Home | History | Annotate | Line # | Download | only in pmap
pmap.c revision 1.49
      1 /*	$NetBSD: pmap.c,v 1.49 2020/04/12 15:36:18 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1992, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * This code is derived from software contributed to Berkeley by
     38  * the Systems Programming Group of the University of Utah Computer
     39  * Science Department and Ralph Campbell.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)pmap.c	8.4 (Berkeley) 1/26/94
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.49 2020/04/12 15:36:18 skrll Exp $");
     71 
     72 /*
     73  *	Manages physical address maps.
     74  *
     75  *	In addition to hardware address maps, this
     76  *	module is called upon to provide software-use-only
     77  *	maps which may or may not be stored in the same
     78  *	form as hardware maps.  These pseudo-maps are
     79  *	used to store intermediate results from copy
     80  *	operations to and from address spaces.
     81  *
     82  *	Since the information managed by this module is
     83  *	also stored by the logical address mapping module,
     84  *	this module may throw away valid virtual-to-physical
     85  *	mappings at almost any time.  However, invalidations
     86  *	of virtual-to-physical mappings must be done as
     87  *	requested.
     88  *
     89  *	In order to cope with hardware architectures which
     90  *	make virtual-to-physical map invalidates expensive,
     91  *	this module may delay invalidate or reduced protection
     92  *	operations until such time as they are actually
     93  *	necessary.  This module is given full information as
     94  *	to which processors are currently using which maps,
     95  *	and to when physical maps must be made correct.
     96  */
     97 
     98 #include "opt_modular.h"
     99 #include "opt_multiprocessor.h"
    100 #include "opt_sysv.h"
    101 
    102 #define __PMAP_PRIVATE
    103 
    104 #include <sys/param.h>
    105 
    106 #include <sys/atomic.h>
    107 #include <sys/buf.h>
    108 #include <sys/cpu.h>
    109 #include <sys/mutex.h>
    110 #include <sys/pool.h>
    111 
    112 #include <uvm/uvm.h>
    113 #include <uvm/uvm_physseg.h>
    114 
    115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
    116     && !defined(PMAP_NO_PV_UNCACHED)
    117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
    118  PMAP_NO_PV_UNCACHED to be defined
    119 #endif
    120 
    121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
    122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
    123 PMAP_COUNTER(remove_user_calls, "remove user calls");
    124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
    125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
    126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
    127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
    128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
    129 
    130 PMAP_COUNTER(prefer_requests, "prefer requests");
    131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
    132 
    133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
    134 
    135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
    136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
    137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
    138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
    139 
    140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
    141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
    142 
    143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
    144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
    145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
    146 PMAP_COUNTER(user_mappings, "user pages mapped");
    147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
    148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
    149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
    150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
    151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
    152 PMAP_COUNTER(mappings, "pages mapped");
    153 PMAP_COUNTER(remappings, "pages remapped");
    154 PMAP_COUNTER(unmappings, "pages unmapped");
    155 PMAP_COUNTER(primary_mappings, "page initial mappings");
    156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
    157 PMAP_COUNTER(tlb_hit, "page mapping");
    158 
    159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
    160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
    161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
    162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
    163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
    164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
    165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
    166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
    167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
    168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
    169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
    170 
    171 PMAP_COUNTER(create, "creates");
    172 PMAP_COUNTER(reference, "references");
    173 PMAP_COUNTER(dereference, "dereferences");
    174 PMAP_COUNTER(destroy, "destroyed");
    175 PMAP_COUNTER(activate, "activations");
    176 PMAP_COUNTER(deactivate, "deactivations");
    177 PMAP_COUNTER(update, "updates");
    178 #ifdef MULTIPROCESSOR
    179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
    180 #endif
    181 PMAP_COUNTER(unwire, "unwires");
    182 PMAP_COUNTER(copy, "copies");
    183 PMAP_COUNTER(clear_modify, "clear_modifies");
    184 PMAP_COUNTER(protect, "protects");
    185 PMAP_COUNTER(page_protect, "page_protects");
    186 
    187 #define PMAP_ASID_RESERVED 0
    188 CTASSERT(PMAP_ASID_RESERVED == 0);
    189 
    190 #ifndef PMAP_SEGTAB_ALIGN
    191 #define PMAP_SEGTAB_ALIGN	/* nothing */
    192 #endif
    193 #ifdef _LP64
    194 pmap_segtab_t	pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
    195 #endif
    196 pmap_segtab_t	pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
    197 #ifdef _LP64
    198 	.seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
    199 #endif
    200 };
    201 
    202 struct pmap_kernel kernel_pmap_store = {
    203 	.kernel_pmap = {
    204 		.pm_count = 1,
    205 		.pm_segtab = &pmap_kern_segtab,
    206 		.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
    207 		.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
    208 	},
    209 };
    210 
    211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
    212 
    213 struct pmap_limits pmap_limits = {	/* VA and PA limits */
    214 	.virtual_start = VM_MIN_KERNEL_ADDRESS,
    215 };
    216 
    217 #ifdef UVMHIST
    218 static struct kern_history_ent pmapexechistbuf[10000];
    219 static struct kern_history_ent pmaphistbuf[10000];
    220 UVMHIST_DEFINE(pmapexechist);
    221 UVMHIST_DEFINE(pmaphist);
    222 #endif
    223 
    224 /*
    225  * The pools from which pmap structures and sub-structures are allocated.
    226  */
    227 struct pool pmap_pmap_pool;
    228 struct pool pmap_pv_pool;
    229 
    230 #ifndef PMAP_PV_LOWAT
    231 #define	PMAP_PV_LOWAT	16
    232 #endif
    233 int	pmap_pv_lowat = PMAP_PV_LOWAT;
    234 
    235 bool	pmap_initialized = false;
    236 #define	PMAP_PAGE_COLOROK_P(a, b) \
    237 		((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
    238 u_int	pmap_page_colormask;
    239 
    240 #define PAGE_IS_MANAGED(pa)	(pmap_initialized && uvm_pageismanaged(pa))
    241 
    242 #define PMAP_IS_ACTIVE(pm)						\
    243 	((pm) == pmap_kernel() || 					\
    244 	 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
    245 
    246 /* Forward function declarations */
    247 void pmap_page_remove(struct vm_page *);
    248 static void pmap_pvlist_check(struct vm_page_md *);
    249 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
    250 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
    251 
    252 /*
    253  * PV table management functions.
    254  */
    255 void	*pmap_pv_page_alloc(struct pool *, int);
    256 void	pmap_pv_page_free(struct pool *, void *);
    257 
    258 struct pool_allocator pmap_pv_page_allocator = {
    259 	pmap_pv_page_alloc, pmap_pv_page_free, 0,
    260 };
    261 
    262 #define	pmap_pv_alloc()		pool_get(&pmap_pv_pool, PR_NOWAIT)
    263 #define	pmap_pv_free(pv)	pool_put(&pmap_pv_pool, (pv))
    264 
    265 #ifndef PMAP_NEED_TLB_MISS_LOCK
    266 
    267 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
    268 #define	PMAP_NEED_TLB_MISS_LOCK
    269 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
    270 
    271 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    272 
    273 #ifdef PMAP_NEED_TLB_MISS_LOCK
    274 
    275 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
    276 #define	pmap_tlb_miss_lock_init()	__nothing /* MD code deals with this */
    277 #define	pmap_tlb_miss_lock_enter()	pmap_md_tlb_miss_lock_enter()
    278 #define	pmap_tlb_miss_lock_exit()	pmap_md_tlb_miss_lock_exit()
    279 #else
    280 kmutex_t pmap_tlb_miss_lock 		__cacheline_aligned;
    281 
    282 static void
    283 pmap_tlb_miss_lock_init(void)
    284 {
    285 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    286 }
    287 
    288 static inline void
    289 pmap_tlb_miss_lock_enter(void)
    290 {
    291 	mutex_spin_enter(&pmap_tlb_miss_lock);
    292 }
    293 
    294 static inline void
    295 pmap_tlb_miss_lock_exit(void)
    296 {
    297 	mutex_spin_exit(&pmap_tlb_miss_lock);
    298 }
    299 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
    300 
    301 #else
    302 
    303 #define	pmap_tlb_miss_lock_init()	__nothing
    304 #define	pmap_tlb_miss_lock_enter()	__nothing
    305 #define	pmap_tlb_miss_lock_exit()	__nothing
    306 
    307 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    308 
    309 #ifndef MULTIPROCESSOR
    310 kmutex_t pmap_pvlist_mutex	__cacheline_aligned;
    311 #endif
    312 
    313 /*
    314  * Debug functions.
    315  */
    316 
    317 #ifdef DEBUG
    318 static inline void
    319 pmap_asid_check(pmap_t pm, const char *func)
    320 {
    321 	if (!PMAP_IS_ACTIVE(pm))
    322 		return;
    323 
    324 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
    325 	tlb_asid_t asid = tlb_get_asid();
    326 	if (asid != pai->pai_asid)
    327 		panic("%s: inconsistency for active TLB update: %u <-> %u",
    328 		    func, asid, pai->pai_asid);
    329 }
    330 #endif
    331 
    332 static void
    333 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
    334 {
    335 #ifdef DEBUG
    336 	if (pmap == pmap_kernel()) {
    337 		if (sva < VM_MIN_KERNEL_ADDRESS)
    338 			panic("%s: kva %#"PRIxVADDR" not in range",
    339 			    func, sva);
    340 		if (eva >= pmap_limits.virtual_end)
    341 			panic("%s: kva %#"PRIxVADDR" not in range",
    342 			    func, eva);
    343 	} else {
    344 		if (eva > VM_MAXUSER_ADDRESS)
    345 			panic("%s: uva %#"PRIxVADDR" not in range",
    346 			    func, eva);
    347 		pmap_asid_check(pmap, func);
    348 	}
    349 #endif
    350 }
    351 
    352 /*
    353  * Misc. functions.
    354  */
    355 
    356 bool
    357 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
    358 {
    359 	volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
    360 #ifdef MULTIPROCESSOR
    361 	for (;;) {
    362 		u_int old_attr = *attrp;
    363 		if ((old_attr & clear_attributes) == 0)
    364 			return false;
    365 		u_int new_attr = old_attr & ~clear_attributes;
    366 		if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
    367 			return true;
    368 	}
    369 #else
    370 	unsigned long old_attr = *attrp;
    371 	if ((old_attr & clear_attributes) == 0)
    372 		return false;
    373 	*attrp &= ~clear_attributes;
    374 	return true;
    375 #endif
    376 }
    377 
    378 void
    379 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
    380 {
    381 #ifdef MULTIPROCESSOR
    382 	atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
    383 #else
    384 	mdpg->mdpg_attrs |= set_attributes;
    385 #endif
    386 }
    387 
    388 static void
    389 pmap_page_syncicache(struct vm_page *pg)
    390 {
    391 #ifndef MULTIPROCESSOR
    392 	struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
    393 #endif
    394 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
    395 	pv_entry_t pv = &mdpg->mdpg_first;
    396 	kcpuset_t *onproc;
    397 #ifdef MULTIPROCESSOR
    398 	kcpuset_create(&onproc, true);
    399 	KASSERT(onproc != NULL);
    400 #else
    401 	onproc = NULL;
    402 #endif
    403 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
    404 	pmap_pvlist_check(mdpg);
    405 
    406 	if (pv->pv_pmap != NULL) {
    407 		for (; pv != NULL; pv = pv->pv_next) {
    408 #ifdef MULTIPROCESSOR
    409 			kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
    410 			if (kcpuset_match(onproc, kcpuset_running)) {
    411 				break;
    412 			}
    413 #else
    414 			if (pv->pv_pmap == curpmap) {
    415 				onproc = curcpu()->ci_data.cpu_kcpuset;
    416 				break;
    417 			}
    418 #endif
    419 		}
    420 	}
    421 	pmap_pvlist_check(mdpg);
    422 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    423 	kpreempt_disable();
    424 	pmap_md_page_syncicache(pg, onproc);
    425 	kpreempt_enable();
    426 #ifdef MULTIPROCESSOR
    427 	kcpuset_destroy(onproc);
    428 #endif
    429 }
    430 
    431 /*
    432  * Define the initial bounds of the kernel virtual address space.
    433  */
    434 void
    435 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
    436 {
    437 
    438 	*vstartp = pmap_limits.virtual_start;
    439 	*vendp = pmap_limits.virtual_end;
    440 }
    441 
    442 vaddr_t
    443 pmap_growkernel(vaddr_t maxkvaddr)
    444 {
    445 	vaddr_t virtual_end = pmap_limits.virtual_end;
    446 	maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
    447 
    448 	/*
    449 	 * Reserve PTEs for the new KVA space.
    450 	 */
    451 	for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
    452 		pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
    453 	}
    454 
    455 	/*
    456 	 * Don't exceed VM_MAX_KERNEL_ADDRESS!
    457 	 */
    458 	if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
    459 		virtual_end = VM_MAX_KERNEL_ADDRESS;
    460 
    461 	/*
    462 	 * Update new end.
    463 	 */
    464 	pmap_limits.virtual_end = virtual_end;
    465 	return virtual_end;
    466 }
    467 
    468 /*
    469  * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
    470  * This function allows for early dynamic memory allocation until the virtual
    471  * memory system has been bootstrapped.  After that point, either kmem_alloc
    472  * or malloc should be used.  This function works by stealing pages from the
    473  * (to be) managed page pool, then implicitly mapping the pages (by using
    474  * their direct mapped addresses) and zeroing them.
    475  *
    476  * It may be used once the physical memory segments have been pre-loaded
    477  * into the vm_physmem[] array.  Early memory allocation MUST use this
    478  * interface!  This cannot be used after vm_page_startup(), and will
    479  * generate a panic if tried.
    480  *
    481  * Note that this memory will never be freed, and in essence it is wired
    482  * down.
    483  *
    484  * We must adjust *vstartp and/or *vendp iff we use address space
    485  * from the kernel virtual address range defined by pmap_virtual_space().
    486  */
    487 vaddr_t
    488 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
    489 {
    490 	size_t npgs;
    491 	paddr_t pa;
    492 	vaddr_t va;
    493 
    494 	uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
    495 
    496 	size = round_page(size);
    497 	npgs = atop(size);
    498 
    499 	aprint_debug("%s: need %zu pages\n", __func__, npgs);
    500 
    501 	for (uvm_physseg_t bank = uvm_physseg_get_first();
    502 	     uvm_physseg_valid_p(bank);
    503 	     bank = uvm_physseg_get_next(bank)) {
    504 
    505 		if (uvm.page_init_done == true)
    506 			panic("pmap_steal_memory: called _after_ bootstrap");
    507 
    508 		aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
    509 		    __func__, bank,
    510 		    uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
    511 		    uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
    512 
    513 		if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
    514 		    || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
    515 			aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
    516 			continue;
    517 		}
    518 
    519 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
    520 			aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
    521 			    __func__, bank, npgs);
    522 			continue;
    523 		}
    524 
    525 		if (!pmap_md_ok_to_steal_p(bank, npgs)) {
    526 			continue;
    527 		}
    528 
    529 		/*
    530 		 * Always try to allocate from the segment with the least
    531 		 * amount of space left.
    532 		 */
    533 #define VM_PHYSMEM_SPACE(b)	((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
    534 		if (uvm_physseg_valid_p(maybe_bank) == false
    535 		    || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
    536 			maybe_bank = bank;
    537 		}
    538 	}
    539 
    540 	if (uvm_physseg_valid_p(maybe_bank)) {
    541 		const uvm_physseg_t bank = maybe_bank;
    542 
    543 		/*
    544 		 * There are enough pages here; steal them!
    545 		 */
    546 		pa = ptoa(uvm_physseg_get_start(bank));
    547 		uvm_physseg_unplug(atop(pa), npgs);
    548 
    549 		aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
    550 		    __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
    551 
    552 		va = pmap_md_map_poolpage(pa, size);
    553 		memset((void *)va, 0, size);
    554 		return va;
    555 	}
    556 
    557 	/*
    558 	 * If we got here, there was no memory left.
    559 	 */
    560 	panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
    561 }
    562 
    563 /*
    564  *	Bootstrap the system enough to run with virtual memory.
    565  *	(Common routine called by machine-dependent bootstrap code.)
    566  */
    567 void
    568 pmap_bootstrap_common(void)
    569 {
    570 	pmap_tlb_miss_lock_init();
    571 }
    572 
    573 /*
    574  *	Initialize the pmap module.
    575  *	Called by vm_init, to initialize any structures that the pmap
    576  *	system needs to map virtual memory.
    577  */
    578 void
    579 pmap_init(void)
    580 {
    581 	UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
    582 	UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
    583 
    584 	UVMHIST_FUNC(__func__);
    585 	UVMHIST_CALLED(pmaphist);
    586 
    587 	/*
    588 	 * Initialize the segtab lock.
    589 	 */
    590 	mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
    591 
    592 	/*
    593 	 * Set a low water mark on the pv_entry pool, so that we are
    594 	 * more likely to have these around even in extreme memory
    595 	 * starvation.
    596 	 */
    597 	pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
    598 
    599 	/*
    600 	 * Set the page colormask but allow pmap_md_init to override it.
    601 	 */
    602 	pmap_page_colormask = ptoa(uvmexp.colormask);
    603 
    604 	pmap_md_init();
    605 
    606 	/*
    607 	 * Now it is safe to enable pv entry recording.
    608 	 */
    609 	pmap_initialized = true;
    610 }
    611 
    612 /*
    613  *	Create and return a physical map.
    614  *
    615  *	If the size specified for the map
    616  *	is zero, the map is an actual physical
    617  *	map, and may be referenced by the
    618  *	hardware.
    619  *
    620  *	If the size specified is non-zero,
    621  *	the map will be used in software only, and
    622  *	is bounded by that size.
    623  */
    624 pmap_t
    625 pmap_create(void)
    626 {
    627 	UVMHIST_FUNC(__func__);
    628 	UVMHIST_CALLED(pmaphist);
    629 	PMAP_COUNT(create);
    630 
    631 	pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
    632 	memset(pmap, 0, PMAP_SIZE);
    633 
    634 	KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
    635 
    636 	pmap->pm_count = 1;
    637 	pmap->pm_minaddr = VM_MIN_ADDRESS;
    638 	pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
    639 
    640 	pmap_segtab_init(pmap);
    641 
    642 #ifdef MULTIPROCESSOR
    643 	kcpuset_create(&pmap->pm_active, true);
    644 	kcpuset_create(&pmap->pm_onproc, true);
    645 	KASSERT(pmap->pm_active != NULL);
    646 	KASSERT(pmap->pm_onproc != NULL);
    647 #endif
    648 
    649 	UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
    650 	    0, 0, 0);
    651 
    652 	return pmap;
    653 }
    654 
    655 /*
    656  *	Retire the given physical map from service.
    657  *	Should only be called if the map contains
    658  *	no valid mappings.
    659  */
    660 void
    661 pmap_destroy(pmap_t pmap)
    662 {
    663 	UVMHIST_FUNC(__func__);
    664 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    665 
    666 	if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
    667 		PMAP_COUNT(dereference);
    668 		UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
    669 		return;
    670 	}
    671 
    672 	PMAP_COUNT(destroy);
    673 	KASSERT(pmap->pm_count == 0);
    674 	kpreempt_disable();
    675 	pmap_tlb_miss_lock_enter();
    676 	pmap_tlb_asid_release_all(pmap);
    677 	pmap_segtab_destroy(pmap, NULL, 0);
    678 	pmap_tlb_miss_lock_exit();
    679 
    680 #ifdef MULTIPROCESSOR
    681 	kcpuset_destroy(pmap->pm_active);
    682 	kcpuset_destroy(pmap->pm_onproc);
    683 	pmap->pm_active = NULL;
    684 	pmap->pm_onproc = NULL;
    685 #endif
    686 
    687 	pool_put(&pmap_pmap_pool, pmap);
    688 	kpreempt_enable();
    689 
    690 	UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
    691 }
    692 
    693 /*
    694  *	Add a reference to the specified pmap.
    695  */
    696 void
    697 pmap_reference(pmap_t pmap)
    698 {
    699 	UVMHIST_FUNC(__func__);
    700 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    701 	PMAP_COUNT(reference);
    702 
    703 	if (pmap != NULL) {
    704 		atomic_inc_uint(&pmap->pm_count);
    705 	}
    706 
    707 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    708 }
    709 
    710 /*
    711  *	Make a new pmap (vmspace) active for the given process.
    712  */
    713 void
    714 pmap_activate(struct lwp *l)
    715 {
    716 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    717 
    718 	UVMHIST_FUNC(__func__);
    719 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    720 	    (uintptr_t)pmap, 0, 0);
    721 	PMAP_COUNT(activate);
    722 
    723 	kpreempt_disable();
    724 	pmap_tlb_miss_lock_enter();
    725 	pmap_tlb_asid_acquire(pmap, l);
    726 	if (l == curlwp) {
    727 		pmap_segtab_activate(pmap, l);
    728 	}
    729 	pmap_tlb_miss_lock_exit();
    730 	kpreempt_enable();
    731 
    732 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    733 	    l->l_lid, 0, 0);
    734 }
    735 
    736 /*
    737  * Remove this page from all physical maps in which it resides.
    738  * Reflects back modify bits to the pager.
    739  */
    740 void
    741 pmap_page_remove(struct vm_page *pg)
    742 {
    743 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
    744 
    745 	kpreempt_disable();
    746 	VM_PAGEMD_PVLIST_LOCK(mdpg);
    747 	pmap_pvlist_check(mdpg);
    748 
    749 	UVMHIST_FUNC(__func__);
    750 	UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
    751 	    "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
    752 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    753 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
    754 #else
    755 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
    756 #endif
    757 	PMAP_COUNT(exec_uncached_remove);
    758 
    759 	pv_entry_t pv = &mdpg->mdpg_first;
    760 	if (pv->pv_pmap == NULL) {
    761 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    762 		kpreempt_enable();
    763 		UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
    764 		return;
    765 	}
    766 
    767 	pv_entry_t npv;
    768 	pv_entry_t pvp = NULL;
    769 
    770 	for (; pv != NULL; pv = npv) {
    771 		npv = pv->pv_next;
    772 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    773 		if (PV_ISKENTER_P(pv)) {
    774 			UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
    775 			    " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
    776 			    pv->pv_va, 0);
    777 
    778 			KASSERT(pv->pv_pmap == pmap_kernel());
    779 
    780 			/* Assume no more - it'll get fixed if there are */
    781 			pv->pv_next = NULL;
    782 
    783 			/*
    784 			 * pvp is non-null when we already have a PV_KENTER
    785 			 * pv in pvh_first; otherwise we haven't seen a
    786 			 * PV_KENTER pv and we need to copy this one to
    787 			 * pvh_first
    788 			 */
    789 			if (pvp) {
    790 				/*
    791 				 * The previous PV_KENTER pv needs to point to
    792 				 * this PV_KENTER pv
    793 				 */
    794 				pvp->pv_next = pv;
    795 			} else {
    796 				pv_entry_t fpv = &mdpg->mdpg_first;
    797 				*fpv = *pv;
    798 				KASSERT(fpv->pv_pmap == pmap_kernel());
    799 			}
    800 			pvp = pv;
    801 			continue;
    802 		}
    803 #endif
    804 		const pmap_t pmap = pv->pv_pmap;
    805 		vaddr_t va = trunc_page(pv->pv_va);
    806 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
    807 		KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
    808 		    pmap_limits.virtual_end);
    809 		pt_entry_t pte = *ptep;
    810 		UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
    811 		    " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
    812 		    pte_value(pte));
    813 		if (!pte_valid_p(pte))
    814 			continue;
    815 		const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    816 		if (is_kernel_pmap_p) {
    817 			PMAP_COUNT(remove_kernel_pages);
    818 		} else {
    819 			PMAP_COUNT(remove_user_pages);
    820 		}
    821 		if (pte_wired_p(pte))
    822 			pmap->pm_stats.wired_count--;
    823 		pmap->pm_stats.resident_count--;
    824 
    825 		pmap_tlb_miss_lock_enter();
    826 		const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
    827 		pte_set(ptep, npte);
    828 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
    829 			/*
    830 			 * Flush the TLB for the given address.
    831 			 */
    832 			pmap_tlb_invalidate_addr(pmap, va);
    833 		}
    834 		pmap_tlb_miss_lock_exit();
    835 
    836 		/*
    837 		 * non-null means this is a non-pvh_first pv, so we should
    838 		 * free it.
    839 		 */
    840 		if (pvp) {
    841 			KASSERT(pvp->pv_pmap == pmap_kernel());
    842 			KASSERT(pvp->pv_next == NULL);
    843 			pmap_pv_free(pv);
    844 		} else {
    845 			pv->pv_pmap = NULL;
    846 			pv->pv_next = NULL;
    847 		}
    848 	}
    849 
    850 	pmap_pvlist_check(mdpg);
    851 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    852 	kpreempt_enable();
    853 
    854 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    855 }
    856 
    857 
    858 /*
    859  *	Make a previously active pmap (vmspace) inactive.
    860  */
    861 void
    862 pmap_deactivate(struct lwp *l)
    863 {
    864 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    865 
    866 	UVMHIST_FUNC(__func__);
    867 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    868 	    (uintptr_t)pmap, 0, 0);
    869 	PMAP_COUNT(deactivate);
    870 
    871 	kpreempt_disable();
    872 	KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
    873 	pmap_tlb_miss_lock_enter();
    874 	curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
    875 #ifdef _LP64
    876 	curcpu()->ci_pmap_user_seg0tab = NULL;
    877 #endif
    878 	pmap_tlb_asid_deactivate(pmap);
    879 	pmap_tlb_miss_lock_exit();
    880 	kpreempt_enable();
    881 
    882 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    883 	    l->l_lid, 0, 0);
    884 }
    885 
    886 void
    887 pmap_update(struct pmap *pmap)
    888 {
    889 	UVMHIST_FUNC(__func__);
    890 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    891 	PMAP_COUNT(update);
    892 
    893 	kpreempt_disable();
    894 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
    895 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
    896 	if (pending && pmap_tlb_shootdown_bystanders(pmap))
    897 		PMAP_COUNT(shootdown_ipis);
    898 #endif
    899 	pmap_tlb_miss_lock_enter();
    900 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
    901 	pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
    902 #endif /* DEBUG */
    903 
    904 	/*
    905 	 * If pmap_remove_all was called, we deactivated ourselves and nuked
    906 	 * our ASID.  Now we have to reactivate ourselves.
    907 	 */
    908 	if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
    909 		pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
    910 		pmap_tlb_asid_acquire(pmap, curlwp);
    911 		pmap_segtab_activate(pmap, curlwp);
    912 	}
    913 	pmap_tlb_miss_lock_exit();
    914 	kpreempt_enable();
    915 
    916 	UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
    917 		    (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
    918 }
    919 
    920 /*
    921  *	Remove the given range of addresses from the specified map.
    922  *
    923  *	It is assumed that the start and end are properly
    924  *	rounded to the page size.
    925  */
    926 
    927 static bool
    928 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
    929 	uintptr_t flags)
    930 {
    931 	const pt_entry_t npte = flags;
    932 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    933 
    934 	UVMHIST_FUNC(__func__);
    935 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
    936 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
    937 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
    938 	    (uintptr_t)ptep, flags, 0, 0);
    939 
    940 	KASSERT(kpreempt_disabled());
    941 
    942 	for (; sva < eva; sva += NBPG, ptep++) {
    943 		const pt_entry_t pte = *ptep;
    944 		if (!pte_valid_p(pte))
    945 			continue;
    946 		if (is_kernel_pmap_p) {
    947 			PMAP_COUNT(remove_kernel_pages);
    948 		} else {
    949 			PMAP_COUNT(remove_user_pages);
    950 		}
    951 		if (pte_wired_p(pte))
    952 			pmap->pm_stats.wired_count--;
    953 		pmap->pm_stats.resident_count--;
    954 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
    955 		if (__predict_true(pg != NULL)) {
    956 			pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
    957 		}
    958 		pmap_tlb_miss_lock_enter();
    959 		pte_set(ptep, npte);
    960 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
    961 
    962 			/*
    963 			 * Flush the TLB for the given address.
    964 			 */
    965 			pmap_tlb_invalidate_addr(pmap, sva);
    966 		}
    967 		pmap_tlb_miss_lock_exit();
    968 	}
    969 
    970 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    971 
    972 	return false;
    973 }
    974 
    975 void
    976 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
    977 {
    978 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    979 	const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
    980 
    981 	UVMHIST_FUNC(__func__);
    982 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
    983 	    (uintptr_t)pmap, sva, eva, 0);
    984 
    985 	if (is_kernel_pmap_p) {
    986 		PMAP_COUNT(remove_kernel_calls);
    987 	} else {
    988 		PMAP_COUNT(remove_user_calls);
    989 	}
    990 #ifdef PMAP_FAULTINFO
    991 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
    992 	curpcb->pcb_faultinfo.pfi_repeats = 0;
    993 	curpcb->pcb_faultinfo.pfi_faultpte = NULL;
    994 #endif
    995 	kpreempt_disable();
    996 	pmap_addr_range_check(pmap, sva, eva, __func__);
    997 	pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
    998 	kpreempt_enable();
    999 
   1000 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1001 }
   1002 
   1003 /*
   1004  *	pmap_page_protect:
   1005  *
   1006  *	Lower the permission for all mappings to a given page.
   1007  */
   1008 void
   1009 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1010 {
   1011 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1012 	pv_entry_t pv;
   1013 	vaddr_t va;
   1014 
   1015 	UVMHIST_FUNC(__func__);
   1016 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
   1017 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
   1018 	PMAP_COUNT(page_protect);
   1019 
   1020 	switch (prot) {
   1021 	case VM_PROT_READ|VM_PROT_WRITE:
   1022 	case VM_PROT_ALL:
   1023 		break;
   1024 
   1025 	/* copy_on_write */
   1026 	case VM_PROT_READ:
   1027 	case VM_PROT_READ|VM_PROT_EXECUTE:
   1028 		pv = &mdpg->mdpg_first;
   1029 		kpreempt_disable();
   1030 		VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1031 		pmap_pvlist_check(mdpg);
   1032 		/*
   1033 		 * Loop over all current mappings setting/clearing as
   1034 		 * appropriate.
   1035 		 */
   1036 		if (pv->pv_pmap != NULL) {
   1037 			while (pv != NULL) {
   1038 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1039 				if (PV_ISKENTER_P(pv)) {
   1040 					pv = pv->pv_next;
   1041 					continue;
   1042 				}
   1043 #endif
   1044 				const pmap_t pmap = pv->pv_pmap;
   1045 				va = trunc_page(pv->pv_va);
   1046 				const uintptr_t gen =
   1047 				    VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1048 				pmap_protect(pmap, va, va + PAGE_SIZE, prot);
   1049 				KASSERT(pv->pv_pmap == pmap);
   1050 				pmap_update(pmap);
   1051 				if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
   1052 					pv = &mdpg->mdpg_first;
   1053 				} else {
   1054 					pv = pv->pv_next;
   1055 				}
   1056 				pmap_pvlist_check(mdpg);
   1057 			}
   1058 		}
   1059 		pmap_pvlist_check(mdpg);
   1060 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1061 		kpreempt_enable();
   1062 		break;
   1063 
   1064 	/* remove_all */
   1065 	default:
   1066 		pmap_page_remove(pg);
   1067 	}
   1068 
   1069 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1070 }
   1071 
   1072 static bool
   1073 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1074 	uintptr_t flags)
   1075 {
   1076 	const vm_prot_t prot = (flags & VM_PROT_ALL);
   1077 
   1078 	UVMHIST_FUNC(__func__);
   1079 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
   1080 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
   1081 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
   1082 	    (uintptr_t)ptep, flags, 0, 0);
   1083 
   1084 	KASSERT(kpreempt_disabled());
   1085 	/*
   1086 	 * Change protection on every valid mapping within this segment.
   1087 	 */
   1088 	for (; sva < eva; sva += NBPG, ptep++) {
   1089 		pt_entry_t pte = *ptep;
   1090 		if (!pte_valid_p(pte))
   1091 			continue;
   1092 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1093 		if (pg != NULL && pte_modified_p(pte)) {
   1094 			struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1095 			if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1096 				KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
   1097 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1098 				if (VM_PAGEMD_CACHED_P(mdpg)) {
   1099 #endif
   1100 					UVMHIST_LOG(pmapexechist,
   1101 					    "pg %#jx (pa %#jx): "
   1102 					    "syncicached performed",
   1103 					    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
   1104 					    0, 0);
   1105 					pmap_page_syncicache(pg);
   1106 					PMAP_COUNT(exec_synced_protect);
   1107 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1108 				}
   1109 #endif
   1110 			}
   1111 		}
   1112 		pte = pte_prot_downgrade(pte, prot);
   1113 		if (*ptep != pte) {
   1114 			pmap_tlb_miss_lock_enter();
   1115 			pte_set(ptep, pte);
   1116 			/*
   1117 			 * Update the TLB if needed.
   1118 			 */
   1119 			pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
   1120 			pmap_tlb_miss_lock_exit();
   1121 		}
   1122 	}
   1123 
   1124 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1125 
   1126 	return false;
   1127 }
   1128 
   1129 /*
   1130  *	Set the physical protection on the
   1131  *	specified range of this map as requested.
   1132  */
   1133 void
   1134 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1135 {
   1136 	UVMHIST_FUNC(__func__);
   1137 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
   1138 	    (uintptr_t)pmap, sva, eva, prot);
   1139 	PMAP_COUNT(protect);
   1140 
   1141 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
   1142 		pmap_remove(pmap, sva, eva);
   1143 		UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1144 		return;
   1145 	}
   1146 
   1147 	/*
   1148 	 * Change protection on every valid mapping within this segment.
   1149 	 */
   1150 	kpreempt_disable();
   1151 	pmap_addr_range_check(pmap, sva, eva, __func__);
   1152 	pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
   1153 	kpreempt_enable();
   1154 
   1155 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1156 }
   1157 
   1158 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
   1159 /*
   1160  *	pmap_page_cache:
   1161  *
   1162  *	Change all mappings of a managed page to cached/uncached.
   1163  */
   1164 void
   1165 pmap_page_cache(struct vm_page *pg, bool cached)
   1166 {
   1167 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1168 
   1169 	UVMHIST_FUNC(__func__);
   1170 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
   1171 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
   1172 
   1173 	KASSERT(kpreempt_disabled());
   1174 	KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
   1175 
   1176 	if (cached) {
   1177 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1178 		PMAP_COUNT(page_cache_restorations);
   1179 	} else {
   1180 		pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1181 		PMAP_COUNT(page_cache_evictions);
   1182 	}
   1183 
   1184 	for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
   1185 		pmap_t pmap = pv->pv_pmap;
   1186 		vaddr_t va = trunc_page(pv->pv_va);
   1187 
   1188 		KASSERT(pmap != NULL);
   1189 		KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1190 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1191 		if (ptep == NULL)
   1192 			continue;
   1193 		pt_entry_t pte = *ptep;
   1194 		if (pte_valid_p(pte)) {
   1195 			pte = pte_cached_change(pte, cached);
   1196 			pmap_tlb_miss_lock_enter();
   1197 			pte_set(ptep, pte);
   1198 			pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
   1199 			pmap_tlb_miss_lock_exit();
   1200 		}
   1201 	}
   1202 
   1203 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1204 }
   1205 #endif	/* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
   1206 
   1207 /*
   1208  *	Insert the given physical page (p) at
   1209  *	the specified virtual address (v) in the
   1210  *	target physical map with the protection requested.
   1211  *
   1212  *	If specified, the page will be wired down, meaning
   1213  *	that the related pte can not be reclaimed.
   1214  *
   1215  *	NB:  This is the only routine which MAY NOT lazy-evaluate
   1216  *	or lose information.  That is, this routine must actually
   1217  *	insert this page into the given map NOW.
   1218  */
   1219 int
   1220 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1221 {
   1222 	const bool wired = (flags & PMAP_WIRED) != 0;
   1223 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
   1224 	u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
   1225 #ifdef UVMHIST
   1226 	struct kern_history * const histp =
   1227 	    ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
   1228 #endif
   1229 
   1230 	UVMHIST_FUNC(__func__);
   1231 	UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
   1232 	    (uintptr_t)pmap, va, pa, 0);
   1233 	UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
   1234 
   1235 	const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
   1236 	if (is_kernel_pmap_p) {
   1237 		PMAP_COUNT(kernel_mappings);
   1238 		if (!good_color)
   1239 			PMAP_COUNT(kernel_mappings_bad);
   1240 	} else {
   1241 		PMAP_COUNT(user_mappings);
   1242 		if (!good_color)
   1243 			PMAP_COUNT(user_mappings_bad);
   1244 	}
   1245 	pmap_addr_range_check(pmap, va, va, __func__);
   1246 
   1247 	KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
   1248 	    VM_PROT_READ, prot);
   1249 
   1250 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1251 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1252 
   1253 	if (pg) {
   1254 		/* Set page referenced/modified status based on flags */
   1255 		if (flags & VM_PROT_WRITE) {
   1256 			pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1257 		} else if (flags & VM_PROT_ALL) {
   1258 			pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1259 		}
   1260 
   1261 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1262 		if (!VM_PAGEMD_CACHED_P(mdpg)) {
   1263 			flags |= PMAP_NOCACHE;
   1264 			PMAP_COUNT(uncached_mappings);
   1265 		}
   1266 #endif
   1267 
   1268 		PMAP_COUNT(managed_mappings);
   1269 	} else {
   1270 		/*
   1271 		 * Assumption: if it is not part of our managed memory
   1272 		 * then it must be device memory which may be volatile.
   1273 		 */
   1274 		if ((flags & PMAP_CACHE_MASK) == 0)
   1275 			flags |= PMAP_NOCACHE;
   1276 		PMAP_COUNT(unmanaged_mappings);
   1277 	}
   1278 
   1279 	pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
   1280 	    is_kernel_pmap_p);
   1281 
   1282 	kpreempt_disable();
   1283 
   1284 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
   1285 	if (__predict_false(ptep == NULL)) {
   1286 		kpreempt_enable();
   1287 		UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
   1288 		return ENOMEM;
   1289 	}
   1290 	const pt_entry_t opte = *ptep;
   1291 	const bool resident = pte_valid_p(opte);
   1292 	bool remap = false;
   1293 	if (resident) {
   1294 		if (pte_to_paddr(opte) != pa) {
   1295 			KASSERT(!is_kernel_pmap_p);
   1296 		    	const pt_entry_t rpte = pte_nv_entry(false);
   1297 
   1298 			pmap_addr_range_check(pmap, va, va + NBPG, __func__);
   1299 			pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
   1300 			    rpte);
   1301 			PMAP_COUNT(user_mappings_changed);
   1302 			remap = true;
   1303 		}
   1304 		update_flags |= PMAP_TLB_NEED_IPI;
   1305 	}
   1306 
   1307 	if (!resident || remap) {
   1308 		pmap->pm_stats.resident_count++;
   1309 	}
   1310 
   1311 	/* Done after case that may sleep/return. */
   1312 	if (pg)
   1313 		pmap_enter_pv(pmap, va, pg, &npte, 0);
   1314 
   1315 	/*
   1316 	 * Now validate mapping with desired protection/wiring.
   1317 	 * Assume uniform modified and referenced status for all
   1318 	 * MIPS pages in a MACH page.
   1319 	 */
   1320 	if (wired) {
   1321 		pmap->pm_stats.wired_count++;
   1322 		npte = pte_wire_entry(npte);
   1323 	}
   1324 
   1325 	UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
   1326 	    pte_value(npte), pa, 0, 0);
   1327 
   1328 	KASSERT(pte_valid_p(npte));
   1329 
   1330 	pmap_tlb_miss_lock_enter();
   1331 	pte_set(ptep, npte);
   1332 	pmap_tlb_update_addr(pmap, va, npte, update_flags);
   1333 	pmap_tlb_miss_lock_exit();
   1334 	kpreempt_enable();
   1335 
   1336 	if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
   1337 		KASSERT(mdpg != NULL);
   1338 		PMAP_COUNT(exec_mappings);
   1339 		if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
   1340 			if (!pte_deferred_exec_p(npte)) {
   1341 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
   1342 				    "immediate syncicache",
   1343 				    va, (uintptr_t)pg, 0, 0);
   1344 				pmap_page_syncicache(pg);
   1345 				pmap_page_set_attributes(mdpg,
   1346 				    VM_PAGEMD_EXECPAGE);
   1347 				PMAP_COUNT(exec_synced_mappings);
   1348 			} else {
   1349 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
   1350 				    "syncicache: pte %#jx",
   1351 				    va, (uintptr_t)pg, npte, 0);
   1352 			}
   1353 		} else {
   1354 			UVMHIST_LOG(*histp,
   1355 			    "va=%#jx pg %#jx: no syncicache cached %jd",
   1356 			    va, (uintptr_t)pg, pte_cached_p(npte), 0);
   1357 		}
   1358 	} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
   1359 		KASSERT(mdpg != NULL);
   1360 		KASSERT(prot & VM_PROT_WRITE);
   1361 		PMAP_COUNT(exec_mappings);
   1362 		pmap_page_syncicache(pg);
   1363 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1364 		UVMHIST_LOG(*histp,
   1365 		    "va=%#jx pg %#jx: immediate syncicache (writeable)",
   1366 		    va, (uintptr_t)pg, 0, 0);
   1367 	}
   1368 
   1369 	UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
   1370 	return 0;
   1371 }
   1372 
   1373 void
   1374 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1375 {
   1376 	pmap_t pmap = pmap_kernel();
   1377 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1378 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1379 
   1380 	UVMHIST_FUNC(__func__);
   1381 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
   1382 	    va, pa, prot, flags);
   1383 	PMAP_COUNT(kenter_pa);
   1384 
   1385 	if (mdpg == NULL) {
   1386 		PMAP_COUNT(kenter_pa_unmanaged);
   1387 		if ((flags & PMAP_CACHE_MASK) == 0)
   1388 			flags |= PMAP_NOCACHE;
   1389 	} else {
   1390 		if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
   1391 			PMAP_COUNT(kenter_pa_bad);
   1392 	}
   1393 
   1394 	pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
   1395 	kpreempt_disable();
   1396 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1397 	KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
   1398 	    pmap_limits.virtual_end);
   1399 	KASSERT(!pte_valid_p(*ptep));
   1400 
   1401 	/*
   1402 	 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
   1403 	 */
   1404 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1405 	if (pg != NULL && (flags & PMAP_KMPAGE) == 0
   1406 	    && pmap_md_virtual_cache_aliasing_p()) {
   1407 		pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
   1408 	}
   1409 #endif
   1410 
   1411 	/*
   1412 	 * We have the option to force this mapping into the TLB but we
   1413 	 * don't.  Instead let the next reference to the page do it.
   1414 	 */
   1415 	pmap_tlb_miss_lock_enter();
   1416 	pte_set(ptep, npte);
   1417 	pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
   1418 	pmap_tlb_miss_lock_exit();
   1419 	kpreempt_enable();
   1420 #if DEBUG > 1
   1421 	for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
   1422 		if (((long *)va)[i] != ((long *)pa)[i])
   1423 			panic("%s: contents (%lx) of va %#"PRIxVADDR
   1424 			    " != contents (%lx) of pa %#"PRIxPADDR, __func__,
   1425 			    ((long *)va)[i], va, ((long *)pa)[i], pa);
   1426 	}
   1427 #endif
   1428 
   1429 	UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
   1430 	    0);
   1431 }
   1432 
   1433 /*
   1434  *	Remove the given range of addresses from the kernel map.
   1435  *
   1436  *	It is assumed that the start and end are properly
   1437  *	rounded to the page size.
   1438  */
   1439 
   1440 static bool
   1441 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1442 	uintptr_t flags)
   1443 {
   1444 	const pt_entry_t new_pte = pte_nv_entry(true);
   1445 
   1446 	UVMHIST_FUNC(__func__);
   1447 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
   1448 	    (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
   1449 
   1450 	KASSERT(kpreempt_disabled());
   1451 
   1452 	for (; sva < eva; sva += NBPG, ptep++) {
   1453 		pt_entry_t pte = *ptep;
   1454 		if (!pte_valid_p(pte))
   1455 			continue;
   1456 
   1457 		PMAP_COUNT(kremove_pages);
   1458 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1459 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1460 		if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
   1461 			pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
   1462 		}
   1463 #endif
   1464 
   1465 		pmap_tlb_miss_lock_enter();
   1466 		pte_set(ptep, new_pte);
   1467 		pmap_tlb_invalidate_addr(pmap, sva);
   1468 		pmap_tlb_miss_lock_exit();
   1469 	}
   1470 
   1471 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1472 
   1473 	return false;
   1474 }
   1475 
   1476 void
   1477 pmap_kremove(vaddr_t va, vsize_t len)
   1478 {
   1479 	const vaddr_t sva = trunc_page(va);
   1480 	const vaddr_t eva = round_page(va + len);
   1481 
   1482 	UVMHIST_FUNC(__func__);
   1483 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
   1484 
   1485 	kpreempt_disable();
   1486 	pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
   1487 	kpreempt_enable();
   1488 
   1489 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1490 }
   1491 
   1492 bool
   1493 pmap_remove_all(struct pmap *pmap)
   1494 {
   1495 	UVMHIST_FUNC(__func__);
   1496 	UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
   1497 
   1498 	KASSERT(pmap != pmap_kernel());
   1499 
   1500 	kpreempt_disable();
   1501 	/*
   1502 	 * Free all of our ASIDs which means we can skip doing all the
   1503 	 * tlb_invalidate_addrs().
   1504 	 */
   1505 	pmap_tlb_miss_lock_enter();
   1506 #ifdef MULTIPROCESSOR
   1507 	// This should be the last CPU with this pmap onproc
   1508 	KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
   1509 	if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
   1510 #endif
   1511 		pmap_tlb_asid_deactivate(pmap);
   1512 #ifdef MULTIPROCESSOR
   1513 	KASSERT(kcpuset_iszero(pmap->pm_onproc));
   1514 #endif
   1515 	pmap_tlb_asid_release_all(pmap);
   1516 	pmap_tlb_miss_lock_exit();
   1517 	pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
   1518 
   1519 #ifdef PMAP_FAULTINFO
   1520 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
   1521 	curpcb->pcb_faultinfo.pfi_repeats = 0;
   1522 	curpcb->pcb_faultinfo.pfi_faultpte = NULL;
   1523 #endif
   1524 	kpreempt_enable();
   1525 
   1526 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1527 	return false;
   1528 }
   1529 
   1530 /*
   1531  *	Routine:	pmap_unwire
   1532  *	Function:	Clear the wired attribute for a map/virtual-address
   1533  *			pair.
   1534  *	In/out conditions:
   1535  *			The mapping must already exist in the pmap.
   1536  */
   1537 void
   1538 pmap_unwire(pmap_t pmap, vaddr_t va)
   1539 {
   1540 	UVMHIST_FUNC(__func__);
   1541 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
   1542 	    0, 0);
   1543 	PMAP_COUNT(unwire);
   1544 
   1545 	/*
   1546 	 * Don't need to flush the TLB since PG_WIRED is only in software.
   1547 	 */
   1548 	kpreempt_disable();
   1549 	pmap_addr_range_check(pmap, va, va, __func__);
   1550 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1551 	KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
   1552 	    pmap, va);
   1553 	pt_entry_t pte = *ptep;
   1554 	KASSERTMSG(pte_valid_p(pte),
   1555 	    "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
   1556 	    pmap, va, pte_value(pte), ptep);
   1557 
   1558 	if (pte_wired_p(pte)) {
   1559 		pmap_tlb_miss_lock_enter();
   1560 		pte_set(ptep, pte_unwire_entry(pte));
   1561 		pmap_tlb_miss_lock_exit();
   1562 		pmap->pm_stats.wired_count--;
   1563 	}
   1564 #ifdef DIAGNOSTIC
   1565 	else {
   1566 		printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
   1567 		    __func__, pmap, va);
   1568 	}
   1569 #endif
   1570 	kpreempt_enable();
   1571 
   1572 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1573 }
   1574 
   1575 /*
   1576  *	Routine:	pmap_extract
   1577  *	Function:
   1578  *		Extract the physical page address associated
   1579  *		with the given map/virtual_address pair.
   1580  */
   1581 bool
   1582 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   1583 {
   1584 	paddr_t pa;
   1585 
   1586 	if (pmap == pmap_kernel()) {
   1587 		if (pmap_md_direct_mapped_vaddr_p(va)) {
   1588 			pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   1589 			goto done;
   1590 		}
   1591 		if (pmap_md_io_vaddr_p(va))
   1592 			panic("pmap_extract: io address %#"PRIxVADDR"", va);
   1593 
   1594 		if (va >= pmap_limits.virtual_end)
   1595 			panic("%s: illegal kernel mapped address %#"PRIxVADDR,
   1596 			    __func__, va);
   1597 	}
   1598 	kpreempt_disable();
   1599 	const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1600 	if (ptep == NULL || !pte_valid_p(*ptep)) {
   1601 		kpreempt_enable();
   1602 		return false;
   1603 	}
   1604 	pa = pte_to_paddr(*ptep) | (va & PGOFSET);
   1605 	kpreempt_enable();
   1606 done:
   1607 	if (pap != NULL) {
   1608 		*pap = pa;
   1609 	}
   1610 	return true;
   1611 }
   1612 
   1613 /*
   1614  *	Copy the range specified by src_addr/len
   1615  *	from the source map to the range dst_addr/len
   1616  *	in the destination map.
   1617  *
   1618  *	This routine is only advisory and need not do anything.
   1619  */
   1620 void
   1621 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
   1622     vaddr_t src_addr)
   1623 {
   1624 	UVMHIST_FUNC(__func__);
   1625 	UVMHIST_CALLED(pmaphist);
   1626 	PMAP_COUNT(copy);
   1627 }
   1628 
   1629 /*
   1630  *	pmap_clear_reference:
   1631  *
   1632  *	Clear the reference bit on the specified physical page.
   1633  */
   1634 bool
   1635 pmap_clear_reference(struct vm_page *pg)
   1636 {
   1637 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1638 
   1639 	UVMHIST_FUNC(__func__);
   1640 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
   1641 	   (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1642 
   1643 	bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1644 
   1645 	UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
   1646 
   1647 	return rv;
   1648 }
   1649 
   1650 /*
   1651  *	pmap_is_referenced:
   1652  *
   1653  *	Return whether or not the specified physical page is referenced
   1654  *	by any physical maps.
   1655  */
   1656 bool
   1657 pmap_is_referenced(struct vm_page *pg)
   1658 {
   1659 	return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
   1660 }
   1661 
   1662 /*
   1663  *	Clear the modify bits on the specified physical page.
   1664  */
   1665 bool
   1666 pmap_clear_modify(struct vm_page *pg)
   1667 {
   1668 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1669 	pv_entry_t pv = &mdpg->mdpg_first;
   1670 	pv_entry_t pv_next;
   1671 
   1672 	UVMHIST_FUNC(__func__);
   1673 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
   1674 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1675 	PMAP_COUNT(clear_modify);
   1676 
   1677 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1678 		if (pv->pv_pmap == NULL) {
   1679 			UVMHIST_LOG(pmapexechist,
   1680 			    "pg %#jx (pa %#jx): execpage cleared",
   1681 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1682 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1683 			PMAP_COUNT(exec_uncached_clear_modify);
   1684 		} else {
   1685 			UVMHIST_LOG(pmapexechist,
   1686 			    "pg %#jx (pa %#jx): syncicache performed",
   1687 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1688 			pmap_page_syncicache(pg);
   1689 			PMAP_COUNT(exec_synced_clear_modify);
   1690 		}
   1691 	}
   1692 	if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
   1693 		UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
   1694 		return false;
   1695 	}
   1696 	if (pv->pv_pmap == NULL) {
   1697 		UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
   1698 		return true;
   1699 	}
   1700 
   1701 	/*
   1702 	 * remove write access from any pages that are dirty
   1703 	 * so we can tell if they are written to again later.
   1704 	 * flush the VAC first if there is one.
   1705 	 */
   1706 	kpreempt_disable();
   1707 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1708 	pmap_pvlist_check(mdpg);
   1709 	for (; pv != NULL; pv = pv_next) {
   1710 		pmap_t pmap = pv->pv_pmap;
   1711 		vaddr_t va = trunc_page(pv->pv_va);
   1712 
   1713 		pv_next = pv->pv_next;
   1714 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1715 		if (PV_ISKENTER_P(pv))
   1716 			continue;
   1717 #endif
   1718 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1719 		KASSERT(ptep);
   1720 		pt_entry_t pte = pte_prot_nowrite(*ptep);
   1721 		if (*ptep == pte) {
   1722 			continue;
   1723 		}
   1724 		KASSERT(pte_valid_p(pte));
   1725 		const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1726 		pmap_tlb_miss_lock_enter();
   1727 		pte_set(ptep, pte);
   1728 		pmap_tlb_invalidate_addr(pmap, va);
   1729 		pmap_tlb_miss_lock_exit();
   1730 		pmap_update(pmap);
   1731 		if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
   1732 			/*
   1733 			 * The list changed!  So restart from the beginning.
   1734 			 */
   1735 			pv_next = &mdpg->mdpg_first;
   1736 			pmap_pvlist_check(mdpg);
   1737 		}
   1738 	}
   1739 	pmap_pvlist_check(mdpg);
   1740 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1741 	kpreempt_enable();
   1742 
   1743 	UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
   1744 	return true;
   1745 }
   1746 
   1747 /*
   1748  *	pmap_is_modified:
   1749  *
   1750  *	Return whether or not the specified physical page is modified
   1751  *	by any physical maps.
   1752  */
   1753 bool
   1754 pmap_is_modified(struct vm_page *pg)
   1755 {
   1756 	return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
   1757 }
   1758 
   1759 /*
   1760  *	pmap_set_modified:
   1761  *
   1762  *	Sets the page modified reference bit for the specified page.
   1763  */
   1764 void
   1765 pmap_set_modified(paddr_t pa)
   1766 {
   1767 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1768 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1769 	pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1770 }
   1771 
   1772 /******************** pv_entry management ********************/
   1773 
   1774 static void
   1775 pmap_pvlist_check(struct vm_page_md *mdpg)
   1776 {
   1777 #ifdef DEBUG
   1778 	pv_entry_t pv = &mdpg->mdpg_first;
   1779 	if (pv->pv_pmap != NULL) {
   1780 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1781 		const u_int colormask = uvmexp.colormask;
   1782 		u_int colors = 0;
   1783 #endif
   1784 		for (; pv != NULL; pv = pv->pv_next) {
   1785 			KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
   1786 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1787 			colors |= __BIT(atop(pv->pv_va) & colormask);
   1788 #endif
   1789 		}
   1790 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1791 		// Assert that if there is more than 1 color mapped, that the
   1792 		// page is uncached.
   1793 		KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
   1794 		    || colors == 0 || (colors & (colors-1)) == 0
   1795 		    || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
   1796 		    colors, VM_PAGEMD_UNCACHED_P(mdpg));
   1797 #endif
   1798 	} else {
   1799     		KASSERT(pv->pv_next == NULL);
   1800 	}
   1801 #endif /* DEBUG */
   1802 }
   1803 
   1804 /*
   1805  * Enter the pmap and virtual address into the
   1806  * physical to virtual map table.
   1807  */
   1808 void
   1809 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
   1810     u_int flags)
   1811 {
   1812 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1813 	pv_entry_t pv, npv, apv;
   1814 #ifdef UVMHIST
   1815 	bool first = false;
   1816 #endif
   1817 
   1818 	UVMHIST_FUNC(__func__);
   1819 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
   1820 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
   1821 	UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
   1822 	    (uintptr_t)nptep, pte_value(*nptep), 0, 0);
   1823 
   1824 	KASSERT(kpreempt_disabled());
   1825 	KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1826 	KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
   1827 	    "va %#"PRIxVADDR, va);
   1828 
   1829 	apv = NULL;
   1830 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   1831 again:
   1832 	pv = &mdpg->mdpg_first;
   1833 	pmap_pvlist_check(mdpg);
   1834 	if (pv->pv_pmap == NULL) {
   1835 		KASSERT(pv->pv_next == NULL);
   1836 		/*
   1837 		 * No entries yet, use header as the first entry
   1838 		 */
   1839 		PMAP_COUNT(primary_mappings);
   1840 		PMAP_COUNT(mappings);
   1841 #ifdef UVMHIST
   1842 		first = true;
   1843 #endif
   1844 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1845 		KASSERT(VM_PAGEMD_CACHED_P(mdpg));
   1846 		// If the new mapping has an incompatible color the last
   1847 		// mapping of this page, clean the page before using it.
   1848 		if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
   1849 			pmap_md_vca_clean(pg, PMAP_WBINV);
   1850 		}
   1851 #endif
   1852 		pv->pv_pmap = pmap;
   1853 		pv->pv_va = va | flags;
   1854 	} else {
   1855 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1856 		if (pmap_md_vca_add(pg, va, nptep)) {
   1857 			goto again;
   1858 		}
   1859 #endif
   1860 
   1861 		/*
   1862 		 * There is at least one other VA mapping this page.
   1863 		 * Place this entry after the header.
   1864 		 *
   1865 		 * Note: the entry may already be in the table if
   1866 		 * we are only changing the protection bits.
   1867 		 */
   1868 
   1869 #ifdef PARANOIADIAG
   1870 		const paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1871 #endif
   1872 		for (npv = pv; npv; npv = npv->pv_next) {
   1873 			if (pmap == npv->pv_pmap
   1874 			    && va == trunc_page(npv->pv_va)) {
   1875 #ifdef PARANOIADIAG
   1876 				pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
   1877 				pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
   1878 				if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
   1879 					printf("%s: found va %#"PRIxVADDR
   1880 					    " pa %#"PRIxPADDR
   1881 					    " in pv_table but != %#"PRIxPTE"\n",
   1882 					    __func__, va, pa, pte_value(pte));
   1883 #endif
   1884 				PMAP_COUNT(remappings);
   1885 				VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1886 				if (__predict_false(apv != NULL))
   1887 					pmap_pv_free(apv);
   1888 
   1889 				UVMHIST_LOG(pmaphist,
   1890 				    " <-- done pv=%#jx (reused)",
   1891 				    (uintptr_t)pv, 0, 0, 0);
   1892 				return;
   1893 			}
   1894 		}
   1895 		if (__predict_true(apv == NULL)) {
   1896 			/*
   1897 			 * To allocate a PV, we have to release the PVLIST lock
   1898 			 * so get the page generation.  We allocate the PV, and
   1899 			 * then reacquire the lock.
   1900 			 */
   1901 			pmap_pvlist_check(mdpg);
   1902 			const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1903 
   1904 			apv = (pv_entry_t)pmap_pv_alloc();
   1905 			if (apv == NULL)
   1906 				panic("pmap_enter_pv: pmap_pv_alloc() failed");
   1907 
   1908 			/*
   1909 			 * If the generation has changed, then someone else
   1910 			 * tinkered with this page so we should start over.
   1911 			 */
   1912 			if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
   1913 				goto again;
   1914 		}
   1915 		npv = apv;
   1916 		apv = NULL;
   1917 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1918 		/*
   1919 		 * If need to deal with virtual cache aliases, keep mappings
   1920 		 * in the kernel pmap at the head of the list.  This allows
   1921 		 * the VCA code to easily use them for cache operations if
   1922 		 * present.
   1923 		 */
   1924 		pmap_t kpmap = pmap_kernel();
   1925 		if (pmap != kpmap) {
   1926 			while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
   1927 				pv = pv->pv_next;
   1928 			}
   1929 		}
   1930 #endif
   1931 		npv->pv_va = va | flags;
   1932 		npv->pv_pmap = pmap;
   1933 		npv->pv_next = pv->pv_next;
   1934 		pv->pv_next = npv;
   1935 		PMAP_COUNT(mappings);
   1936 	}
   1937 	pmap_pvlist_check(mdpg);
   1938 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1939 	if (__predict_false(apv != NULL))
   1940 		pmap_pv_free(apv);
   1941 
   1942 	UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
   1943 	    first, 0, 0);
   1944 }
   1945 
   1946 /*
   1947  * Remove a physical to virtual address translation.
   1948  * If cache was inhibited on this page, and there are no more cache
   1949  * conflicts, restore caching.
   1950  * Flush the cache if the last page is removed (should always be cached
   1951  * at this point).
   1952  */
   1953 void
   1954 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
   1955 {
   1956 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1957 	pv_entry_t pv, npv;
   1958 	bool last;
   1959 
   1960 	UVMHIST_FUNC(__func__);
   1961 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
   1962 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
   1963 	UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
   1964 
   1965 	KASSERT(kpreempt_disabled());
   1966 	KASSERT((va & PAGE_MASK) == 0);
   1967 	pv = &mdpg->mdpg_first;
   1968 
   1969 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   1970 	pmap_pvlist_check(mdpg);
   1971 
   1972 	/*
   1973 	 * If it is the first entry on the list, it is actually
   1974 	 * in the header and we must copy the following entry up
   1975 	 * to the header.  Otherwise we must search the list for
   1976 	 * the entry.  In either case we free the now unused entry.
   1977 	 */
   1978 
   1979 	last = false;
   1980 	if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
   1981 		npv = pv->pv_next;
   1982 		if (npv) {
   1983 			*pv = *npv;
   1984 			KASSERT(pv->pv_pmap != NULL);
   1985 		} else {
   1986 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1987 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1988 #endif
   1989 			pv->pv_pmap = NULL;
   1990 			last = true;	/* Last mapping removed */
   1991 		}
   1992 		PMAP_COUNT(remove_pvfirst);
   1993 	} else {
   1994 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
   1995 			PMAP_COUNT(remove_pvsearch);
   1996 			if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
   1997 				break;
   1998 		}
   1999 		if (npv) {
   2000 			pv->pv_next = npv->pv_next;
   2001 		}
   2002 	}
   2003 
   2004 	pmap_pvlist_check(mdpg);
   2005 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   2006 
   2007 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2008 	pmap_md_vca_remove(pg, va, dirty, last);
   2009 #endif
   2010 
   2011 	/*
   2012 	 * Free the pv_entry if needed.
   2013 	 */
   2014 	if (npv)
   2015 		pmap_pv_free(npv);
   2016 	if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
   2017 		if (last) {
   2018 			/*
   2019 			 * If this was the page's last mapping, we no longer
   2020 			 * care about its execness.
   2021 			 */
   2022 			UVMHIST_LOG(pmapexechist,
   2023 			    "pg %#jx (pa %#jx)last %ju: execpage cleared",
   2024 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2025 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   2026 			PMAP_COUNT(exec_uncached_remove);
   2027 		} else {
   2028 			/*
   2029 			 * Someone still has it mapped as an executable page
   2030 			 * so we must sync it.
   2031 			 */
   2032 			UVMHIST_LOG(pmapexechist,
   2033 			    "pg %#jx (pa %#jx) last %ju: performed syncicache",
   2034 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2035 			pmap_page_syncicache(pg);
   2036 			PMAP_COUNT(exec_synced_remove);
   2037 		}
   2038 	}
   2039 
   2040 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   2041 }
   2042 
   2043 #if defined(MULTIPROCESSOR)
   2044 struct pmap_pvlist_info {
   2045 	kmutex_t *pli_locks[PAGE_SIZE / 32];
   2046 	volatile u_int pli_lock_refs[PAGE_SIZE / 32];
   2047 	volatile u_int pli_lock_index;
   2048 	u_int pli_lock_mask;
   2049 } pmap_pvlist_info;
   2050 
   2051 void
   2052 pmap_pvlist_lock_init(size_t cache_line_size)
   2053 {
   2054 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2055 	const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
   2056 	vaddr_t lock_va = lock_page;
   2057 	if (sizeof(kmutex_t) > cache_line_size) {
   2058 		cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
   2059 	}
   2060 	const size_t nlocks = PAGE_SIZE / cache_line_size;
   2061 	KASSERT((nlocks & (nlocks - 1)) == 0);
   2062 	/*
   2063 	 * Now divide the page into a number of mutexes, one per cacheline.
   2064 	 */
   2065 	for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
   2066 		kmutex_t * const lock = (kmutex_t *)lock_va;
   2067 		mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
   2068 		pli->pli_locks[i] = lock;
   2069 	}
   2070 	pli->pli_lock_mask = nlocks - 1;
   2071 }
   2072 
   2073 kmutex_t *
   2074 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2075 {
   2076 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2077 	kmutex_t *lock = mdpg->mdpg_lock;
   2078 
   2079 	/*
   2080 	 * Allocate a lock on an as-needed basis.  This will hopefully give us
   2081 	 * semi-random distribution not based on page color.
   2082 	 */
   2083 	if (__predict_false(lock == NULL)) {
   2084 		size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
   2085 		size_t lockid = locknum & pli->pli_lock_mask;
   2086 		kmutex_t * const new_lock = pli->pli_locks[lockid];
   2087 		/*
   2088 		 * Set the lock.  If some other thread already did, just use
   2089 		 * the one they assigned.
   2090 		 */
   2091 		lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
   2092 		if (lock == NULL) {
   2093 			lock = new_lock;
   2094 			atomic_inc_uint(&pli->pli_lock_refs[lockid]);
   2095 		}
   2096 	}
   2097 
   2098 	/*
   2099 	 * Now finally provide the lock.
   2100 	 */
   2101 	return lock;
   2102 }
   2103 #else /* !MULTIPROCESSOR */
   2104 void
   2105 pmap_pvlist_lock_init(size_t cache_line_size)
   2106 {
   2107 	mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
   2108 }
   2109 
   2110 #ifdef MODULAR
   2111 kmutex_t *
   2112 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2113 {
   2114 	/*
   2115 	 * We just use a global lock.
   2116 	 */
   2117 	if (__predict_false(mdpg->mdpg_lock == NULL)) {
   2118 		mdpg->mdpg_lock = &pmap_pvlist_mutex;
   2119 	}
   2120 
   2121 	/*
   2122 	 * Now finally provide the lock.
   2123 	 */
   2124 	return mdpg->mdpg_lock;
   2125 }
   2126 #endif /* MODULAR */
   2127 #endif /* !MULTIPROCESSOR */
   2128 
   2129 /*
   2130  * pmap_pv_page_alloc:
   2131  *
   2132  *	Allocate a page for the pv_entry pool.
   2133  */
   2134 void *
   2135 pmap_pv_page_alloc(struct pool *pp, int flags)
   2136 {
   2137 	struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
   2138 	if (pg == NULL)
   2139 		return NULL;
   2140 
   2141 	return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
   2142 }
   2143 
   2144 /*
   2145  * pmap_pv_page_free:
   2146  *
   2147  *	Free a pv_entry pool page.
   2148  */
   2149 void
   2150 pmap_pv_page_free(struct pool *pp, void *v)
   2151 {
   2152 	vaddr_t va = (vaddr_t)v;
   2153 
   2154 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2155 	const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2156 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2157 	KASSERT(pg != NULL);
   2158 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2159 	kpreempt_disable();
   2160 	pmap_md_vca_remove(pg, va, true, true);
   2161 	kpreempt_enable();
   2162 #endif
   2163 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2164 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2165 	uvm_pagefree(pg);
   2166 }
   2167 
   2168 #ifdef PMAP_PREFER
   2169 /*
   2170  * Find first virtual address >= *vap that doesn't cause
   2171  * a cache alias conflict.
   2172  */
   2173 void
   2174 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
   2175 {
   2176 	vsize_t prefer_mask = ptoa(uvmexp.colormask);
   2177 
   2178 	PMAP_COUNT(prefer_requests);
   2179 
   2180 	prefer_mask |= pmap_md_cache_prefer_mask();
   2181 
   2182 	if (prefer_mask) {
   2183 		vaddr_t	va = *vap;
   2184 		vsize_t d = (foff - va) & prefer_mask;
   2185 		if (d) {
   2186 			if (td)
   2187 				*vap = trunc_page(va - ((-d) & prefer_mask));
   2188 			else
   2189 				*vap = round_page(va + d);
   2190 			PMAP_COUNT(prefer_adjustments);
   2191 		}
   2192 	}
   2193 }
   2194 #endif /* PMAP_PREFER */
   2195 
   2196 #ifdef PMAP_MAP_POOLPAGE
   2197 vaddr_t
   2198 pmap_map_poolpage(paddr_t pa)
   2199 {
   2200 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2201 	KASSERT(pg);
   2202 
   2203 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   2204 	KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
   2205 
   2206 	pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
   2207 
   2208 	return pmap_md_map_poolpage(pa, NBPG);
   2209 }
   2210 
   2211 paddr_t
   2212 pmap_unmap_poolpage(vaddr_t va)
   2213 {
   2214 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2215 	paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2216 
   2217 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2218 	KASSERT(pg != NULL);
   2219 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2220 
   2221 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2222 	pmap_md_unmap_poolpage(va, NBPG);
   2223 
   2224 	return pa;
   2225 }
   2226 #endif /* PMAP_MAP_POOLPAGE */
   2227