pmap.c revision 1.46 1 /* $NetBSD: pmap.c,v 1.46 2020/03/11 13:30:31 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.46 2020/03/11 13:30:31 thorpej Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105
106 #include <sys/atomic.h>
107 #include <sys/buf.h>
108 #include <sys/cpu.h>
109 #include <sys/mutex.h>
110 #include <sys/pool.h>
111
112 #include <uvm/uvm.h>
113 #include <uvm/uvm_physseg.h>
114
115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
116 && !defined(PMAP_NO_PV_UNCACHED)
117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
118 PMAP_NO_PV_UNCACHED to be defined
119 #endif
120
121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
123 PMAP_COUNTER(remove_user_calls, "remove user calls");
124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
129
130 PMAP_COUNTER(prefer_requests, "prefer requests");
131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
132
133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
134
135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
139
140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
142
143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
146 PMAP_COUNTER(user_mappings, "user pages mapped");
147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
152 PMAP_COUNTER(mappings, "pages mapped");
153 PMAP_COUNTER(remappings, "pages remapped");
154 PMAP_COUNTER(unmappings, "pages unmapped");
155 PMAP_COUNTER(primary_mappings, "page initial mappings");
156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
157 PMAP_COUNTER(tlb_hit, "page mapping");
158
159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
170
171 PMAP_COUNTER(create, "creates");
172 PMAP_COUNTER(reference, "references");
173 PMAP_COUNTER(dereference, "dereferences");
174 PMAP_COUNTER(destroy, "destroyed");
175 PMAP_COUNTER(activate, "activations");
176 PMAP_COUNTER(deactivate, "deactivations");
177 PMAP_COUNTER(update, "updates");
178 #ifdef MULTIPROCESSOR
179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
180 #endif
181 PMAP_COUNTER(unwire, "unwires");
182 PMAP_COUNTER(copy, "copies");
183 PMAP_COUNTER(clear_modify, "clear_modifies");
184 PMAP_COUNTER(protect, "protects");
185 PMAP_COUNTER(page_protect, "page_protects");
186
187 #define PMAP_ASID_RESERVED 0
188 CTASSERT(PMAP_ASID_RESERVED == 0);
189
190 #ifndef PMAP_SEGTAB_ALIGN
191 #define PMAP_SEGTAB_ALIGN /* nothing */
192 #endif
193 #ifdef _LP64
194 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
195 #endif
196 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
197 #ifdef _LP64
198 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
199 #endif
200 };
201
202 struct pmap_kernel kernel_pmap_store = {
203 .kernel_pmap = {
204 .pm_count = 1,
205 .pm_segtab = &pmap_kern_segtab,
206 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
207 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
208 },
209 };
210
211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
212
213 struct pmap_limits pmap_limits = { /* VA and PA limits */
214 .virtual_start = VM_MIN_KERNEL_ADDRESS,
215 };
216
217 #ifdef UVMHIST
218 static struct kern_history_ent pmapexechistbuf[10000];
219 static struct kern_history_ent pmaphistbuf[10000];
220 UVMHIST_DEFINE(pmapexechist);
221 UVMHIST_DEFINE(pmaphist);
222 #endif
223
224 /*
225 * The pools from which pmap structures and sub-structures are allocated.
226 */
227 struct pool pmap_pmap_pool;
228 struct pool pmap_pv_pool;
229
230 #ifndef PMAP_PV_LOWAT
231 #define PMAP_PV_LOWAT 16
232 #endif
233 int pmap_pv_lowat = PMAP_PV_LOWAT;
234
235 bool pmap_initialized = false;
236 #define PMAP_PAGE_COLOROK_P(a, b) \
237 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
238 u_int pmap_page_colormask;
239
240 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
241
242 #define PMAP_IS_ACTIVE(pm) \
243 ((pm) == pmap_kernel() || \
244 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
245
246 /* Forward function declarations */
247 void pmap_page_remove(struct vm_page *);
248 static void pmap_pvlist_check(struct vm_page_md *);
249 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
250 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
251
252 /*
253 * PV table management functions.
254 */
255 void *pmap_pv_page_alloc(struct pool *, int);
256 void pmap_pv_page_free(struct pool *, void *);
257
258 struct pool_allocator pmap_pv_page_allocator = {
259 pmap_pv_page_alloc, pmap_pv_page_free, 0,
260 };
261
262 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
263 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
264
265 #ifndef PMAP_NEED_TLB_MISS_LOCK
266
267 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
268 #define PMAP_NEED_TLB_MISS_LOCK
269 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
270
271 #endif /* PMAP_NEED_TLB_MISS_LOCK */
272
273 #ifdef PMAP_NEED_TLB_MISS_LOCK
274
275 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
276 #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */
277 #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter()
278 #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit()
279 #else
280 static kmutex_t pmap_tlb_miss_lock __cacheline_aligned;
281
282 static void
283 pmap_tlb_miss_lock_init(void)
284 {
285 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
286 }
287
288 static inline void
289 pmap_tlb_miss_lock_enter(void)
290 {
291 mutex_spin_enter(&pmap_tlb_miss_lock);
292 }
293
294 static inline void
295 pmap_tlb_miss_lock_exit(void)
296 {
297 mutex_spin_exit(&pmap_tlb_miss_lock);
298 }
299 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
300
301 #else
302
303 #define pmap_tlb_miss_lock_init() __nothing
304 #define pmap_tlb_miss_lock_enter() __nothing
305 #define pmap_tlb_miss_lock_exit() __nothing
306
307 #endif /* PMAP_NEED_TLB_MISS_LOCK */
308
309 #ifndef MULTIPROCESSOR
310 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
311 #endif
312
313 /*
314 * Debug functions.
315 */
316
317 #ifdef DEBUG
318 static inline void
319 pmap_asid_check(pmap_t pm, const char *func)
320 {
321 if (!PMAP_IS_ACTIVE(pm))
322 return;
323
324 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
325 tlb_asid_t asid = tlb_get_asid();
326 if (asid != pai->pai_asid)
327 panic("%s: inconsistency for active TLB update: %u <-> %u",
328 func, asid, pai->pai_asid);
329 }
330 #endif
331
332 static void
333 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
334 {
335 #ifdef DEBUG
336 if (pmap == pmap_kernel()) {
337 if (sva < VM_MIN_KERNEL_ADDRESS)
338 panic("%s: kva %#"PRIxVADDR" not in range",
339 func, sva);
340 if (eva >= pmap_limits.virtual_end)
341 panic("%s: kva %#"PRIxVADDR" not in range",
342 func, eva);
343 } else {
344 if (eva > VM_MAXUSER_ADDRESS)
345 panic("%s: uva %#"PRIxVADDR" not in range",
346 func, eva);
347 pmap_asid_check(pmap, func);
348 }
349 #endif
350 }
351
352 /*
353 * Misc. functions.
354 */
355
356 bool
357 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
358 {
359 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
360 #ifdef MULTIPROCESSOR
361 for (;;) {
362 u_int old_attr = *attrp;
363 if ((old_attr & clear_attributes) == 0)
364 return false;
365 u_int new_attr = old_attr & ~clear_attributes;
366 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
367 return true;
368 }
369 #else
370 unsigned long old_attr = *attrp;
371 if ((old_attr & clear_attributes) == 0)
372 return false;
373 *attrp &= ~clear_attributes;
374 return true;
375 #endif
376 }
377
378 void
379 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
380 {
381 #ifdef MULTIPROCESSOR
382 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
383 #else
384 mdpg->mdpg_attrs |= set_attributes;
385 #endif
386 }
387
388 static void
389 pmap_page_syncicache(struct vm_page *pg)
390 {
391 #ifndef MULTIPROCESSOR
392 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
393 #endif
394 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
395 pv_entry_t pv = &mdpg->mdpg_first;
396 kcpuset_t *onproc;
397 #ifdef MULTIPROCESSOR
398 kcpuset_create(&onproc, true);
399 KASSERT(onproc != NULL);
400 #else
401 onproc = NULL;
402 #endif
403 VM_PAGEMD_PVLIST_READLOCK(mdpg);
404 pmap_pvlist_check(mdpg);
405
406 if (pv->pv_pmap != NULL) {
407 for (; pv != NULL; pv = pv->pv_next) {
408 #ifdef MULTIPROCESSOR
409 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
410 if (kcpuset_match(onproc, kcpuset_running)) {
411 break;
412 }
413 #else
414 if (pv->pv_pmap == curpmap) {
415 onproc = curcpu()->ci_data.cpu_kcpuset;
416 break;
417 }
418 #endif
419 }
420 }
421 pmap_pvlist_check(mdpg);
422 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
423 kpreempt_disable();
424 pmap_md_page_syncicache(pg, onproc);
425 kpreempt_enable();
426 #ifdef MULTIPROCESSOR
427 kcpuset_destroy(onproc);
428 #endif
429 }
430
431 /*
432 * Define the initial bounds of the kernel virtual address space.
433 */
434 void
435 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
436 {
437
438 *vstartp = pmap_limits.virtual_start;
439 *vendp = pmap_limits.virtual_end;
440 }
441
442 vaddr_t
443 pmap_growkernel(vaddr_t maxkvaddr)
444 {
445 vaddr_t virtual_end = pmap_limits.virtual_end;
446 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
447
448 /*
449 * Reserve PTEs for the new KVA space.
450 */
451 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
452 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
453 }
454
455 /*
456 * Don't exceed VM_MAX_KERNEL_ADDRESS!
457 */
458 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
459 virtual_end = VM_MAX_KERNEL_ADDRESS;
460
461 /*
462 * Update new end.
463 */
464 pmap_limits.virtual_end = virtual_end;
465 return virtual_end;
466 }
467
468 /*
469 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
470 * This function allows for early dynamic memory allocation until the virtual
471 * memory system has been bootstrapped. After that point, either kmem_alloc
472 * or malloc should be used. This function works by stealing pages from the
473 * (to be) managed page pool, then implicitly mapping the pages (by using
474 * their direct mapped addresses) and zeroing them.
475 *
476 * It may be used once the physical memory segments have been pre-loaded
477 * into the vm_physmem[] array. Early memory allocation MUST use this
478 * interface! This cannot be used after vm_page_startup(), and will
479 * generate a panic if tried.
480 *
481 * Note that this memory will never be freed, and in essence it is wired
482 * down.
483 *
484 * We must adjust *vstartp and/or *vendp iff we use address space
485 * from the kernel virtual address range defined by pmap_virtual_space().
486 */
487 vaddr_t
488 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
489 {
490 size_t npgs;
491 paddr_t pa;
492 vaddr_t va;
493
494 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
495
496 size = round_page(size);
497 npgs = atop(size);
498
499 aprint_debug("%s: need %zu pages\n", __func__, npgs);
500
501 for (uvm_physseg_t bank = uvm_physseg_get_first();
502 uvm_physseg_valid_p(bank);
503 bank = uvm_physseg_get_next(bank)) {
504
505 if (uvm.page_init_done == true)
506 panic("pmap_steal_memory: called _after_ bootstrap");
507
508 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
509 __func__, bank,
510 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
511 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
512
513 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
514 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
515 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
516 continue;
517 }
518
519 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
520 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
521 __func__, bank, npgs);
522 continue;
523 }
524
525 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
526 continue;
527 }
528
529 /*
530 * Always try to allocate from the segment with the least
531 * amount of space left.
532 */
533 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
534 if (uvm_physseg_valid_p(maybe_bank) == false
535 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
536 maybe_bank = bank;
537 }
538 }
539
540 if (uvm_physseg_valid_p(maybe_bank)) {
541 const uvm_physseg_t bank = maybe_bank;
542
543 /*
544 * There are enough pages here; steal them!
545 */
546 pa = ptoa(uvm_physseg_get_start(bank));
547 uvm_physseg_unplug(atop(pa), npgs);
548
549 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
550 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
551
552 va = pmap_md_map_poolpage(pa, size);
553 memset((void *)va, 0, size);
554 return va;
555 }
556
557 /*
558 * If we got here, there was no memory left.
559 */
560 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
561 }
562
563 /*
564 * Bootstrap the system enough to run with virtual memory.
565 * (Common routine called by machine-dependent bootstrap code.)
566 */
567 void
568 pmap_bootstrap_common(void)
569 {
570 pmap_tlb_miss_lock_init();
571 }
572
573 /*
574 * Initialize the pmap module.
575 * Called by vm_init, to initialize any structures that the pmap
576 * system needs to map virtual memory.
577 */
578 void
579 pmap_init(void)
580 {
581 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
582 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
583
584 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
585
586 /*
587 * Initialize the segtab lock.
588 */
589 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
590
591 /*
592 * Set a low water mark on the pv_entry pool, so that we are
593 * more likely to have these around even in extreme memory
594 * starvation.
595 */
596 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
597
598 /*
599 * Set the page colormask but allow pmap_md_init to override it.
600 */
601 pmap_page_colormask = ptoa(uvmexp.colormask);
602
603 pmap_md_init();
604
605 /*
606 * Now it is safe to enable pv entry recording.
607 */
608 pmap_initialized = true;
609 }
610
611 /*
612 * Create and return a physical map.
613 *
614 * If the size specified for the map
615 * is zero, the map is an actual physical
616 * map, and may be referenced by the
617 * hardware.
618 *
619 * If the size specified is non-zero,
620 * the map will be used in software only, and
621 * is bounded by that size.
622 */
623 pmap_t
624 pmap_create(void)
625 {
626 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
627 PMAP_COUNT(create);
628
629 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
630 memset(pmap, 0, PMAP_SIZE);
631
632 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
633
634 pmap->pm_count = 1;
635 pmap->pm_minaddr = VM_MIN_ADDRESS;
636 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
637
638 pmap_segtab_init(pmap);
639
640 #ifdef MULTIPROCESSOR
641 kcpuset_create(&pmap->pm_active, true);
642 kcpuset_create(&pmap->pm_onproc, true);
643 KASSERT(pmap->pm_active != NULL);
644 KASSERT(pmap->pm_onproc != NULL);
645 #endif
646
647 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
648 0, 0, 0);
649
650 return pmap;
651 }
652
653 /*
654 * Retire the given physical map from service.
655 * Should only be called if the map contains
656 * no valid mappings.
657 */
658 void
659 pmap_destroy(pmap_t pmap)
660 {
661 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
662 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
663
664 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
665 PMAP_COUNT(dereference);
666 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
667 return;
668 }
669
670 PMAP_COUNT(destroy);
671 KASSERT(pmap->pm_count == 0);
672 kpreempt_disable();
673 pmap_tlb_miss_lock_enter();
674 pmap_tlb_asid_release_all(pmap);
675 pmap_segtab_destroy(pmap, NULL, 0);
676 pmap_tlb_miss_lock_exit();
677
678 #ifdef MULTIPROCESSOR
679 kcpuset_destroy(pmap->pm_active);
680 kcpuset_destroy(pmap->pm_onproc);
681 pmap->pm_active = NULL;
682 pmap->pm_onproc = NULL;
683 #endif
684
685 pool_put(&pmap_pmap_pool, pmap);
686 kpreempt_enable();
687
688 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
689 }
690
691 /*
692 * Add a reference to the specified pmap.
693 */
694 void
695 pmap_reference(pmap_t pmap)
696 {
697 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
698 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
699 PMAP_COUNT(reference);
700
701 if (pmap != NULL) {
702 atomic_inc_uint(&pmap->pm_count);
703 }
704
705 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
706 }
707
708 /*
709 * Make a new pmap (vmspace) active for the given process.
710 */
711 void
712 pmap_activate(struct lwp *l)
713 {
714 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
715
716 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
717 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
718 (uintptr_t)pmap, 0, 0);
719 PMAP_COUNT(activate);
720
721 kpreempt_disable();
722 pmap_tlb_miss_lock_enter();
723 pmap_tlb_asid_acquire(pmap, l);
724 if (l == curlwp) {
725 pmap_segtab_activate(pmap, l);
726 }
727 pmap_tlb_miss_lock_exit();
728 kpreempt_enable();
729
730 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
731 l->l_lid, 0, 0);
732 }
733
734 /*
735 * Remove this page from all physical maps in which it resides.
736 * Reflects back modify bits to the pager.
737 */
738 void
739 pmap_page_remove(struct vm_page *pg)
740 {
741 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
742
743 kpreempt_disable();
744 VM_PAGEMD_PVLIST_LOCK(mdpg);
745 pmap_pvlist_check(mdpg);
746
747 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
748
749 UVMHIST_LOG(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
750 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
751 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
752 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
753 #else
754 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
755 #endif
756 PMAP_COUNT(exec_uncached_remove);
757
758 pv_entry_t pv = &mdpg->mdpg_first;
759 if (pv->pv_pmap == NULL) {
760 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
761 kpreempt_enable();
762 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
763 return;
764 }
765
766 pv_entry_t npv;
767 pv_entry_t pvp = NULL;
768
769 for (; pv != NULL; pv = npv) {
770 npv = pv->pv_next;
771 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
772 if (PV_ISKENTER_P(pv)) {
773 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
774 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
775 pv->pv_va, 0);
776
777 KASSERT(pv->pv_pmap == pmap_kernel());
778
779 /* Assume no more - it'll get fixed if there are */
780 pv->pv_next = NULL;
781
782 /*
783 * pvp is non-null when we already have a PV_KENTER
784 * pv in pvh_first; otherwise we haven't seen a
785 * PV_KENTER pv and we need to copy this one to
786 * pvh_first
787 */
788 if (pvp) {
789 /*
790 * The previous PV_KENTER pv needs to point to
791 * this PV_KENTER pv
792 */
793 pvp->pv_next = pv;
794 } else {
795 pv_entry_t fpv = &mdpg->mdpg_first;
796 *fpv = *pv;
797 KASSERT(fpv->pv_pmap == pmap_kernel());
798 }
799 pvp = pv;
800 continue;
801 }
802 #endif
803 const pmap_t pmap = pv->pv_pmap;
804 vaddr_t va = trunc_page(pv->pv_va);
805 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
806 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
807 pmap_limits.virtual_end);
808 pt_entry_t pte = *ptep;
809 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
810 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
811 pte_value(pte));
812 if (!pte_valid_p(pte))
813 continue;
814 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
815 if (is_kernel_pmap_p) {
816 PMAP_COUNT(remove_kernel_pages);
817 } else {
818 PMAP_COUNT(remove_user_pages);
819 }
820 if (pte_wired_p(pte))
821 pmap->pm_stats.wired_count--;
822 pmap->pm_stats.resident_count--;
823
824 pmap_tlb_miss_lock_enter();
825 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
826 pte_set(ptep, npte);
827 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
828 /*
829 * Flush the TLB for the given address.
830 */
831 pmap_tlb_invalidate_addr(pmap, va);
832 }
833 pmap_tlb_miss_lock_exit();
834
835 /*
836 * non-null means this is a non-pvh_first pv, so we should
837 * free it.
838 */
839 if (pvp) {
840 KASSERT(pvp->pv_pmap == pmap_kernel());
841 KASSERT(pvp->pv_next == NULL);
842 pmap_pv_free(pv);
843 } else {
844 pv->pv_pmap = NULL;
845 pv->pv_next = NULL;
846 }
847 }
848
849 pmap_pvlist_check(mdpg);
850 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
851 kpreempt_enable();
852
853 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
854 }
855
856
857 /*
858 * Make a previously active pmap (vmspace) inactive.
859 */
860 void
861 pmap_deactivate(struct lwp *l)
862 {
863 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
864
865 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
866 UVMHIST_LOG(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
867 (uintptr_t)pmap, 0, 0);
868 PMAP_COUNT(deactivate);
869
870 kpreempt_disable();
871 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
872 pmap_tlb_miss_lock_enter();
873 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
874 #ifdef _LP64
875 curcpu()->ci_pmap_user_seg0tab = NULL;
876 #endif
877 pmap_tlb_asid_deactivate(pmap);
878 pmap_tlb_miss_lock_exit();
879 kpreempt_enable();
880
881 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
882 l->l_lid, 0, 0);
883 }
884
885 void
886 pmap_update(struct pmap *pmap)
887 {
888 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
889 UVMHIST_LOG(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
890 PMAP_COUNT(update);
891
892 kpreempt_disable();
893 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
894 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
895 if (pending && pmap_tlb_shootdown_bystanders(pmap))
896 PMAP_COUNT(shootdown_ipis);
897 #endif
898 pmap_tlb_miss_lock_enter();
899 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
900 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
901 #endif /* DEBUG */
902
903 /*
904 * If pmap_remove_all was called, we deactivated ourselves and nuked
905 * our ASID. Now we have to reactivate ourselves.
906 */
907 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
908 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
909 pmap_tlb_asid_acquire(pmap, curlwp);
910 pmap_segtab_activate(pmap, curlwp);
911 }
912 pmap_tlb_miss_lock_exit();
913 kpreempt_enable();
914
915 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
916 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
917 }
918
919 /*
920 * Remove the given range of addresses from the specified map.
921 *
922 * It is assumed that the start and end are properly
923 * rounded to the page size.
924 */
925
926 static bool
927 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
928 uintptr_t flags)
929 {
930 const pt_entry_t npte = flags;
931 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
932
933 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
934 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%c va=%#jx..%#jx)",
935 (uintptr_t)pmap, (is_kernel_pmap_p ? 1 : 0), sva, eva);
936 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx",
937 (uintptr_t)ptep, flags, 0, 0);
938
939 KASSERT(kpreempt_disabled());
940
941 for (; sva < eva; sva += NBPG, ptep++) {
942 const pt_entry_t pte = *ptep;
943 if (!pte_valid_p(pte))
944 continue;
945 if (is_kernel_pmap_p) {
946 PMAP_COUNT(remove_kernel_pages);
947 } else {
948 PMAP_COUNT(remove_user_pages);
949 }
950 if (pte_wired_p(pte))
951 pmap->pm_stats.wired_count--;
952 pmap->pm_stats.resident_count--;
953 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
954 if (__predict_true(pg != NULL)) {
955 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
956 }
957 pmap_tlb_miss_lock_enter();
958 pte_set(ptep, npte);
959 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
960
961 /*
962 * Flush the TLB for the given address.
963 */
964 pmap_tlb_invalidate_addr(pmap, sva);
965 }
966 pmap_tlb_miss_lock_exit();
967 }
968
969 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
970
971 return false;
972 }
973
974 void
975 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
976 {
977 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
978 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
979
980 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
981 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
982 (uintptr_t)pmap, sva, eva, 0);
983
984 if (is_kernel_pmap_p) {
985 PMAP_COUNT(remove_kernel_calls);
986 } else {
987 PMAP_COUNT(remove_user_calls);
988 }
989 #ifdef PMAP_FAULTINFO
990 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
991 curpcb->pcb_faultinfo.pfi_repeats = 0;
992 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
993 #endif
994 kpreempt_disable();
995 pmap_addr_range_check(pmap, sva, eva, __func__);
996 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
997 kpreempt_enable();
998
999 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1000 }
1001
1002 /*
1003 * pmap_page_protect:
1004 *
1005 * Lower the permission for all mappings to a given page.
1006 */
1007 void
1008 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1009 {
1010 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1011 pv_entry_t pv;
1012 vaddr_t va;
1013
1014 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1015 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1016 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1017 PMAP_COUNT(page_protect);
1018
1019 switch (prot) {
1020 case VM_PROT_READ|VM_PROT_WRITE:
1021 case VM_PROT_ALL:
1022 break;
1023
1024 /* copy_on_write */
1025 case VM_PROT_READ:
1026 case VM_PROT_READ|VM_PROT_EXECUTE:
1027 pv = &mdpg->mdpg_first;
1028 kpreempt_disable();
1029 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1030 pmap_pvlist_check(mdpg);
1031 /*
1032 * Loop over all current mappings setting/clearing as
1033 * appropriate.
1034 */
1035 if (pv->pv_pmap != NULL) {
1036 while (pv != NULL) {
1037 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1038 if (PV_ISKENTER_P(pv)) {
1039 pv = pv->pv_next;
1040 continue;
1041 }
1042 #endif
1043 const pmap_t pmap = pv->pv_pmap;
1044 va = trunc_page(pv->pv_va);
1045 const uintptr_t gen =
1046 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1047 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1048 KASSERT(pv->pv_pmap == pmap);
1049 pmap_update(pmap);
1050 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1051 pv = &mdpg->mdpg_first;
1052 } else {
1053 pv = pv->pv_next;
1054 }
1055 pmap_pvlist_check(mdpg);
1056 }
1057 }
1058 pmap_pvlist_check(mdpg);
1059 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1060 kpreempt_enable();
1061 break;
1062
1063 /* remove_all */
1064 default:
1065 pmap_page_remove(pg);
1066 }
1067
1068 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1069 }
1070
1071 static bool
1072 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1073 uintptr_t flags)
1074 {
1075 const vm_prot_t prot = (flags & VM_PROT_ALL);
1076
1077 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1078 UVMHIST_LOG(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1079 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1080 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1081 (uintptr_t)ptep, flags, 0, 0);
1082
1083 KASSERT(kpreempt_disabled());
1084 /*
1085 * Change protection on every valid mapping within this segment.
1086 */
1087 for (; sva < eva; sva += NBPG, ptep++) {
1088 pt_entry_t pte = *ptep;
1089 if (!pte_valid_p(pte))
1090 continue;
1091 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1092 if (pg != NULL && pte_modified_p(pte)) {
1093 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1094 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1095 KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1096 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1097 if (VM_PAGEMD_CACHED_P(mdpg)) {
1098 #endif
1099 UVMHIST_LOG(pmapexechist,
1100 "pg %#jx (pa %#jx): "
1101 "syncicached performed",
1102 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1103 0, 0);
1104 pmap_page_syncicache(pg);
1105 PMAP_COUNT(exec_synced_protect);
1106 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1107 }
1108 #endif
1109 }
1110 }
1111 pte = pte_prot_downgrade(pte, prot);
1112 if (*ptep != pte) {
1113 pmap_tlb_miss_lock_enter();
1114 pte_set(ptep, pte);
1115 /*
1116 * Update the TLB if needed.
1117 */
1118 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1119 pmap_tlb_miss_lock_exit();
1120 }
1121 }
1122
1123 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1124
1125 return false;
1126 }
1127
1128 /*
1129 * Set the physical protection on the
1130 * specified range of this map as requested.
1131 */
1132 void
1133 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1134 {
1135 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1136 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1137 (uintptr_t)pmap, sva, eva, prot);
1138 PMAP_COUNT(protect);
1139
1140 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1141 pmap_remove(pmap, sva, eva);
1142 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1143 return;
1144 }
1145
1146 /*
1147 * Change protection on every valid mapping within this segment.
1148 */
1149 kpreempt_disable();
1150 pmap_addr_range_check(pmap, sva, eva, __func__);
1151 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1152 kpreempt_enable();
1153
1154 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1155 }
1156
1157 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1158 /*
1159 * pmap_page_cache:
1160 *
1161 * Change all mappings of a managed page to cached/uncached.
1162 */
1163 void
1164 pmap_page_cache(struct vm_page *pg, bool cached)
1165 {
1166 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1167
1168 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1169 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1170 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1171
1172 KASSERT(kpreempt_disabled());
1173 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1174
1175 if (cached) {
1176 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1177 PMAP_COUNT(page_cache_restorations);
1178 } else {
1179 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1180 PMAP_COUNT(page_cache_evictions);
1181 }
1182
1183 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1184 pmap_t pmap = pv->pv_pmap;
1185 vaddr_t va = trunc_page(pv->pv_va);
1186
1187 KASSERT(pmap != NULL);
1188 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1189 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1190 if (ptep == NULL)
1191 continue;
1192 pt_entry_t pte = *ptep;
1193 if (pte_valid_p(pte)) {
1194 pte = pte_cached_change(pte, cached);
1195 pmap_tlb_miss_lock_enter();
1196 pte_set(ptep, pte);
1197 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1198 pmap_tlb_miss_lock_exit();
1199 }
1200 }
1201
1202 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1203 }
1204 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1205
1206 /*
1207 * Insert the given physical page (p) at
1208 * the specified virtual address (v) in the
1209 * target physical map with the protection requested.
1210 *
1211 * If specified, the page will be wired down, meaning
1212 * that the related pte can not be reclaimed.
1213 *
1214 * NB: This is the only routine which MAY NOT lazy-evaluate
1215 * or lose information. That is, this routine must actually
1216 * insert this page into the given map NOW.
1217 */
1218 int
1219 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1220 {
1221 const bool wired = (flags & PMAP_WIRED) != 0;
1222 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1223 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1224 #ifdef UVMHIST
1225 struct kern_history * const histp =
1226 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1227 #endif
1228
1229 UVMHIST_FUNC(__func__); UVMHIST_CALLED(*histp);
1230 UVMHIST_LOG(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1231 (uintptr_t)pmap, va, pa, 0);
1232 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1233
1234 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1235 if (is_kernel_pmap_p) {
1236 PMAP_COUNT(kernel_mappings);
1237 if (!good_color)
1238 PMAP_COUNT(kernel_mappings_bad);
1239 } else {
1240 PMAP_COUNT(user_mappings);
1241 if (!good_color)
1242 PMAP_COUNT(user_mappings_bad);
1243 }
1244 pmap_addr_range_check(pmap, va, va, __func__);
1245
1246 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1247 VM_PROT_READ, prot);
1248
1249 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1250 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1251
1252 if (pg) {
1253 /* Set page referenced/modified status based on flags */
1254 if (flags & VM_PROT_WRITE) {
1255 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1256 } else if (flags & VM_PROT_ALL) {
1257 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1258 }
1259
1260 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1261 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1262 flags |= PMAP_NOCACHE;
1263 PMAP_COUNT(uncached_mappings);
1264 }
1265 #endif
1266
1267 PMAP_COUNT(managed_mappings);
1268 } else {
1269 /*
1270 * Assumption: if it is not part of our managed memory
1271 * then it must be device memory which may be volatile.
1272 */
1273 if ((flags & PMAP_CACHE_MASK) == 0)
1274 flags |= PMAP_NOCACHE;
1275 PMAP_COUNT(unmanaged_mappings);
1276 }
1277
1278 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1279 is_kernel_pmap_p);
1280
1281 kpreempt_disable();
1282
1283 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1284 if (__predict_false(ptep == NULL)) {
1285 kpreempt_enable();
1286 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1287 return ENOMEM;
1288 }
1289 const pt_entry_t opte = *ptep;
1290 const bool resident = pte_valid_p(opte);
1291 bool remap = false;
1292 if (resident) {
1293 if (pte_to_paddr(opte) != pa) {
1294 KASSERT(!is_kernel_pmap_p);
1295 const pt_entry_t rpte = pte_nv_entry(false);
1296
1297 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1298 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1299 rpte);
1300 PMAP_COUNT(user_mappings_changed);
1301 remap = true;
1302 }
1303 update_flags |= PMAP_TLB_NEED_IPI;
1304 }
1305
1306 if (!resident || remap) {
1307 pmap->pm_stats.resident_count++;
1308 }
1309
1310 /* Done after case that may sleep/return. */
1311 if (pg)
1312 pmap_enter_pv(pmap, va, pg, &npte, 0);
1313
1314 /*
1315 * Now validate mapping with desired protection/wiring.
1316 * Assume uniform modified and referenced status for all
1317 * MIPS pages in a MACH page.
1318 */
1319 if (wired) {
1320 pmap->pm_stats.wired_count++;
1321 npte = pte_wire_entry(npte);
1322 }
1323
1324 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1325 pte_value(npte), pa, 0, 0);
1326
1327 KASSERT(pte_valid_p(npte));
1328
1329 pmap_tlb_miss_lock_enter();
1330 pte_set(ptep, npte);
1331 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1332 pmap_tlb_miss_lock_exit();
1333 kpreempt_enable();
1334
1335 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1336 KASSERT(mdpg != NULL);
1337 PMAP_COUNT(exec_mappings);
1338 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1339 if (!pte_deferred_exec_p(npte)) {
1340 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1341 "immediate syncicache",
1342 va, (uintptr_t)pg, 0, 0);
1343 pmap_page_syncicache(pg);
1344 pmap_page_set_attributes(mdpg,
1345 VM_PAGEMD_EXECPAGE);
1346 PMAP_COUNT(exec_synced_mappings);
1347 } else {
1348 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1349 "syncicache: pte %#jx",
1350 va, (uintptr_t)pg, npte, 0);
1351 }
1352 } else {
1353 UVMHIST_LOG(*histp,
1354 "va=%#jx pg %#jx: no syncicache cached %jd",
1355 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1356 }
1357 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1358 KASSERT(mdpg != NULL);
1359 KASSERT(prot & VM_PROT_WRITE);
1360 PMAP_COUNT(exec_mappings);
1361 pmap_page_syncicache(pg);
1362 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1363 UVMHIST_LOG(*histp,
1364 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1365 va, (uintptr_t)pg, 0, 0);
1366 }
1367
1368 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1369 return 0;
1370 }
1371
1372 void
1373 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1374 {
1375 pmap_t pmap = pmap_kernel();
1376 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1377 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1378
1379 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1380 UVMHIST_LOG(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1381 va, pa, prot, flags);
1382 PMAP_COUNT(kenter_pa);
1383
1384 if (mdpg == NULL) {
1385 PMAP_COUNT(kenter_pa_unmanaged);
1386 if ((flags & PMAP_CACHE_MASK) == 0)
1387 flags |= PMAP_NOCACHE;
1388 } else {
1389 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1390 PMAP_COUNT(kenter_pa_bad);
1391 }
1392
1393 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1394 kpreempt_disable();
1395 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1396 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1397 pmap_limits.virtual_end);
1398 KASSERT(!pte_valid_p(*ptep));
1399
1400 /*
1401 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1402 */
1403 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1404 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1405 && pmap_md_virtual_cache_aliasing_p()) {
1406 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1407 }
1408 #endif
1409
1410 /*
1411 * We have the option to force this mapping into the TLB but we
1412 * don't. Instead let the next reference to the page do it.
1413 */
1414 pmap_tlb_miss_lock_enter();
1415 pte_set(ptep, npte);
1416 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1417 pmap_tlb_miss_lock_exit();
1418 kpreempt_enable();
1419 #if DEBUG > 1
1420 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1421 if (((long *)va)[i] != ((long *)pa)[i])
1422 panic("%s: contents (%lx) of va %#"PRIxVADDR
1423 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1424 ((long *)va)[i], va, ((long *)pa)[i], pa);
1425 }
1426 #endif
1427
1428 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1429 0);
1430 }
1431
1432 /*
1433 * Remove the given range of addresses from the kernel map.
1434 *
1435 * It is assumed that the start and end are properly
1436 * rounded to the page size.
1437 */
1438
1439 static bool
1440 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1441 uintptr_t flags)
1442 {
1443 const pt_entry_t new_pte = pte_nv_entry(true);
1444
1445 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1446 UVMHIST_LOG(pmaphist,
1447 "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1448 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1449
1450 KASSERT(kpreempt_disabled());
1451
1452 for (; sva < eva; sva += NBPG, ptep++) {
1453 pt_entry_t pte = *ptep;
1454 if (!pte_valid_p(pte))
1455 continue;
1456
1457 PMAP_COUNT(kremove_pages);
1458 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1459 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1460 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1461 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1462 }
1463 #endif
1464
1465 pmap_tlb_miss_lock_enter();
1466 pte_set(ptep, new_pte);
1467 pmap_tlb_invalidate_addr(pmap, sva);
1468 pmap_tlb_miss_lock_exit();
1469 }
1470
1471 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1472
1473 return false;
1474 }
1475
1476 void
1477 pmap_kremove(vaddr_t va, vsize_t len)
1478 {
1479 const vaddr_t sva = trunc_page(va);
1480 const vaddr_t eva = round_page(va + len);
1481
1482 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1483 UVMHIST_LOG(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1484
1485 kpreempt_disable();
1486 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1487 kpreempt_enable();
1488
1489 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1490 }
1491
1492 void
1493 pmap_remove_all(struct pmap *pmap)
1494 {
1495 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1496 UVMHIST_LOG(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1497
1498 KASSERT(pmap != pmap_kernel());
1499
1500 kpreempt_disable();
1501 /*
1502 * Free all of our ASIDs which means we can skip doing all the
1503 * tlb_invalidate_addrs().
1504 */
1505 pmap_tlb_miss_lock_enter();
1506 #ifdef MULTIPROCESSOR
1507 // This should be the last CPU with this pmap onproc
1508 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1509 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1510 #endif
1511 pmap_tlb_asid_deactivate(pmap);
1512 #ifdef MULTIPROCESSOR
1513 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1514 #endif
1515 pmap_tlb_asid_release_all(pmap);
1516 pmap_tlb_miss_lock_exit();
1517 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1518
1519 #ifdef PMAP_FAULTINFO
1520 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1521 curpcb->pcb_faultinfo.pfi_repeats = 0;
1522 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1523 #endif
1524 kpreempt_enable();
1525
1526 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1527 }
1528
1529 /*
1530 * Routine: pmap_unwire
1531 * Function: Clear the wired attribute for a map/virtual-address
1532 * pair.
1533 * In/out conditions:
1534 * The mapping must already exist in the pmap.
1535 */
1536 void
1537 pmap_unwire(pmap_t pmap, vaddr_t va)
1538 {
1539 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1540 UVMHIST_LOG(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1541 0, 0);
1542 PMAP_COUNT(unwire);
1543
1544 /*
1545 * Don't need to flush the TLB since PG_WIRED is only in software.
1546 */
1547 kpreempt_disable();
1548 pmap_addr_range_check(pmap, va, va, __func__);
1549 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1550 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1551 pmap, va);
1552 pt_entry_t pte = *ptep;
1553 KASSERTMSG(pte_valid_p(pte),
1554 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1555 pmap, va, pte_value(pte), ptep);
1556
1557 if (pte_wired_p(pte)) {
1558 pmap_tlb_miss_lock_enter();
1559 pte_set(ptep, pte_unwire_entry(pte));
1560 pmap_tlb_miss_lock_exit();
1561 pmap->pm_stats.wired_count--;
1562 }
1563 #ifdef DIAGNOSTIC
1564 else {
1565 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1566 __func__, pmap, va);
1567 }
1568 #endif
1569 kpreempt_enable();
1570
1571 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1572 }
1573
1574 /*
1575 * Routine: pmap_extract
1576 * Function:
1577 * Extract the physical page address associated
1578 * with the given map/virtual_address pair.
1579 */
1580 bool
1581 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1582 {
1583 paddr_t pa;
1584
1585 if (pmap == pmap_kernel()) {
1586 if (pmap_md_direct_mapped_vaddr_p(va)) {
1587 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1588 goto done;
1589 }
1590 if (pmap_md_io_vaddr_p(va))
1591 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1592
1593 if (va >= pmap_limits.virtual_end)
1594 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1595 __func__, va);
1596 }
1597 kpreempt_disable();
1598 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1599 if (ptep == NULL || !pte_valid_p(*ptep)) {
1600 kpreempt_enable();
1601 return false;
1602 }
1603 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1604 kpreempt_enable();
1605 done:
1606 if (pap != NULL) {
1607 *pap = pa;
1608 }
1609 return true;
1610 }
1611
1612 /*
1613 * Copy the range specified by src_addr/len
1614 * from the source map to the range dst_addr/len
1615 * in the destination map.
1616 *
1617 * This routine is only advisory and need not do anything.
1618 */
1619 void
1620 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1621 vaddr_t src_addr)
1622 {
1623 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1624 PMAP_COUNT(copy);
1625 }
1626
1627 /*
1628 * pmap_clear_reference:
1629 *
1630 * Clear the reference bit on the specified physical page.
1631 */
1632 bool
1633 pmap_clear_reference(struct vm_page *pg)
1634 {
1635 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1636
1637 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1638 UVMHIST_LOG(pmaphist, "(pg=%#jx (pa %#jx))",
1639 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1640
1641 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1642
1643 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1644
1645 return rv;
1646 }
1647
1648 /*
1649 * pmap_is_referenced:
1650 *
1651 * Return whether or not the specified physical page is referenced
1652 * by any physical maps.
1653 */
1654 bool
1655 pmap_is_referenced(struct vm_page *pg)
1656 {
1657 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1658 }
1659
1660 /*
1661 * Clear the modify bits on the specified physical page.
1662 */
1663 bool
1664 pmap_clear_modify(struct vm_page *pg)
1665 {
1666 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1667 pv_entry_t pv = &mdpg->mdpg_first;
1668 pv_entry_t pv_next;
1669
1670 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1671 UVMHIST_LOG(pmaphist, "(pg=%#jx (%#jx))",
1672 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1673 PMAP_COUNT(clear_modify);
1674
1675 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1676 if (pv->pv_pmap == NULL) {
1677 UVMHIST_LOG(pmapexechist,
1678 "pg %#jx (pa %#jx): execpage cleared",
1679 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1680 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1681 PMAP_COUNT(exec_uncached_clear_modify);
1682 } else {
1683 UVMHIST_LOG(pmapexechist,
1684 "pg %#jx (pa %#jx): syncicache performed",
1685 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1686 pmap_page_syncicache(pg);
1687 PMAP_COUNT(exec_synced_clear_modify);
1688 }
1689 }
1690 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1691 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1692 return false;
1693 }
1694 if (pv->pv_pmap == NULL) {
1695 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1696 return true;
1697 }
1698
1699 /*
1700 * remove write access from any pages that are dirty
1701 * so we can tell if they are written to again later.
1702 * flush the VAC first if there is one.
1703 */
1704 kpreempt_disable();
1705 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1706 pmap_pvlist_check(mdpg);
1707 for (; pv != NULL; pv = pv_next) {
1708 pmap_t pmap = pv->pv_pmap;
1709 vaddr_t va = trunc_page(pv->pv_va);
1710
1711 pv_next = pv->pv_next;
1712 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1713 if (PV_ISKENTER_P(pv))
1714 continue;
1715 #endif
1716 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1717 KASSERT(ptep);
1718 pt_entry_t pte = pte_prot_nowrite(*ptep);
1719 if (*ptep == pte) {
1720 continue;
1721 }
1722 KASSERT(pte_valid_p(pte));
1723 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1724 pmap_tlb_miss_lock_enter();
1725 pte_set(ptep, pte);
1726 pmap_tlb_invalidate_addr(pmap, va);
1727 pmap_tlb_miss_lock_exit();
1728 pmap_update(pmap);
1729 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1730 /*
1731 * The list changed! So restart from the beginning.
1732 */
1733 pv_next = &mdpg->mdpg_first;
1734 pmap_pvlist_check(mdpg);
1735 }
1736 }
1737 pmap_pvlist_check(mdpg);
1738 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1739 kpreempt_enable();
1740
1741 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1742 return true;
1743 }
1744
1745 /*
1746 * pmap_is_modified:
1747 *
1748 * Return whether or not the specified physical page is modified
1749 * by any physical maps.
1750 */
1751 bool
1752 pmap_is_modified(struct vm_page *pg)
1753 {
1754 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1755 }
1756
1757 /*
1758 * pmap_set_modified:
1759 *
1760 * Sets the page modified reference bit for the specified page.
1761 */
1762 void
1763 pmap_set_modified(paddr_t pa)
1764 {
1765 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1766 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1767 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1768 }
1769
1770 /******************** pv_entry management ********************/
1771
1772 static void
1773 pmap_pvlist_check(struct vm_page_md *mdpg)
1774 {
1775 #ifdef DEBUG
1776 pv_entry_t pv = &mdpg->mdpg_first;
1777 if (pv->pv_pmap != NULL) {
1778 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1779 const u_int colormask = uvmexp.colormask;
1780 u_int colors = 0;
1781 #endif
1782 for (; pv != NULL; pv = pv->pv_next) {
1783 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1784 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1785 colors |= __BIT(atop(pv->pv_va) & colormask);
1786 #endif
1787 }
1788 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1789 // Assert that if there is more than 1 color mapped, that the
1790 // page is uncached.
1791 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1792 || colors == 0 || (colors & (colors-1)) == 0
1793 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1794 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1795 #endif
1796 } else {
1797 KASSERT(pv->pv_next == NULL);
1798 }
1799 #endif /* DEBUG */
1800 }
1801
1802 /*
1803 * Enter the pmap and virtual address into the
1804 * physical to virtual map table.
1805 */
1806 void
1807 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1808 u_int flags)
1809 {
1810 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1811 pv_entry_t pv, npv, apv;
1812 #ifdef UVMHIST
1813 bool first = false;
1814 #endif
1815
1816 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1817 UVMHIST_LOG(pmaphist,
1818 "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1819 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1820 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1821 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1822
1823 KASSERT(kpreempt_disabled());
1824 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1825 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1826 "va %#"PRIxVADDR, va);
1827
1828 apv = NULL;
1829 VM_PAGEMD_PVLIST_LOCK(mdpg);
1830 again:
1831 pv = &mdpg->mdpg_first;
1832 pmap_pvlist_check(mdpg);
1833 if (pv->pv_pmap == NULL) {
1834 KASSERT(pv->pv_next == NULL);
1835 /*
1836 * No entries yet, use header as the first entry
1837 */
1838 PMAP_COUNT(primary_mappings);
1839 PMAP_COUNT(mappings);
1840 #ifdef UVMHIST
1841 first = true;
1842 #endif
1843 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1844 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1845 // If the new mapping has an incompatible color the last
1846 // mapping of this page, clean the page before using it.
1847 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1848 pmap_md_vca_clean(pg, PMAP_WBINV);
1849 }
1850 #endif
1851 pv->pv_pmap = pmap;
1852 pv->pv_va = va | flags;
1853 } else {
1854 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1855 if (pmap_md_vca_add(pg, va, nptep)) {
1856 goto again;
1857 }
1858 #endif
1859
1860 /*
1861 * There is at least one other VA mapping this page.
1862 * Place this entry after the header.
1863 *
1864 * Note: the entry may already be in the table if
1865 * we are only changing the protection bits.
1866 */
1867
1868 #ifdef PARANOIADIAG
1869 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1870 #endif
1871 for (npv = pv; npv; npv = npv->pv_next) {
1872 if (pmap == npv->pv_pmap
1873 && va == trunc_page(npv->pv_va)) {
1874 #ifdef PARANOIADIAG
1875 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1876 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1877 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1878 printf("%s: found va %#"PRIxVADDR
1879 " pa %#"PRIxPADDR
1880 " in pv_table but != %#"PRIxPTE"\n",
1881 __func__, va, pa, pte_value(pte));
1882 #endif
1883 PMAP_COUNT(remappings);
1884 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1885 if (__predict_false(apv != NULL))
1886 pmap_pv_free(apv);
1887
1888 UVMHIST_LOG(pmaphist,
1889 " <-- done pv=%#jx (reused)",
1890 (uintptr_t)pv, 0, 0, 0);
1891 return;
1892 }
1893 }
1894 if (__predict_true(apv == NULL)) {
1895 /*
1896 * To allocate a PV, we have to release the PVLIST lock
1897 * so get the page generation. We allocate the PV, and
1898 * then reacquire the lock.
1899 */
1900 pmap_pvlist_check(mdpg);
1901 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1902
1903 apv = (pv_entry_t)pmap_pv_alloc();
1904 if (apv == NULL)
1905 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1906
1907 /*
1908 * If the generation has changed, then someone else
1909 * tinkered with this page so we should start over.
1910 */
1911 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1912 goto again;
1913 }
1914 npv = apv;
1915 apv = NULL;
1916 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1917 /*
1918 * If need to deal with virtual cache aliases, keep mappings
1919 * in the kernel pmap at the head of the list. This allows
1920 * the VCA code to easily use them for cache operations if
1921 * present.
1922 */
1923 pmap_t kpmap = pmap_kernel();
1924 if (pmap != kpmap) {
1925 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1926 pv = pv->pv_next;
1927 }
1928 }
1929 #endif
1930 npv->pv_va = va | flags;
1931 npv->pv_pmap = pmap;
1932 npv->pv_next = pv->pv_next;
1933 pv->pv_next = npv;
1934 PMAP_COUNT(mappings);
1935 }
1936 pmap_pvlist_check(mdpg);
1937 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1938 if (__predict_false(apv != NULL))
1939 pmap_pv_free(apv);
1940
1941 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1942 first, 0, 0);
1943 }
1944
1945 /*
1946 * Remove a physical to virtual address translation.
1947 * If cache was inhibited on this page, and there are no more cache
1948 * conflicts, restore caching.
1949 * Flush the cache if the last page is removed (should always be cached
1950 * at this point).
1951 */
1952 void
1953 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1954 {
1955 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1956 pv_entry_t pv, npv;
1957 bool last;
1958
1959 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1960 UVMHIST_LOG(pmaphist,
1961 "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1962 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1963 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1964
1965 KASSERT(kpreempt_disabled());
1966 KASSERT((va & PAGE_MASK) == 0);
1967 pv = &mdpg->mdpg_first;
1968
1969 VM_PAGEMD_PVLIST_LOCK(mdpg);
1970 pmap_pvlist_check(mdpg);
1971
1972 /*
1973 * If it is the first entry on the list, it is actually
1974 * in the header and we must copy the following entry up
1975 * to the header. Otherwise we must search the list for
1976 * the entry. In either case we free the now unused entry.
1977 */
1978
1979 last = false;
1980 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1981 npv = pv->pv_next;
1982 if (npv) {
1983 *pv = *npv;
1984 KASSERT(pv->pv_pmap != NULL);
1985 } else {
1986 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1987 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1988 #endif
1989 pv->pv_pmap = NULL;
1990 last = true; /* Last mapping removed */
1991 }
1992 PMAP_COUNT(remove_pvfirst);
1993 } else {
1994 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1995 PMAP_COUNT(remove_pvsearch);
1996 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1997 break;
1998 }
1999 if (npv) {
2000 pv->pv_next = npv->pv_next;
2001 }
2002 }
2003
2004 pmap_pvlist_check(mdpg);
2005 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2006
2007 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2008 pmap_md_vca_remove(pg, va, dirty, last);
2009 #endif
2010
2011 /*
2012 * Free the pv_entry if needed.
2013 */
2014 if (npv)
2015 pmap_pv_free(npv);
2016 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2017 if (last) {
2018 /*
2019 * If this was the page's last mapping, we no longer
2020 * care about its execness.
2021 */
2022 UVMHIST_LOG(pmapexechist,
2023 "pg %#jx (pa %#jx)last %ju: execpage cleared",
2024 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2025 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2026 PMAP_COUNT(exec_uncached_remove);
2027 } else {
2028 /*
2029 * Someone still has it mapped as an executable page
2030 * so we must sync it.
2031 */
2032 UVMHIST_LOG(pmapexechist,
2033 "pg %#jx (pa %#jx) last %ju: performed syncicache",
2034 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2035 pmap_page_syncicache(pg);
2036 PMAP_COUNT(exec_synced_remove);
2037 }
2038 }
2039
2040 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2041 }
2042
2043 #if defined(MULTIPROCESSOR)
2044 struct pmap_pvlist_info {
2045 kmutex_t *pli_locks[PAGE_SIZE / 32];
2046 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2047 volatile u_int pli_lock_index;
2048 u_int pli_lock_mask;
2049 } pmap_pvlist_info;
2050
2051 void
2052 pmap_pvlist_lock_init(size_t cache_line_size)
2053 {
2054 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2055 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2056 vaddr_t lock_va = lock_page;
2057 if (sizeof(kmutex_t) > cache_line_size) {
2058 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2059 }
2060 const size_t nlocks = PAGE_SIZE / cache_line_size;
2061 KASSERT((nlocks & (nlocks - 1)) == 0);
2062 /*
2063 * Now divide the page into a number of mutexes, one per cacheline.
2064 */
2065 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2066 kmutex_t * const lock = (kmutex_t *)lock_va;
2067 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2068 pli->pli_locks[i] = lock;
2069 }
2070 pli->pli_lock_mask = nlocks - 1;
2071 }
2072
2073 kmutex_t *
2074 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2075 {
2076 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2077 kmutex_t *lock = mdpg->mdpg_lock;
2078
2079 /*
2080 * Allocate a lock on an as-needed basis. This will hopefully give us
2081 * semi-random distribution not based on page color.
2082 */
2083 if (__predict_false(lock == NULL)) {
2084 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2085 size_t lockid = locknum & pli->pli_lock_mask;
2086 kmutex_t * const new_lock = pli->pli_locks[lockid];
2087 /*
2088 * Set the lock. If some other thread already did, just use
2089 * the one they assigned.
2090 */
2091 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2092 if (lock == NULL) {
2093 lock = new_lock;
2094 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2095 }
2096 }
2097
2098 /*
2099 * Now finally provide the lock.
2100 */
2101 return lock;
2102 }
2103 #else /* !MULTIPROCESSOR */
2104 void
2105 pmap_pvlist_lock_init(size_t cache_line_size)
2106 {
2107 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2108 }
2109
2110 #ifdef MODULAR
2111 kmutex_t *
2112 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2113 {
2114 /*
2115 * We just use a global lock.
2116 */
2117 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2118 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2119 }
2120
2121 /*
2122 * Now finally provide the lock.
2123 */
2124 return mdpg->mdpg_lock;
2125 }
2126 #endif /* MODULAR */
2127 #endif /* !MULTIPROCESSOR */
2128
2129 /*
2130 * pmap_pv_page_alloc:
2131 *
2132 * Allocate a page for the pv_entry pool.
2133 */
2134 void *
2135 pmap_pv_page_alloc(struct pool *pp, int flags)
2136 {
2137 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2138 if (pg == NULL)
2139 return NULL;
2140
2141 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2142 }
2143
2144 /*
2145 * pmap_pv_page_free:
2146 *
2147 * Free a pv_entry pool page.
2148 */
2149 void
2150 pmap_pv_page_free(struct pool *pp, void *v)
2151 {
2152 vaddr_t va = (vaddr_t)v;
2153
2154 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2155 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2156 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2157 KASSERT(pg != NULL);
2158 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2159 kpreempt_disable();
2160 pmap_md_vca_remove(pg, va, true, true);
2161 kpreempt_enable();
2162 #endif
2163 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2164 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2165 uvm_pagefree(pg);
2166 }
2167
2168 #ifdef PMAP_PREFER
2169 /*
2170 * Find first virtual address >= *vap that doesn't cause
2171 * a cache alias conflict.
2172 */
2173 void
2174 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2175 {
2176 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2177
2178 PMAP_COUNT(prefer_requests);
2179
2180 prefer_mask |= pmap_md_cache_prefer_mask();
2181
2182 if (prefer_mask) {
2183 vaddr_t va = *vap;
2184 vsize_t d = (foff - va) & prefer_mask;
2185 if (d) {
2186 if (td)
2187 *vap = trunc_page(va - ((-d) & prefer_mask));
2188 else
2189 *vap = round_page(va + d);
2190 PMAP_COUNT(prefer_adjustments);
2191 }
2192 }
2193 }
2194 #endif /* PMAP_PREFER */
2195
2196 #ifdef PMAP_MAP_POOLPAGE
2197 vaddr_t
2198 pmap_map_poolpage(paddr_t pa)
2199 {
2200 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2201 KASSERT(pg);
2202
2203 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2204 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2205
2206 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2207
2208 return pmap_md_map_poolpage(pa, NBPG);
2209 }
2210
2211 paddr_t
2212 pmap_unmap_poolpage(vaddr_t va)
2213 {
2214 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2215 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2216
2217 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2218 KASSERT(pg != NULL);
2219 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2220
2221 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2222 pmap_md_unmap_poolpage(va, NBPG);
2223
2224 return pa;
2225 }
2226 #endif /* PMAP_MAP_POOLPAGE */
2227