pmap.c revision 1.41 1 /* $NetBSD: pmap.c,v 1.41 2019/06/19 09:56:17 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.41 2019/06/19 09:56:17 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/atomic.h>
106 #include <sys/buf.h>
107 #include <sys/cpu.h>
108 #include <sys/mutex.h>
109 #include <sys/pool.h>
110 #include <sys/atomic.h>
111 #include <sys/mutex.h>
112 #include <sys/atomic.h>
113
114 #include <uvm/uvm.h>
115 #include <uvm/uvm_physseg.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
125 PMAP_COUNTER(remove_user_calls, "remove user calls");
126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
131
132 PMAP_COUNTER(prefer_requests, "prefer requests");
133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
134
135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
136
137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
141
142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
144
145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
148 PMAP_COUNTER(user_mappings, "user pages mapped");
149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
153 PMAP_COUNTER(managed_mappings, "managed pages mapped");
154 PMAP_COUNTER(mappings, "pages mapped");
155 PMAP_COUNTER(remappings, "pages remapped");
156 PMAP_COUNTER(unmappings, "pages unmapped");
157 PMAP_COUNTER(primary_mappings, "page initial mappings");
158 PMAP_COUNTER(primary_unmappings, "page final unmappings");
159 PMAP_COUNTER(tlb_hit, "page mapping");
160
161 PMAP_COUNTER(exec_mappings, "exec pages mapped");
162 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
163 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
164 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
165 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
166 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
167 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
168 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
169 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
170 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
171 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
172
173 PMAP_COUNTER(create, "creates");
174 PMAP_COUNTER(reference, "references");
175 PMAP_COUNTER(dereference, "dereferences");
176 PMAP_COUNTER(destroy, "destroyed");
177 PMAP_COUNTER(activate, "activations");
178 PMAP_COUNTER(deactivate, "deactivations");
179 PMAP_COUNTER(update, "updates");
180 #ifdef MULTIPROCESSOR
181 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
182 #endif
183 PMAP_COUNTER(unwire, "unwires");
184 PMAP_COUNTER(copy, "copies");
185 PMAP_COUNTER(clear_modify, "clear_modifies");
186 PMAP_COUNTER(protect, "protects");
187 PMAP_COUNTER(page_protect, "page_protects");
188
189 #define PMAP_ASID_RESERVED 0
190 CTASSERT(PMAP_ASID_RESERVED == 0);
191
192 #ifndef PMAP_SEGTAB_ALIGN
193 #define PMAP_SEGTAB_ALIGN /* nothing */
194 #endif
195 #ifdef _LP64
196 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
197 #endif
198 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
199 #ifdef _LP64
200 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
201 #endif
202 };
203
204 struct pmap_kernel kernel_pmap_store = {
205 .kernel_pmap = {
206 .pm_count = 1,
207 .pm_segtab = &pmap_kern_segtab,
208 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
209 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
210 },
211 };
212
213 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
214
215 struct pmap_limits pmap_limits = { /* VA and PA limits */
216 .virtual_start = VM_MIN_KERNEL_ADDRESS,
217 };
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 UVMHIST_DEFINE(pmapexechist);
223 UVMHIST_DEFINE(pmaphist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #if !defined(MULTIPROCESSOR) || !defined(PMAP_MD_NEED_TLB_MISS_LOCK)
268 #define pmap_md_tlb_miss_lock_enter() do { } while(/*CONSTCOND*/0)
269 #define pmap_md_tlb_miss_lock_exit() do { } while(/*CONSTCOND*/0)
270 #endif /* !MULTIPROCESSOR || !PMAP_MD_NEED_TLB_MISS_LOCK */
271
272 #ifndef MULTIPROCESSOR
273 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
274 #endif
275
276 /*
277 * Debug functions.
278 */
279
280 #ifdef DEBUG
281 static inline void
282 pmap_asid_check(pmap_t pm, const char *func)
283 {
284 if (!PMAP_IS_ACTIVE(pm))
285 return;
286
287 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
288 tlb_asid_t asid = tlb_get_asid();
289 if (asid != pai->pai_asid)
290 panic("%s: inconsistency for active TLB update: %u <-> %u",
291 func, asid, pai->pai_asid);
292 }
293 #endif
294
295 static void
296 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
297 {
298 #ifdef DEBUG
299 if (pmap == pmap_kernel()) {
300 if (sva < VM_MIN_KERNEL_ADDRESS)
301 panic("%s: kva %#"PRIxVADDR" not in range",
302 func, sva);
303 if (eva >= pmap_limits.virtual_end)
304 panic("%s: kva %#"PRIxVADDR" not in range",
305 func, eva);
306 } else {
307 if (eva > VM_MAXUSER_ADDRESS)
308 panic("%s: uva %#"PRIxVADDR" not in range",
309 func, eva);
310 pmap_asid_check(pmap, func);
311 }
312 #endif
313 }
314
315 /*
316 * Misc. functions.
317 */
318
319 bool
320 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
321 {
322 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
323 #ifdef MULTIPROCESSOR
324 for (;;) {
325 u_int old_attr = *attrp;
326 if ((old_attr & clear_attributes) == 0)
327 return false;
328 u_int new_attr = old_attr & ~clear_attributes;
329 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
330 return true;
331 }
332 #else
333 unsigned long old_attr = *attrp;
334 if ((old_attr & clear_attributes) == 0)
335 return false;
336 *attrp &= ~clear_attributes;
337 return true;
338 #endif
339 }
340
341 void
342 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
343 {
344 #ifdef MULTIPROCESSOR
345 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
346 #else
347 mdpg->mdpg_attrs |= set_attributes;
348 #endif
349 }
350
351 static void
352 pmap_page_syncicache(struct vm_page *pg)
353 {
354 #ifndef MULTIPROCESSOR
355 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
356 #endif
357 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
358 pv_entry_t pv = &mdpg->mdpg_first;
359 kcpuset_t *onproc;
360 #ifdef MULTIPROCESSOR
361 kcpuset_create(&onproc, true);
362 KASSERT(onproc != NULL);
363 #else
364 onproc = NULL;
365 #endif
366 VM_PAGEMD_PVLIST_READLOCK(mdpg);
367 pmap_pvlist_check(mdpg);
368
369 if (pv->pv_pmap != NULL) {
370 for (; pv != NULL; pv = pv->pv_next) {
371 #ifdef MULTIPROCESSOR
372 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
373 if (kcpuset_match(onproc, kcpuset_running)) {
374 break;
375 }
376 #else
377 if (pv->pv_pmap == curpmap) {
378 onproc = curcpu()->ci_data.cpu_kcpuset;
379 break;
380 }
381 #endif
382 }
383 }
384 pmap_pvlist_check(mdpg);
385 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
386 kpreempt_disable();
387 pmap_md_page_syncicache(pg, onproc);
388 kpreempt_enable();
389 #ifdef MULTIPROCESSOR
390 kcpuset_destroy(onproc);
391 #endif
392 }
393
394 /*
395 * Define the initial bounds of the kernel virtual address space.
396 */
397 void
398 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
399 {
400
401 *vstartp = pmap_limits.virtual_start;
402 *vendp = pmap_limits.virtual_end;
403 }
404
405 vaddr_t
406 pmap_growkernel(vaddr_t maxkvaddr)
407 {
408 vaddr_t virtual_end = pmap_limits.virtual_end;
409 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
410
411 /*
412 * Reserve PTEs for the new KVA space.
413 */
414 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
415 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
416 }
417
418 /*
419 * Don't exceed VM_MAX_KERNEL_ADDRESS!
420 */
421 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
422 virtual_end = VM_MAX_KERNEL_ADDRESS;
423
424 /*
425 * Update new end.
426 */
427 pmap_limits.virtual_end = virtual_end;
428 return virtual_end;
429 }
430
431 /*
432 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
433 * This function allows for early dynamic memory allocation until the virtual
434 * memory system has been bootstrapped. After that point, either kmem_alloc
435 * or malloc should be used. This function works by stealing pages from the
436 * (to be) managed page pool, then implicitly mapping the pages (by using
437 * their direct mapped addresses) and zeroing them.
438 *
439 * It may be used once the physical memory segments have been pre-loaded
440 * into the vm_physmem[] array. Early memory allocation MUST use this
441 * interface! This cannot be used after vm_page_startup(), and will
442 * generate a panic if tried.
443 *
444 * Note that this memory will never be freed, and in essence it is wired
445 * down.
446 *
447 * We must adjust *vstartp and/or *vendp iff we use address space
448 * from the kernel virtual address range defined by pmap_virtual_space().
449 */
450 vaddr_t
451 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
452 {
453 size_t npgs;
454 paddr_t pa;
455 vaddr_t va;
456
457 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
458
459 size = round_page(size);
460 npgs = atop(size);
461
462 aprint_debug("%s: need %zu pages\n", __func__, npgs);
463
464 for (uvm_physseg_t bank = uvm_physseg_get_first();
465 uvm_physseg_valid_p(bank);
466 bank = uvm_physseg_get_next(bank)) {
467
468 if (uvm.page_init_done == true)
469 panic("pmap_steal_memory: called _after_ bootstrap");
470
471 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
472 __func__, bank,
473 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
474 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
475
476 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
477 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
478 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
479 continue;
480 }
481
482 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
483 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
484 __func__, bank, npgs);
485 continue;
486 }
487
488 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
489 continue;
490 }
491
492 /*
493 * Always try to allocate from the segment with the least
494 * amount of space left.
495 */
496 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
497 if (uvm_physseg_valid_p(maybe_bank) == false
498 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
499 maybe_bank = bank;
500 }
501 }
502
503 if (uvm_physseg_valid_p(maybe_bank)) {
504 const uvm_physseg_t bank = maybe_bank;
505
506 /*
507 * There are enough pages here; steal them!
508 */
509 pa = ptoa(uvm_physseg_get_start(bank));
510 uvm_physseg_unplug(atop(pa), npgs);
511
512 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
513 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
514
515 va = pmap_md_map_poolpage(pa, size);
516 memset((void *)va, 0, size);
517 return va;
518 }
519
520 /*
521 * If we got here, there was no memory left.
522 */
523 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
524 }
525
526 /*
527 * Initialize the pmap module.
528 * Called by vm_init, to initialize any structures that the pmap
529 * system needs to map virtual memory.
530 */
531 void
532 pmap_init(void)
533 {
534 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
535 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
536
537 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
538
539 /*
540 * Initialize the segtab lock.
541 */
542 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
543
544 /*
545 * Set a low water mark on the pv_entry pool, so that we are
546 * more likely to have these around even in extreme memory
547 * starvation.
548 */
549 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
550
551 /*
552 * Set the page colormask but allow pmap_md_init to override it.
553 */
554 pmap_page_colormask = ptoa(uvmexp.colormask);
555
556 pmap_md_init();
557
558 /*
559 * Now it is safe to enable pv entry recording.
560 */
561 pmap_initialized = true;
562 }
563
564 /*
565 * Create and return a physical map.
566 *
567 * If the size specified for the map
568 * is zero, the map is an actual physical
569 * map, and may be referenced by the
570 * hardware.
571 *
572 * If the size specified is non-zero,
573 * the map will be used in software only, and
574 * is bounded by that size.
575 */
576 pmap_t
577 pmap_create(void)
578 {
579 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
580 PMAP_COUNT(create);
581
582 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
583 memset(pmap, 0, PMAP_SIZE);
584
585 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
586
587 pmap->pm_count = 1;
588 pmap->pm_minaddr = VM_MIN_ADDRESS;
589 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
590
591 pmap_segtab_init(pmap);
592
593 #ifdef MULTIPROCESSOR
594 kcpuset_create(&pmap->pm_active, true);
595 kcpuset_create(&pmap->pm_onproc, true);
596 KASSERT(pmap->pm_active != NULL);
597 KASSERT(pmap->pm_onproc != NULL);
598 #endif
599
600 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
601 0, 0, 0);
602
603 return pmap;
604 }
605
606 /*
607 * Retire the given physical map from service.
608 * Should only be called if the map contains
609 * no valid mappings.
610 */
611 void
612 pmap_destroy(pmap_t pmap)
613 {
614 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
615 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
616
617 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
618 PMAP_COUNT(dereference);
619 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
620 return;
621 }
622
623 PMAP_COUNT(destroy);
624 KASSERT(pmap->pm_count == 0);
625 kpreempt_disable();
626 pmap_md_tlb_miss_lock_enter();
627 pmap_tlb_asid_release_all(pmap);
628 pmap_segtab_destroy(pmap, NULL, 0);
629 pmap_md_tlb_miss_lock_exit();
630
631 #ifdef MULTIPROCESSOR
632 kcpuset_destroy(pmap->pm_active);
633 kcpuset_destroy(pmap->pm_onproc);
634 pmap->pm_active = NULL;
635 pmap->pm_onproc = NULL;
636 #endif
637
638 pool_put(&pmap_pmap_pool, pmap);
639 kpreempt_enable();
640
641 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
642 }
643
644 /*
645 * Add a reference to the specified pmap.
646 */
647 void
648 pmap_reference(pmap_t pmap)
649 {
650 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
651 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
652 PMAP_COUNT(reference);
653
654 if (pmap != NULL) {
655 atomic_inc_uint(&pmap->pm_count);
656 }
657
658 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
659 }
660
661 /*
662 * Make a new pmap (vmspace) active for the given process.
663 */
664 void
665 pmap_activate(struct lwp *l)
666 {
667 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
668
669 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
670 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
671 (uintptr_t)pmap, 0, 0);
672 PMAP_COUNT(activate);
673
674 kpreempt_disable();
675 pmap_md_tlb_miss_lock_enter();
676 pmap_tlb_asid_acquire(pmap, l);
677 if (l == curlwp) {
678 pmap_segtab_activate(pmap, l);
679 }
680 pmap_md_tlb_miss_lock_exit();
681 kpreempt_enable();
682
683 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
684 l->l_lid, 0, 0);
685 }
686
687 /*
688 * Remove this page from all physical maps in which it resides.
689 * Reflects back modify bits to the pager.
690 */
691 void
692 pmap_page_remove(struct vm_page *pg)
693 {
694 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
695
696 kpreempt_disable();
697 VM_PAGEMD_PVLIST_LOCK(mdpg);
698 pmap_pvlist_check(mdpg);
699
700 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
701
702 UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
703 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
704 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
705 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
706 #else
707 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
708 #endif
709 PMAP_COUNT(exec_uncached_remove);
710
711 pv_entry_t pv = &mdpg->mdpg_first;
712 if (pv->pv_pmap == NULL) {
713 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
714 kpreempt_enable();
715 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
716 return;
717 }
718
719 pv_entry_t npv;
720 pv_entry_t pvp = NULL;
721
722 for (; pv != NULL; pv = npv) {
723 npv = pv->pv_next;
724 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
725 if (pv->pv_va & PV_KENTER) {
726 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
727 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
728 pv->pv_va, 0);
729
730 KASSERT(pv->pv_pmap == pmap_kernel());
731
732 /* Assume no more - it'll get fixed if there are */
733 pv->pv_next = NULL;
734
735 /*
736 * pvp is non-null when we already have a PV_KENTER
737 * pv in pvh_first; otherwise we haven't seen a
738 * PV_KENTER pv and we need to copy this one to
739 * pvh_first
740 */
741 if (pvp) {
742 /*
743 * The previous PV_KENTER pv needs to point to
744 * this PV_KENTER pv
745 */
746 pvp->pv_next = pv;
747 } else {
748 pv_entry_t fpv = &mdpg->mdpg_first;
749 *fpv = *pv;
750 KASSERT(fpv->pv_pmap == pmap_kernel());
751 }
752 pvp = pv;
753 continue;
754 }
755 #endif
756 const pmap_t pmap = pv->pv_pmap;
757 vaddr_t va = trunc_page(pv->pv_va);
758 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
759 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
760 pmap_limits.virtual_end);
761 pt_entry_t pte = *ptep;
762 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
763 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
764 pte_value(pte));
765 if (!pte_valid_p(pte))
766 continue;
767 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
768 if (is_kernel_pmap_p) {
769 PMAP_COUNT(remove_kernel_pages);
770 } else {
771 PMAP_COUNT(remove_user_pages);
772 }
773 if (pte_wired_p(pte))
774 pmap->pm_stats.wired_count--;
775 pmap->pm_stats.resident_count--;
776
777 pmap_md_tlb_miss_lock_enter();
778 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
779 pte_set(ptep, npte);
780 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
781 /*
782 * Flush the TLB for the given address.
783 */
784 pmap_tlb_invalidate_addr(pmap, va);
785 }
786 pmap_md_tlb_miss_lock_exit();
787
788 /*
789 * non-null means this is a non-pvh_first pv, so we should
790 * free it.
791 */
792 if (pvp) {
793 KASSERT(pvp->pv_pmap == pmap_kernel());
794 KASSERT(pvp->pv_next == NULL);
795 pmap_pv_free(pv);
796 } else {
797 pv->pv_pmap = NULL;
798 pv->pv_next = NULL;
799 }
800 }
801
802 pmap_pvlist_check(mdpg);
803 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
804 kpreempt_enable();
805
806 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
807 }
808
809
810 /*
811 * Make a previously active pmap (vmspace) inactive.
812 */
813 void
814 pmap_deactivate(struct lwp *l)
815 {
816 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
817
818 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
819 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
820 (uintptr_t)pmap, 0, 0);
821 PMAP_COUNT(deactivate);
822
823 kpreempt_disable();
824 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
825 pmap_md_tlb_miss_lock_enter();
826 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
827 #ifdef _LP64
828 curcpu()->ci_pmap_user_seg0tab = NULL;
829 #endif
830 pmap_tlb_asid_deactivate(pmap);
831 pmap_md_tlb_miss_lock_exit();
832 kpreempt_enable();
833
834 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
835 l->l_lid, 0, 0);
836 }
837
838 void
839 pmap_update(struct pmap *pmap)
840 {
841 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
842 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
843 PMAP_COUNT(update);
844
845 kpreempt_disable();
846 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
847 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
848 if (pending && pmap_tlb_shootdown_bystanders(pmap))
849 PMAP_COUNT(shootdown_ipis);
850 #endif
851 pmap_md_tlb_miss_lock_enter();
852 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
853 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
854 #endif /* DEBUG */
855
856 /*
857 * If pmap_remove_all was called, we deactivated ourselves and nuked
858 * our ASID. Now we have to reactivate ourselves.
859 */
860 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
861 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
862 pmap_tlb_asid_acquire(pmap, curlwp);
863 pmap_segtab_activate(pmap, curlwp);
864 }
865 pmap_md_tlb_miss_lock_exit();
866 kpreempt_enable();
867
868 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
869 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
870 }
871
872 /*
873 * Remove the given range of addresses from the specified map.
874 *
875 * It is assumed that the start and end are properly
876 * rounded to the page size.
877 */
878
879 static bool
880 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
881 uintptr_t flags)
882 {
883 const pt_entry_t npte = flags;
884 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
885
886 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
887 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%c va=%#jx..%#jx)",
888 (uintptr_t)pmap, (is_kernel_pmap_p ? 1 : 0), sva, eva);
889 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx",
890 (uintptr_t)ptep, flags, 0, 0);
891
892 KASSERT(kpreempt_disabled());
893
894 for (; sva < eva; sva += NBPG, ptep++) {
895 const pt_entry_t pte = *ptep;
896 if (!pte_valid_p(pte))
897 continue;
898 if (is_kernel_pmap_p) {
899 PMAP_COUNT(remove_kernel_pages);
900 } else {
901 PMAP_COUNT(remove_user_pages);
902 }
903 if (pte_wired_p(pte))
904 pmap->pm_stats.wired_count--;
905 pmap->pm_stats.resident_count--;
906 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
907 if (__predict_true(pg != NULL)) {
908 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
909 }
910 pmap_md_tlb_miss_lock_enter();
911 pte_set(ptep, npte);
912 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
913
914 /*
915 * Flush the TLB for the given address.
916 */
917 pmap_tlb_invalidate_addr(pmap, sva);
918 }
919 pmap_md_tlb_miss_lock_exit();
920 }
921
922 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
923
924 return false;
925 }
926
927 void
928 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
929 {
930 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
931 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
932
933 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
934 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
935 (uintptr_t)pmap, sva, eva, 0);
936
937 if (is_kernel_pmap_p) {
938 PMAP_COUNT(remove_kernel_calls);
939 } else {
940 PMAP_COUNT(remove_user_calls);
941 }
942 #ifdef PMAP_FAULTINFO
943 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
944 curpcb->pcb_faultinfo.pfi_repeats = 0;
945 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
946 #endif
947 kpreempt_disable();
948 pmap_addr_range_check(pmap, sva, eva, __func__);
949 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
950 kpreempt_enable();
951
952 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
953 }
954
955 /*
956 * pmap_page_protect:
957 *
958 * Lower the permission for all mappings to a given page.
959 */
960 void
961 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
962 {
963 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
964 pv_entry_t pv;
965 vaddr_t va;
966
967 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
968 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
969 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
970 PMAP_COUNT(page_protect);
971
972 switch (prot) {
973 case VM_PROT_READ|VM_PROT_WRITE:
974 case VM_PROT_ALL:
975 break;
976
977 /* copy_on_write */
978 case VM_PROT_READ:
979 case VM_PROT_READ|VM_PROT_EXECUTE:
980 pv = &mdpg->mdpg_first;
981 kpreempt_disable();
982 VM_PAGEMD_PVLIST_READLOCK(mdpg);
983 pmap_pvlist_check(mdpg);
984 /*
985 * Loop over all current mappings setting/clearing as
986 * appropriate.
987 */
988 if (pv->pv_pmap != NULL) {
989 while (pv != NULL) {
990 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
991 if (pv->pv_va & PV_KENTER) {
992 pv = pv->pv_next;
993 continue;
994 }
995 #endif
996 const pmap_t pmap = pv->pv_pmap;
997 va = trunc_page(pv->pv_va);
998 const uintptr_t gen =
999 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1000 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1001 KASSERT(pv->pv_pmap == pmap);
1002 pmap_update(pmap);
1003 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1004 pv = &mdpg->mdpg_first;
1005 } else {
1006 pv = pv->pv_next;
1007 }
1008 pmap_pvlist_check(mdpg);
1009 }
1010 }
1011 pmap_pvlist_check(mdpg);
1012 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1013 kpreempt_enable();
1014 break;
1015
1016 /* remove_all */
1017 default:
1018 pmap_page_remove(pg);
1019 }
1020
1021 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1022 }
1023
1024 static bool
1025 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1026 uintptr_t flags)
1027 {
1028 const vm_prot_t prot = (flags & VM_PROT_ALL);
1029
1030 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1031 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1032 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1033 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1034 (uintptr_t)ptep, flags, 0, 0);
1035
1036 KASSERT(kpreempt_disabled());
1037 /*
1038 * Change protection on every valid mapping within this segment.
1039 */
1040 for (; sva < eva; sva += NBPG, ptep++) {
1041 pt_entry_t pte = *ptep;
1042 if (!pte_valid_p(pte))
1043 continue;
1044 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1045 if (pg != NULL && pte_modified_p(pte)) {
1046 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1047 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1048 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
1049 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1050 if (VM_PAGEMD_CACHED_P(mdpg)) {
1051 #endif
1052 UVMHIST_LOG(pmapexechist,
1053 "pg %#jx (pa %#jx): "
1054 "syncicached performed",
1055 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1056 0, 0);
1057 pmap_page_syncicache(pg);
1058 PMAP_COUNT(exec_synced_protect);
1059 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1060 }
1061 #endif
1062 }
1063 }
1064 pte = pte_prot_downgrade(pte, prot);
1065 if (*ptep != pte) {
1066 pmap_md_tlb_miss_lock_enter();
1067 pte_set(ptep, pte);
1068 /*
1069 * Update the TLB if needed.
1070 */
1071 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1072 pmap_md_tlb_miss_lock_exit();
1073 }
1074 }
1075
1076 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1077
1078 return false;
1079 }
1080
1081 /*
1082 * Set the physical protection on the
1083 * specified range of this map as requested.
1084 */
1085 void
1086 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1087 {
1088 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1089 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1090 (uintptr_t)pmap, sva, eva, prot);
1091 PMAP_COUNT(protect);
1092
1093 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1094 pmap_remove(pmap, sva, eva);
1095 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1096 return;
1097 }
1098
1099 /*
1100 * Change protection on every valid mapping within this segment.
1101 */
1102 kpreempt_disable();
1103 pmap_addr_range_check(pmap, sva, eva, __func__);
1104 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1105 kpreempt_enable();
1106
1107 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1108 }
1109
1110 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1111 /*
1112 * pmap_page_cache:
1113 *
1114 * Change all mappings of a managed page to cached/uncached.
1115 */
1116 void
1117 pmap_page_cache(struct vm_page *pg, bool cached)
1118 {
1119 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1120
1121 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1122 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1123 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1124
1125 KASSERT(kpreempt_disabled());
1126 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1127
1128 if (cached) {
1129 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1130 PMAP_COUNT(page_cache_restorations);
1131 } else {
1132 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1133 PMAP_COUNT(page_cache_evictions);
1134 }
1135
1136 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1137 pmap_t pmap = pv->pv_pmap;
1138 vaddr_t va = trunc_page(pv->pv_va);
1139
1140 KASSERT(pmap != NULL);
1141 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1142 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1143 if (ptep == NULL)
1144 continue;
1145 pt_entry_t pte = *ptep;
1146 if (pte_valid_p(pte)) {
1147 pte = pte_cached_change(pte, cached);
1148 pmap_md_tlb_miss_lock_enter();
1149 pte_set(ptep, pte);
1150 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1151 pmap_md_tlb_miss_lock_exit();
1152 }
1153 }
1154
1155 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1156 }
1157 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1158
1159 /*
1160 * Insert the given physical page (p) at
1161 * the specified virtual address (v) in the
1162 * target physical map with the protection requested.
1163 *
1164 * If specified, the page will be wired down, meaning
1165 * that the related pte can not be reclaimed.
1166 *
1167 * NB: This is the only routine which MAY NOT lazy-evaluate
1168 * or lose information. That is, this routine must actually
1169 * insert this page into the given map NOW.
1170 */
1171 int
1172 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1173 {
1174 const bool wired = (flags & PMAP_WIRED) != 0;
1175 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1176 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1177 #ifdef UVMHIST
1178 struct kern_history * const histp =
1179 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1180 #endif
1181
1182 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1183 UVMHIST_LOG(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1184 (uintptr_t)pmap, va, pa, 0);
1185 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1186
1187 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1188 if (is_kernel_pmap_p) {
1189 PMAP_COUNT(kernel_mappings);
1190 if (!good_color)
1191 PMAP_COUNT(kernel_mappings_bad);
1192 } else {
1193 PMAP_COUNT(user_mappings);
1194 if (!good_color)
1195 PMAP_COUNT(user_mappings_bad);
1196 }
1197 pmap_addr_range_check(pmap, va, va, __func__);
1198
1199 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1200 VM_PROT_READ, prot);
1201
1202 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1203 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1204
1205 if (pg) {
1206 /* Set page referenced/modified status based on flags */
1207 if (flags & VM_PROT_WRITE) {
1208 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1209 } else if (flags & VM_PROT_ALL) {
1210 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1211 }
1212
1213 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1214 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1215 flags |= PMAP_NOCACHE;
1216 PMAP_COUNT(uncached_mappings);
1217 }
1218 #endif
1219
1220 PMAP_COUNT(managed_mappings);
1221 } else {
1222 /*
1223 * Assumption: if it is not part of our managed memory
1224 * then it must be device memory which may be volatile.
1225 */
1226 if ((flags & PMAP_CACHE_MASK) == 0)
1227 flags |= PMAP_NOCACHE;
1228 PMAP_COUNT(unmanaged_mappings);
1229 }
1230
1231 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1232 is_kernel_pmap_p);
1233
1234 kpreempt_disable();
1235
1236 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1237 if (__predict_false(ptep == NULL)) {
1238 kpreempt_enable();
1239 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1240 return ENOMEM;
1241 }
1242 const pt_entry_t opte = *ptep;
1243 const bool resident = pte_valid_p(opte);
1244 bool remap = false;
1245 if (resident) {
1246 if (pte_to_paddr(opte) != pa) {
1247 KASSERT(!is_kernel_pmap_p);
1248 const pt_entry_t rpte = pte_nv_entry(false);
1249
1250 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1251 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1252 rpte);
1253 PMAP_COUNT(user_mappings_changed);
1254 remap = true;
1255 }
1256 update_flags |= PMAP_TLB_NEED_IPI;
1257 }
1258
1259 if (!resident || remap) {
1260 pmap->pm_stats.resident_count++;
1261 }
1262
1263 /* Done after case that may sleep/return. */
1264 if (pg)
1265 pmap_enter_pv(pmap, va, pg, &npte, 0);
1266
1267 /*
1268 * Now validate mapping with desired protection/wiring.
1269 * Assume uniform modified and referenced status for all
1270 * MIPS pages in a MACH page.
1271 */
1272 if (wired) {
1273 pmap->pm_stats.wired_count++;
1274 npte = pte_wire_entry(npte);
1275 }
1276
1277 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1278 pte_value(npte), pa, 0, 0);
1279
1280 KASSERT(pte_valid_p(npte));
1281
1282 pmap_md_tlb_miss_lock_enter();
1283 pte_set(ptep, npte);
1284 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1285 pmap_md_tlb_miss_lock_exit();
1286 kpreempt_enable();
1287
1288 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1289 KASSERT(mdpg != NULL);
1290 PMAP_COUNT(exec_mappings);
1291 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1292 if (!pte_deferred_exec_p(npte)) {
1293 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1294 "immediate syncicache",
1295 va, (uintptr_t)pg, 0, 0);
1296 pmap_page_syncicache(pg);
1297 pmap_page_set_attributes(mdpg,
1298 VM_PAGEMD_EXECPAGE);
1299 PMAP_COUNT(exec_synced_mappings);
1300 } else {
1301 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1302 "syncicache: pte %#jx",
1303 va, (uintptr_t)pg, npte, 0);
1304 }
1305 } else {
1306 UVMHIST_LOG(*histp,
1307 "va=%#jx pg %#jx: no syncicache cached %jd",
1308 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1309 }
1310 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1311 KASSERT(mdpg != NULL);
1312 KASSERT(prot & VM_PROT_WRITE);
1313 PMAP_COUNT(exec_mappings);
1314 pmap_page_syncicache(pg);
1315 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1316 UVMHIST_LOG(*histp,
1317 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1318 va, (uintptr_t)pg, 0, 0);
1319 }
1320
1321 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1322 return 0;
1323 }
1324
1325 void
1326 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1327 {
1328 pmap_t pmap = pmap_kernel();
1329 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1330 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1331
1332 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1333 UVMHIST_LOG(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1334 va, pa, prot, flags);
1335 PMAP_COUNT(kenter_pa);
1336
1337 if (mdpg == NULL) {
1338 PMAP_COUNT(kenter_pa_unmanaged);
1339 if ((flags & PMAP_CACHE_MASK) == 0)
1340 flags |= PMAP_NOCACHE;
1341 } else {
1342 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1343 PMAP_COUNT(kenter_pa_bad);
1344 }
1345
1346 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1347 kpreempt_disable();
1348 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1349 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1350 pmap_limits.virtual_end);
1351 KASSERT(!pte_valid_p(*ptep));
1352
1353 /*
1354 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1355 */
1356 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1357 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1358 && pmap_md_virtual_cache_aliasing_p()) {
1359 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1360 }
1361 #endif
1362
1363 /*
1364 * We have the option to force this mapping into the TLB but we
1365 * don't. Instead let the next reference to the page do it.
1366 */
1367 pmap_md_tlb_miss_lock_enter();
1368 pte_set(ptep, npte);
1369 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1370 pmap_md_tlb_miss_lock_exit();
1371 kpreempt_enable();
1372 #if DEBUG > 1
1373 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1374 if (((long *)va)[i] != ((long *)pa)[i])
1375 panic("%s: contents (%lx) of va %#"PRIxVADDR
1376 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1377 ((long *)va)[i], va, ((long *)pa)[i], pa);
1378 }
1379 #endif
1380
1381 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1382 0);
1383 }
1384
1385 /*
1386 * Remove the given range of addresses from the kernel map.
1387 *
1388 * It is assumed that the start and end are properly
1389 * rounded to the page size.
1390 */
1391
1392 static bool
1393 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1394 uintptr_t flags)
1395 {
1396 const pt_entry_t new_pte = pte_nv_entry(true);
1397
1398 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1399 UVMHIST_LOG(pmaphist,
1400 "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1401 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1402
1403 KASSERT(kpreempt_disabled());
1404
1405 for (; sva < eva; sva += NBPG, ptep++) {
1406 pt_entry_t pte = *ptep;
1407 if (!pte_valid_p(pte))
1408 continue;
1409
1410 PMAP_COUNT(kremove_pages);
1411 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1412 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1413 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1414 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1415 }
1416 #endif
1417
1418 pmap_md_tlb_miss_lock_enter();
1419 pte_set(ptep, new_pte);
1420 pmap_tlb_invalidate_addr(pmap, sva);
1421 pmap_md_tlb_miss_lock_exit();
1422 }
1423
1424 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1425
1426 return false;
1427 }
1428
1429 void
1430 pmap_kremove(vaddr_t va, vsize_t len)
1431 {
1432 const vaddr_t sva = trunc_page(va);
1433 const vaddr_t eva = round_page(va + len);
1434
1435 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1436 UVMHIST_LOG(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1437
1438 kpreempt_disable();
1439 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1440 kpreempt_enable();
1441
1442 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1443 }
1444
1445 void
1446 pmap_remove_all(struct pmap *pmap)
1447 {
1448 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1449 UVMHIST_LOG(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1450
1451 KASSERT(pmap != pmap_kernel());
1452
1453 kpreempt_disable();
1454 /*
1455 * Free all of our ASIDs which means we can skip doing all the
1456 * tlb_invalidate_addrs().
1457 */
1458 pmap_md_tlb_miss_lock_enter();
1459 #ifdef MULTIPROCESSOR
1460 // This should be the last CPU with this pmap onproc
1461 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1462 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1463 #endif
1464 pmap_tlb_asid_deactivate(pmap);
1465 #ifdef MULTIPROCESSOR
1466 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1467 #endif
1468 pmap_tlb_asid_release_all(pmap);
1469 pmap_md_tlb_miss_lock_exit();
1470 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1471
1472 #ifdef PMAP_FAULTINFO
1473 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1474 curpcb->pcb_faultinfo.pfi_repeats = 0;
1475 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1476 #endif
1477 kpreempt_enable();
1478
1479 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1480 }
1481
1482 /*
1483 * Routine: pmap_unwire
1484 * Function: Clear the wired attribute for a map/virtual-address
1485 * pair.
1486 * In/out conditions:
1487 * The mapping must already exist in the pmap.
1488 */
1489 void
1490 pmap_unwire(pmap_t pmap, vaddr_t va)
1491 {
1492 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1493 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1494 0, 0);
1495 PMAP_COUNT(unwire);
1496
1497 /*
1498 * Don't need to flush the TLB since PG_WIRED is only in software.
1499 */
1500 kpreempt_disable();
1501 pmap_addr_range_check(pmap, va, va, __func__);
1502 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1503 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1504 pmap, va);
1505 pt_entry_t pte = *ptep;
1506 KASSERTMSG(pte_valid_p(pte),
1507 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1508 pmap, va, pte_value(pte), ptep);
1509
1510 if (pte_wired_p(pte)) {
1511 pmap_md_tlb_miss_lock_enter();
1512 pte_set(ptep, pte_unwire_entry(pte));
1513 pmap_md_tlb_miss_lock_exit();
1514 pmap->pm_stats.wired_count--;
1515 }
1516 #ifdef DIAGNOSTIC
1517 else {
1518 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1519 __func__, pmap, va);
1520 }
1521 #endif
1522 kpreempt_enable();
1523
1524 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1525 }
1526
1527 /*
1528 * Routine: pmap_extract
1529 * Function:
1530 * Extract the physical page address associated
1531 * with the given map/virtual_address pair.
1532 */
1533 bool
1534 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1535 {
1536 paddr_t pa;
1537
1538 if (pmap == pmap_kernel()) {
1539 if (pmap_md_direct_mapped_vaddr_p(va)) {
1540 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1541 goto done;
1542 }
1543 if (pmap_md_io_vaddr_p(va))
1544 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1545
1546 if (va >= pmap_limits.virtual_end)
1547 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1548 __func__, va);
1549 }
1550 kpreempt_disable();
1551 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1552 if (ptep == NULL || !pte_valid_p(*ptep)) {
1553 kpreempt_enable();
1554 return false;
1555 }
1556 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1557 kpreempt_enable();
1558 done:
1559 if (pap != NULL) {
1560 *pap = pa;
1561 }
1562 return true;
1563 }
1564
1565 /*
1566 * Copy the range specified by src_addr/len
1567 * from the source map to the range dst_addr/len
1568 * in the destination map.
1569 *
1570 * This routine is only advisory and need not do anything.
1571 */
1572 void
1573 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1574 vaddr_t src_addr)
1575 {
1576 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1577 PMAP_COUNT(copy);
1578 }
1579
1580 /*
1581 * pmap_clear_reference:
1582 *
1583 * Clear the reference bit on the specified physical page.
1584 */
1585 bool
1586 pmap_clear_reference(struct vm_page *pg)
1587 {
1588 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1589
1590 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1591 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx))",
1592 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1593
1594 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1595
1596 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1597
1598 return rv;
1599 }
1600
1601 /*
1602 * pmap_is_referenced:
1603 *
1604 * Return whether or not the specified physical page is referenced
1605 * by any physical maps.
1606 */
1607 bool
1608 pmap_is_referenced(struct vm_page *pg)
1609 {
1610 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1611 }
1612
1613 /*
1614 * Clear the modify bits on the specified physical page.
1615 */
1616 bool
1617 pmap_clear_modify(struct vm_page *pg)
1618 {
1619 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1620 pv_entry_t pv = &mdpg->mdpg_first;
1621 pv_entry_t pv_next;
1622
1623 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1624 UVMHIST_LOG(pmaphist, "(pg=%#jx (%#jx))",
1625 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1626 PMAP_COUNT(clear_modify);
1627
1628 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1629 if (pv->pv_pmap == NULL) {
1630 UVMHIST_LOG(pmapexechist,
1631 "pg %#jx (pa %#jx): execpage cleared",
1632 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1633 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1634 PMAP_COUNT(exec_uncached_clear_modify);
1635 } else {
1636 UVMHIST_LOG(pmapexechist,
1637 "pg %#jx (pa %#jx): syncicache performed",
1638 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1639 pmap_page_syncicache(pg);
1640 PMAP_COUNT(exec_synced_clear_modify);
1641 }
1642 }
1643 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1644 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1645 return false;
1646 }
1647 if (pv->pv_pmap == NULL) {
1648 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1649 return true;
1650 }
1651
1652 /*
1653 * remove write access from any pages that are dirty
1654 * so we can tell if they are written to again later.
1655 * flush the VAC first if there is one.
1656 */
1657 kpreempt_disable();
1658 KASSERT(!VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1659 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1660 pmap_pvlist_check(mdpg);
1661 for (; pv != NULL; pv = pv_next) {
1662 pmap_t pmap = pv->pv_pmap;
1663 vaddr_t va = trunc_page(pv->pv_va);
1664
1665 pv_next = pv->pv_next;
1666 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1667 if (pv->pv_va & PV_KENTER)
1668 continue;
1669 #endif
1670 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1671 KASSERT(ptep);
1672 pt_entry_t pte = pte_prot_nowrite(*ptep);
1673 if (*ptep == pte) {
1674 continue;
1675 }
1676 KASSERT(pte_valid_p(pte));
1677 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1678 pmap_md_tlb_miss_lock_enter();
1679 pte_set(ptep, pte);
1680 pmap_tlb_invalidate_addr(pmap, va);
1681 pmap_md_tlb_miss_lock_exit();
1682 pmap_update(pmap);
1683 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1684 /*
1685 * The list changed! So restart from the beginning.
1686 */
1687 pv_next = &mdpg->mdpg_first;
1688 pmap_pvlist_check(mdpg);
1689 }
1690 }
1691 pmap_pvlist_check(mdpg);
1692 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1693 kpreempt_enable();
1694
1695 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1696 return true;
1697 }
1698
1699 /*
1700 * pmap_is_modified:
1701 *
1702 * Return whether or not the specified physical page is modified
1703 * by any physical maps.
1704 */
1705 bool
1706 pmap_is_modified(struct vm_page *pg)
1707 {
1708 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1709 }
1710
1711 /*
1712 * pmap_set_modified:
1713 *
1714 * Sets the page modified reference bit for the specified page.
1715 */
1716 void
1717 pmap_set_modified(paddr_t pa)
1718 {
1719 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1720 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1721 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1722 }
1723
1724 /******************** pv_entry management ********************/
1725
1726 static void
1727 pmap_pvlist_check(struct vm_page_md *mdpg)
1728 {
1729 #ifdef DEBUG
1730 pv_entry_t pv = &mdpg->mdpg_first;
1731 if (pv->pv_pmap != NULL) {
1732 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1733 const u_int colormask = uvmexp.colormask;
1734 u_int colors = 0;
1735 #endif
1736 for (; pv != NULL; pv = pv->pv_next) {
1737 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1738 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1739 colors |= __BIT(atop(pv->pv_va) & colormask);
1740 #endif
1741 }
1742 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1743 // Assert that if there is more than 1 color mapped, that the
1744 // page is uncached.
1745 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1746 || colors == 0 || (colors & (colors-1)) == 0
1747 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1748 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1749 #endif
1750 } else {
1751 KASSERT(pv->pv_next == NULL);
1752 }
1753 #endif /* DEBUG */
1754 }
1755
1756 /*
1757 * Enter the pmap and virtual address into the
1758 * physical to virtual map table.
1759 */
1760 void
1761 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1762 u_int flags)
1763 {
1764 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1765 pv_entry_t pv, npv, apv;
1766 #ifdef UVMHIST
1767 bool first = false;
1768 #endif
1769
1770 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1771 UVMHIST_LOG(pmaphist,
1772 "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1773 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1774 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1775 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1776
1777 KASSERT(kpreempt_disabled());
1778 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1779 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1780 "va %#"PRIxVADDR, va);
1781
1782 apv = NULL;
1783 VM_PAGEMD_PVLIST_LOCK(mdpg);
1784 again:
1785 pv = &mdpg->mdpg_first;
1786 pmap_pvlist_check(mdpg);
1787 if (pv->pv_pmap == NULL) {
1788 KASSERT(pv->pv_next == NULL);
1789 /*
1790 * No entries yet, use header as the first entry
1791 */
1792 PMAP_COUNT(primary_mappings);
1793 PMAP_COUNT(mappings);
1794 #ifdef UVMHIST
1795 first = true;
1796 #endif
1797 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1798 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1799 // If the new mapping has an incompatible color the last
1800 // mapping of this page, clean the page before using it.
1801 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1802 pmap_md_vca_clean(pg, PMAP_WBINV);
1803 }
1804 #endif
1805 pv->pv_pmap = pmap;
1806 pv->pv_va = va | flags;
1807 } else {
1808 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1809 if (pmap_md_vca_add(pg, va, nptep)) {
1810 goto again;
1811 }
1812 #endif
1813
1814 /*
1815 * There is at least one other VA mapping this page.
1816 * Place this entry after the header.
1817 *
1818 * Note: the entry may already be in the table if
1819 * we are only changing the protection bits.
1820 */
1821
1822 #ifdef PARANOIADIAG
1823 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1824 #endif
1825 for (npv = pv; npv; npv = npv->pv_next) {
1826 if (pmap == npv->pv_pmap
1827 && va == trunc_page(npv->pv_va)) {
1828 #ifdef PARANOIADIAG
1829 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1830 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1831 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1832 printf("%s: found va %#"PRIxVADDR
1833 " pa %#"PRIxPADDR
1834 " in pv_table but != %#"PRIxPTE"\n",
1835 __func__, va, pa, pte_value(pte));
1836 #endif
1837 PMAP_COUNT(remappings);
1838 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1839 if (__predict_false(apv != NULL))
1840 pmap_pv_free(apv);
1841
1842 UVMHIST_LOG(pmaphist,
1843 " <-- done pv=%#jx (reused)",
1844 (uintptr_t)pv, 0, 0, 0);
1845 return;
1846 }
1847 }
1848 if (__predict_true(apv == NULL)) {
1849 /*
1850 * To allocate a PV, we have to release the PVLIST lock
1851 * so get the page generation. We allocate the PV, and
1852 * then reacquire the lock.
1853 */
1854 pmap_pvlist_check(mdpg);
1855 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1856
1857 apv = (pv_entry_t)pmap_pv_alloc();
1858 if (apv == NULL)
1859 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1860
1861 /*
1862 * If the generation has changed, then someone else
1863 * tinkered with this page so we should start over.
1864 */
1865 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1866 goto again;
1867 }
1868 npv = apv;
1869 apv = NULL;
1870 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1871 /*
1872 * If need to deal with virtual cache aliases, keep mappings
1873 * in the kernel pmap at the head of the list. This allows
1874 * the VCA code to easily use them for cache operations if
1875 * present.
1876 */
1877 pmap_t kpmap = pmap_kernel();
1878 if (pmap != kpmap) {
1879 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1880 pv = pv->pv_next;
1881 }
1882 }
1883 #endif
1884 npv->pv_va = va | flags;
1885 npv->pv_pmap = pmap;
1886 npv->pv_next = pv->pv_next;
1887 pv->pv_next = npv;
1888 PMAP_COUNT(mappings);
1889 }
1890 pmap_pvlist_check(mdpg);
1891 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1892 if (__predict_false(apv != NULL))
1893 pmap_pv_free(apv);
1894
1895 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1896 first, 0, 0);
1897 }
1898
1899 /*
1900 * Remove a physical to virtual address translation.
1901 * If cache was inhibited on this page, and there are no more cache
1902 * conflicts, restore caching.
1903 * Flush the cache if the last page is removed (should always be cached
1904 * at this point).
1905 */
1906 void
1907 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1908 {
1909 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1910 pv_entry_t pv, npv;
1911 bool last;
1912
1913 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1914 UVMHIST_LOG(pmaphist,
1915 "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1916 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1917 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1918
1919 KASSERT(kpreempt_disabled());
1920 KASSERT((va & PAGE_MASK) == 0);
1921 pv = &mdpg->mdpg_first;
1922
1923 VM_PAGEMD_PVLIST_LOCK(mdpg);
1924 pmap_pvlist_check(mdpg);
1925
1926 /*
1927 * If it is the first entry on the list, it is actually
1928 * in the header and we must copy the following entry up
1929 * to the header. Otherwise we must search the list for
1930 * the entry. In either case we free the now unused entry.
1931 */
1932
1933 last = false;
1934 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1935 npv = pv->pv_next;
1936 if (npv) {
1937 *pv = *npv;
1938 KASSERT(pv->pv_pmap != NULL);
1939 } else {
1940 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1941 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1942 #endif
1943 pv->pv_pmap = NULL;
1944 last = true; /* Last mapping removed */
1945 }
1946 PMAP_COUNT(remove_pvfirst);
1947 } else {
1948 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1949 PMAP_COUNT(remove_pvsearch);
1950 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1951 break;
1952 }
1953 if (npv) {
1954 pv->pv_next = npv->pv_next;
1955 }
1956 }
1957
1958 pmap_pvlist_check(mdpg);
1959 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1960
1961 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1962 pmap_md_vca_remove(pg, va, dirty, last);
1963 #endif
1964
1965 /*
1966 * Free the pv_entry if needed.
1967 */
1968 if (npv)
1969 pmap_pv_free(npv);
1970 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1971 if (last) {
1972 /*
1973 * If this was the page's last mapping, we no longer
1974 * care about its execness.
1975 */
1976 UVMHIST_LOG(pmapexechist,
1977 "pg %#jx (pa %#jx)last %ju: execpage cleared",
1978 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
1979 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1980 PMAP_COUNT(exec_uncached_remove);
1981 } else {
1982 /*
1983 * Someone still has it mapped as an executable page
1984 * so we must sync it.
1985 */
1986 UVMHIST_LOG(pmapexechist,
1987 "pg %#jx (pa %#jx) last %ju: performed syncicache",
1988 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
1989 pmap_page_syncicache(pg);
1990 PMAP_COUNT(exec_synced_remove);
1991 }
1992 }
1993
1994 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1995 }
1996
1997 #if defined(MULTIPROCESSOR)
1998 struct pmap_pvlist_info {
1999 kmutex_t *pli_locks[PAGE_SIZE / 32];
2000 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2001 volatile u_int pli_lock_index;
2002 u_int pli_lock_mask;
2003 } pmap_pvlist_info;
2004
2005 void
2006 pmap_pvlist_lock_init(size_t cache_line_size)
2007 {
2008 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2009 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2010 vaddr_t lock_va = lock_page;
2011 if (sizeof(kmutex_t) > cache_line_size) {
2012 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2013 }
2014 const size_t nlocks = PAGE_SIZE / cache_line_size;
2015 KASSERT((nlocks & (nlocks - 1)) == 0);
2016 /*
2017 * Now divide the page into a number of mutexes, one per cacheline.
2018 */
2019 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2020 kmutex_t * const lock = (kmutex_t *)lock_va;
2021 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2022 pli->pli_locks[i] = lock;
2023 }
2024 pli->pli_lock_mask = nlocks - 1;
2025 }
2026
2027 kmutex_t *
2028 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2029 {
2030 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2031 kmutex_t *lock = mdpg->mdpg_lock;
2032
2033 /*
2034 * Allocate a lock on an as-needed basis. This will hopefully give us
2035 * semi-random distribution not based on page color.
2036 */
2037 if (__predict_false(lock == NULL)) {
2038 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2039 size_t lockid = locknum & pli->pli_lock_mask;
2040 kmutex_t * const new_lock = pli->pli_locks[lockid];
2041 /*
2042 * Set the lock. If some other thread already did, just use
2043 * the one they assigned.
2044 */
2045 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2046 if (lock == NULL) {
2047 lock = new_lock;
2048 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2049 }
2050 }
2051
2052 /*
2053 * Now finally provide the lock.
2054 */
2055 return lock;
2056 }
2057 #else /* !MULTIPROCESSOR */
2058 void
2059 pmap_pvlist_lock_init(size_t cache_line_size)
2060 {
2061 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2062 }
2063
2064 #ifdef MODULAR
2065 kmutex_t *
2066 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2067 {
2068 /*
2069 * We just use a global lock.
2070 */
2071 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2072 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2073 }
2074
2075 /*
2076 * Now finally provide the lock.
2077 */
2078 return mdpg->mdpg_lock;
2079 }
2080 #endif /* MODULAR */
2081 #endif /* !MULTIPROCESSOR */
2082
2083 /*
2084 * pmap_pv_page_alloc:
2085 *
2086 * Allocate a page for the pv_entry pool.
2087 */
2088 void *
2089 pmap_pv_page_alloc(struct pool *pp, int flags)
2090 {
2091 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2092 if (pg == NULL)
2093 return NULL;
2094
2095 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2096 }
2097
2098 /*
2099 * pmap_pv_page_free:
2100 *
2101 * Free a pv_entry pool page.
2102 */
2103 void
2104 pmap_pv_page_free(struct pool *pp, void *v)
2105 {
2106 vaddr_t va = (vaddr_t)v;
2107
2108 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2109 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2110 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2111 KASSERT(pg != NULL);
2112 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2113 kpreempt_disable();
2114 pmap_md_vca_remove(pg, va, true, true);
2115 kpreempt_enable();
2116 #endif
2117 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2118 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2119 uvm_pagefree(pg);
2120 }
2121
2122 #ifdef PMAP_PREFER
2123 /*
2124 * Find first virtual address >= *vap that doesn't cause
2125 * a cache alias conflict.
2126 */
2127 void
2128 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2129 {
2130 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2131
2132 PMAP_COUNT(prefer_requests);
2133
2134 prefer_mask |= pmap_md_cache_prefer_mask();
2135
2136 if (prefer_mask) {
2137 vaddr_t va = *vap;
2138 vsize_t d = (foff - va) & prefer_mask;
2139 if (d) {
2140 if (td)
2141 *vap = trunc_page(va - ((-d) & prefer_mask));
2142 else
2143 *vap = round_page(va + d);
2144 PMAP_COUNT(prefer_adjustments);
2145 }
2146 }
2147 }
2148 #endif /* PMAP_PREFER */
2149
2150 #ifdef PMAP_MAP_POOLPAGE
2151 vaddr_t
2152 pmap_map_poolpage(paddr_t pa)
2153 {
2154 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2155 KASSERT(pg);
2156
2157 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2158 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2159
2160 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2161
2162 return pmap_md_map_poolpage(pa, NBPG);
2163 }
2164
2165 paddr_t
2166 pmap_unmap_poolpage(vaddr_t va)
2167 {
2168 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2169 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2170
2171 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2172 KASSERT(pg != NULL);
2173 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2174
2175 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2176 pmap_md_unmap_poolpage(va, NBPG);
2177
2178 return pa;
2179 }
2180 #endif /* PMAP_MAP_POOLPAGE */
2181