pmap.c revision 1.36 1 /* $NetBSD: pmap.c,v 1.36 2017/09/07 06:29:47 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.36 2017/09/07 06:29:47 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their k0seg addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%p)", pmap, 0, 0, 0);
601
602 return pmap;
603 }
604
605 /*
606 * Retire the given physical map from service.
607 * Should only be called if the map contains
608 * no valid mappings.
609 */
610 void
611 pmap_destroy(pmap_t pmap)
612 {
613 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
614 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
615
616 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
617 PMAP_COUNT(dereference);
618 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
619 return;
620 }
621
622 PMAP_COUNT(destroy);
623 KASSERT(pmap->pm_count == 0);
624 kpreempt_disable();
625 pmap_md_tlb_miss_lock_enter();
626 pmap_tlb_asid_release_all(pmap);
627 pmap_segtab_destroy(pmap, NULL, 0);
628 pmap_md_tlb_miss_lock_exit();
629
630 #ifdef MULTIPROCESSOR
631 kcpuset_destroy(pmap->pm_active);
632 kcpuset_destroy(pmap->pm_onproc);
633 pmap->pm_active = NULL;
634 pmap->pm_onproc = NULL;
635 #endif
636
637 pool_put(&pmap_pmap_pool, pmap);
638 kpreempt_enable();
639
640 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
641 }
642
643 /*
644 * Add a reference to the specified pmap.
645 */
646 void
647 pmap_reference(pmap_t pmap)
648 {
649 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
650 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
651 PMAP_COUNT(reference);
652
653 if (pmap != NULL) {
654 atomic_inc_uint(&pmap->pm_count);
655 }
656
657 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
658 }
659
660 /*
661 * Make a new pmap (vmspace) active for the given process.
662 */
663 void
664 pmap_activate(struct lwp *l)
665 {
666 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
667
668 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
669 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
670 PMAP_COUNT(activate);
671
672 kpreempt_disable();
673 pmap_md_tlb_miss_lock_enter();
674 pmap_tlb_asid_acquire(pmap, l);
675 if (l == curlwp) {
676 pmap_segtab_activate(pmap, l);
677 }
678 pmap_md_tlb_miss_lock_exit();
679 kpreempt_enable();
680
681 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
682 0, 0);
683 }
684
685 /*
686 * Remove this page from all physical maps in which it resides.
687 * Reflects back modify bits to the pager.
688 */
689 void
690 pmap_page_remove(struct vm_page *pg)
691 {
692 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
693
694 kpreempt_disable();
695 VM_PAGEMD_PVLIST_LOCK(mdpg);
696 pmap_pvlist_check(mdpg);
697
698 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
699
700 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR") [page removed]: "
701 "execpage cleared", pg, VM_PAGE_TO_PHYS(pg),
702 0, 0);
703 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
704 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
705 #else
706 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
707 #endif
708 PMAP_COUNT(exec_uncached_remove);
709
710 pv_entry_t pv = &mdpg->mdpg_first;
711 if (pv->pv_pmap == NULL) {
712 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
713 kpreempt_enable();
714 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
715 return;
716 }
717
718 pv_entry_t npv;
719 pv_entry_t pvp = NULL;
720
721 for (; pv != NULL; pv = npv) {
722 npv = pv->pv_next;
723 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
724 if (pv->pv_va & PV_KENTER) {
725 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"
726 PRIxVADDR" skip", pv, pv->pv_pmap, pv->pv_va, 0);
727
728 KASSERT(pv->pv_pmap == pmap_kernel());
729
730 /* Assume no more - it'll get fixed if there are */
731 pv->pv_next = NULL;
732
733 /*
734 * pvp is non-null when we already have a PV_KENTER
735 * pv in pvh_first; otherwise we haven't seen a
736 * PV_KENTER pv and we need to copy this one to
737 * pvh_first
738 */
739 if (pvp) {
740 /*
741 * The previous PV_KENTER pv needs to point to
742 * this PV_KENTER pv
743 */
744 pvp->pv_next = pv;
745 } else {
746 pv_entry_t fpv = &mdpg->mdpg_first;
747 *fpv = *pv;
748 KASSERT(fpv->pv_pmap == pmap_kernel());
749 }
750 pvp = pv;
751 continue;
752 }
753 #endif
754 const pmap_t pmap = pv->pv_pmap;
755 vaddr_t va = trunc_page(pv->pv_va);
756 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
757 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
758 pmap_limits.virtual_end);
759 pt_entry_t pte = *ptep;
760 UVMHIST_LOG(pmaphist, " pv %p pmap %p va %"PRIxVADDR
761 " pte %#"PRIxPTE, pv, pmap, va, pte_value(pte));
762 if (!pte_valid_p(pte))
763 continue;
764 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
765 if (is_kernel_pmap_p) {
766 PMAP_COUNT(remove_kernel_pages);
767 } else {
768 PMAP_COUNT(remove_user_pages);
769 }
770 if (pte_wired_p(pte))
771 pmap->pm_stats.wired_count--;
772 pmap->pm_stats.resident_count--;
773
774 pmap_md_tlb_miss_lock_enter();
775 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
776 pte_set(ptep, npte);
777 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
778 /*
779 * Flush the TLB for the given address.
780 */
781 pmap_tlb_invalidate_addr(pmap, va);
782 }
783 pmap_md_tlb_miss_lock_exit();
784
785 /*
786 * non-null means this is a non-pvh_first pv, so we should
787 * free it.
788 */
789 if (pvp) {
790 KASSERT(pvp->pv_pmap == pmap_kernel());
791 KASSERT(pvp->pv_next == NULL);
792 pmap_pv_free(pv);
793 } else {
794 pv->pv_pmap = NULL;
795 pv->pv_next = NULL;
796 }
797 }
798
799 pmap_pvlist_check(mdpg);
800 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
801 kpreempt_enable();
802
803 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
804 }
805
806
807 /*
808 * Make a previously active pmap (vmspace) inactive.
809 */
810 void
811 pmap_deactivate(struct lwp *l)
812 {
813 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
814
815 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
816 UVMHIST_LOG(pmaphist, "(l=%p pmap=%p)", l, pmap, 0, 0);
817 PMAP_COUNT(deactivate);
818
819 kpreempt_disable();
820 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
821 pmap_md_tlb_miss_lock_enter();
822 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
823 #ifdef _LP64
824 curcpu()->ci_pmap_user_seg0tab = NULL;
825 #endif
826 pmap_tlb_asid_deactivate(pmap);
827 pmap_md_tlb_miss_lock_exit();
828 kpreempt_enable();
829
830 UVMHIST_LOG(pmaphist, " <-- done (%u:%u)", l->l_proc->p_pid, l->l_lid,
831 0, 0);
832 }
833
834 void
835 pmap_update(struct pmap *pmap)
836 {
837 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
838 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0, 0, 0);
839 PMAP_COUNT(update);
840
841 kpreempt_disable();
842 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
843 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
844 if (pending && pmap_tlb_shootdown_bystanders(pmap))
845 PMAP_COUNT(shootdown_ipis);
846 #endif
847 pmap_md_tlb_miss_lock_enter();
848 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
849 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
850 #endif /* DEBUG */
851
852 /*
853 * If pmap_remove_all was called, we deactivated ourselves and nuked
854 * our ASID. Now we have to reactivate ourselves.
855 */
856 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
857 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
858 pmap_tlb_asid_acquire(pmap, curlwp);
859 pmap_segtab_activate(pmap, curlwp);
860 }
861 pmap_md_tlb_miss_lock_exit();
862 kpreempt_enable();
863
864 UVMHIST_LOG(pmaphist, " <-- done (%c)",
865 (pmap == pmap_kernel() ? 'k' : 'u'), 0, 0, 0);
866 }
867
868 /*
869 * Remove the given range of addresses from the specified map.
870 *
871 * It is assumed that the start and end are properly
872 * rounded to the page size.
873 */
874
875 static bool
876 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
877 uintptr_t flags)
878 {
879 const pt_entry_t npte = flags;
880 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
881
882 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
883 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR,
884 pmap, (is_kernel_pmap_p ? 'k' : 'u'), sva, eva);
885 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
886 ptep, flags, 0, 0);
887
888 KASSERT(kpreempt_disabled());
889
890 for (; sva < eva; sva += NBPG, ptep++) {
891 const pt_entry_t pte = *ptep;
892 if (!pte_valid_p(pte))
893 continue;
894 if (is_kernel_pmap_p) {
895 PMAP_COUNT(remove_kernel_pages);
896 } else {
897 PMAP_COUNT(remove_user_pages);
898 }
899 if (pte_wired_p(pte))
900 pmap->pm_stats.wired_count--;
901 pmap->pm_stats.resident_count--;
902 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
903 if (__predict_true(pg != NULL)) {
904 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
905 }
906 pmap_md_tlb_miss_lock_enter();
907 pte_set(ptep, npte);
908 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
909
910 /*
911 * Flush the TLB for the given address.
912 */
913 pmap_tlb_invalidate_addr(pmap, sva);
914 }
915 pmap_md_tlb_miss_lock_exit();
916 }
917
918 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
919
920 return false;
921 }
922
923 void
924 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
925 {
926 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
927 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
928
929 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
930 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
931 pmap, sva, eva, 0);
932
933 if (is_kernel_pmap_p) {
934 PMAP_COUNT(remove_kernel_calls);
935 } else {
936 PMAP_COUNT(remove_user_calls);
937 }
938 #ifdef PMAP_FAULTINFO
939 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
940 curpcb->pcb_faultinfo.pfi_repeats = 0;
941 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
942 #endif
943 kpreempt_disable();
944 pmap_addr_range_check(pmap, sva, eva, __func__);
945 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
946 kpreempt_enable();
947
948 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
949 }
950
951 /*
952 * pmap_page_protect:
953 *
954 * Lower the permission for all mappings to a given page.
955 */
956 void
957 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
958 {
959 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
960 pv_entry_t pv;
961 vaddr_t va;
962
963 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
964 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
965 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
966 PMAP_COUNT(page_protect);
967
968 switch (prot) {
969 case VM_PROT_READ|VM_PROT_WRITE:
970 case VM_PROT_ALL:
971 break;
972
973 /* copy_on_write */
974 case VM_PROT_READ:
975 case VM_PROT_READ|VM_PROT_EXECUTE:
976 pv = &mdpg->mdpg_first;
977 kpreempt_disable();
978 VM_PAGEMD_PVLIST_READLOCK(mdpg);
979 pmap_pvlist_check(mdpg);
980 /*
981 * Loop over all current mappings setting/clearing as
982 * appropriate.
983 */
984 if (pv->pv_pmap != NULL) {
985 while (pv != NULL) {
986 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
987 if (pv->pv_va & PV_KENTER) {
988 pv = pv->pv_next;
989 continue;
990 }
991 #endif
992 const pmap_t pmap = pv->pv_pmap;
993 va = trunc_page(pv->pv_va);
994 const uintptr_t gen =
995 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
996 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
997 KASSERT(pv->pv_pmap == pmap);
998 pmap_update(pmap);
999 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1000 pv = &mdpg->mdpg_first;
1001 } else {
1002 pv = pv->pv_next;
1003 }
1004 pmap_pvlist_check(mdpg);
1005 }
1006 }
1007 pmap_pvlist_check(mdpg);
1008 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1009 kpreempt_enable();
1010 break;
1011
1012 /* remove_all */
1013 default:
1014 pmap_page_remove(pg);
1015 }
1016
1017 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1018 }
1019
1020 static bool
1021 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1022 uintptr_t flags)
1023 {
1024 const vm_prot_t prot = (flags & VM_PROT_ALL);
1025
1026 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1027 UVMHIST_LOG(pmaphist, "(pmap=%p %cva=%#"PRIxVADDR"..%#"PRIxVADDR")",
1028 pmap, (pmap == pmap_kernel() ? 'k' : 'u'), sva, eva);
1029 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
1030 ptep, flags, 0, 0);
1031
1032 KASSERT(kpreempt_disabled());
1033 /*
1034 * Change protection on every valid mapping within this segment.
1035 */
1036 for (; sva < eva; sva += NBPG, ptep++) {
1037 pt_entry_t pte = *ptep;
1038 if (!pte_valid_p(pte))
1039 continue;
1040 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1041 if (pg != NULL && pte_modified_p(pte)) {
1042 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1043 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1044 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1045 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1046 if (VM_PAGEMD_CACHED_P(mdpg)) {
1047 #endif
1048 UVMHIST_LOG(pmapexechist,
1049 "pg %p (pa %#"PRIxPADDR"): "
1050 "syncicached performed",
1051 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1052 pmap_page_syncicache(pg);
1053 PMAP_COUNT(exec_synced_protect);
1054 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1055 }
1056 #endif
1057 }
1058 }
1059 pte = pte_prot_downgrade(pte, prot);
1060 if (*ptep != pte) {
1061 pmap_md_tlb_miss_lock_enter();
1062 pte_set(ptep, pte);
1063 /*
1064 * Update the TLB if needed.
1065 */
1066 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1067 pmap_md_tlb_miss_lock_exit();
1068 }
1069 }
1070
1071 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1072
1073 return false;
1074 }
1075
1076 /*
1077 * Set the physical protection on the
1078 * specified range of this map as requested.
1079 */
1080 void
1081 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1082 {
1083 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1084 UVMHIST_LOG(pmaphist,
1085 "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR", prot=%u)",
1086 pmap, sva, eva, prot);
1087 PMAP_COUNT(protect);
1088
1089 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1090 pmap_remove(pmap, sva, eva);
1091 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1092 return;
1093 }
1094
1095 /*
1096 * Change protection on every valid mapping within this segment.
1097 */
1098 kpreempt_disable();
1099 pmap_addr_range_check(pmap, sva, eva, __func__);
1100 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1101 kpreempt_enable();
1102
1103 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1104 }
1105
1106 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1107 /*
1108 * pmap_page_cache:
1109 *
1110 * Change all mappings of a managed page to cached/uncached.
1111 */
1112 void
1113 pmap_page_cache(struct vm_page *pg, bool cached)
1114 {
1115 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1116
1117 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1118 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%d)",
1119 pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1120
1121 KASSERT(kpreempt_disabled());
1122 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1123
1124 if (cached) {
1125 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1126 PMAP_COUNT(page_cache_restorations);
1127 } else {
1128 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1129 PMAP_COUNT(page_cache_evictions);
1130 }
1131
1132 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1133 pmap_t pmap = pv->pv_pmap;
1134 vaddr_t va = trunc_page(pv->pv_va);
1135
1136 KASSERT(pmap != NULL);
1137 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1138 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1139 if (ptep == NULL)
1140 continue;
1141 pt_entry_t pte = *ptep;
1142 if (pte_valid_p(pte)) {
1143 pte = pte_cached_change(pte, cached);
1144 pmap_md_tlb_miss_lock_enter();
1145 pte_set(ptep, pte);
1146 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1147 pmap_md_tlb_miss_lock_exit();
1148 }
1149 }
1150
1151 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1152 }
1153 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1154
1155 /*
1156 * Insert the given physical page (p) at
1157 * the specified virtual address (v) in the
1158 * target physical map with the protection requested.
1159 *
1160 * If specified, the page will be wired down, meaning
1161 * that the related pte can not be reclaimed.
1162 *
1163 * NB: This is the only routine which MAY NOT lazy-evaluate
1164 * or lose information. That is, this routine must actually
1165 * insert this page into the given map NOW.
1166 */
1167 int
1168 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1169 {
1170 const bool wired = (flags & PMAP_WIRED) != 0;
1171 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1172 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1173 #ifdef UVMHIST
1174 struct kern_history * const histp =
1175 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1176 #endif
1177
1178 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1179 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
1180 pmap, va, pa, 0);
1181 UVMHIST_LOG(*histp, "prot=%#x flags=%#x)", prot, flags, 0, 0);
1182
1183 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1184 if (is_kernel_pmap_p) {
1185 PMAP_COUNT(kernel_mappings);
1186 if (!good_color)
1187 PMAP_COUNT(kernel_mappings_bad);
1188 } else {
1189 PMAP_COUNT(user_mappings);
1190 if (!good_color)
1191 PMAP_COUNT(user_mappings_bad);
1192 }
1193 pmap_addr_range_check(pmap, va, va, __func__);
1194
1195 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1196 VM_PROT_READ, prot);
1197
1198 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1199 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1200
1201 if (pg) {
1202 /* Set page referenced/modified status based on flags */
1203 if (flags & VM_PROT_WRITE) {
1204 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1205 } else if (flags & VM_PROT_ALL) {
1206 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1207 }
1208
1209 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1210 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1211 flags |= PMAP_NOCACHE;
1212 PMAP_COUNT(uncached_mappings);
1213 }
1214 #endif
1215
1216 PMAP_COUNT(managed_mappings);
1217 } else {
1218 /*
1219 * Assumption: if it is not part of our managed memory
1220 * then it must be device memory which may be volatile.
1221 */
1222 if ((flags & PMAP_CACHE_MASK) == 0)
1223 flags |= PMAP_NOCACHE;
1224 PMAP_COUNT(unmanaged_mappings);
1225 }
1226
1227 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1228 is_kernel_pmap_p);
1229
1230 kpreempt_disable();
1231
1232 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1233 if (__predict_false(ptep == NULL)) {
1234 kpreempt_enable();
1235 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1236 return ENOMEM;
1237 }
1238 const pt_entry_t opte = *ptep;
1239 const bool resident = pte_valid_p(opte);
1240 bool remap = false;
1241 if (resident) {
1242 if (pte_to_paddr(opte) != pa) {
1243 KASSERT(!is_kernel_pmap_p);
1244 const pt_entry_t rpte = pte_nv_entry(false);
1245
1246 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1247 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1248 rpte);
1249 PMAP_COUNT(user_mappings_changed);
1250 remap = true;
1251 }
1252 update_flags |= PMAP_TLB_NEED_IPI;
1253 }
1254
1255 if (!resident || remap) {
1256 pmap->pm_stats.resident_count++;
1257 }
1258
1259 /* Done after case that may sleep/return. */
1260 if (pg)
1261 pmap_enter_pv(pmap, va, pg, &npte, 0);
1262
1263 /*
1264 * Now validate mapping with desired protection/wiring.
1265 * Assume uniform modified and referenced status for all
1266 * MIPS pages in a MACH page.
1267 */
1268 if (wired) {
1269 pmap->pm_stats.wired_count++;
1270 npte = pte_wire_entry(npte);
1271 }
1272
1273 UVMHIST_LOG(*histp, "new pte %#"PRIxPTE" (pa %#"PRIxPADDR")",
1274 pte_value(npte), pa, 0, 0);
1275
1276 KASSERT(pte_valid_p(npte));
1277
1278 pmap_md_tlb_miss_lock_enter();
1279 pte_set(ptep, npte);
1280 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1281 pmap_md_tlb_miss_lock_exit();
1282 kpreempt_enable();
1283
1284 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1285 KASSERT(mdpg != NULL);
1286 PMAP_COUNT(exec_mappings);
1287 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1288 if (!pte_deferred_exec_p(npte)) {
1289 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1290 " pg %p: immediate syncicache",
1291 va, pg, 0, 0);
1292 pmap_page_syncicache(pg);
1293 pmap_page_set_attributes(mdpg,
1294 VM_PAGEMD_EXECPAGE);
1295 PMAP_COUNT(exec_synced_mappings);
1296 } else {
1297 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1298 " pg %p: defer syncicache: pte %#x",
1299 va, pg, npte, 0);
1300 }
1301 } else {
1302 UVMHIST_LOG(*histp,
1303 "va=%#"PRIxVADDR" pg %p: no syncicache cached %d",
1304 va, pg, pte_cached_p(npte), 0);
1305 }
1306 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1307 KASSERT(mdpg != NULL);
1308 KASSERT(prot & VM_PROT_WRITE);
1309 PMAP_COUNT(exec_mappings);
1310 pmap_page_syncicache(pg);
1311 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1312 UVMHIST_LOG(*histp,
1313 "va=%#"PRIxVADDR" pg %p: immediate syncicache (writeable)",
1314 va, pg, 0, 0);
1315 }
1316
1317 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1318 return 0;
1319 }
1320
1321 void
1322 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1323 {
1324 pmap_t pmap = pmap_kernel();
1325 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1326 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1327
1328 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1329 UVMHIST_LOG(pmaphist,
1330 "(va=%#"PRIxVADDR", pa=%#"PRIxPADDR", prot=%u, flags=%#x)",
1331 va, pa, prot, flags);
1332 PMAP_COUNT(kenter_pa);
1333
1334 if (mdpg == NULL) {
1335 PMAP_COUNT(kenter_pa_unmanaged);
1336 if ((flags & PMAP_CACHE_MASK) == 0)
1337 flags |= PMAP_NOCACHE;
1338 } else {
1339 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1340 PMAP_COUNT(kenter_pa_bad);
1341 }
1342
1343 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1344 kpreempt_disable();
1345 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1346 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1347 pmap_limits.virtual_end);
1348 KASSERT(!pte_valid_p(*ptep));
1349
1350 /*
1351 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1352 */
1353 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1354 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1355 && pmap_md_virtual_cache_aliasing_p()) {
1356 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1357 }
1358 #endif
1359
1360 /*
1361 * We have the option to force this mapping into the TLB but we
1362 * don't. Instead let the next reference to the page do it.
1363 */
1364 pmap_md_tlb_miss_lock_enter();
1365 pte_set(ptep, npte);
1366 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1367 pmap_md_tlb_miss_lock_exit();
1368 kpreempt_enable();
1369 #if DEBUG > 1
1370 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1371 if (((long *)va)[i] != ((long *)pa)[i])
1372 panic("%s: contents (%lx) of va %#"PRIxVADDR
1373 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1374 ((long *)va)[i], va, ((long *)pa)[i], pa);
1375 }
1376 #endif
1377
1378 UVMHIST_LOG(pmaphist, " <-- done (ptep=%p)", ptep, 0, 0, 0);
1379 }
1380
1381 /*
1382 * Remove the given range of addresses from the kernel map.
1383 *
1384 * It is assumed that the start and end are properly
1385 * rounded to the page size.
1386 */
1387
1388 static bool
1389 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1390 uintptr_t flags)
1391 {
1392 const pt_entry_t new_pte = pte_nv_entry(true);
1393
1394 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1395 UVMHIST_LOG(pmaphist,
1396 "(pmap=%p, sva=%#"PRIxVADDR", eva=%#"PRIxVADDR", ptep=%p)",
1397 pmap, sva, eva, ptep);
1398
1399 KASSERT(kpreempt_disabled());
1400
1401 for (; sva < eva; sva += NBPG, ptep++) {
1402 pt_entry_t pte = *ptep;
1403 if (!pte_valid_p(pte))
1404 continue;
1405
1406 PMAP_COUNT(kremove_pages);
1407 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1408 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1409 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1410 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1411 }
1412 #endif
1413
1414 pmap_md_tlb_miss_lock_enter();
1415 pte_set(ptep, new_pte);
1416 pmap_tlb_invalidate_addr(pmap, sva);
1417 pmap_md_tlb_miss_lock_exit();
1418 }
1419
1420 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1421
1422 return false;
1423 }
1424
1425 void
1426 pmap_kremove(vaddr_t va, vsize_t len)
1427 {
1428 const vaddr_t sva = trunc_page(va);
1429 const vaddr_t eva = round_page(va + len);
1430
1431 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1432 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR", len=%#"PRIxVSIZE")",
1433 va, len, 0, 0);
1434
1435 kpreempt_disable();
1436 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1437 kpreempt_enable();
1438
1439 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1440 }
1441
1442 void
1443 pmap_remove_all(struct pmap *pmap)
1444 {
1445 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1446 UVMHIST_LOG(pmaphist, "(pm=%p)", pmap, 0, 0, 0);
1447
1448 KASSERT(pmap != pmap_kernel());
1449
1450 kpreempt_disable();
1451 /*
1452 * Free all of our ASIDs which means we can skip doing all the
1453 * tlb_invalidate_addrs().
1454 */
1455 pmap_md_tlb_miss_lock_enter();
1456 #ifdef MULTIPROCESSOR
1457 // This should be the last CPU with this pmap onproc
1458 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1459 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1460 #endif
1461 pmap_tlb_asid_deactivate(pmap);
1462 #ifdef MULTIPROCESSOR
1463 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1464 #endif
1465 pmap_tlb_asid_release_all(pmap);
1466 pmap_md_tlb_miss_lock_exit();
1467 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1468
1469 #ifdef PMAP_FAULTINFO
1470 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1471 curpcb->pcb_faultinfo.pfi_repeats = 0;
1472 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1473 #endif
1474 kpreempt_enable();
1475
1476 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1477 }
1478
1479 /*
1480 * Routine: pmap_unwire
1481 * Function: Clear the wired attribute for a map/virtual-address
1482 * pair.
1483 * In/out conditions:
1484 * The mapping must already exist in the pmap.
1485 */
1486 void
1487 pmap_unwire(pmap_t pmap, vaddr_t va)
1488 {
1489 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1490 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR")", pmap, va, 0, 0);
1491 PMAP_COUNT(unwire);
1492
1493 /*
1494 * Don't need to flush the TLB since PG_WIRED is only in software.
1495 */
1496 kpreempt_disable();
1497 pmap_addr_range_check(pmap, va, va, __func__);
1498 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1499 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1500 pmap, va);
1501 pt_entry_t pte = *ptep;
1502 KASSERTMSG(pte_valid_p(pte),
1503 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1504 pmap, va, pte_value(pte), ptep);
1505
1506 if (pte_wired_p(pte)) {
1507 pmap_md_tlb_miss_lock_enter();
1508 pte_set(ptep, pte_unwire_entry(pte));
1509 pmap_md_tlb_miss_lock_exit();
1510 pmap->pm_stats.wired_count--;
1511 }
1512 #ifdef DIAGNOSTIC
1513 else {
1514 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1515 __func__, pmap, va);
1516 }
1517 #endif
1518 kpreempt_enable();
1519
1520 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1521 }
1522
1523 /*
1524 * Routine: pmap_extract
1525 * Function:
1526 * Extract the physical page address associated
1527 * with the given map/virtual_address pair.
1528 */
1529 bool
1530 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1531 {
1532 paddr_t pa;
1533
1534 if (pmap == pmap_kernel()) {
1535 if (pmap_md_direct_mapped_vaddr_p(va)) {
1536 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1537 goto done;
1538 }
1539 if (pmap_md_io_vaddr_p(va))
1540 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1541
1542 if (va >= pmap_limits.virtual_end)
1543 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1544 __func__, va);
1545 }
1546 kpreempt_disable();
1547 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1548 if (ptep == NULL || !pte_valid_p(*ptep)) {
1549 kpreempt_enable();
1550 return false;
1551 }
1552 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1553 kpreempt_enable();
1554 done:
1555 if (pap != NULL) {
1556 *pap = pa;
1557 }
1558 return true;
1559 }
1560
1561 /*
1562 * Copy the range specified by src_addr/len
1563 * from the source map to the range dst_addr/len
1564 * in the destination map.
1565 *
1566 * This routine is only advisory and need not do anything.
1567 */
1568 void
1569 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1570 vaddr_t src_addr)
1571 {
1572 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1573 PMAP_COUNT(copy);
1574 }
1575
1576 /*
1577 * pmap_clear_reference:
1578 *
1579 * Clear the reference bit on the specified physical page.
1580 */
1581 bool
1582 pmap_clear_reference(struct vm_page *pg)
1583 {
1584 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1585
1586 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1587 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1588 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1589
1590 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1591
1592 UVMHIST_LOG(pmaphist, " <-- wasref %u", rv, 0, 0, 0);
1593
1594 return rv;
1595 }
1596
1597 /*
1598 * pmap_is_referenced:
1599 *
1600 * Return whether or not the specified physical page is referenced
1601 * by any physical maps.
1602 */
1603 bool
1604 pmap_is_referenced(struct vm_page *pg)
1605 {
1606 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1607 }
1608
1609 /*
1610 * Clear the modify bits on the specified physical page.
1611 */
1612 bool
1613 pmap_clear_modify(struct vm_page *pg)
1614 {
1615 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1616 pv_entry_t pv = &mdpg->mdpg_first;
1617 pv_entry_t pv_next;
1618
1619 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1620 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1621 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1622 PMAP_COUNT(clear_modify);
1623
1624 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1625 if (pv->pv_pmap == NULL) {
1626 UVMHIST_LOG(pmapexechist,
1627 "pg %p (pa %#"PRIxPADDR"): execpage cleared",
1628 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1629 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1630 PMAP_COUNT(exec_uncached_clear_modify);
1631 } else {
1632 UVMHIST_LOG(pmapexechist,
1633 "pg %p (pa %#"PRIxPADDR"): syncicache performed",
1634 pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1635 pmap_page_syncicache(pg);
1636 PMAP_COUNT(exec_synced_clear_modify);
1637 }
1638 }
1639 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1640 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1641 return false;
1642 }
1643 if (pv->pv_pmap == NULL) {
1644 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1645 return true;
1646 }
1647
1648 /*
1649 * remove write access from any pages that are dirty
1650 * so we can tell if they are written to again later.
1651 * flush the VAC first if there is one.
1652 */
1653 kpreempt_disable();
1654 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1655 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1656 pmap_pvlist_check(mdpg);
1657 for (; pv != NULL; pv = pv_next) {
1658 pmap_t pmap = pv->pv_pmap;
1659 vaddr_t va = trunc_page(pv->pv_va);
1660
1661 pv_next = pv->pv_next;
1662 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1663 if (pv->pv_va & PV_KENTER)
1664 continue;
1665 #endif
1666 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1667 KASSERT(ptep);
1668 pt_entry_t pte = pte_prot_nowrite(*ptep);
1669 if (*ptep == pte) {
1670 continue;
1671 }
1672 KASSERT(pte_valid_p(pte));
1673 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1674 pmap_md_tlb_miss_lock_enter();
1675 pte_set(ptep, pte);
1676 pmap_tlb_invalidate_addr(pmap, va);
1677 pmap_md_tlb_miss_lock_exit();
1678 pmap_update(pmap);
1679 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1680 /*
1681 * The list changed! So restart from the beginning.
1682 */
1683 pv_next = &mdpg->mdpg_first;
1684 pmap_pvlist_check(mdpg);
1685 }
1686 }
1687 pmap_pvlist_check(mdpg);
1688 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1689 kpreempt_enable();
1690
1691 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1692 return true;
1693 }
1694
1695 /*
1696 * pmap_is_modified:
1697 *
1698 * Return whether or not the specified physical page is modified
1699 * by any physical maps.
1700 */
1701 bool
1702 pmap_is_modified(struct vm_page *pg)
1703 {
1704 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1705 }
1706
1707 /*
1708 * pmap_set_modified:
1709 *
1710 * Sets the page modified reference bit for the specified page.
1711 */
1712 void
1713 pmap_set_modified(paddr_t pa)
1714 {
1715 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1716 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1717 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1718 }
1719
1720 /******************** pv_entry management ********************/
1721
1722 static void
1723 pmap_pvlist_check(struct vm_page_md *mdpg)
1724 {
1725 #ifdef DEBUG
1726 pv_entry_t pv = &mdpg->mdpg_first;
1727 if (pv->pv_pmap != NULL) {
1728 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1729 const u_int colormask = uvmexp.colormask;
1730 u_int colors = 0;
1731 #endif
1732 for (; pv != NULL; pv = pv->pv_next) {
1733 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1734 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1735 colors |= __BIT(atop(pv->pv_va) & colormask);
1736 #endif
1737 }
1738 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1739 // Assert that if there is more than 1 color mapped, that the
1740 // page is uncached.
1741 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1742 || colors == 0 || (colors & (colors-1)) == 0
1743 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1744 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1745 #endif
1746 } else {
1747 KASSERT(pv->pv_next == NULL);
1748 }
1749 #endif /* DEBUG */
1750 }
1751
1752 /*
1753 * Enter the pmap and virtual address into the
1754 * physical to virtual map table.
1755 */
1756 void
1757 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1758 u_int flags)
1759 {
1760 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1761 pv_entry_t pv, npv, apv;
1762 #ifdef UVMHIST
1763 bool first = false;
1764 #endif
1765
1766 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1767 UVMHIST_LOG(pmaphist,
1768 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1769 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1770 UVMHIST_LOG(pmaphist, "nptep=%p (%#"PRIxPTE"))",
1771 nptep, pte_value(*nptep), 0, 0);
1772
1773 KASSERT(kpreempt_disabled());
1774 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1775 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1776 "va %#"PRIxVADDR, va);
1777
1778 apv = NULL;
1779 VM_PAGEMD_PVLIST_LOCK(mdpg);
1780 again:
1781 pv = &mdpg->mdpg_first;
1782 pmap_pvlist_check(mdpg);
1783 if (pv->pv_pmap == NULL) {
1784 KASSERT(pv->pv_next == NULL);
1785 /*
1786 * No entries yet, use header as the first entry
1787 */
1788 PMAP_COUNT(primary_mappings);
1789 PMAP_COUNT(mappings);
1790 #ifdef UVMHIST
1791 first = true;
1792 #endif
1793 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1794 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1795 // If the new mapping has an incompatible color the last
1796 // mapping of this page, clean the page before using it.
1797 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1798 pmap_md_vca_clean(pg, PMAP_WBINV);
1799 }
1800 #endif
1801 pv->pv_pmap = pmap;
1802 pv->pv_va = va | flags;
1803 } else {
1804 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1805 if (pmap_md_vca_add(pg, va, nptep)) {
1806 goto again;
1807 }
1808 #endif
1809
1810 /*
1811 * There is at least one other VA mapping this page.
1812 * Place this entry after the header.
1813 *
1814 * Note: the entry may already be in the table if
1815 * we are only changing the protection bits.
1816 */
1817
1818 #ifdef PARANOIADIAG
1819 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1820 #endif
1821 for (npv = pv; npv; npv = npv->pv_next) {
1822 if (pmap == npv->pv_pmap
1823 && va == trunc_page(npv->pv_va)) {
1824 #ifdef PARANOIADIAG
1825 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1826 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1827 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1828 printf("%s: found va %#"PRIxVADDR
1829 " pa %#"PRIxPADDR
1830 " in pv_table but != %#"PRIxPTE"\n",
1831 __func__, va, pa, pte_value(pte));
1832 #endif
1833 PMAP_COUNT(remappings);
1834 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1835 if (__predict_false(apv != NULL))
1836 pmap_pv_free(apv);
1837
1838 UVMHIST_LOG(pmaphist, " <-- done pv=%p (reused)",
1839 pv, 0, 0, 0);
1840 return;
1841 }
1842 }
1843 if (__predict_true(apv == NULL)) {
1844 /*
1845 * To allocate a PV, we have to release the PVLIST lock
1846 * so get the page generation. We allocate the PV, and
1847 * then reacquire the lock.
1848 */
1849 pmap_pvlist_check(mdpg);
1850 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1851
1852 apv = (pv_entry_t)pmap_pv_alloc();
1853 if (apv == NULL)
1854 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1855
1856 /*
1857 * If the generation has changed, then someone else
1858 * tinkered with this page so we should start over.
1859 */
1860 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1861 goto again;
1862 }
1863 npv = apv;
1864 apv = NULL;
1865 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1866 /*
1867 * If need to deal with virtual cache aliases, keep mappings
1868 * in the kernel pmap at the head of the list. This allows
1869 * the VCA code to easily use them for cache operations if
1870 * present.
1871 */
1872 pmap_t kpmap = pmap_kernel();
1873 if (pmap != kpmap) {
1874 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1875 pv = pv->pv_next;
1876 }
1877 }
1878 #endif
1879 npv->pv_va = va | flags;
1880 npv->pv_pmap = pmap;
1881 npv->pv_next = pv->pv_next;
1882 pv->pv_next = npv;
1883 PMAP_COUNT(mappings);
1884 }
1885 pmap_pvlist_check(mdpg);
1886 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1887 if (__predict_false(apv != NULL))
1888 pmap_pv_free(apv);
1889
1890 UVMHIST_LOG(pmaphist, " <-- done pv=%p (first %u)", pv, first, 0, 0);
1891 }
1892
1893 /*
1894 * Remove a physical to virtual address translation.
1895 * If cache was inhibited on this page, and there are no more cache
1896 * conflicts, restore caching.
1897 * Flush the cache if the last page is removed (should always be cached
1898 * at this point).
1899 */
1900 void
1901 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1902 {
1903 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1904 pv_entry_t pv, npv;
1905 bool last;
1906
1907 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1908 UVMHIST_LOG(pmaphist,
1909 "(pmap=%p, va=%#"PRIxVADDR", pg=%p (pa %#"PRIxPADDR")",
1910 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1911 UVMHIST_LOG(pmaphist, "dirty=%u)", dirty, 0, 0, 0);
1912
1913 KASSERT(kpreempt_disabled());
1914 KASSERT((va & PAGE_MASK) == 0);
1915 pv = &mdpg->mdpg_first;
1916
1917 VM_PAGEMD_PVLIST_LOCK(mdpg);
1918 pmap_pvlist_check(mdpg);
1919
1920 /*
1921 * If it is the first entry on the list, it is actually
1922 * in the header and we must copy the following entry up
1923 * to the header. Otherwise we must search the list for
1924 * the entry. In either case we free the now unused entry.
1925 */
1926
1927 last = false;
1928 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1929 npv = pv->pv_next;
1930 if (npv) {
1931 *pv = *npv;
1932 KASSERT(pv->pv_pmap != NULL);
1933 } else {
1934 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1935 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1936 #endif
1937 pv->pv_pmap = NULL;
1938 last = true; /* Last mapping removed */
1939 }
1940 PMAP_COUNT(remove_pvfirst);
1941 } else {
1942 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1943 PMAP_COUNT(remove_pvsearch);
1944 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1945 break;
1946 }
1947 if (npv) {
1948 pv->pv_next = npv->pv_next;
1949 }
1950 }
1951
1952 pmap_pvlist_check(mdpg);
1953 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1954
1955 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1956 pmap_md_vca_remove(pg, va, dirty, last);
1957 #endif
1958
1959 /*
1960 * Free the pv_entry if needed.
1961 */
1962 if (npv)
1963 pmap_pv_free(npv);
1964 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1965 if (last) {
1966 /*
1967 * If this was the page's last mapping, we no longer
1968 * care about its execness.
1969 */
1970 UVMHIST_LOG(pmapexechist,
1971 "pg %p (pa %#"PRIxPADDR")last %u: execpage cleared",
1972 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1973 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1974 PMAP_COUNT(exec_uncached_remove);
1975 } else {
1976 /*
1977 * Someone still has it mapped as an executable page
1978 * so we must sync it.
1979 */
1980 UVMHIST_LOG(pmapexechist,
1981 "pg %p (pa %#"PRIxPADDR")last %u: performed syncicache",
1982 pg, VM_PAGE_TO_PHYS(pg), last, 0);
1983 pmap_page_syncicache(pg);
1984 PMAP_COUNT(exec_synced_remove);
1985 }
1986 }
1987
1988 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1989 }
1990
1991 #if defined(MULTIPROCESSOR)
1992 struct pmap_pvlist_info {
1993 kmutex_t *pli_locks[PAGE_SIZE / 32];
1994 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1995 volatile u_int pli_lock_index;
1996 u_int pli_lock_mask;
1997 } pmap_pvlist_info;
1998
1999 void
2000 pmap_pvlist_lock_init(size_t cache_line_size)
2001 {
2002 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2003 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2004 vaddr_t lock_va = lock_page;
2005 if (sizeof(kmutex_t) > cache_line_size) {
2006 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2007 }
2008 const size_t nlocks = PAGE_SIZE / cache_line_size;
2009 KASSERT((nlocks & (nlocks - 1)) == 0);
2010 /*
2011 * Now divide the page into a number of mutexes, one per cacheline.
2012 */
2013 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2014 kmutex_t * const lock = (kmutex_t *)lock_va;
2015 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2016 pli->pli_locks[i] = lock;
2017 }
2018 pli->pli_lock_mask = nlocks - 1;
2019 }
2020
2021 kmutex_t *
2022 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2023 {
2024 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2025 kmutex_t *lock = mdpg->mdpg_lock;
2026
2027 /*
2028 * Allocate a lock on an as-needed basis. This will hopefully give us
2029 * semi-random distribution not based on page color.
2030 */
2031 if (__predict_false(lock == NULL)) {
2032 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2033 size_t lockid = locknum & pli->pli_lock_mask;
2034 kmutex_t * const new_lock = pli->pli_locks[lockid];
2035 /*
2036 * Set the lock. If some other thread already did, just use
2037 * the one they assigned.
2038 */
2039 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2040 if (lock == NULL) {
2041 lock = new_lock;
2042 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2043 }
2044 }
2045
2046 /*
2047 * Now finally provide the lock.
2048 */
2049 return lock;
2050 }
2051 #else /* !MULTIPROCESSOR */
2052 void
2053 pmap_pvlist_lock_init(size_t cache_line_size)
2054 {
2055 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2056 }
2057
2058 #ifdef MODULAR
2059 kmutex_t *
2060 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2061 {
2062 /*
2063 * We just use a global lock.
2064 */
2065 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2066 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2067 }
2068
2069 /*
2070 * Now finally provide the lock.
2071 */
2072 return mdpg->mdpg_lock;
2073 }
2074 #endif /* MODULAR */
2075 #endif /* !MULTIPROCESSOR */
2076
2077 /*
2078 * pmap_pv_page_alloc:
2079 *
2080 * Allocate a page for the pv_entry pool.
2081 */
2082 void *
2083 pmap_pv_page_alloc(struct pool *pp, int flags)
2084 {
2085 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2086 if (pg == NULL)
2087 return NULL;
2088
2089 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2090 }
2091
2092 /*
2093 * pmap_pv_page_free:
2094 *
2095 * Free a pv_entry pool page.
2096 */
2097 void
2098 pmap_pv_page_free(struct pool *pp, void *v)
2099 {
2100 vaddr_t va = (vaddr_t)v;
2101
2102 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2103 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2104 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2105 KASSERT(pg != NULL);
2106 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2107 kpreempt_disable();
2108 pmap_md_vca_remove(pg, va, true, true);
2109 kpreempt_enable();
2110 #endif
2111 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2112 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2113 uvm_pagefree(pg);
2114 }
2115
2116 #ifdef PMAP_PREFER
2117 /*
2118 * Find first virtual address >= *vap that doesn't cause
2119 * a cache alias conflict.
2120 */
2121 void
2122 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2123 {
2124 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2125
2126 PMAP_COUNT(prefer_requests);
2127
2128 prefer_mask |= pmap_md_cache_prefer_mask();
2129
2130 if (prefer_mask) {
2131 vaddr_t va = *vap;
2132 vsize_t d = (foff - va) & prefer_mask;
2133 if (d) {
2134 if (td)
2135 *vap = trunc_page(va - ((-d) & prefer_mask));
2136 else
2137 *vap = round_page(va + d);
2138 PMAP_COUNT(prefer_adjustments);
2139 }
2140 }
2141 }
2142 #endif /* PMAP_PREFER */
2143
2144 #ifdef PMAP_MAP_POOLPAGE
2145 vaddr_t
2146 pmap_map_poolpage(paddr_t pa)
2147 {
2148 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2149 KASSERT(pg);
2150
2151 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2152 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2153
2154 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2155
2156 return pmap_md_map_poolpage(pa, NBPG);
2157 }
2158
2159 paddr_t
2160 pmap_unmap_poolpage(vaddr_t va)
2161 {
2162 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2163 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2164
2165 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2166 KASSERT(pg != NULL);
2167 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2168
2169 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2170 pmap_md_unmap_poolpage(va, NBPG);
2171
2172 return pa;
2173 }
2174 #endif /* PMAP_MAP_POOLPAGE */
2175