pmap.c revision 1.4 1 /* $NetBSD: pmap.c,v 1.4 2014/02/25 15:20:29 martin Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.4 2014/02/25 15:20:29 martin Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/pool.h>
109 #include <sys/atomic.h>
110 #include <sys/mutex.h>
111 #include <sys/atomic.h>
112 #ifdef SYSVSHM
113 #include <sys/shm.h>
114 #endif
115 #include <sys/socketvar.h> /* XXX: for sock_loan_thresh */
116
117 #include <uvm/uvm.h>
118
119 #define PMAP_COUNT(name) (pmap_evcnt_##name.ev_count++ + 0)
120 #define PMAP_COUNTER(name, desc) \
121 static struct evcnt pmap_evcnt_##name = \
122 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc); \
123 EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
124
125 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
126 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
127 PMAP_COUNTER(remove_user_calls, "remove user calls");
128 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
129 PMAP_COUNTER(remove_flushes, "remove cache flushes");
130 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
131 PMAP_COUNTER(remove_pvfirst, "remove pv first");
132 PMAP_COUNTER(remove_pvsearch, "remove pv search");
133
134 PMAP_COUNTER(prefer_requests, "prefer requests");
135 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
136
137 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
138 PMAP_COUNTER(zeroed_pages, "pages zeroed");
139 PMAP_COUNTER(copied_pages, "pages copied");
140
141 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
142 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
143 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
144 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
145
146 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
147 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
148
149 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
150 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
151 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
152 PMAP_COUNTER(user_mappings, "user pages mapped");
153 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
154 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
155 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
156 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
157 PMAP_COUNTER(managed_mappings, "managed pages mapped");
158 PMAP_COUNTER(mappings, "pages mapped");
159 PMAP_COUNTER(remappings, "pages remapped");
160 PMAP_COUNTER(unmappings, "pages unmapped");
161 PMAP_COUNTER(primary_mappings, "page initial mappings");
162 PMAP_COUNTER(primary_unmappings, "page final unmappings");
163 PMAP_COUNTER(tlb_hit, "page mapping");
164
165 PMAP_COUNTER(exec_mappings, "exec pages mapped");
166 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
167 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
168 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
169 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
170 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
171 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
172 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
173 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
174 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
175 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
176
177 PMAP_COUNTER(create, "creates");
178 PMAP_COUNTER(reference, "references");
179 PMAP_COUNTER(dereference, "dereferences");
180 PMAP_COUNTER(destroy, "destroyed");
181 PMAP_COUNTER(activate, "activations");
182 PMAP_COUNTER(deactivate, "deactivations");
183 PMAP_COUNTER(update, "updates");
184 #ifdef MULTIPROCESSOR
185 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
186 #endif
187 PMAP_COUNTER(unwire, "unwires");
188 PMAP_COUNTER(copy, "copies");
189 PMAP_COUNTER(clear_modify, "clear_modifies");
190 PMAP_COUNTER(protect, "protects");
191 PMAP_COUNTER(page_protect, "page_protects");
192
193 #define PMAP_ASID_RESERVED 0
194 CTASSERT(PMAP_ASID_RESERVED == 0);
195
196 /*
197 * Initialize the kernel pmap.
198 */
199 #ifdef MULTIPROCESSOR
200 #define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
201 #else
202 #define PMAP_SIZE sizeof(struct pmap)
203 kmutex_t pmap_pvlist_mutex __aligned(COHERENCY_UNIT);
204 #endif
205
206 struct pmap_kernel kernel_pmap_store = {
207 .kernel_pmap = {
208 .pm_count = 1,
209 .pm_segtab = PMAP_INVALID_SEGTAB_ADDRESS,
210 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
211 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
212 },
213 };
214
215 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
216
217 struct pmap_limits pmap_limits;
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 #endif
223
224 /*
225 * The pools from which pmap structures and sub-structures are allocated.
226 */
227 struct pool pmap_pmap_pool;
228 struct pool pmap_pv_pool;
229
230 #ifndef PMAP_PV_LOWAT
231 #define PMAP_PV_LOWAT 16
232 #endif
233 int pmap_pv_lowat = PMAP_PV_LOWAT;
234
235 bool pmap_initialized = false;
236 #define PMAP_PAGE_COLOROK_P(a, b) \
237 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
238 u_int pmap_page_colormask;
239
240 #define PAGE_IS_MANAGED(pa) \
241 (pmap_initialized == true && vm_physseg_find(atop(pa), NULL) != -1)
242
243 #define PMAP_IS_ACTIVE(pm) \
244 ((pm) == pmap_kernel() || \
245 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
246
247 /* Forward function declarations */
248 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
249 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, u_int *);
250
251 /*
252 * PV table management functions.
253 */
254 void *pmap_pv_page_alloc(struct pool *, int);
255 void pmap_pv_page_free(struct pool *, void *);
256
257 struct pool_allocator pmap_pv_page_allocator = {
258 pmap_pv_page_alloc, pmap_pv_page_free, 0,
259 };
260
261 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
262 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
263
264 /*
265 * Misc. functions.
266 */
267
268 bool
269 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
270 {
271 volatile u_int * const attrp = &mdpg->mdpg_attrs;
272 #ifdef MULTIPROCESSOR
273 for (;;) {
274 u_int old_attr = *attrp;
275 if ((old_attr & clear_attributes) == 0)
276 return false;
277 u_int new_attr = old_attr & ~clear_attributes;
278 if (old_attr == atomic_cas_uint(attrp, old_attr, new_attr))
279 return true;
280 }
281 #else
282 u_int old_attr = *attrp;
283 if ((old_attr & clear_attributes) == 0)
284 return false;
285 *attrp &= ~clear_attributes;
286 return true;
287 #endif
288 }
289
290 void
291 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
292 {
293 #ifdef MULTIPROCESSOR
294 atomic_or_uint(&mdpg->mdpg_attrs, set_attributes);
295 #else
296 mdpg->mdpg_attrs |= set_attributes;
297 #endif
298 }
299
300 static void
301 pmap_page_syncicache(struct vm_page *pg)
302 {
303 #ifndef MULTIPROCESSOR
304 struct pmap * const curpmap = curcpu()->ci_curpm;
305 #endif
306 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
307 pv_entry_t pv = &mdpg->mdpg_first;
308 kcpuset_t *onproc;
309 #ifdef MULTIPROCESSOR
310 kcpuset_create(&onproc, true);
311 #else
312 onproc = NULL;
313 #endif
314 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
315
316 if (pv->pv_pmap != NULL) {
317 for (; pv != NULL; pv = pv->pv_next) {
318 #ifdef MULTIPROCESSOR
319 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
320 if (kcpuset_match(onproc, kcpuset_running)) {
321 break;
322 }
323 #else
324 if (pv->pv_pmap == curpmap) {
325 onproc = curcpu()->ci_data.cpu_kcpuset;
326 break;
327 }
328 #endif
329 }
330 }
331 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
332 kpreempt_disable();
333 pmap_md_page_syncicache(pg, onproc);
334 #ifdef MULTIPROCESSOR
335 kcpuset_destroy(onproc);
336 #endif
337 kpreempt_enable();
338 }
339
340 /*
341 * Define the initial bounds of the kernel virtual address space.
342 */
343 void
344 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
345 {
346
347 *vstartp = VM_MIN_KERNEL_ADDRESS;
348 *vendp = VM_MAX_KERNEL_ADDRESS;
349 }
350
351 vaddr_t
352 pmap_growkernel(vaddr_t maxkvaddr)
353 {
354 vaddr_t virtual_end = pmap_limits.virtual_end;
355 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
356
357 /*
358 * Reserve PTEs for the new KVA space.
359 */
360 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
361 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
362 }
363
364 /*
365 * Don't exceed VM_MAX_KERNEL_ADDRESS!
366 */
367 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
368 virtual_end = VM_MAX_KERNEL_ADDRESS;
369
370 /*
371 * Update new end.
372 */
373 pmap_limits.virtual_end = virtual_end;
374 return virtual_end;
375 }
376
377 /*
378 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
379 * This function allows for early dynamic memory allocation until the virtual
380 * memory system has been bootstrapped. After that point, either kmem_alloc
381 * or malloc should be used. This function works by stealing pages from the
382 * (to be) managed page pool, then implicitly mapping the pages (by using
383 * their k0seg addresses) and zeroing them.
384 *
385 * It may be used once the physical memory segments have been pre-loaded
386 * into the vm_physmem[] array. Early memory allocation MUST use this
387 * interface! This cannot be used after vm_page_startup(), and will
388 * generate a panic if tried.
389 *
390 * Note that this memory will never be freed, and in essence it is wired
391 * down.
392 *
393 * We must adjust *vstartp and/or *vendp iff we use address space
394 * from the kernel virtual address range defined by pmap_virtual_space().
395 */
396 vaddr_t
397 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
398 {
399 u_int npgs;
400 paddr_t pa;
401 vaddr_t va;
402
403 size = round_page(size);
404 npgs = atop(size);
405
406 for (u_int bank = 0; bank < vm_nphysseg; bank++) {
407 struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
408 if (uvm.page_init_done == true)
409 panic("pmap_steal_memory: called _after_ bootstrap");
410
411 if (seg->avail_start != seg->start ||
412 seg->avail_start >= seg->avail_end)
413 continue;
414
415 if ((seg->avail_end - seg->avail_start) < npgs)
416 continue;
417
418 /*
419 * There are enough pages here; steal them!
420 */
421 pa = ptoa(seg->avail_start);
422 seg->avail_start += npgs;
423 seg->start += npgs;
424
425 /*
426 * Have we used up this segment?
427 */
428 if (seg->avail_start == seg->end) {
429 if (vm_nphysseg == 1)
430 panic("pmap_steal_memory: out of memory!");
431
432 /* Remove this segment from the list. */
433 vm_nphysseg--;
434 if (bank < vm_nphysseg)
435 memmove(seg, seg+1,
436 sizeof(*seg) * (vm_nphysseg - bank));
437 }
438
439 va = pmap_md_map_poolpage(pa, size);
440 memset((void *)va, 0, size);
441 return va;
442 }
443
444 /*
445 * If we got here, there was no memory left.
446 */
447 panic("pmap_steal_memory: no memory to steal");
448 }
449
450 /*
451 * Initialize the pmap module.
452 * Called by vm_init, to initialize any structures that the pmap
453 * system needs to map virtual memory.
454 */
455 void
456 pmap_init(void)
457 {
458 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
459 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
460
461 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
462
463 /*
464 * Initialize the segtab lock.
465 */
466 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
467
468 /*
469 * Set a low water mark on the pv_entry pool, so that we are
470 * more likely to have these around even in extreme memory
471 * starvation.
472 */
473 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
474
475 pmap_md_init();
476
477 /*
478 * Now it is safe to enable pv entry recording.
479 */
480 pmap_initialized = true;
481 }
482
483 /*
484 * Create and return a physical map.
485 *
486 * If the size specified for the map
487 * is zero, the map is an actual physical
488 * map, and may be referenced by the
489 * hardware.
490 *
491 * If the size specified is non-zero,
492 * the map will be used in software only, and
493 * is bounded by that size.
494 */
495 pmap_t
496 pmap_create(void)
497 {
498 pmap_t pmap;
499
500 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
501 PMAP_COUNT(create);
502
503 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
504 memset(pmap, 0, PMAP_SIZE);
505
506 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
507
508 pmap->pm_count = 1;
509 pmap->pm_minaddr = VM_MIN_ADDRESS;
510 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
511
512 pmap_segtab_init(pmap);
513
514 UVMHIST_LOG(pmaphist, "<- pmap %p", pmap,0,0,0);
515 return pmap;
516 }
517
518 /*
519 * Retire the given physical map from service.
520 * Should only be called if the map contains
521 * no valid mappings.
522 */
523 void
524 pmap_destroy(pmap_t pmap)
525 {
526 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
527 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
528
529 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
530 PMAP_COUNT(dereference);
531 return;
532 }
533
534 KASSERT(pmap->pm_count == 0);
535 PMAP_COUNT(destroy);
536 kpreempt_disable();
537 pmap_tlb_asid_release_all(pmap);
538 pmap_segtab_destroy(pmap, NULL, 0);
539
540 pool_put(&pmap_pmap_pool, pmap);
541 kpreempt_enable();
542
543 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
544 }
545
546 /*
547 * Add a reference to the specified pmap.
548 */
549 void
550 pmap_reference(pmap_t pmap)
551 {
552
553 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
554 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
555 PMAP_COUNT(reference);
556
557 if (pmap != NULL) {
558 atomic_inc_uint(&pmap->pm_count);
559 }
560
561 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
562 }
563
564 /*
565 * Make a new pmap (vmspace) active for the given process.
566 */
567 void
568 pmap_activate(struct lwp *l)
569 {
570 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
571
572 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
573 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
574 PMAP_COUNT(activate);
575
576 kpreempt_disable();
577 pmap_tlb_asid_acquire(pmap, l);
578 if (l == curlwp) {
579 pmap_segtab_activate(pmap, l);
580 }
581 kpreempt_enable();
582
583 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
584 }
585
586 /*
587 * Make a previously active pmap (vmspace) inactive.
588 */
589 void
590 pmap_deactivate(struct lwp *l)
591 {
592 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
593
594 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
595 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
596 PMAP_COUNT(deactivate);
597
598 kpreempt_disable();
599 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
600 pmap_tlb_asid_deactivate(pmap);
601 kpreempt_enable();
602
603 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
604 }
605
606 void
607 pmap_update(struct pmap *pmap)
608 {
609
610 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
611 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
612 PMAP_COUNT(update);
613
614 kpreempt_disable();
615 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
616 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
617 if (pending && pmap_tlb_shootdown_bystanders(pmap))
618 PMAP_COUNT(shootdown_ipis);
619 #endif
620 #ifdef DEBUG
621 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
622 #endif /* DEBUG */
623
624 /*
625 * If pmap_remove_all was called, we deactivated ourselves and nuked
626 * our ASID. Now we have to reactivate ourselves.
627 */
628 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
629 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
630 pmap_tlb_asid_acquire(pmap, curlwp);
631 pmap_segtab_activate(pmap, curlwp);
632 }
633 kpreempt_enable();
634
635 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
636 }
637
638 /*
639 * Remove the given range of addresses from the specified map.
640 *
641 * It is assumed that the start and end are properly
642 * rounded to the page size.
643 */
644
645 static bool
646 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
647 uintptr_t flags)
648 {
649 const pt_entry_t npte = flags;
650 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
651
652 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
653 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
654 pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
655 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
656 ptep, flags, 0, 0);
657
658 KASSERT(kpreempt_disabled());
659
660 for (; sva < eva; sva += NBPG, ptep++) {
661 pt_entry_t pt_entry = *ptep;
662 if (!pte_valid_p(pt_entry))
663 continue;
664 if (is_kernel_pmap_p)
665 PMAP_COUNT(remove_kernel_calls);
666 else
667 PMAP_COUNT(remove_user_pages);
668 if (pte_wired_p(pt_entry))
669 pmap->pm_stats.wired_count--;
670 pmap->pm_stats.resident_count--;
671 struct vm_page *pg = PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
672 if (__predict_true(pg != NULL)) {
673 pmap_remove_pv(pmap, sva, pg,
674 pte_modified_p(pt_entry));
675 }
676 *ptep = npte;
677 /*
678 * Flush the TLB for the given address.
679 */
680 pmap_tlb_invalidate_addr(pmap, sva);
681 }
682 return false;
683 }
684
685 void
686 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
687 {
688 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
689 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
690
691 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
692 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
693 pmap, sva, eva, 0);
694
695 if (is_kernel_pmap_p)
696 PMAP_COUNT(remove_kernel_calls);
697 else
698 PMAP_COUNT(remove_user_calls);
699 #ifdef PARANOIADIAG
700 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
701 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
702 __func__, sva, eva - 1);
703 if (PMAP_IS_ACTIVE(pmap)) {
704 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
705 uint32_t asid = tlb_get_asid();
706 if (asid != pai->pai_asid) {
707 panic("%s: inconsistency for active TLB flush"
708 ": %d <-> %d", __func__, asid, pai->pai_asid);
709 }
710 }
711 #endif
712 kpreempt_disable();
713 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
714 kpreempt_enable();
715
716 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
717 }
718
719 /*
720 * pmap_page_protect:
721 *
722 * Lower the permission for all mappings to a given page.
723 */
724 void
725 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
726 {
727 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
728 pv_entry_t pv;
729 vaddr_t va;
730
731 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
732 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
733 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
734 PMAP_COUNT(page_protect);
735
736 switch (prot) {
737 case VM_PROT_READ|VM_PROT_WRITE:
738 case VM_PROT_ALL:
739 break;
740
741 /* copy_on_write */
742 case VM_PROT_READ:
743 case VM_PROT_READ|VM_PROT_EXECUTE:
744 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
745 pv = &mdpg->mdpg_first;
746 /*
747 * Loop over all current mappings setting/clearing as appropriate.
748 */
749 if (pv->pv_pmap != NULL) {
750 while (pv != NULL) {
751 const pmap_t pmap = pv->pv_pmap;
752 const uint16_t gen = VM_PAGEMD_PVLIST_GEN(mdpg);
753 va = pv->pv_va;
754 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
755 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
756 KASSERT(pv->pv_pmap == pmap);
757 pmap_update(pmap);
758 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false)) {
759 pv = &mdpg->mdpg_first;
760 } else {
761 pv = pv->pv_next;
762 }
763 }
764 }
765 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
766 break;
767
768 /* remove_all */
769 default:
770 /*
771 * Do this first so that for each unmapping, pmap_remove_pv
772 * won't try to sync the icache.
773 */
774 if (pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE)) {
775 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR
776 "): execpage cleared", pg, VM_PAGE_TO_PHYS(pg),0,0);
777 PMAP_COUNT(exec_uncached_page_protect);
778 }
779 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
780 pv = &mdpg->mdpg_first;
781 while (pv->pv_pmap != NULL) {
782 const pmap_t pmap = pv->pv_pmap;
783 va = pv->pv_va;
784 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
785 pmap_remove(pmap, va, va + PAGE_SIZE);
786 pmap_update(pmap);
787 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
788 }
789 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
790 }
791
792 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
793 }
794
795 static bool
796 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
797 uintptr_t flags)
798 {
799 const vm_prot_t prot = (flags & VM_PROT_ALL);
800
801 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
802 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
803 pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
804 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
805 ptep, flags, 0, 0);
806
807 KASSERT(kpreempt_disabled());
808 /*
809 * Change protection on every valid mapping within this segment.
810 */
811 for (; sva < eva; sva += NBPG, ptep++) {
812 pt_entry_t pt_entry = *ptep;
813 if (!pte_valid_p(pt_entry))
814 continue;
815 struct vm_page * const pg =
816 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
817 if (pg != NULL && pte_modified_p(pt_entry)) {
818 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
819 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
820 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
821 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
822 if (pte_cached_p(pt_entry)) {
823 UVMHIST_LOG(pmapexechist,
824 "pg %p (pa %#"PRIxPADDR"): %s",
825 pg, VM_PAGE_TO_PHYS(pg),
826 "syncicached performed", 0);
827 pmap_page_syncicache(pg);
828 PMAP_COUNT(exec_synced_protect);
829 }
830 }
831 }
832 pt_entry = pte_prot_downgrade(pt_entry, prot);
833 if (*ptep != pt_entry) {
834 *ptep = pt_entry;
835 /*
836 * Update the TLB if needed.
837 */
838 pmap_tlb_update_addr(pmap, sva, pt_entry,
839 PMAP_TLB_NEED_IPI);
840 }
841 }
842 return false;
843 }
844
845 /*
846 * Set the physical protection on the
847 * specified range of this map as requested.
848 */
849 void
850 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
851 {
852
853 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
854 UVMHIST_LOG(pmaphist,
855 " pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR" port=%#x)",
856 pmap, sva, eva, prot);
857 PMAP_COUNT(protect);
858
859 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
860 pmap_remove(pmap, sva, eva);
861 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
862 return;
863 }
864
865 #ifdef PARANOIADIAG
866 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
867 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
868 __func__, sva, eva - 1);
869 if (PMAP_IS_ACTIVE(pmap)) {
870 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
871 uint32_t asid = tlb_get_asid();
872 if (asid != pai->pai_asid) {
873 panic("%s: inconsistency for active TLB update"
874 ": %d <-> %d", __func__, asid, pai->pai_asid);
875 }
876 }
877 #endif
878
879 /*
880 * Change protection on every valid mapping within this segment.
881 */
882 kpreempt_disable();
883 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
884 kpreempt_enable();
885
886 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
887 }
888
889 #if defined(__PMAP_VIRTUAL_CACHE_ALIASES)
890 /*
891 * pmap_page_cache:
892 *
893 * Change all mappings of a managed page to cached/uncached.
894 */
895 static void
896 pmap_page_cache(struct vm_page *pg, bool cached)
897 {
898 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
899 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
900 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
901 pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
902 KASSERT(kpreempt_disabled());
903
904 if (cached) {
905 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
906 PMAP_COUNT(page_cache_restorations);
907 } else {
908 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
909 PMAP_COUNT(page_cache_evictions);
910 }
911
912 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
913 KASSERT(kpreempt_disabled());
914 for (pv_entry_t pv = &mdpg->mdpg_first;
915 pv != NULL;
916 pv = pv->pv_next) {
917 pmap_t pmap = pv->pv_pmap;
918 vaddr_t va = pv->pv_va;
919
920 KASSERT(pmap != NULL);
921 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
922 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
923 if (ptep == NULL)
924 continue;
925 pt_entry_t pt_entry = *ptep;
926 if (pte_valid_p(pt_entry)) {
927 pt_entry = pte_cached_change(pt_entry, cached);
928 *ptep = pt_entry;
929 pmap_tlb_update_addr(pmap, va, pt_entry,
930 PMAP_TLB_NEED_IPI);
931 }
932 }
933 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
934 }
935 #endif /* __PMAP_VIRTUAL_CACHE_ALIASES */
936
937 /*
938 * Insert the given physical page (p) at
939 * the specified virtual address (v) in the
940 * target physical map with the protection requested.
941 *
942 * If specified, the page will be wired down, meaning
943 * that the related pte can not be reclaimed.
944 *
945 * NB: This is the only routine which MAY NOT lazy-evaluate
946 * or lose information. That is, this routine must actually
947 * insert this page into the given map NOW.
948 */
949 int
950 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
951 {
952 pt_entry_t npte;
953 const bool wired = (flags & PMAP_WIRED) != 0;
954 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
955 #ifdef UVMHIST
956 struct kern_history * const histp =
957 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
958 #endif
959
960 UVMHIST_FUNC(__func__);
961 #define VM_PROT_STRING(prot) \
962 &"\0 (R)\0 (W)\0 (RW)\0 (X)\0 (RX)\0 (WX)\0 (RWX)\0"[UVM_PROTECTION(prot)*6]
963 UVMHIST_CALLED(*histp);
964 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
965 pmap, va, pa, 0);
966 UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
967 prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
968
969 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
970 if (is_kernel_pmap_p) {
971 PMAP_COUNT(kernel_mappings);
972 if (!good_color)
973 PMAP_COUNT(kernel_mappings_bad);
974 } else {
975 PMAP_COUNT(user_mappings);
976 if (!good_color)
977 PMAP_COUNT(user_mappings_bad);
978 }
979 #if defined(DEBUG) || defined(DIAGNOSTIC) || defined(PARANOIADIAG)
980 if (va < pmap->pm_minaddr || va >= pmap->pm_maxaddr)
981 panic("%s: %s %#"PRIxVADDR" too big",
982 __func__, is_kernel_pmap_p ? "kva" : "uva", va);
983 #endif
984
985 KASSERTMSG(prot & VM_PROT_READ,
986 "%s: no READ (%#x) in prot %#x", __func__, VM_PROT_READ, prot);
987
988 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
989 struct vm_page_md *mdpg;
990
991 if (pg) {
992 mdpg = VM_PAGE_TO_MD(pg);
993 /* Set page referenced/modified status based on flags */
994 if (flags & VM_PROT_WRITE)
995 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
996 else if (flags & VM_PROT_ALL)
997 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
998
999 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1000 if (!VM_PAGEMD_CACHED(pg))
1001 flags |= PMAP_NOCACHE;
1002 #endif
1003
1004 PMAP_COUNT(managed_mappings);
1005 } else {
1006 /*
1007 * Assumption: if it is not part of our managed memory
1008 * then it must be device memory which may be volatile.
1009 */
1010 mdpg = NULL;
1011 flags |= PMAP_NOCACHE;
1012 PMAP_COUNT(unmanaged_mappings);
1013 }
1014
1015 npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p);
1016
1017 kpreempt_disable();
1018 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1019 if (__predict_false(ptep == NULL)) {
1020 kpreempt_enable();
1021 UVMHIST_LOG(*histp, "<- ENOMEM", 0,0,0,0);
1022 return ENOMEM;
1023 }
1024 pt_entry_t opte = *ptep;
1025
1026 /* Done after case that may sleep/return. */
1027 if (pg)
1028 pmap_enter_pv(pmap, va, pg, &npte);
1029
1030 /*
1031 * Now validate mapping with desired protection/wiring.
1032 * Assume uniform modified and referenced status for all
1033 * MIPS pages in a MACH page.
1034 */
1035 if (wired) {
1036 pmap->pm_stats.wired_count++;
1037 npte = pte_wire_entry(npte);
1038 }
1039
1040 UVMHIST_LOG(*histp, "new pte %#x (pa %#"PRIxPADDR")", npte, pa, 0,0);
1041
1042 if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
1043 pmap_remove(pmap, va, va + NBPG);
1044 PMAP_COUNT(user_mappings_changed);
1045 }
1046
1047 KASSERT(pte_valid_p(npte));
1048 bool resident = pte_valid_p(opte);
1049 if (!resident)
1050 pmap->pm_stats.resident_count++;
1051 *ptep = npte;
1052
1053 pmap_tlb_update_addr(pmap, va, npte,
1054 ((flags & VM_PROT_ALL) ? PMAP_TLB_INSERT : 0)
1055 | (resident ? PMAP_TLB_NEED_IPI : 0));
1056 kpreempt_enable();
1057
1058 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1059 KASSERT(mdpg != NULL);
1060 PMAP_COUNT(exec_mappings);
1061 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1062 if (!pte_deferred_exec_p(npte)) {
1063 UVMHIST_LOG(*histp,
1064 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1065 va, pg, "immediate", "");
1066 pmap_page_syncicache(pg);
1067 pmap_page_set_attributes(mdpg,
1068 VM_PAGEMD_EXECPAGE);
1069 PMAP_COUNT(exec_synced_mappings);
1070 } else {
1071 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1072 " pg %p: %s syncicache: pte %#x",
1073 va, pg, "defer", npte);
1074 }
1075 } else {
1076 UVMHIST_LOG(*histp,
1077 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1078 va, pg, "no",
1079 (pte_cached_p(npte)
1080 ? " (already exec)"
1081 : " (uncached)"));
1082 }
1083 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1084 KASSERT(mdpg != NULL);
1085 KASSERT(prot & VM_PROT_WRITE);
1086 PMAP_COUNT(exec_mappings);
1087 pmap_page_syncicache(pg);
1088 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1089 UVMHIST_LOG(pmapexechist,
1090 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1091 va, pg, "immediate", " (writeable)");
1092 }
1093
1094 if (prot & VM_PROT_EXECUTE) {
1095 UVMHIST_LOG(pmapexechist, "<- 0 (OK)", 0,0,0,0);
1096 } else {
1097 UVMHIST_LOG(pmaphist, "<- 0 (OK)", 0,0,0,0);
1098 }
1099 return 0;
1100 }
1101
1102 void
1103 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1104 {
1105 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1106 struct vm_page_md *mdpg;
1107
1108 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1109 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" pa=%#"PRIxPADDR
1110 ", prot=%#x, flags=%#x)", va, pa, prot, flags);
1111 PMAP_COUNT(kenter_pa);
1112
1113 if (pg == NULL) {
1114 mdpg = NULL;
1115 PMAP_COUNT(kenter_pa_unmanaged);
1116 flags |= PMAP_NOCACHE;
1117 } else {
1118 mdpg = VM_PAGE_TO_MD(pg);
1119 }
1120
1121 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1122 PMAP_COUNT(kenter_pa_bad);
1123
1124 const pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1125 kpreempt_disable();
1126 pt_entry_t * const ptep = pmap_pte_reserve(pmap_kernel(), va, 0);
1127 KASSERT(ptep != NULL);
1128 KASSERT(!pte_valid_p(*ptep));
1129 *ptep = npte;
1130 /*
1131 * We have the option to force this mapping into the TLB but we
1132 * don't. Instead let the next reference to the page do it.
1133 */
1134 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1135 kpreempt_enable();
1136 #if DEBUG > 1
1137 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1138 if (((long *)va)[i] != ((long *)pa)[i])
1139 panic("%s: contents (%lx) of va %#"PRIxVADDR
1140 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1141 ((long *)va)[i], va, ((long *)pa)[i], pa);
1142 }
1143 #endif
1144 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1145 }
1146
1147 static bool
1148 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1149 uintptr_t flags)
1150 {
1151 const pt_entry_t new_pt_entry = pte_nv_entry(true);
1152
1153 KASSERT(kpreempt_disabled());
1154
1155 /*
1156 * Set every pt on every valid mapping within this segment.
1157 */
1158 for (; sva < eva; sva += NBPG, ptep++) {
1159 pt_entry_t pt_entry = *ptep;
1160 if (!pte_valid_p(pt_entry)) {
1161 continue;
1162 }
1163
1164 PMAP_COUNT(kremove_pages);
1165 struct vm_page * const pg =
1166 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
1167 if (pg != NULL)
1168 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
1169
1170 *ptep = new_pt_entry;
1171 pmap_tlb_invalidate_addr(pmap_kernel(), sva);
1172 }
1173
1174 return false;
1175 }
1176
1177 void
1178 pmap_kremove(vaddr_t va, vsize_t len)
1179 {
1180 const vaddr_t sva = trunc_page(va);
1181 const vaddr_t eva = round_page(va + len);
1182
1183 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1184 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" len=%#"PRIxVSIZE")",
1185 va, len, 0,0);
1186
1187 kpreempt_disable();
1188 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1189 kpreempt_enable();
1190
1191 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1192 }
1193
1194 void
1195 pmap_remove_all(struct pmap *pmap)
1196 {
1197 KASSERT(pmap != pmap_kernel());
1198
1199 kpreempt_disable();
1200 /*
1201 * Free all of our ASIDs which means we can skip doing all the
1202 * tlb_invalidate_addrs().
1203 */
1204 pmap_tlb_asid_deactivate(pmap);
1205 pmap_tlb_asid_release_all(pmap);
1206 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1207
1208 kpreempt_enable();
1209 }
1210
1211 /*
1212 * Routine: pmap_unwire
1213 * Function: Clear the wired attribute for a map/virtual-address
1214 * pair.
1215 * In/out conditions:
1216 * The mapping must already exist in the pmap.
1217 */
1218 void
1219 pmap_unwire(pmap_t pmap, vaddr_t va)
1220 {
1221
1222 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1223 UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1224 PMAP_COUNT(unwire);
1225
1226 /*
1227 * Don't need to flush the TLB since PG_WIRED is only in software.
1228 */
1229 #ifdef PARANOIADIAG
1230 if (va < pmap->pm_minaddr || pmap->pm_maxaddr <= va)
1231 panic("pmap_unwire");
1232 #endif
1233 kpreempt_disable();
1234 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1235 pt_entry_t pt_entry = *ptep;
1236 #ifdef DIAGNOSTIC
1237 if (ptep == NULL)
1238 panic("%s: pmap %p va %#"PRIxVADDR" invalid STE",
1239 __func__, pmap, va);
1240 #endif
1241
1242 #ifdef DIAGNOSTIC
1243 if (!pte_valid_p(pt_entry))
1244 panic("pmap_unwire: pmap %p va %#"PRIxVADDR" invalid PTE",
1245 pmap, va);
1246 #endif
1247
1248 if (pte_wired_p(pt_entry)) {
1249 *ptep = pte_unwire_entry(*ptep);
1250 pmap->pm_stats.wired_count--;
1251 }
1252 #ifdef DIAGNOSTIC
1253 else {
1254 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1255 __func__, pmap, va);
1256 }
1257 #endif
1258 kpreempt_enable();
1259 }
1260
1261 /*
1262 * Routine: pmap_extract
1263 * Function:
1264 * Extract the physical page address associated
1265 * with the given map/virtual_address pair.
1266 */
1267 bool
1268 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1269 {
1270 paddr_t pa;
1271
1272 //UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1273 //UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1274 if (pmap == pmap_kernel()) {
1275 if (pmap_md_direct_mapped_vaddr_p(va)) {
1276 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1277 goto done;
1278 }
1279 if (pmap_md_io_vaddr_p(va))
1280 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1281 }
1282 kpreempt_disable();
1283 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1284 if (ptep == NULL) {
1285 //UVMHIST_LOG(pmaphist, "<- false (not in segmap)", 0,0,0,0);
1286 kpreempt_enable();
1287 return false;
1288 }
1289 if (!pte_valid_p(*ptep)) {
1290 //UVMHIST_LOG(pmaphist, "<- false (PTE not valid)", 0,0,0,0);
1291 kpreempt_enable();
1292 return false;
1293 }
1294 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1295 kpreempt_enable();
1296 done:
1297 if (pap != NULL) {
1298 *pap = pa;
1299 }
1300 //UVMHIST_LOG(pmaphist, "<- true (pa %#"PRIxPADDR")", pa, 0,0,0);
1301 return true;
1302 }
1303
1304 /*
1305 * Copy the range specified by src_addr/len
1306 * from the source map to the range dst_addr/len
1307 * in the destination map.
1308 *
1309 * This routine is only advisory and need not do anything.
1310 */
1311 void
1312 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1313 vaddr_t src_addr)
1314 {
1315
1316 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1317 PMAP_COUNT(copy);
1318 }
1319
1320 /*
1321 * pmap_clear_reference:
1322 *
1323 * Clear the reference bit on the specified physical page.
1324 */
1325 bool
1326 pmap_clear_reference(struct vm_page *pg)
1327 {
1328 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1329
1330 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1331 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1332 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1333
1334 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1335
1336 UVMHIST_LOG(pmaphist, "<- %s", rv ? "true" : "false", 0,0,0);
1337
1338 return rv;
1339 }
1340
1341 /*
1342 * pmap_is_referenced:
1343 *
1344 * Return whether or not the specified physical page is referenced
1345 * by any physical maps.
1346 */
1347 bool
1348 pmap_is_referenced(struct vm_page *pg)
1349 {
1350
1351 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1352 }
1353
1354 /*
1355 * Clear the modify bits on the specified physical page.
1356 */
1357 bool
1358 pmap_clear_modify(struct vm_page *pg)
1359 {
1360 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1361 pv_entry_t pv = &mdpg->mdpg_first;
1362 pv_entry_t pv_next;
1363 uint16_t gen;
1364
1365 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1366 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1367 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1368 PMAP_COUNT(clear_modify);
1369
1370 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1371 if (pv->pv_pmap == NULL) {
1372 UVMHIST_LOG(pmapexechist,
1373 "pg %p (pa %#"PRIxPADDR"): %s",
1374 pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1375 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1376 PMAP_COUNT(exec_uncached_clear_modify);
1377 } else {
1378 UVMHIST_LOG(pmapexechist,
1379 "pg %p (pa %#"PRIxPADDR"): %s",
1380 pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1381 pmap_page_syncicache(pg);
1382 PMAP_COUNT(exec_synced_clear_modify);
1383 }
1384 }
1385 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1386 UVMHIST_LOG(pmaphist, "<- false", 0,0,0,0);
1387 return false;
1388 }
1389 if (pv->pv_pmap == NULL) {
1390 UVMHIST_LOG(pmaphist, "<- true (no mappings)", 0,0,0,0);
1391 return true;
1392 }
1393
1394 /*
1395 * remove write access from any pages that are dirty
1396 * so we can tell if they are written to again later.
1397 * flush the VAC first if there is one.
1398 */
1399 kpreempt_disable();
1400 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, false);
1401 for (; pv != NULL; pv = pv_next) {
1402 pmap_t pmap = pv->pv_pmap;
1403 vaddr_t va = pv->pv_va;
1404 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1405 KASSERT(ptep);
1406 pv_next = pv->pv_next;
1407 pt_entry_t pt_entry = pte_prot_nowrite(*ptep);
1408 if (*ptep == pt_entry) {
1409 continue;
1410 }
1411 pmap_md_vca_clean(pg, va, PMAP_WBINV);
1412 *ptep = pt_entry;
1413 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1414 pmap_tlb_invalidate_addr(pmap, va);
1415 pmap_update(pmap);
1416 if (__predict_false(gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false))) {
1417 /*
1418 * The list changed! So restart from the beginning.
1419 */
1420 pv_next = &mdpg->mdpg_first;
1421 }
1422 }
1423 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1424 kpreempt_enable();
1425
1426 UVMHIST_LOG(pmaphist, "<- true (mappings changed)", 0,0,0,0);
1427 return true;
1428 }
1429
1430 /*
1431 * pmap_is_modified:
1432 *
1433 * Return whether or not the specified physical page is modified
1434 * by any physical maps.
1435 */
1436 bool
1437 pmap_is_modified(struct vm_page *pg)
1438 {
1439
1440 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1441 }
1442
1443 /*
1444 * pmap_set_modified:
1445 *
1446 * Sets the page modified reference bit for the specified page.
1447 */
1448 void
1449 pmap_set_modified(paddr_t pa)
1450 {
1451 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1452 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1453 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1454 }
1455
1456 /******************** pv_entry management ********************/
1457
1458 static void
1459 pmap_check_pvlist(struct vm_page *pg)
1460 {
1461 #ifdef PARANOIADIAG
1462 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1463 pt_entry_t pv = &mdpg->mdpg_first;
1464 if (pv->pv_pmap != NULL) {
1465 for (; pv != NULL; pv = pv->pv_next) {
1466 KASSERT(!pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1467 }
1468 }
1469 #endif /* PARANOIADIAG */
1470 }
1471
1472 /*
1473 * Enter the pmap and virtual address into the
1474 * physical to virtual map table.
1475 */
1476 void
1477 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, u_int *npte)
1478 {
1479 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1480 pv_entry_t pv, npv, apv;
1481 int16_t gen;
1482 bool first __unused = false;
1483
1484 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1485 UVMHIST_LOG(pmaphist,
1486 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1487 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1488 UVMHIST_LOG(pmaphist, "nptep=%p (%#x))", npte, *npte, 0, 0);
1489
1490 KASSERT(kpreempt_disabled());
1491 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1492
1493 apv = NULL;
1494 pv = &mdpg->mdpg_first;
1495 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1496 pmap_check_pvlist(pg);
1497 again:
1498 if (pv->pv_pmap == NULL) {
1499 KASSERT(pv->pv_next == NULL);
1500 /*
1501 * No entries yet, use header as the first entry
1502 */
1503 PMAP_COUNT(primary_mappings);
1504 PMAP_COUNT(mappings);
1505 first = true;
1506 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1507 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1508 #endif
1509 pv->pv_pmap = pmap;
1510 pv->pv_va = va;
1511 } else {
1512 if (pmap_md_vca_add(pg, va, npte))
1513 goto again;
1514
1515 /*
1516 * There is at least one other VA mapping this page.
1517 * Place this entry after the header.
1518 *
1519 * Note: the entry may already be in the table if
1520 * we are only changing the protection bits.
1521 */
1522
1523 #ifdef PARANOIADIAG
1524 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1525 #endif
1526 for (npv = pv; npv; npv = npv->pv_next) {
1527 if (pmap == npv->pv_pmap && va == npv->pv_va) {
1528 #ifdef PARANOIADIAG
1529 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1530 pt_entry_t pt_entry = (ptep ? *ptep : 0);
1531 if (!pte_valid_p(pt_entry)
1532 || pte_to_paddr(pt_entry) != pa)
1533 printf(
1534 "pmap_enter_pv: found va %#"PRIxVADDR" pa %#"PRIxPADDR" in pv_table but != %x\n",
1535 va, pa, pt_entry);
1536 #endif
1537 PMAP_COUNT(remappings);
1538 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1539 if (__predict_false(apv != NULL))
1540 pmap_pv_free(apv);
1541 return;
1542 }
1543 }
1544 if (__predict_true(apv == NULL)) {
1545 /*
1546 * To allocate a PV, we have to release the PVLIST lock
1547 * so get the page generation. We allocate the PV, and
1548 * then reacquire the lock.
1549 */
1550 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1551
1552 apv = (pv_entry_t)pmap_pv_alloc();
1553 if (apv == NULL)
1554 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1555
1556 /*
1557 * If the generation has changed, then someone else
1558 * tinkered with this page so we should
1559 * start over.
1560 */
1561 uint16_t oldgen = gen;
1562 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1563 if (gen != oldgen)
1564 goto again;
1565 }
1566 npv = apv;
1567 apv = NULL;
1568 npv->pv_va = va;
1569 npv->pv_pmap = pmap;
1570 npv->pv_next = pv->pv_next;
1571 pv->pv_next = npv;
1572 PMAP_COUNT(mappings);
1573 }
1574 pmap_check_pvlist(pg);
1575 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1576 if (__predict_false(apv != NULL))
1577 pmap_pv_free(apv);
1578
1579 UVMHIST_LOG(pmaphist, "<- done pv=%p%s",
1580 pv, first ? " (first pv)" : "",0,0);
1581 }
1582
1583 /*
1584 * Remove a physical to virtual address translation.
1585 * If cache was inhibited on this page, and there are no more cache
1586 * conflicts, restore caching.
1587 * Flush the cache if the last page is removed (should always be cached
1588 * at this point).
1589 */
1590 void
1591 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1592 {
1593 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1594 pv_entry_t pv, npv;
1595 bool last;
1596
1597 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1598 UVMHIST_LOG(pmaphist,
1599 "(pmap=%p va=%#"PRIxVADDR" pg=%p (pa %#"PRIxPADDR")\n",
1600 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1601 UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0,0,0);
1602
1603 KASSERT(kpreempt_disabled());
1604 pv = &mdpg->mdpg_first;
1605
1606 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1607 pmap_check_pvlist(pg);
1608
1609 /*
1610 * If it is the first entry on the list, it is actually
1611 * in the header and we must copy the following entry up
1612 * to the header. Otherwise we must search the list for
1613 * the entry. In either case we free the now unused entry.
1614 */
1615
1616 last = false;
1617 if (pmap == pv->pv_pmap && va == pv->pv_va) {
1618 npv = pv->pv_next;
1619 if (npv) {
1620 *pv = *npv;
1621 KASSERT(pv->pv_pmap != NULL);
1622 } else {
1623 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1624 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1625 #endif
1626 pv->pv_pmap = NULL;
1627 last = true; /* Last mapping removed */
1628 }
1629 PMAP_COUNT(remove_pvfirst);
1630 } else {
1631 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1632 PMAP_COUNT(remove_pvsearch);
1633 if (pmap == npv->pv_pmap && va == npv->pv_va)
1634 break;
1635 }
1636 if (npv) {
1637 pv->pv_next = npv->pv_next;
1638 }
1639 }
1640 pmap_md_vca_remove(pg, va);
1641
1642 pmap_check_pvlist(pg);
1643 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1644
1645 /*
1646 * Free the pv_entry if needed.
1647 */
1648 if (npv)
1649 pmap_pv_free(npv);
1650 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1651 if (last) {
1652 /*
1653 * If this was the page's last mapping, we no longer
1654 * care about its execness.
1655 */
1656 UVMHIST_LOG(pmapexechist,
1657 "pg %p (pa %#"PRIxPADDR")%s: %s",
1658 pg, VM_PAGE_TO_PHYS(pg),
1659 last ? " [last mapping]" : "",
1660 "execpage cleared");
1661 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1662 PMAP_COUNT(exec_uncached_remove);
1663 } else {
1664 /*
1665 * Someone still has it mapped as an executable page
1666 * so we must sync it.
1667 */
1668 UVMHIST_LOG(pmapexechist,
1669 "pg %p (pa %#"PRIxPADDR")%s: %s",
1670 pg, VM_PAGE_TO_PHYS(pg),
1671 last ? " [last mapping]" : "",
1672 "performed syncicache");
1673 pmap_page_syncicache(pg);
1674 PMAP_COUNT(exec_synced_remove);
1675 }
1676 }
1677 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1678 }
1679
1680 #if defined(MULTIPROCESSOR)
1681 struct pmap_pvlist_info {
1682 kmutex_t *pli_locks[PAGE_SIZE / 32];
1683 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1684 volatile u_int pli_lock_index;
1685 u_int pli_lock_mask;
1686 } pmap_pvlist_info;
1687
1688 void
1689 pmap_pvlist_lock_init(size_t cache_line_size)
1690 {
1691 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1692 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1693 vaddr_t lock_va = lock_page;
1694 if (sizeof(kmutex_t) > cache_line_size) {
1695 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
1696 }
1697 const size_t nlocks = PAGE_SIZE / cache_line_size;
1698 KASSERT((nlocks & (nlocks - 1)) == 0);
1699 /*
1700 * Now divide the page into a number of mutexes, one per cacheline.
1701 */
1702 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
1703 kmutex_t * const lock = (kmutex_t *)lock_va;
1704 mutex_init(lock, MUTEX_DEFAULT, IPL_VM);
1705 pli->pli_locks[i] = lock;
1706 }
1707 pli->pli_lock_mask = nlocks - 1;
1708 }
1709
1710 uint16_t
1711 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1712 {
1713 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1714 kmutex_t *lock = mdpg->mdpg_lock;
1715 int16_t gen;
1716
1717 /*
1718 * Allocate a lock on an as-needed basis. This will hopefully give us
1719 * semi-random distribution not based on page color.
1720 */
1721 if (__predict_false(lock == NULL)) {
1722 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
1723 size_t lockid = locknum & pli->pli_lock_mask;
1724 kmutex_t * const new_lock = pli->pli_locks[lockid];
1725 /*
1726 * Set the lock. If some other thread already did, just use
1727 * the one they assigned.
1728 */
1729 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
1730 if (lock == NULL) {
1731 lock = new_lock;
1732 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
1733 }
1734 }
1735
1736 /*
1737 * Now finally lock the pvlists.
1738 */
1739 mutex_spin_enter(lock);
1740
1741 /*
1742 * If the locker will be changing the list, increment the high 16 bits
1743 * of attrs so we use that as a generation number.
1744 */
1745 gen = VM_PAGEMD_PVLIST_GEN(mdpg); /* get old value */
1746 if (list_change)
1747 atomic_add_int(&mdpg->mdpg_attrs, 0x10000);
1748
1749 /*
1750 * Return the generation number.
1751 */
1752 return gen;
1753 }
1754 #else /* !MULTIPROCESSOR */
1755 void
1756 pmap_pvlist_lock_init(size_t cache_line_size)
1757 {
1758 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_VM);
1759 }
1760
1761 #ifdef MODULAR
1762 uint16_t
1763 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1764 {
1765 /*
1766 * We just use a global lock.
1767 */
1768 if (__predict_false(mdpg->mdpg_lock == NULL)) {
1769 mdpg->mdpg_lock = &pmap_pvlist_mutex;
1770 }
1771
1772 /*
1773 * Now finally lock the pvlists.
1774 */
1775 mutex_spin_enter(mdpg->mdpg_lock);
1776
1777 return 0;
1778 }
1779 #endif /* MODULAR */
1780 #endif /* !MULTIPROCESSOR */
1781
1782 /*
1783 * pmap_pv_page_alloc:
1784 *
1785 * Allocate a page for the pv_entry pool.
1786 */
1787 void *
1788 pmap_pv_page_alloc(struct pool *pp, int flags)
1789 {
1790 struct vm_page *pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
1791 if (pg == NULL)
1792 return NULL;
1793
1794 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
1795 }
1796
1797 /*
1798 * pmap_pv_page_free:
1799 *
1800 * Free a pv_entry pool page.
1801 */
1802 void
1803 pmap_pv_page_free(struct pool *pp, void *v)
1804 {
1805 vaddr_t va = (vaddr_t)v;
1806
1807 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1808 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1809 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1810 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1811 pmap_md_vca_remove(pg, va);
1812 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1813 uvm_pagefree(pg);
1814 }
1815
1816 #ifdef PMAP_PREFER
1817 /*
1818 * Find first virtual address >= *vap that doesn't cause
1819 * a cache alias conflict.
1820 */
1821 void
1822 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
1823 {
1824 vaddr_t va;
1825 vsize_t d;
1826 vsize_t prefer_mask = ptoa(uvmexp.colormask);
1827
1828 PMAP_COUNT(prefer_requests);
1829
1830 prefer_mask |= pmap_md_cache_prefer_mask();
1831
1832 if (prefer_mask) {
1833 va = *vap;
1834
1835 d = foff - va;
1836 d &= prefer_mask;
1837 if (d) {
1838 if (td)
1839 *vap = trunc_page(va -((-d) & prefer_mask));
1840 else
1841 *vap = round_page(va + d);
1842 PMAP_COUNT(prefer_adjustments);
1843 }
1844 }
1845 }
1846 #endif /* PMAP_PREFER */
1847
1848 #ifdef PMAP_MAP_POOLPAGE
1849 vaddr_t
1850 pmap_map_poolpage(paddr_t pa)
1851 {
1852
1853 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1854 KASSERT(pg);
1855 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1856 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1857
1858 const vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
1859 pmap_md_vca_add(pg, va, NULL);
1860 return va;
1861 }
1862
1863 paddr_t
1864 pmap_unmap_poolpage(vaddr_t va)
1865 {
1866
1867 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1868 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1869
1870 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1871 KASSERT(pg);
1872 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1873 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1874 pmap_md_unmap_poolpage(va, NBPG);
1875 pmap_md_vca_remove(pg, va);
1876
1877 return pa;
1878 }
1879 #endif /* PMAP_MAP_POOLPAGE */
1880