eva, __func__);
1095 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1096 kpreempt_enable();
1097
1098 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1099 }
1100
1101 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1102 /*
1103 * pmap_page_cache:
1104 *
1105 * Change all mappings of a managed page to cached/uncached.
1106 */
1107 void
1108 pmap_page_cache(struct vm_page *pg, bool cached)
1109 {
1110 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1111
1112 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1113 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%d)",
1114 pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1115
1116 KASSERT(kpreempt_disabled());
1117 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1118
1119 if (cached) {
1120 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1121 PMAP_COUNT(page_cache_restorations);
1122 } else {
1123 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1124 PMAP_COUNT(page_cache_evictions);
1125 }
1126
1127 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1128 pmap_t pmap = pv->pv_pmap;
1129 vaddr_t va = trunc_page(pv->pv_va);
1130
1131 KASSERT(pmap != NULL);
1132 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1133 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1134 if (ptep == NULL)
1135 continue;
1136 pt_entry_t pte = *ptep;
1137 if (pte_valid_p(pte)) {
1138 pte = pte_cached_change(pte, cached);
1139 pmap_md_tlb_miss_lock_enter();
1140 pte_set(ptep, pte);
1141 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1142 pmap_md_tlb_miss_lock_exit();
1143 }
1144 }
1145
1146 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1147 }
1148 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1149
1150 /*
1151 * Insert the given physical page (p) at
1152 * the specified virtual address (v) in the
1153 * target physical map with the protection requested.
1154 *
1155 * If specified, the page will be wired down, meaning
1156 * that the related pte can not be reclaimed.
1157 *
1158 * NB: This is the only routine which MAY NOT lazy-evaluate
1159 * or lose information. That is, this routine must actually
1160 * insert this page into the given map NOW.
1161 */
1162 int
1163 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1164 {
1165 const bool wired = (flags & PMAP_WIRED) != 0;
1166 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1167 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1168 #ifdef UVMHIST
1169 struct kern_history * const histp =
1170 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1171 #endif
1172
1173 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1174 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
1175 pmap, va, pa, 0);
1176 UVMHIST_LOG(*histp, "prot=%#x flags=%#x)", prot, flags, 0, 0);
1177
1178 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1179 if (is_kernel_pmap_p) {
1180 PMAP_COUNT(kernel_mappings);
1181 if (!good_color)
1182 PMAP_COUNT(kernel_mappings_bad);
1183 } else {
1184 PMAP_COUNT(user_mappings);
1185 if (!good_color)
1186 PMAP_COUNT(user_mappings_bad);
1187 }
1188 pmap_addr_range_check(pmap, va, va, __func__);
1189
1190 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1191 VM_PROT_READ, prot);
1192
1193 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1194 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1195
1196 if (pg) {
1197 /* Set page referenced/modified status based on flags */
1198 if (flags & VM_PROT_WRITE) {
1199 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1200 } else if (flags & VM_PROT_ALL) {
1201 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1202 }
1203
1204 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1205 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1206 flags |= PMAP_NOCACHE;
1207 PMAP_COUNT(uncached_mappings);
1208 }
1209 #endif
1210
1211 PMAP_COUNT(managed_mappings);
1212 } else {
1213 /*
1214 * Assumption: if it is not part of our managed memory
1215 * then it must be device memory which may be volatile.
1216 */
1217 if ((flags & PMAP_CACHE_MASK) == 0)
1218 flags |= PMAP_NOCACHE;
1219 PMAP_COUNT(unmanaged_mappings);
1220 }
1221
1222 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1223 is_kernel_pmap_p);
1224
1225 kpreempt_disable();
1226
1227 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1228 if (__predict_false(ptep == NULL)) {
1229 kpreempt_enable();
1230 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1231 return ENOMEM;
1232 }
1233 const pt_entry_t opte = *ptep;
1234 const bool resident = pte_valid_p(opte);
1235 bool remap = false;
1236 if (resident) {
1237 if (pte_to_paddr(opte) != pa) {
1238 KASSERT(!is_kernel_pmap_p);
1239 const pt_entry_t rpte = pte_nv_entry(false);
1240
1241 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1242 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1243 rpte);
1244 PMAP_COUNT(user_mappings_changed);
1245 remap = true;
1246 }
1247 update_flags |= PMAP_TLB_NEED_IPI;
1248 }
1249
1250 if (!resident || remap) {
1251 pmap->pm_stats.resident_count++;
1252 }
1253
1254 /* Done after case that may sleep/return. */
1255 if (pg)
1256 pmap_enter_pv(pmap, va, pg, &npte, 0);
1257
1258 /*
1259 * Now validate mapping with desired protection/wiring.
1260 * Assume uniform modified and referenced status for all
1261 * MIPS pages in a MACH page.
1262 */
1263 if (wired) {
1264 pmap->pm_stats.wired_count++;
1265 npte = pte_wire_entry(npte);
1266 }
1267
1268 UVMHIST_LOG(*histp, "new pte %#"PRIxPTE" (pa %#"PRIxPADDR")",
1269 pte_value(npte), pa, 0, 0);
1270
1271 KASSERT(pte_valid_p(npte));
1272
1273 pmap_md_tlb_miss_lock_enter();
1274 pte_set(ptep, npte);
1275 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1276 pmap_md_tlb_miss_lock_exit();
1277 kpreempt_enable();
1278
1279 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1280 KASSERT(mdpg != NULL);
1281 PMAP_COUNT(exec_mappings);
1282 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1283 if (!pte_deferred_exec_p(npte)) {
1284 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1285 " pg %p: immediate syncicache",
1286 va, pg, 0, 0);
1287 pmap_page_syncicache(pg);
1288 pmap_page_set_attributes(mdpg,
1289 VM_PAGEMD_EXECPAGE);
1290 PMAP_COUNT(exec_synced_mappings);
1291 } else {
1292 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1293 " pg %p: defer syncicache: pte %#x",
1294 va, pg, npte, 0);
1295 }
1296 } else {
1297 UVMHIST_LOG(*histp,
1298 "va=%#"PRIxVADDR" pg %p: no syncicache cached %d",
1299 va, pg, pte_cached_p(npte), 0);
1300 }
1301 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1302 KASSERT(mdpg != NULL);
1303 KASSERT(prot & VM_PROT_WRITE);
1304 PMAP_COUNT(exec_mappings);
1305 pmap_page_syncicache(pg);
1306 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1307 UVMHIST_LOG(*histp,
1308 "va=%#"PRIxVADDR" pg %p: immediate syncicache (writeable)",
1309 va, pg, 0, 0);
1310 }
1311
1312 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1313 return 0;
1314 }
1315
1316 void
1317 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1318 {
1319 pmap_t pmap = pmap_kernel();
1320 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1321 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1322
1323 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1324 UVMHIST_LOG(pmaphist,
1325 "(va=%#"PRIxVADDR", pa=%#"PRIxPADDR", prot=%u, flags=%#x)",
1326 va, pa, prot, flags);
1327 PMAP_COUNT(kenter_pa);
1328
1329 if (mdpg == NULL) {
1330 PMAP_COUNT(kenter_pa_unmanaged);
1331 if ((flags & PMAP_CACHE_MASK) == 0)
1332 flags |= PMAP_NOCACHE;
1333 } else {
1334 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1335 PMAP_COUNT(kenter_pa_bad);
1336 }
1337
1338 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1339 kpreempt_disable();
1340 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1341 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1342 pmap_limits.virtual_end);
1343 KASSERT(!pte_valid_p(*ptep));
1344
1345 /*
1346 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1347 */
1348 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1349 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1350 && pmap_md_virtual_cache_aliasing_p()) {
1351 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1352 }
1353 #endif
1354
1355 /*
1356 * We have the option to force this mapping into the TLB but we
1357 * don't. Instead let the next reference to the page do it.
1358 */
1359 pmap_md_tlb_miss_lock_enter();
1360 pte_set(ptep, npte);
1361 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1362 pmap_md_tlb_miss_lock_exit();
1363 kpreempt_enable();
1364 #if DEBUG > 1
1365 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1366 if (((long *)va)[i] != ((long *)pa)[i])
1367 panic("%s: contents (%lx) of va %#"PRIxVADDR
1368 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1369 ((long *)va)[i], va, ((long *)pa)[i], pa);
1370 }
1371 #endif
1372
1373 UVMHIST_LOG(pmaphist, " <-- done (ptep=%p)", ptep, 0, 0, 0);
1374 }
1375
1376 /*
1377 * Remove the given range of addresses from the kernel map.
1378 *
1379 * It is assumed that the start and end are properly
1380 * rounded to the page size.
1381 */
1382
1383 static bool
1384 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1385 uintptr_t flags)
1386 {
1387 const pt_entry_t new_pte = pte_nv_entry(true);
1388
1389 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1390 UVMHIST_LOG(pmaphist,
1391 "(pmap=%p, sva=%#"PRIxVADDR", eva=%#"PRIxVADDR", ptep=%p)",
1392 pmap, sva, eva, ptep);
1393
1394 KASSERT(kpreempt_disabled());
1395
1396 for (; sva < eva; sva += NBPG, ptep++) {
1397 pt_entry_t pte = *ptep;
1398 if (!pte_valid_p(pte))
1399 continue;
1400
1401 PMAP_COUNT(kremove_pages);
1402 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1403 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1404 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1405 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1406 }
1407 #endif
1408
1409 pmap_md_tlb_miss_lock_enter();
1410 pte_set(ptep, new_pte);
1411 pmap_tlb_invalidate_addr(pmap, sva);
1412 pmap_md_tlb_miss_lock_exit();
1413 }
1414
1415 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1416
1417 return false;
1418 }
1419
1420 void
1421 pmap_kremove(vaddr_t va, vsize_t len)
1422 {
1423 const vaddr_t sva = trunc_page(va);
1424 const vaddr_t eva = round_page(va + len);
1425
1426 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1427 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR", len=%#"PRIxVSIZE")",
1428 va, len, 0, 0);
1429
1430 kpreempt_disable();
1431 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1432 kpreempt_enable();
1433
1434 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1435 }
1436
1437 void
1438 pmap_remove_all(struct pmap *pmap)
1439 {
1440 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1441 UVMHIST_LOG(pmaphist, "(pm=%p)", pmap, 0, 0, 0);
1442
1443 KASSERT(pmap != pmap_kernel());
1444
1445 kpreempt_disable();
1446 /*
1447 * Free all of our ASIDs which means we can skip doing all the
1448 * tlb_invalidate_addrs().
1449 */
1450 pmap_md_tlb_miss_lock_enter();
1451 #ifdef MULTIPROCESSOR
1452 // This should be the last CPU with this pmap onproc
1453 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1454 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1455 #endif
1456 pmap_tlb_asid_deactivate(pmap);
1457 #ifdef MULTIPROCESSOR
1458 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1459 #endif
1460 pmap_tlb_asid_release_all(pmap);
1461 pmap_md_tlb_miss_lock_exit();
1462 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1463
1464 #ifdef PMAP_FAULTINFO
1465 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1466 curpcb->pcb_faultinfo.pfi_repeats = 0;
1467 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1468 #endif
1469 kpreempt_enable();
1470
1471 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1472 }
1473
1474 /*
1475 * Routine: pmap_unwire
1476 * Function: Clear the wired attribute for a map/virtual-address
1477 * pair.
1478 * In/out conditions:
1479 * The mapping must already exist in the pmap.
1480 */
1481 void
1482 pmap_unwire(pmap_t pmap, vaddr_t va)
1483 {
1484 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1485 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR")", pmap, va, 0, 0);
1486 PMAP_COUNT(unwire);
1487
1488 /*
1489 * Don't need to flush the TLB since PG_WIRED is only in software.
1490 */
1491 kpreempt_disable();
1492 pmap_addr_range_check(pmap, va, va, __func__);
1493 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1494 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1495 pmap, va);
1496 pt_entry_t pte = *ptep;
1497 KASSERTMSG(pte_valid_p(pte),
1498 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1499 pmap, va, pte_value(pte), ptep);
1500
1501 if (pte_wired_p(pte)) {
1502 pmap_md_tlb_miss_lock_enter();
1503 pte_set(ptep, pte_unwire_entry(pte));
1504 pmap_md_tlb_miss_lock_exit();
1505 pmap->pm_stats.wired_count--;
1506 }
1507 #ifdef DIAGNOSTIC
1508 else {
1509 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1510 __func__, pmap, va);
1511 }
1512 #endif
1513 kpreempt_enable();
1514
1515 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1516 }
1517
1518 /*
1519 * Routine: pmap_extract
1520 * Function:
1521 * Extract the physical page address associated
1522 * with the given map/virtual_address pair.
1523 */
1524 bool
1525 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1526 {
1527 paddr_t pa;
1528
1529 if (pmap == pmap_kernel()) {
1530 if (pmap_md_direct_mapped_vaddr_p(va)) {
1531 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1532 goto done;
1533 }
1534 if (pmap_md_io_vaddr_p(va))
1535 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1536
1537 if (va >= pmap_limits.virtual_end)
1538 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1539 __func__, va);
1540 }
1541 kpreempt_disable();
1542 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1543 if (ptep == NULL || !pte_valid_p(*ptep)) {
1544 kpreempt_enable();
1545 return false;
1546 }
1547 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1548 kpreempt_enable();
1549 done:
1550 if (pap != NULL) {
1551 *pap = pa;
1552 }
1553 return true;
1554 }
1555
1556 /*
1557 * Copy the range specified by src_addr/len
1558 * from the source map to the range dst_addr/len
1559 * in the destination map.
1560 *
1561 * This routine is only advisory and need not do anything.
1562 */
1563 void
1564 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1565 vaddr_t src_addr)
1566 {
1567 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1568 PMAP_COUNT(copy);
1569 }
1570
1571 /*
1572 * pmap_clear_reference:
1573 *
1574 * Clear the reference bit on the specified physical page.
1575 */
1576 bool
1577 pmap_clear_reference(struct vm_page *pg)
1578 {
1579 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1580
1581 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1582 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1583 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1584
1585 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1586
1587 UVMHIST_LOG(pmaphist, " <-- wasref %u", rv, 0, 0, 0);
1588
1589 return rv;
1590 }
1591
1592 /*
1593 * pmap_is_referenced:
1594 *
1595 * Return whether or not the specified physical page is referenced
1596 * by any physical maps.
1597 */
1598 bool
1599 pmap_is_referenced(struct vm_page *pg)
1600 {
1601 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1602 }
1603
1604 /*
1605 * Clear the modify bits on the specified physical page.
1606 */
1607 bool
1608 pmap_clear_modify(struct vm_page *pg)
1609 {
1610 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1611 pv_entry_t pv = &mdpg->mdpg_first;
1612 pv_entry_t pv_next;
1613
1614 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1615 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1616 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1617 PMAP_COUNT(clear_modify);
1618
1619 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1620 if (pv->pv_pmap == NULL) {
1621 UVMHIST_LOG(pmapexechist,
1622 "pg %p (pa %#"PRIxPADDR"): execpage cleared",
1623 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1624 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1625 PMAP_COUNT(exec_uncached_clear_modify);
1626 } else {
1627 UVMHIST_LOG(pmapexechist,
1628 "pg %p (pa %#"PRIxPADDR"): syncicache performed",
1629 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1630 pmap_page_syncicache(pg);
1631 PMAP_COUNT(exec_synced_clear_modify);
1632 }
1633 }
1634 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1635 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1636 return false;
1637 }
1638 if (pv->pv_pmap == NULL) {
1639 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1640 return true;
1641 }
1642
1643 /*
1644 * remove write access from any pages that are dirty
1645 * so we can tell if they are written to again later.
1646 * flush the VAC first if there is one.
1647 */
1648 kpreempt_disable();
1649 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1650 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1651 pmap_pvlist_check(mdpg);
1652 for (; pv != NULL; pv = pv_next) {
1653 pmap_t pmap = pv->pv_pmap;
1654 vaddr_t va = trunc_page(pv->pv_va);
1655
1656 pv_next = pv->pv_next;
1657 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1658 if (pv->pv_va & PV_KENTER)
1659 continue;
1660 #endif
1661 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1662 KASSERT(ptep);
1663 pt_entry_t pte = pte_prot_nowrite(*ptep);
1664 if (*ptep == pte) {
1665 continue;
1666 }
1667 KASSERT(pte_valid_p(pte));
1668 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1669 pmap_md_tlb_miss_lock_enter();
1670 pte_set(ptep, pte);
1671 pmap_tlb_invalidate_addr(pmap, va);
1672 pmap_md_tlb_miss_lock_exit();
1673 pmap_update(pmap);
1674 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1675 /*
1676 * The list changed! So restart from the beginning.
1677 */
1678 pv_next = &mdpg->mdpg_first;
1679 pmap_pvlist_check(mdpg);
1680 }
1681 }
1682 pmap_pvlist_check(mdpg);
1683 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1684 kpreempt_enable();
1685
1686 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1687 return true;
1688 }
1689
1690 /*
1691 * pmap_is_modified:
1692 *
1693 * Return whether or not the specified physical page is modified
1694 * by any physical maps.
1695 */
1696 bool
1697 pmap_is_modified(struct vm_page *pg)
1698 {
1699 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1700 }
1701
1702 /*
1703 * pmap_set_modified:
1704 *
1705 * Sets the page modified reference bit for the specified page.
1706 */
1707 void
1708 pmap_set_modified(paddr_t pa)
1709 {
1710 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1711 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1712 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1713 }
1714
1715 /******************** pv_entry management ********************/
1716
1717 static void
1718 pmap_pvlist_check(struct vm_page_md *mdpg)
1719 {
1720 #ifdef DEBUG
1721 pv_entry_t pv = &mdpg->mdpg_first;
1722 if (pv->pv_pmap != NULL) {
1723 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1724 const u_int colormask = uvmexp.colormask;
1725 u_int colors = 0;
1726 #endif
1727 for (; pv != NULL; pv = pv->pv_next) {
1728 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1729 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1730 colors |= __BIT(atop(pv->pv_va) & colormask);
1731 #endif
1732 }
1733 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1734 // Assert that if there is more than 1 color mapped, that the
1735 // page is uncached.
1736 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1737 || colors == 0 || (colors & (colors-1)) == 0
1738 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1739 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1740 #endif
1741 } else {
1742 KASSERT(pv->pv_next == NULL);
1743 }
1744 #endif /* DEBUG */
1745 }
1746
1747 /*
1748 * Enter the pmap and virtual address into the
1749 * physical to virtual map table.
1750 */
1751 void
1752 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1753 u_int flags)
1754 {
1755 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1756 pv_entry_t pv, npv, apv;
1757 #ifdef UVMHIST
1758 bool first = false;
1759 #endif
1760
1761 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1762 UVMHIST_LOG(pmaphist,
1763 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1764 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1765 UVMHIST_LOG(pmaphist, "nptep=%p (%#"PRIxPTE"))",
1766 nptep, pte_value(*nptep), 0, 0);
1767
1768 KASSERT(kpreempt_disabled());
1769 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1770 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1771 "va %#"PRIxVADDR, va);
1772
1773 apv = NULL;
1774 VM_PAGEMD_PVLIST_LOCK(mdpg);
1775 again:
1776 pv = &mdpg->mdpg_first;
1777 pmap_pvlist_check(mdpg);
1778 if (pv->pv_pmap == NULL) {
1779 KASSERT(pv->pv_next == NULL);
1780 /*
1781 * No entries yet, use header as the first entry
1782 */
1783 PMAP_COUNT(primary_mappings);
1784 PMAP_COUNT(mappings);
1785 #ifdef UVMHIST
1786 first = true;
1787 #endif
1788 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1789 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1790 // If the new mapping has an incompatible color the last
1791 // mapping of this page, clean the page before using it.
1792 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1793 pmap_md_vca_clean(pg, PMAP_WBINV);
1794 }
1795 #endif
1796 pv->pv_pmap = pmap;
1797 pv->pv_va = va | flags;
1798 } else {
1799 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1800 if (pmap_md_vca_add(pg, va, nptep)) {
1801 goto again;
1802 }
1803 #endif
1804
1805 /*
1806 * There is at least one other VA mapping this page.
1807 * Place this entry after the header.
1808 *
1809 * Note: the entry may already be in the table if
1810 * we are only changing the protection bits.
1811 */
1812
1813 #ifdef PARANOIADIAG
1814 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1815 #endif
1816 for (npv = pv; npv; npv = npv->pv_next) {
1817 if (pmap == npv->pv_pmap
1818 && va == trunc_page(npv->pv_va)) {
1819 #ifdef PARANOIADIAG
1820 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1821 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1822 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1823 printf("%s: found va %#"PRIxVADDR
1824 " pa %#"PRIxPADDR
1825 " in pv_table but != %#"PRIxPTE"\n",
1826 __func__, va, pa, pte_value(pte));
1827 #endif
1828 PMAP_COUNT(remappings);
1829 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1830 if (__predict_false(apv != NULL))
1831 pmap_pv_free(apv);
1832
1833 UVMHIST_LOG(pmaphist, " <-- done pv=%p (reused)",
1834 pv, 0, 0, 0);
1835 return;
1836 }
1837 }
1838 if (__predict_true(apv == NULL)) {
1839 /*
1840 * To allocate a PV, we have to release the PVLIST lock
1841 * so get the page generation. We allocate the PV, and
1842 * then reacquire the lock.
1843 */
1844 pmap_pvlist_check(mdpg);
1845 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1846
1847 apv = (pv_entry_t)pmap_pv_alloc();
1848 if (apv == NULL)
1849 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1850
1851 /*
1852 * If the generation has changed, then someone else
1853 * tinkered with this page so we should start over.
1854 */
1855 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1856 goto again;
1857 }
1858 npv = apv;
1859 apv = NULL;
1860 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1861 /*
1862 * If need to deal with virtual cache aliases, keep mappings
1863 * in the kernel pmap at the head of the list. This allows
1864 * the VCA code to easily use them for cache operations if
1865 * present.
1866 */
1867 pmap_t kpmap = pmap_kernel();
1868 if (pmap != kpmap) {
1869 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1870 pv = pv->pv_next;
1871 }
1872 }
1873 #endif
1874 npv->pv_va = va | flags;
1875 npv->pv_pmap = pmap;
1876 npv->pv_next = pv->pv_next;
1877 pv->pv_next = npv;
1878 PMAP_COUNT(mappings);
1879 }
1880 pmap_pvlist_check(mdpg);
1881 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1882 if (__predict_false(apv != NULL))
1883 pmap_pv_free(apv);
1884
1885 UVMHIST_LOG(pmaphist, " <-- done pv=%p (first %u)", pv, first, 0, 0);
1886 }
1887
1888 /*
1889 * Remove a physical to virtual address translation.
1890 * If cache was inhibited on this page, and there are no more cache
1891 * conflicts, restore caching.
1892 * Flush the cache if the last page is removed (should always be cached
1893 * at this point).
1894 */
1895 void
1896 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1897 {
1898 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1899 pv_entry_t pv, npv;
1900 bool last;
1901
1902 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1903 UVMHIST_LOG(pmaphist,
1904 "(pmap=%p, va=%#"PRIxVADDR", pg=%p (pa %#"PRIxPADDR")",
1905 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1906 UVMHIST_LOG(pmaphist, "dirty=%u)", dirty, 0, 0, 0);
1907
1908 KASSERT(kpreempt_disabled());
1909 KASSERT((va & PAGE_MASK) == 0);
1910 pv = &mdpg->mdpg_first;
1911
1912 VM_PAGEMD_PVLIST_LOCK(mdpg);
1913 pmap_pvlist_check(mdpg);
1914
1915 /*
1916 * If it is the first entry on the list, it is actually
1917 * in the header and we must copy the following entry up
1918 * to the header. Otherwise we must search the list for
1919 * the entry. In either case we free the now unused entry.
1920 */
1921
1922 last = false;
1923 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1924 npv = pv->pv_next;
1925 if (npv) {
1926 *pv = *npv;
1927 KASSERT(pv->pv_pmap != NULL);
1928 } else {
1929 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1930 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1931 #endif
1932 pv->pv_pmap = NULL;
1933 last = true; /* Last mapping removed */
1934 }
1935 PMAP_COUNT(remove_pvfirst);
1936 } else {
1937 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1938 PMAP_COUNT(remove_pvsearch);
1939 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1940 break;
1941 }
1942 if (npv) {
1943 pv->pv_next = npv->pv_next;
1944 }
1945 }
1946
1947 pmap_pvlist_check(mdpg);
1948 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1949
1950 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1951 pmap_md_vca_remove(pg, va, dirty, last);
1952 #endif
1953
1954 /*
1955 * Free the pv_entry if needed.
1956 */
1957 if (npv)
1958 pmap_pv_free(npv);
1959 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1960 if (last) {
1961 /*
1962 * If this was the page's last mapping, we no longer
1963 * care about its execness.
1964 */
1965 UVMHIST_LOG(pmapexechist,
1966 "pg %p (pa %#"PRIxPADDR")last %u: execpage cleared",
1967 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1968 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1969 PMAP_COUNT(exec_uncached_remove);
1970 } else {
1971 /*
1972 * Someone still has it mapped as an executable page
1973 * so we must sync it.
1974 */
1975 UVMHIST_LOG(pmapexechist,
1976 "pg %p (pa %#"PRIxPADDR")last %u: performed syncicache",
1977 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1978 pmap_page_syncicache(pg);
1979 PMAP_COUNT(exec_synced_remove);
1980 }
1981 }
1982
1983 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1984 }
1985
1986 #if defined(MULTIPROCESSOR)
1987 struct pmap_pvlist_info {
1988 kmutex_t *pli_locks[PAGE_SIZE / 32];
1989 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1990 volatile u_int pli_lock_index;
1991 u_int pli_lock_mask;
1992 } pmap_pvlist_info;
1993
1994 void
1995 pmap_pvlist_lock_init(size_t cache_line_size)
1996 {
1997 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1998 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1999 vaddr_t lock_va = lock_page;
2000 if (sizeof(kmutex_t) > cache_line_size) {
2001 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2002 }
2003 const size_t nlocks = PAGE_SIZE / cache_line_size;
2004 KASSERT((nlocks & (nlocks - 1)) == 0);
2005 /*
2006 * Now divide the page into a number of mutexes, one per cacheline.
2007 */
2008 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2009 kmutex_t * const lock = (kmutex_t *)lock_va;
2010 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2011 pli->pli_locks[i] = lock;
2012 }
2013 pli->pli_lock_mask = nlocks - 1;
2014 }
2015
2016 kmutex_t *
2017 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2018 {
2019 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2020 kmutex_t *lock = mdpg->mdpg_lock;
2021
2022 /*
2023 * Allocate a lock on an as-needed basis. This will hopefully give us
2024 * semi-random distribution not based on page color.
2025 */
2026 if (__predict_false(lock == NULL)) {
2027 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2028 size_t lockid = locknum & pli->pli_lock_mask;
2029 kmutex_t * const new_lock = pli->pli_locks[lockid];
2030 /*
2031 * Set the lock. If some other thread already did, just use
2032 * the one they assigned.
2033 */
2034 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2035 if (lock == NULL) {
2036 lock = new_lock;
2037 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2038 }
2039 }
2040
2041 /*
2042 * Now finally provide the lock.
2043 */
2044 return lock;
2045 }
2046 #else /* !MULTIPROCESSOR */
2047 void
2048 pmap_pvlist_lock_init(size_t cache_line_size)
2049 {
2050 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2051 }
2052
2053 #ifdef MODULAR
2054 kmutex_t *
2055 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2056 {
2057 /*
2058 * We just use a global lock.
2059 */
2060 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2061 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2062 }
2063
2064 /*
2065 * Now finally provide the lock.
2066 */
2067 return mdpg->mdpg_lock;
2068 }
2069 #endif /* MODULAR */
2070 #endif /* !MULTIPROCESSOR */
2071
2072 /*
2073 * pmap_pv_page_alloc:
2074 *
2075 * Allocate a page for the pv_entry pool.
2076 */
2077 void *
2078 pmap_pv_page_alloc(struct pool *pp, int flags)
2079 {
2080 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2081 if (pg == NULL)
2082 return NULL;
2083
2084 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2085 }
2086
2087 /*
2088 * pmap_pv_page_free:
2089 *
2090 * Free a pv_entry pool page.
2091 */
2092 void
2093 pmap_pv_page_free(struct pool *pp, void *v)
2094 {
2095 vaddr_t va = (vaddr_t)v;
2096
2097 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2098 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2099 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2100 KASSERT(pg != NULL);
2101 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2102 kpreempt_disable();
2103 pmap_md_vca_remove(pg, va, true, true);
2104 kpreempt_enable();
2105 #endif
2106 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2107 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2108 uvm_pagefree(pg);
2109 }
2110
2111 #ifdef PMAP_PREFER
2112 /*
2113 * Find first virtual address >= *vap that doesn't cause
2114 * a cache alias conflict.
2115 */
2116 void
2117 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2118 {
2119 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2120
2121 PMAP_COUNT(prefer_requests);
2122
2123 prefer_mask |= pmap_md_cache_prefer_mask();
2124
2125 if (prefer_mask) {
2126 vaddr_t va = *vap;
2127 vsize_t d = (foff - va) & prefer_mask;
2128 if (d) {
2129 if (td)
2130 *vap = trunc_page(va - ((-d) & prefer_mask));
2131 else
2132 *vap = round_page(va + d);
2133 PMAP_COUNT(prefer_adjustments);
2134 }
2135 }
2136 }
2137 #endif /* PMAP_PREFER */
2138
2139 #ifdef PMAP_MAP_POOLPAGE
2140 vaddr_t
2141 pmap_map_poolpage(paddr_t pa)
2142 {
2143 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2144 KASSERT(pg);
2145
2146 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2147 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2148
2149 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2150
2151 return pmap_md_map_poolpage(pa, NBPG);
2152 }
2153
2154 paddr_t
2155 pmap_unmap_poolpage(vaddr_t va)
2156 {
2157 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2158 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2159
2160 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2161 KASSERT(pg != NULL);
2162 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2163
2164 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2165 pmap_md_unmap_poolpage(va, NBPG);
2166
2167 return pa;
2168 }
2169 #endif /* PMAP_MAP_POOLPAGE */
2170