pmap.c revision 1.39 1 /* $NetBSD: pmap.c,v 1.39 2017/10/30 01:19:46 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.39 2017/10/30 01:19:46 pgoyette Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their k0seg addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
601 0, 0, 0);
602
603 return pmap;
604 }
605
606 /*
607 * Retire the given physical map from service.
608 * Should only be called if the map contains
609 * no valid mappings.
610 */
611 void
612 pmap_destroy(pmap_t pmap)
613 {
614 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
615 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
616
617 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
618 PMAP_COUNT(dereference);
619 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
620 return;
621 }
622
623 PMAP_COUNT(destroy);
624 KASSERT(pmap->pm_count == 0);
625 kpreempt_disable();
626 pmap_md_tlb_miss_lock_enter();
627 pmap_tlb_asid_release_all(pmap);
628 pmap_segtab_destroy(pmap, NULL, 0);
629 pmap_md_tlb_miss_lock_exit();
630
631 #ifdef MULTIPROCESSOR
632 kcpuset_destroy(pmap->pm_active);
633 kcpuset_destroy(pmap->pm_onproc);
634 pmap->pm_active = NULL;
635 pmap->pm_onproc = NULL;
636 #endif
637
638 pool_put(&pmap_pmap_pool, pmap);
639 kpreempt_enable();
640
641 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
642 }
643
644 /*
645 * Add a reference to the specified pmap.
646 */
647 void
648 pmap_reference(pmap_t pmap)
649 {
650 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
651 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
652 PMAP_COUNT(reference);
653
654 if (pmap != NULL) {
655 atomic_inc_uint(&pmap->pm_count);
656 }
657
658 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
659 }
660
661 /*
662 * Make a new pmap (vmspace) active for the given process.
663 */
664 void
665 pmap_activate(struct lwp *l)
666 {
667 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
668
669 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
670 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
671 (uintptr_t)pmap, 0, 0);
672 PMAP_COUNT(activate);
673
674 kpreempt_disable();
675 pmap_md_tlb_miss_lock_enter();
676 pmap_tlb_asid_acquire(pmap, l);
677 if (l == curlwp) {
678 pmap_segtab_activate(pmap, l);
679 }
680 pmap_md_tlb_miss_lock_exit();
681 kpreempt_enable();
682
683 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
684 l->l_lid, 0, 0);
685 }
686
687 /*
688 * Remove this page from all physical maps in which it resides.
689 * Reflects back modify bits to the pager.
690 */
691 void
692 pmap_page_remove(struct vm_page *pg)
693 {
694 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
695
696 kpreempt_disable();
697 VM_PAGEMD_PVLIST_LOCK(mdpg);
698 pmap_pvlist_check(mdpg);
699
700 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
701
702 UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
703 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
704 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
705 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
706 #else
707 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
708 #endif
709 PMAP_COUNT(exec_uncached_remove);
710
711 pv_entry_t pv = &mdpg->mdpg_first;
712 if (pv->pv_pmap == NULL) {
713 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
714 kpreempt_enable();
715 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
716 return;
717 }
718
719 pv_entry_t npv;
720 pv_entry_t pvp = NULL;
721
722 for (; pv != NULL; pv = npv) {
723 npv = pv->pv_next;
724 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
725 if (pv->pv_va & PV_KENTER) {
726 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
727 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
728 pv->pv_va, 0);
729
730 KASSERT(pv->pv_pmap == pmap_kernel());
731
732 /* Assume no more - it'll get fixed if there are */
733 pv->pv_next = NULL;
734
735 /*
736 * pvp is non-null when we already have a PV_KENTER
737 * pv in pvh_first; otherwise we haven't seen a
738 * PV_KENTER pv and we need to copy this one to
739 * pvh_first
740 */
741 if (pvp) {
742 /*
743 * The previous PV_KENTER pv needs to point to
744 * this PV_KENTER pv
745 */
746 pvp->pv_next = pv;
747 } else {
748 pv_entry_t fpv = &mdpg->mdpg_first;
749 *fpv = *pv;
750 KASSERT(fpv->pv_pmap == pmap_kernel());
751 }
752 pvp = pv;
753 continue;
754 }
755 #endif
756 const pmap_t pmap = pv->pv_pmap;
757 vaddr_t va = trunc_page(pv->pv_va);
758 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
759 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
760 pmap_limits.virtual_end);
761 pt_entry_t pte = *ptep;
762 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
763 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
764 pte_value(pte));
765 if (!pte_valid_p(pte))
766 continue;
767 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
768 if (is_kernel_pmap_p) {
769 PMAP_COUNT(remove_kernel_pages);
770 } else {
771 PMAP_COUNT(remove_user_pages);
772 }
773 if (pte_wired_p(pte))
774 pmap->pm_stats.wired_count--;
775 pmap->pm_stats.resident_count--;
776
777 pmap_md_tlb_miss_lock_enter();
778 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
779 pte_set(ptep, npte);
780 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
781 /*
782 * Flush the TLB for the given address.
783 */
784 pmap_tlb_invalidate_addr(pmap, va);
785 }
786 pmap_md_tlb_miss_lock_exit();
787
788 /*
789 * non-null means this is a non-pvh_first pv, so we should
790 * free it.
791 */
792 if (pvp) {
793 KASSERT(pvp->pv_pmap == pmap_kernel());
794 KASSERT(pvp->pv_next == NULL);
795 pmap_pv_free(pv);
796 } else {
797 pv->pv_pmap = NULL;
798 pv->pv_next = NULL;
799 }
800 }
801
802 pmap_pvlist_check(mdpg);
803 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
804 kpreempt_enable();
805
806 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
807 }
808
809
810 /*
811 * Make a previously active pmap (vmspace) inactive.
812 */
813 void
814 pmap_deactivate(struct lwp *l)
815 {
816 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
817
818 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
819 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
820 (uintptr_t)pmap, 0, 0);
821 PMAP_COUNT(deactivate);
822
823 kpreempt_disable();
824 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
825 pmap_md_tlb_miss_lock_enter();
826 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
827 #ifdef _LP64
828 curcpu()->ci_pmap_user_seg0tab = NULL;
829 #endif
830 pmap_tlb_asid_deactivate(pmap);
831 pmap_md_tlb_miss_lock_exit();
832 kpreempt_enable();
833
834 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
835 l->l_lid, 0, 0);
836 }
837
838 void
839 pmap_update(struct pmap *pmap)
840 {
841 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
842 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
843 PMAP_COUNT(update);
844
845 kpreempt_disable();
846 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
847 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
848 if (pending && pmap_tlb_shootdown_bystanders(pmap))
849 PMAP_COUNT(shootdown_ipis);
850 #endif
851 pmap_md_tlb_miss_lock_enter();
852 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
853 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
854 #endif /* DEBUG */
855
856 /*
857 * If pmap_remove_all was called, we deactivated ourselves and nuked
858 * our ASID. Now we have to reactivate ourselves.
859 */
860 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
861 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
862 pmap_tlb_asid_acquire(pmap, curlwp);
863 pmap_segtab_activate(pmap, curlwp);
864 }
865 pmap_md_tlb_miss_lock_exit();
866 kpreempt_enable();
867
868 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
869 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
870 }
871
872 /*
873 * Remove the given range of addresses from the specified map.
874 *
875 * It is assumed that the start and end are properly
876 * rounded to the page size.
877 */
878
879 static bool
880 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
881 uintptr_t flags)
882 {
883 const pt_entry_t npte = flags;
884 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
885
886 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
887 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%c va=%#jx..%#jx)",
888 (uintmax_t)(uintptr_t)pmap, (is_kernel_pmap_p ? 1 : 0), sva, eva);
889 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx",
890 (uintptr_t)ptep, flags, 0, 0);
891
892 KASSERT(kpreempt_disabled());
893
894 for (; sva < eva; sva += NBPG, ptep++) {
895 const pt_entry_t pte = *ptep;
896 if (!pte_valid_p(pte))
897 continue;
898 if (is_kernel_pmap_p) {
899 PMAP_COUNT(remove_kernel_pages);
900 } else {
901 PMAP_COUNT(remove_user_pages);
902 }
903 if (pte_wired_p(pte))
904 pmap->pm_stats.wired_count--;
905 pmap->pm_stats.resident_count--;
906 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
907 if (__predict_true(pg != NULL)) {
908 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
909 }
910 pmap_md_tlb_miss_lock_enter();
911 pte_set(ptep, npte);
912 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
913
914 /*
915 * Flush the TLB for the given address.
916 */
917 pmap_tlb_invalidate_addr(pmap, sva);
918 }
919 pmap_md_tlb_miss_lock_exit();
920 }
921
922 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
923
924 return false;
925 }
926
927 void
928 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
929 {
930 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
931 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
932
933 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
934 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
935 (uintptr_t)pmap, sva, eva, 0);
936
937 if (is_kernel_pmap_p) {
938 PMAP_COUNT(remove_kernel_calls);
939 } else {
940 PMAP_COUNT(remove_user_calls);
941 }
942 #ifdef PMAP_FAULTINFO
943 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
944 curpcb->pcb_faultinfo.pfi_repeats = 0;
945 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
946 #endif
947 kpreempt_disable();
948 pmap_addr_range_check(pmap, sva, eva, __func__);
949 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
950 kpreempt_enable();
951
952 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
953 }
954
955 /*
956 * pmap_page_protect:
957 *
958 * Lower the permission for all mappings to a given page.
959 */
960 void
961 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
962 {
963 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
964 pv_entry_t pv;
965 vaddr_t va;
966
967 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
968 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
969 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
970 PMAP_COUNT(page_protect);
971
972 switch (prot) {
973 case VM_PROT_READ|VM_PROT_WRITE:
974 case VM_PROT_ALL:
975 break;
976
977 /* copy_on_write */
978 case VM_PROT_READ:
979 case VM_PROT_READ|VM_PROT_EXECUTE:
980 pv = &mdpg->mdpg_first;
981 kpreempt_disable();
982 VM_PAGEMD_PVLIST_READLOCK(mdpg);
983 pmap_pvlist_check(mdpg);
984 /*
985 * Loop over all current mappings setting/clearing as
986 * appropriate.
987 */
988 if (pv->pv_pmap != NULL) {
989 while (pv != NULL) {
990 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
991 if (pv->pv_va & PV_KENTER) {
992 pv = pv->pv_next;
993 continue;
994 }
995 #endif
996 const pmap_t pmap = pv->pv_pmap;
997 va = trunc_page(pv->pv_va);
998 const uintptr_t gen =
999 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1000 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1001 KASSERT(pv->pv_pmap == pmap);
1002 pmap_update(pmap);
1003 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1004 pv = &mdpg->mdpg_first;
1005 } else {
1006 pv = pv->pv_next;
1007 }
1008 pmap_pvlist_check(mdpg);
1009 }
1010 }
1011 pmap_pvlist_check(mdpg);
1012 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1013 kpreempt_enable();
1014 break;
1015
1016 /* remove_all */
1017 default:
1018 pmap_page_remove(pg);
1019 }
1020
1021 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1022 }
1023
1024 static bool
1025 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1026 uintptr_t flags)
1027 {
1028 const vm_prot_t prot = (flags & VM_PROT_ALL);
1029
1030 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1031 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1032 (uintmax_t)(uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0),
1033 sva, eva);
1034 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1035 (uintptr_t)ptep, flags, 0, 0);
1036
1037 KASSERT(kpreempt_disabled());
1038 /*
1039 * Change protection on every valid mapping within this segment.
1040 */
1041 for (; sva < eva; sva += NBPG, ptep++) {
1042 pt_entry_t pte = *ptep;
1043 if (!pte_valid_p(pte))
1044 continue;
1045 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1046 if (pg != NULL && pte_modified_p(pte)) {
1047 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1048 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1049 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1050 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1051 if (VM_PAGEMD_CACHED_P(mdpg)) {
1052 #endif
1053 UVMHIST_LOG(pmapexechist,
1054 "pg %#jx (pa %#jx): "
1055 "syncicached performed",
1056 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1057 0, 0);
1058 pmap_page_syncicache(pg);
1059 PMAP_COUNT(exec_synced_protect);
1060 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1061 }
1062 #endif
1063 }
1064 }
1065 pte = pte_prot_downgrade(pte, prot);
1066 if (*ptep != pte) {
1067 pmap_md_tlb_miss_lock_enter();
1068 pte_set(ptep, pte);
1069 /*
1070 * Update the TLB if needed.
1071 */
1072 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1073 pmap_md_tlb_miss_lock_exit();
1074 }
1075 }
1076
1077 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1078
1079 return false;
1080 }
1081
1082 /*
1083 * Set the physical protection on the
1084 * specified range of this map as requested.
1085 */
1086 void
1087 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1088 {
1089 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1090 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1091 (uintptr_t)pmap, sva, eva, prot);
1092 PMAP_COUNT(protect);
1093
1094 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1095 pmap_remove(pmap, sva, eva);
1096 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1097 return;
1098 }
1099
1100 /*
1101 * Change protection on every valid mapping within this segment.
1102 */
1103 kpreempt_disable();
1104 pmap_addr_range_check(pmap, sva, eva, __func__);
1105 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1106 kpreempt_enable();
1107
1108 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1109 }
1110
1111 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1112 /*
1113 * pmap_page_cache:
1114 *
1115 * Change all mappings of a managed page to cached/uncached.
1116 */
1117 void
1118 pmap_page_cache(struct vm_page *pg, bool cached)
1119 {
1120 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1121
1122 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1123 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1124 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1125
1126 KASSERT(kpreempt_disabled());
1127 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1128
1129 if (cached) {
1130 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1131 PMAP_COUNT(page_cache_restorations);
1132 } else {
1133 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1134 PMAP_COUNT(page_cache_evictions);
1135 }
1136
1137 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1138 pmap_t pmap = pv->pv_pmap;
1139 vaddr_t va = trunc_page(pv->pv_va);
1140
1141 KASSERT(pmap != NULL);
1142 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1143 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1144 if (ptep == NULL)
1145 continue;
1146 pt_entry_t pte = *ptep;
1147 if (pte_valid_p(pte)) {
1148 pte = pte_cached_change(pte, cached);
1149 pmap_md_tlb_miss_lock_enter();
1150 pte_set(ptep, pte);
1151 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1152 pmap_md_tlb_miss_lock_exit();
1153 }
1154 }
1155
1156 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1157 }
1158 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1159
1160 /*
1161 * Insert the given physical page (p) at
1162 * the specified virtual address (v) in the
1163 * target physical map with the protection requested.
1164 *
1165 * If specified, the page will be wired down, meaning
1166 * that the related pte can not be reclaimed.
1167 *
1168 * NB: This is the only routine which MAY NOT lazy-evaluate
1169 * or lose information. That is, this routine must actually
1170 * insert this page into the given map NOW.
1171 */
1172 int
1173 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1174 {
1175 const bool wired = (flags & PMAP_WIRED) != 0;
1176 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1177 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1178 #ifdef UVMHIST
1179 struct kern_history * const histp =
1180 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1181 #endif
1182
1183 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1184 UVMHIST_LOG(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1185 (uintptr_t)pmap, va, pa, 0);
1186 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1187
1188 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1189 if (is_kernel_pmap_p) {
1190 PMAP_COUNT(kernel_mappings);
1191 if (!good_color)
1192 PMAP_COUNT(kernel_mappings_bad);
1193 } else {
1194 PMAP_COUNT(user_mappings);
1195 if (!good_color)
1196 PMAP_COUNT(user_mappings_bad);
1197 }
1198 pmap_addr_range_check(pmap, va, va, __func__);
1199
1200 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1201 VM_PROT_READ, prot);
1202
1203 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1204 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1205
1206 if (pg) {
1207 /* Set page referenced/modified status based on flags */
1208 if (flags & VM_PROT_WRITE) {
1209 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1210 } else if (flags & VM_PROT_ALL) {
1211 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1212 }
1213
1214 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1215 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1216 flags |= PMAP_NOCACHE;
1217 PMAP_COUNT(uncached_mappings);
1218 }
1219 #endif
1220
1221 PMAP_COUNT(managed_mappings);
1222 } else {
1223 /*
1224 * Assumption: if it is not part of our managed memory
1225 * then it must be device memory which may be volatile.
1226 */
1227 if ((flags & PMAP_CACHE_MASK) == 0)
1228 flags |= PMAP_NOCACHE;
1229 PMAP_COUNT(unmanaged_mappings);
1230 }
1231
1232 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1233 is_kernel_pmap_p);
1234
1235 kpreempt_disable();
1236
1237 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1238 if (__predict_false(ptep == NULL)) {
1239 kpreempt_enable();
1240 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1241 return ENOMEM;
1242 }
1243 const pt_entry_t opte = *ptep;
1244 const bool resident = pte_valid_p(opte);
1245 bool remap = false;
1246 if (resident) {
1247 if (pte_to_paddr(opte) != pa) {
1248 KASSERT(!is_kernel_pmap_p);
1249 const pt_entry_t rpte = pte_nv_entry(false);
1250
1251 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1252 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1253 rpte);
1254 PMAP_COUNT(user_mappings_changed);
1255 remap = true;
1256 }
1257 update_flags |= PMAP_TLB_NEED_IPI;
1258 }
1259
1260 if (!resident || remap) {
1261 pmap->pm_stats.resident_count++;
1262 }
1263
1264 /* Done after case that may sleep/return. */
1265 if (pg)
1266 pmap_enter_pv(pmap, va, pg, &npte, 0);
1267
1268 /*
1269 * Now validate mapping with desired protection/wiring.
1270 * Assume uniform modified and referenced status for all
1271 * MIPS pages in a MACH page.
1272 */
1273 if (wired) {
1274 pmap->pm_stats.wired_count++;
1275 npte = pte_wire_entry(npte);
1276 }
1277
1278 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1279 pte_value(npte), pa, 0, 0);
1280
1281 KASSERT(pte_valid_p(npte));
1282
1283 pmap_md_tlb_miss_lock_enter();
1284 pte_set(ptep, npte);
1285 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1286 pmap_md_tlb_miss_lock_exit();
1287 kpreempt_enable();
1288
1289 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1290 KASSERT(mdpg != NULL);
1291 PMAP_COUNT(exec_mappings);
1292 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1293 if (!pte_deferred_exec_p(npte)) {
1294 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1295 "immediate syncicache",
1296 va, (uintptr_t)pg, 0, 0);
1297 pmap_page_syncicache(pg);
1298 pmap_page_set_attributes(mdpg,
1299 VM_PAGEMD_EXECPAGE);
1300 PMAP_COUNT(exec_synced_mappings);
1301 } else {
1302 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1303 "syncicache: pte %#jx",
1304 va, (uintptr_t)pg, npte, 0);
1305 }
1306 } else {
1307 UVMHIST_LOG(*histp,
1308 "va=%#jx pg %#jx: no syncicache cached %jd",
1309 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1310 }
1311 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1312 KASSERT(mdpg != NULL);
1313 KASSERT(prot & VM_PROT_WRITE);
1314 PMAP_COUNT(exec_mappings);
1315 pmap_page_syncicache(pg);
1316 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1317 UVMHIST_LOG(*histp,
1318 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1319 va, (uintptr_t)pg, 0, 0);
1320 }
1321
1322 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1323 return 0;
1324 }
1325
1326 void
1327 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1328 {
1329 pmap_t pmap = pmap_kernel();
1330 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1331 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1332
1333 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1334 UVMHIST_LOG(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1335 va, pa, prot, flags);
1336 PMAP_COUNT(kenter_pa);
1337
1338 if (mdpg == NULL) {
1339 PMAP_COUNT(kenter_pa_unmanaged);
1340 if ((flags & PMAP_CACHE_MASK) == 0)
1341 flags |= PMAP_NOCACHE;
1342 } else {
1343 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1344 PMAP_COUNT(kenter_pa_bad);
1345 }
1346
1347 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1348 kpreempt_disable();
1349 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1350 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1351 pmap_limits.virtual_end);
1352 KASSERT(!pte_valid_p(*ptep));
1353
1354 /*
1355 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1356 */
1357 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1358 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1359 && pmap_md_virtual_cache_aliasing_p()) {
1360 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1361 }
1362 #endif
1363
1364 /*
1365 * We have the option to force this mapping into the TLB but we
1366 * don't. Instead let the next reference to the page do it.
1367 */
1368 pmap_md_tlb_miss_lock_enter();
1369 pte_set(ptep, npte);
1370 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1371 pmap_md_tlb_miss_lock_exit();
1372 kpreempt_enable();
1373 #if DEBUG > 1
1374 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1375 if (((long *)va)[i] != ((long *)pa)[i])
1376 panic("%s: contents (%lx) of va %#"PRIxVADDR
1377 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1378 ((long *)va)[i], va, ((long *)pa)[i], pa);
1379 }
1380 #endif
1381
1382 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1383 0);
1384 }
1385
1386 /*
1387 * Remove the given range of addresses from the kernel map.
1388 *
1389 * It is assumed that the start and end are properly
1390 * rounded to the page size.
1391 */
1392
1393 static bool
1394 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1395 uintptr_t flags)
1396 {
1397 const pt_entry_t new_pte = pte_nv_entry(true);
1398
1399 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1400 UVMHIST_LOG(pmaphist,
1401 "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1402 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1403
1404 KASSERT(kpreempt_disabled());
1405
1406 for (; sva < eva; sva += NBPG, ptep++) {
1407 pt_entry_t pte = *ptep;
1408 if (!pte_valid_p(pte))
1409 continue;
1410
1411 PMAP_COUNT(kremove_pages);
1412 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1413 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1414 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1415 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1416 }
1417 #endif
1418
1419 pmap_md_tlb_miss_lock_enter();
1420 pte_set(ptep, new_pte);
1421 pmap_tlb_invalidate_addr(pmap, sva);
1422 pmap_md_tlb_miss_lock_exit();
1423 }
1424
1425 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1426
1427 return false;
1428 }
1429
1430 void
1431 pmap_kremove(vaddr_t va, vsize_t len)
1432 {
1433 const vaddr_t sva = trunc_page(va);
1434 const vaddr_t eva = round_page(va + len);
1435
1436 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1437 UVMHIST_LOG(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1438
1439 kpreempt_disable();
1440 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1441 kpreempt_enable();
1442
1443 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1444 }
1445
1446 void
1447 pmap_remove_all(struct pmap *pmap)
1448 {
1449 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1450 UVMHIST_LOG(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1451
1452 KASSERT(pmap != pmap_kernel());
1453
1454 kpreempt_disable();
1455 /*
1456 * Free all of our ASIDs which means we can skip doing all the
1457 * tlb_invalidate_addrs().
1458 */
1459 pmap_md_tlb_miss_lock_enter();
1460 #ifdef MULTIPROCESSOR
1461 // This should be the last CPU with this pmap onproc
1462 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1463 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1464 #endif
1465 pmap_tlb_asid_deactivate(pmap);
1466 #ifdef MULTIPROCESSOR
1467 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1468 #endif
1469 pmap_tlb_asid_release_all(pmap);
1470 pmap_md_tlb_miss_lock_exit();
1471 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1472
1473 #ifdef PMAP_FAULTINFO
1474 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1475 curpcb->pcb_faultinfo.pfi_repeats = 0;
1476 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1477 #endif
1478 kpreempt_enable();
1479
1480 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1481 }
1482
1483 /*
1484 * Routine: pmap_unwire
1485 * Function: Clear the wired attribute for a map/virtual-address
1486 * pair.
1487 * In/out conditions:
1488 * The mapping must already exist in the pmap.
1489 */
1490 void
1491 pmap_unwire(pmap_t pmap, vaddr_t va)
1492 {
1493 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1494 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1495 0, 0);
1496 PMAP_COUNT(unwire);
1497
1498 /*
1499 * Don't need to flush the TLB since PG_WIRED is only in software.
1500 */
1501 kpreempt_disable();
1502 pmap_addr_range_check(pmap, va, va, __func__);
1503 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1504 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1505 pmap, va);
1506 pt_entry_t pte = *ptep;
1507 KASSERTMSG(pte_valid_p(pte),
1508 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1509 pmap, va, pte_value(pte), ptep);
1510
1511 if (pte_wired_p(pte)) {
1512 pmap_md_tlb_miss_lock_enter();
1513 pte_set(ptep, pte_unwire_entry(pte));
1514 pmap_md_tlb_miss_lock_exit();
1515 pmap->pm_stats.wired_count--;
1516 }
1517 #ifdef DIAGNOSTIC
1518 else {
1519 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1520 __func__, pmap, va);
1521 }
1522 #endif
1523 kpreempt_enable();
1524
1525 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1526 }
1527
1528 /*
1529 * Routine: pmap_extract
1530 * Function:
1531 * Extract the physical page address associated
1532 * with the given map/virtual_address pair.
1533 */
1534 bool
1535 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1536 {
1537 paddr_t pa;
1538
1539 if (pmap == pmap_kernel()) {
1540 if (pmap_md_direct_mapped_vaddr_p(va)) {
1541 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1542 goto done;
1543 }
1544 if (pmap_md_io_vaddr_p(va))
1545 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1546
1547 if (va >= pmap_limits.virtual_end)
1548 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1549 __func__, va);
1550 }
1551 kpreempt_disable();
1552 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1553 if (ptep == NULL || !pte_valid_p(*ptep)) {
1554 kpreempt_enable();
1555 return false;
1556 }
1557 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1558 kpreempt_enable();
1559 done:
1560 if (pap != NULL) {
1561 *pap = pa;
1562 }
1563 return true;
1564 }
1565
1566 /*
1567 * Copy the range specified by src_addr/len
1568 * from the source map to the range dst_addr/len
1569 * in the destination map.
1570 *
1571 * This routine is only advisory and need not do anything.
1572 */
1573 void
1574 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1575 vaddr_t src_addr)
1576 {
1577 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1578 PMAP_COUNT(copy);
1579 }
1580
1581 /*
1582 * pmap_clear_reference:
1583 *
1584 * Clear the reference bit on the specified physical page.
1585 */
1586 bool
1587 pmap_clear_reference(struct vm_page *pg)
1588 {
1589 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1590
1591 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1592 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx))",
1593 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1594
1595 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1596
1597 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1598
1599 return rv;
1600 }
1601
1602 /*
1603 * pmap_is_referenced:
1604 *
1605 * Return whether or not the specified physical page is referenced
1606 * by any physical maps.
1607 */
1608 bool
1609 pmap_is_referenced(struct vm_page *pg)
1610 {
1611 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1612 }
1613
1614 /*
1615 * Clear the modify bits on the specified physical page.
1616 */
1617 bool
1618 pmap_clear_modify(struct vm_page *pg)
1619 {
1620 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1621 pv_entry_t pv = &mdpg->mdpg_first;
1622 pv_entry_t pv_next;
1623
1624 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1625 UVMHIST_LOG(pmaphist, "(pg=%#jx (%#jx))",
1626 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1627 PMAP_COUNT(clear_modify);
1628
1629 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1630 if (pv->pv_pmap == NULL) {
1631 UVMHIST_LOG(pmapexechist,
1632 "pg %#jx (pa %#jx): execpage cleared",
1633 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1634 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1635 PMAP_COUNT(exec_uncached_clear_modify);
1636 } else {
1637 UVMHIST_LOG(pmapexechist,
1638 "pg %#jx (pa %#jx): syncicache performed",
1639 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1640 pmap_page_syncicache(pg);
1641 PMAP_COUNT(exec_synced_clear_modify);
1642 }
1643 }
1644 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1645 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1646 return false;
1647 }
1648 if (pv->pv_pmap == NULL) {
1649 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1650 return true;
1651 }
1652
1653 /*
1654 * remove write access from any pages that are dirty
1655 * so we can tell if they are written to again later.
1656 * flush the VAC first if there is one.
1657 */
1658 kpreempt_disable();
1659 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1660 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1661 pmap_pvlist_check(mdpg);
1662 for (; pv != NULL; pv = pv_next) {
1663 pmap_t pmap = pv->pv_pmap;
1664 vaddr_t va = trunc_page(pv->pv_va);
1665
1666 pv_next = pv->pv_next;
1667 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1668 if (pv->pv_va & PV_KENTER)
1669 continue;
1670 #endif
1671 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1672 KASSERT(ptep);
1673 pt_entry_t pte = pte_prot_nowrite(*ptep);
1674 if (*ptep == pte) {
1675 continue;
1676 }
1677 KASSERT(pte_valid_p(pte));
1678 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1679 pmap_md_tlb_miss_lock_enter();
1680 pte_set(ptep, pte);
1681 pmap_tlb_invalidate_addr(pmap, va);
1682 pmap_md_tlb_miss_lock_exit();
1683 pmap_update(pmap);
1684 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1685 /*
1686 * The list changed! So restart from the beginning.
1687 */
1688 pv_next = &mdpg->mdpg_first;
1689 pmap_pvlist_check(mdpg);
1690 }
1691 }
1692 pmap_pvlist_check(mdpg);
1693 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1694 kpreempt_enable();
1695
1696 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1697 return true;
1698 }
1699
1700 /*
1701 * pmap_is_modified:
1702 *
1703 * Return whether or not the specified physical page is modified
1704 * by any physical maps.
1705 */
1706 bool
1707 pmap_is_modified(struct vm_page *pg)
1708 {
1709 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1710 }
1711
1712 /*
1713 * pmap_set_modified:
1714 *
1715 * Sets the page modified reference bit for the specified page.
1716 */
1717 void
1718 pmap_set_modified(paddr_t pa)
1719 {
1720 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1721 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1722 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1723 }
1724
1725 /******************** pv_entry management ********************/
1726
1727 static void
1728 pmap_pvlist_check(struct vm_page_md *mdpg)
1729 {
1730 #ifdef DEBUG
1731 pv_entry_t pv = &mdpg->mdpg_first;
1732 if (pv->pv_pmap != NULL) {
1733 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1734 const u_int colormask = uvmexp.colormask;
1735 u_int colors = 0;
1736 #endif
1737 for (; pv != NULL; pv = pv->pv_next) {
1738 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1739 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1740 colors |= __BIT(atop(pv->pv_va) & colormask);
1741 #endif
1742 }
1743 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1744 // Assert that if there is more than 1 color mapped, that the
1745 // page is uncached.
1746 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1747 || colors == 0 || (colors & (colors-1)) == 0
1748 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1749 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1750 #endif
1751 } else {
1752 KASSERT(pv->pv_next == NULL);
1753 }
1754 #endif /* DEBUG */
1755 }
1756
1757 /*
1758 * Enter the pmap and virtual address into the
1759 * physical to virtual map table.
1760 */
1761 void
1762 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1763 u_int flags)
1764 {
1765 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1766 pv_entry_t pv, npv, apv;
1767 #ifdef UVMHIST
1768 bool first = false;
1769 #endif
1770
1771 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1772 UVMHIST_LOG(pmaphist,
1773 "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1774 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1775 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1776 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1777
1778 KASSERT(kpreempt_disabled());
1779 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1780 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1781 "va %#"PRIxVADDR, va);
1782
1783 apv = NULL;
1784 VM_PAGEMD_PVLIST_LOCK(mdpg);
1785 again:
1786 pv = &mdpg->mdpg_first;
1787 pmap_pvlist_check(mdpg);
1788 if (pv->pv_pmap == NULL) {
1789 KASSERT(pv->pv_next == NULL);
1790 /*
1791 * No entries yet, use header as the first entry
1792 */
1793 PMAP_COUNT(primary_mappings);
1794 PMAP_COUNT(mappings);
1795 #ifdef UVMHIST
1796 first = true;
1797 #endif
1798 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1799 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1800 // If the new mapping has an incompatible color the last
1801 // mapping of this page, clean the page before using it.
1802 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1803 pmap_md_vca_clean(pg, PMAP_WBINV);
1804 }
1805 #endif
1806 pv->pv_pmap = pmap;
1807 pv->pv_va = va | flags;
1808 } else {
1809 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1810 if (pmap_md_vca_add(pg, va, nptep)) {
1811 goto again;
1812 }
1813 #endif
1814
1815 /*
1816 * There is at least one other VA mapping this page.
1817 * Place this entry after the header.
1818 *
1819 * Note: the entry may already be in the table if
1820 * we are only changing the protection bits.
1821 */
1822
1823 #ifdef PARANOIADIAG
1824 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1825 #endif
1826 for (npv = pv; npv; npv = npv->pv_next) {
1827 if (pmap == npv->pv_pmap
1828 && va == trunc_page(npv->pv_va)) {
1829 #ifdef PARANOIADIAG
1830 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1831 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1832 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1833 printf("%s: found va %#"PRIxVADDR
1834 " pa %#"PRIxPADDR
1835 " in pv_table but != %#"PRIxPTE"\n",
1836 __func__, va, pa, pte_value(pte));
1837 #endif
1838 PMAP_COUNT(remappings);
1839 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1840 if (__predict_false(apv != NULL))
1841 pmap_pv_free(apv);
1842
1843 UVMHIST_LOG(pmaphist,
1844 " <-- done pv=%#jx (reused)",
1845 (uintptr_t)pv, 0, 0, 0);
1846 return;
1847 }
1848 }
1849 if (__predict_true(apv == NULL)) {
1850 /*
1851 * To allocate a PV, we have to release the PVLIST lock
1852 * so get the page generation. We allocate the PV, and
1853 * then reacquire the lock.
1854 */
1855 pmap_pvlist_check(mdpg);
1856 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1857
1858 apv = (pv_entry_t)pmap_pv_alloc();
1859 if (apv == NULL)
1860 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1861
1862 /*
1863 * If the generation has changed, then someone else
1864 * tinkered with this page so we should start over.
1865 */
1866 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1867 goto again;
1868 }
1869 npv = apv;
1870 apv = NULL;
1871 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1872 /*
1873 * If need to deal with virtual cache aliases, keep mappings
1874 * in the kernel pmap at the head of the list. This allows
1875 * the VCA code to easily use them for cache operations if
1876 * present.
1877 */
1878 pmap_t kpmap = pmap_kernel();
1879 if (pmap != kpmap) {
1880 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1881 pv = pv->pv_next;
1882 }
1883 }
1884 #endif
1885 npv->pv_va = va | flags;
1886 npv->pv_pmap = pmap;
1887 npv->pv_next = pv->pv_next;
1888 pv->pv_next = npv;
1889 PMAP_COUNT(mappings);
1890 }
1891 pmap_pvlist_check(mdpg);
1892 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1893 if (__predict_false(apv != NULL))
1894 pmap_pv_free(apv);
1895
1896 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1897 first, 0, 0);
1898 }
1899
1900 /*
1901 * Remove a physical to virtual address translation.
1902 * If cache was inhibited on this page, and there are no more cache
1903 * conflicts, restore caching.
1904 * Flush the cache if the last page is removed (should always be cached
1905 * at this point).
1906 */
1907 void
1908 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1909 {
1910 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1911 pv_entry_t pv, npv;
1912 bool last;
1913
1914 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1915 UVMHIST_LOG(pmaphist,
1916 "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1917 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1918 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1919
1920 KASSERT(kpreempt_disabled());
1921 KASSERT((va & PAGE_MASK) == 0);
1922 pv = &mdpg->mdpg_first;
1923
1924 VM_PAGEMD_PVLIST_LOCK(mdpg);
1925 pmap_pvlist_check(mdpg);
1926
1927 /*
1928 * If it is the first entry on the list, it is actually
1929 * in the header and we must copy the following entry up
1930 * to the header. Otherwise we must search the list for
1931 * the entry. In either case we free the now unused entry.
1932 */
1933
1934 last = false;
1935 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1936 npv = pv->pv_next;
1937 if (npv) {
1938 *pv = *npv;
1939 KASSERT(pv->pv_pmap != NULL);
1940 } else {
1941 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1942 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1943 #endif
1944 pv->pv_pmap = NULL;
1945 last = true; /* Last mapping removed */
1946 }
1947 PMAP_COUNT(remove_pvfirst);
1948 } else {
1949 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1950 PMAP_COUNT(remove_pvsearch);
1951 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1952 break;
1953 }
1954 if (npv) {
1955 pv->pv_next = npv->pv_next;
1956 }
1957 }
1958
1959 pmap_pvlist_check(mdpg);
1960 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1961
1962 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1963 pmap_md_vca_remove(pg, va, dirty, last);
1964 #endif
1965
1966 /*
1967 * Free the pv_entry if needed.
1968 */
1969 if (npv)
1970 pmap_pv_free(npv);
1971 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1972 if (last) {
1973 /*
1974 * If this was the page's last mapping, we no longer
1975 * care about its execness.
1976 */
1977 UVMHIST_LOG(pmapexechist,
1978 "pg %#jx (pa %#jx)last %ju: execpage cleared",
1979 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
1980 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1981 PMAP_COUNT(exec_uncached_remove);
1982 } else {
1983 /*
1984 * Someone still has it mapped as an executable page
1985 * so we must sync it.
1986 */
1987 UVMHIST_LOG(pmapexechist,
1988 "pg %#jx (pa %#jx) last %ju: performed syncicache",
1989 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
1990 pmap_page_syncicache(pg);
1991 PMAP_COUNT(exec_synced_remove);
1992 }
1993 }
1994
1995 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1996 }
1997
1998 #if defined(MULTIPROCESSOR)
1999 struct pmap_pvlist_info {
2000 kmutex_t *pli_locks[PAGE_SIZE / 32];
2001 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2002 volatile u_int pli_lock_index;
2003 u_int pli_lock_mask;
2004 } pmap_pvlist_info;
2005
2006 void
2007 pmap_pvlist_lock_init(size_t cache_line_size)
2008 {
2009 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2010 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2011 vaddr_t lock_va = lock_page;
2012 if (sizeof(kmutex_t) > cache_line_size) {
2013 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2014 }
2015 const size_t nlocks = PAGE_SIZE / cache_line_size;
2016 KASSERT((nlocks & (nlocks - 1)) == 0);
2017 /*
2018 * Now divide the page into a number of mutexes, one per cacheline.
2019 */
2020 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2021 kmutex_t * const lock = (kmutex_t *)lock_va;
2022 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2023 pli->pli_locks[i] = lock;
2024 }
2025 pli->pli_lock_mask = nlocks - 1;
2026 }
2027
2028 kmutex_t *
2029 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2030 {
2031 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2032 kmutex_t *lock = mdpg->mdpg_lock;
2033
2034 /*
2035 * Allocate a lock on an as-needed basis. This will hopefully give us
2036 * semi-random distribution not based on page color.
2037 */
2038 if (__predict_false(lock == NULL)) {
2039 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2040 size_t lockid = locknum & pli->pli_lock_mask;
2041 kmutex_t * const new_lock = pli->pli_locks[lockid];
2042 /*
2043 * Set the lock. If some other thread already did, just use
2044 * the one they assigned.
2045 */
2046 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2047 if (lock == NULL) {
2048 lock = new_lock;
2049 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2050 }
2051 }
2052
2053 /*
2054 * Now finally provide the lock.
2055 */
2056 return lock;
2057 }
2058 #else /* !MULTIPROCESSOR */
2059 void
2060 pmap_pvlist_lock_init(size_t cache_line_size)
2061 {
2062 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2063 }
2064
2065 #ifdef MODULAR
2066 kmutex_t *
2067 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2068 {
2069 /*
2070 * We just use a global lock.
2071 */
2072 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2073 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2074 }
2075
2076 /*
2077 * Now finally provide the lock.
2078 */
2079 return mdpg->mdpg_lock;
2080 }
2081 #endif /* MODULAR */
2082 #endif /* !MULTIPROCESSOR */
2083
2084 /*
2085 * pmap_pv_page_alloc:
2086 *
2087 * Allocate a page for the pv_entry pool.
2088 */
2089 void *
2090 pmap_pv_page_alloc(struct pool *pp, int flags)
2091 {
2092 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2093 if (pg == NULL)
2094 return NULL;
2095
2096 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2097 }
2098
2099 /*
2100 * pmap_pv_page_free:
2101 *
2102 * Free a pv_entry pool page.
2103 */
2104 void
2105 pmap_pv_page_free(struct pool *pp, void *v)
2106 {
2107 vaddr_t va = (vaddr_t)v;
2108
2109 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2110 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2111 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2112 KASSERT(pg != NULL);
2113 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2114 kpreempt_disable();
2115 pmap_md_vca_remove(pg, va, true, true);
2116 kpreempt_enable();
2117 #endif
2118 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2119 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2120 uvm_pagefree(pg);
2121 }
2122
2123 #ifdef PMAP_PREFER
2124 /*
2125 * Find first virtual address >= *vap that doesn't cause
2126 * a cache alias conflict.
2127 */
2128 void
2129 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2130 {
2131 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2132
2133 PMAP_COUNT(prefer_requests);
2134
2135 prefer_mask |= pmap_md_cache_prefer_mask();
2136
2137 if (prefer_mask) {
2138 vaddr_t va = *vap;
2139 vsize_t d = (foff - va) & prefer_mask;
2140 if (d) {
2141 if (td)
2142 *vap = trunc_page(va - ((-d) & prefer_mask));
2143 else
2144 *vap = round_page(va + d);
2145 PMAP_COUNT(prefer_adjustments);
2146 }
2147 }
2148 }
2149 #endif /* PMAP_PREFER */
2150
2151 #ifdef PMAP_MAP_POOLPAGE
2152 vaddr_t
2153 pmap_map_poolpage(paddr_t pa)
2154 {
2155 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2156 KASSERT(pg);
2157
2158 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2159 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2160
2161 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2162
2163 return pmap_md_map_poolpage(pa, NBPG);
2164 }
2165
2166 paddr_t
2167 pmap_unmap_poolpage(vaddr_t va)
2168 {
2169 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2170 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2171
2172 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2173 KASSERT(pg != NULL);
2174 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2175
2176 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2177 pmap_md_unmap_poolpage(va, NBPG);
2178
2179 return pa;
2180 }
2181 #endif /* PMAP_MAP_POOLPAGE */
2182