pmap.c revision 1.49 1 /* $NetBSD: pmap.c,v 1.49 2020/04/12 15:36:18 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.49 2020/04/12 15:36:18 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105
106 #include <sys/atomic.h>
107 #include <sys/buf.h>
108 #include <sys/cpu.h>
109 #include <sys/mutex.h>
110 #include <sys/pool.h>
111
112 #include <uvm/uvm.h>
113 #include <uvm/uvm_physseg.h>
114
115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
116 && !defined(PMAP_NO_PV_UNCACHED)
117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
118 PMAP_NO_PV_UNCACHED to be defined
119 #endif
120
121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
123 PMAP_COUNTER(remove_user_calls, "remove user calls");
124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
129
130 PMAP_COUNTER(prefer_requests, "prefer requests");
131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
132
133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
134
135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
139
140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
142
143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
146 PMAP_COUNTER(user_mappings, "user pages mapped");
147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
152 PMAP_COUNTER(mappings, "pages mapped");
153 PMAP_COUNTER(remappings, "pages remapped");
154 PMAP_COUNTER(unmappings, "pages unmapped");
155 PMAP_COUNTER(primary_mappings, "page initial mappings");
156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
157 PMAP_COUNTER(tlb_hit, "page mapping");
158
159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
170
171 PMAP_COUNTER(create, "creates");
172 PMAP_COUNTER(reference, "references");
173 PMAP_COUNTER(dereference, "dereferences");
174 PMAP_COUNTER(destroy, "destroyed");
175 PMAP_COUNTER(activate, "activations");
176 PMAP_COUNTER(deactivate, "deactivations");
177 PMAP_COUNTER(update, "updates");
178 #ifdef MULTIPROCESSOR
179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
180 #endif
181 PMAP_COUNTER(unwire, "unwires");
182 PMAP_COUNTER(copy, "copies");
183 PMAP_COUNTER(clear_modify, "clear_modifies");
184 PMAP_COUNTER(protect, "protects");
185 PMAP_COUNTER(page_protect, "page_protects");
186
187 #define PMAP_ASID_RESERVED 0
188 CTASSERT(PMAP_ASID_RESERVED == 0);
189
190 #ifndef PMAP_SEGTAB_ALIGN
191 #define PMAP_SEGTAB_ALIGN /* nothing */
192 #endif
193 #ifdef _LP64
194 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
195 #endif
196 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
197 #ifdef _LP64
198 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
199 #endif
200 };
201
202 struct pmap_kernel kernel_pmap_store = {
203 .kernel_pmap = {
204 .pm_count = 1,
205 .pm_segtab = &pmap_kern_segtab,
206 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
207 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
208 },
209 };
210
211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
212
213 struct pmap_limits pmap_limits = { /* VA and PA limits */
214 .virtual_start = VM_MIN_KERNEL_ADDRESS,
215 };
216
217 #ifdef UVMHIST
218 static struct kern_history_ent pmapexechistbuf[10000];
219 static struct kern_history_ent pmaphistbuf[10000];
220 UVMHIST_DEFINE(pmapexechist);
221 UVMHIST_DEFINE(pmaphist);
222 #endif
223
224 /*
225 * The pools from which pmap structures and sub-structures are allocated.
226 */
227 struct pool pmap_pmap_pool;
228 struct pool pmap_pv_pool;
229
230 #ifndef PMAP_PV_LOWAT
231 #define PMAP_PV_LOWAT 16
232 #endif
233 int pmap_pv_lowat = PMAP_PV_LOWAT;
234
235 bool pmap_initialized = false;
236 #define PMAP_PAGE_COLOROK_P(a, b) \
237 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
238 u_int pmap_page_colormask;
239
240 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
241
242 #define PMAP_IS_ACTIVE(pm) \
243 ((pm) == pmap_kernel() || \
244 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
245
246 /* Forward function declarations */
247 void pmap_page_remove(struct vm_page *);
248 static void pmap_pvlist_check(struct vm_page_md *);
249 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
250 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
251
252 /*
253 * PV table management functions.
254 */
255 void *pmap_pv_page_alloc(struct pool *, int);
256 void pmap_pv_page_free(struct pool *, void *);
257
258 struct pool_allocator pmap_pv_page_allocator = {
259 pmap_pv_page_alloc, pmap_pv_page_free, 0,
260 };
261
262 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
263 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
264
265 #ifndef PMAP_NEED_TLB_MISS_LOCK
266
267 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
268 #define PMAP_NEED_TLB_MISS_LOCK
269 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
270
271 #endif /* PMAP_NEED_TLB_MISS_LOCK */
272
273 #ifdef PMAP_NEED_TLB_MISS_LOCK
274
275 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
276 #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */
277 #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter()
278 #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit()
279 #else
280 kmutex_t pmap_tlb_miss_lock __cacheline_aligned;
281
282 static void
283 pmap_tlb_miss_lock_init(void)
284 {
285 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
286 }
287
288 static inline void
289 pmap_tlb_miss_lock_enter(void)
290 {
291 mutex_spin_enter(&pmap_tlb_miss_lock);
292 }
293
294 static inline void
295 pmap_tlb_miss_lock_exit(void)
296 {
297 mutex_spin_exit(&pmap_tlb_miss_lock);
298 }
299 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
300
301 #else
302
303 #define pmap_tlb_miss_lock_init() __nothing
304 #define pmap_tlb_miss_lock_enter() __nothing
305 #define pmap_tlb_miss_lock_exit() __nothing
306
307 #endif /* PMAP_NEED_TLB_MISS_LOCK */
308
309 #ifndef MULTIPROCESSOR
310 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
311 #endif
312
313 /*
314 * Debug functions.
315 */
316
317 #ifdef DEBUG
318 static inline void
319 pmap_asid_check(pmap_t pm, const char *func)
320 {
321 if (!PMAP_IS_ACTIVE(pm))
322 return;
323
324 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
325 tlb_asid_t asid = tlb_get_asid();
326 if (asid != pai->pai_asid)
327 panic("%s: inconsistency for active TLB update: %u <-> %u",
328 func, asid, pai->pai_asid);
329 }
330 #endif
331
332 static void
333 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
334 {
335 #ifdef DEBUG
336 if (pmap == pmap_kernel()) {
337 if (sva < VM_MIN_KERNEL_ADDRESS)
338 panic("%s: kva %#"PRIxVADDR" not in range",
339 func, sva);
340 if (eva >= pmap_limits.virtual_end)
341 panic("%s: kva %#"PRIxVADDR" not in range",
342 func, eva);
343 } else {
344 if (eva > VM_MAXUSER_ADDRESS)
345 panic("%s: uva %#"PRIxVADDR" not in range",
346 func, eva);
347 pmap_asid_check(pmap, func);
348 }
349 #endif
350 }
351
352 /*
353 * Misc. functions.
354 */
355
356 bool
357 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
358 {
359 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
360 #ifdef MULTIPROCESSOR
361 for (;;) {
362 u_int old_attr = *attrp;
363 if ((old_attr & clear_attributes) == 0)
364 return false;
365 u_int new_attr = old_attr & ~clear_attributes;
366 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
367 return true;
368 }
369 #else
370 unsigned long old_attr = *attrp;
371 if ((old_attr & clear_attributes) == 0)
372 return false;
373 *attrp &= ~clear_attributes;
374 return true;
375 #endif
376 }
377
378 void
379 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
380 {
381 #ifdef MULTIPROCESSOR
382 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
383 #else
384 mdpg->mdpg_attrs |= set_attributes;
385 #endif
386 }
387
388 static void
389 pmap_page_syncicache(struct vm_page *pg)
390 {
391 #ifndef MULTIPROCESSOR
392 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
393 #endif
394 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
395 pv_entry_t pv = &mdpg->mdpg_first;
396 kcpuset_t *onproc;
397 #ifdef MULTIPROCESSOR
398 kcpuset_create(&onproc, true);
399 KASSERT(onproc != NULL);
400 #else
401 onproc = NULL;
402 #endif
403 VM_PAGEMD_PVLIST_READLOCK(mdpg);
404 pmap_pvlist_check(mdpg);
405
406 if (pv->pv_pmap != NULL) {
407 for (; pv != NULL; pv = pv->pv_next) {
408 #ifdef MULTIPROCESSOR
409 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
410 if (kcpuset_match(onproc, kcpuset_running)) {
411 break;
412 }
413 #else
414 if (pv->pv_pmap == curpmap) {
415 onproc = curcpu()->ci_data.cpu_kcpuset;
416 break;
417 }
418 #endif
419 }
420 }
421 pmap_pvlist_check(mdpg);
422 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
423 kpreempt_disable();
424 pmap_md_page_syncicache(pg, onproc);
425 kpreempt_enable();
426 #ifdef MULTIPROCESSOR
427 kcpuset_destroy(onproc);
428 #endif
429 }
430
431 /*
432 * Define the initial bounds of the kernel virtual address space.
433 */
434 void
435 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
436 {
437
438 *vstartp = pmap_limits.virtual_start;
439 *vendp = pmap_limits.virtual_end;
440 }
441
442 vaddr_t
443 pmap_growkernel(vaddr_t maxkvaddr)
444 {
445 vaddr_t virtual_end = pmap_limits.virtual_end;
446 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
447
448 /*
449 * Reserve PTEs for the new KVA space.
450 */
451 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
452 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
453 }
454
455 /*
456 * Don't exceed VM_MAX_KERNEL_ADDRESS!
457 */
458 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
459 virtual_end = VM_MAX_KERNEL_ADDRESS;
460
461 /*
462 * Update new end.
463 */
464 pmap_limits.virtual_end = virtual_end;
465 return virtual_end;
466 }
467
468 /*
469 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
470 * This function allows for early dynamic memory allocation until the virtual
471 * memory system has been bootstrapped. After that point, either kmem_alloc
472 * or malloc should be used. This function works by stealing pages from the
473 * (to be) managed page pool, then implicitly mapping the pages (by using
474 * their direct mapped addresses) and zeroing them.
475 *
476 * It may be used once the physical memory segments have been pre-loaded
477 * into the vm_physmem[] array. Early memory allocation MUST use this
478 * interface! This cannot be used after vm_page_startup(), and will
479 * generate a panic if tried.
480 *
481 * Note that this memory will never be freed, and in essence it is wired
482 * down.
483 *
484 * We must adjust *vstartp and/or *vendp iff we use address space
485 * from the kernel virtual address range defined by pmap_virtual_space().
486 */
487 vaddr_t
488 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
489 {
490 size_t npgs;
491 paddr_t pa;
492 vaddr_t va;
493
494 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
495
496 size = round_page(size);
497 npgs = atop(size);
498
499 aprint_debug("%s: need %zu pages\n", __func__, npgs);
500
501 for (uvm_physseg_t bank = uvm_physseg_get_first();
502 uvm_physseg_valid_p(bank);
503 bank = uvm_physseg_get_next(bank)) {
504
505 if (uvm.page_init_done == true)
506 panic("pmap_steal_memory: called _after_ bootstrap");
507
508 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
509 __func__, bank,
510 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
511 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
512
513 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
514 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
515 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
516 continue;
517 }
518
519 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
520 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
521 __func__, bank, npgs);
522 continue;
523 }
524
525 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
526 continue;
527 }
528
529 /*
530 * Always try to allocate from the segment with the least
531 * amount of space left.
532 */
533 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
534 if (uvm_physseg_valid_p(maybe_bank) == false
535 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
536 maybe_bank = bank;
537 }
538 }
539
540 if (uvm_physseg_valid_p(maybe_bank)) {
541 const uvm_physseg_t bank = maybe_bank;
542
543 /*
544 * There are enough pages here; steal them!
545 */
546 pa = ptoa(uvm_physseg_get_start(bank));
547 uvm_physseg_unplug(atop(pa), npgs);
548
549 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
550 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
551
552 va = pmap_md_map_poolpage(pa, size);
553 memset((void *)va, 0, size);
554 return va;
555 }
556
557 /*
558 * If we got here, there was no memory left.
559 */
560 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
561 }
562
563 /*
564 * Bootstrap the system enough to run with virtual memory.
565 * (Common routine called by machine-dependent bootstrap code.)
566 */
567 void
568 pmap_bootstrap_common(void)
569 {
570 pmap_tlb_miss_lock_init();
571 }
572
573 /*
574 * Initialize the pmap module.
575 * Called by vm_init, to initialize any structures that the pmap
576 * system needs to map virtual memory.
577 */
578 void
579 pmap_init(void)
580 {
581 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
582 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
583
584 UVMHIST_FUNC(__func__);
585 UVMHIST_CALLED(pmaphist);
586
587 /*
588 * Initialize the segtab lock.
589 */
590 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
591
592 /*
593 * Set a low water mark on the pv_entry pool, so that we are
594 * more likely to have these around even in extreme memory
595 * starvation.
596 */
597 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
598
599 /*
600 * Set the page colormask but allow pmap_md_init to override it.
601 */
602 pmap_page_colormask = ptoa(uvmexp.colormask);
603
604 pmap_md_init();
605
606 /*
607 * Now it is safe to enable pv entry recording.
608 */
609 pmap_initialized = true;
610 }
611
612 /*
613 * Create and return a physical map.
614 *
615 * If the size specified for the map
616 * is zero, the map is an actual physical
617 * map, and may be referenced by the
618 * hardware.
619 *
620 * If the size specified is non-zero,
621 * the map will be used in software only, and
622 * is bounded by that size.
623 */
624 pmap_t
625 pmap_create(void)
626 {
627 UVMHIST_FUNC(__func__);
628 UVMHIST_CALLED(pmaphist);
629 PMAP_COUNT(create);
630
631 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
632 memset(pmap, 0, PMAP_SIZE);
633
634 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
635
636 pmap->pm_count = 1;
637 pmap->pm_minaddr = VM_MIN_ADDRESS;
638 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
639
640 pmap_segtab_init(pmap);
641
642 #ifdef MULTIPROCESSOR
643 kcpuset_create(&pmap->pm_active, true);
644 kcpuset_create(&pmap->pm_onproc, true);
645 KASSERT(pmap->pm_active != NULL);
646 KASSERT(pmap->pm_onproc != NULL);
647 #endif
648
649 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
650 0, 0, 0);
651
652 return pmap;
653 }
654
655 /*
656 * Retire the given physical map from service.
657 * Should only be called if the map contains
658 * no valid mappings.
659 */
660 void
661 pmap_destroy(pmap_t pmap)
662 {
663 UVMHIST_FUNC(__func__);
664 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
665
666 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
667 PMAP_COUNT(dereference);
668 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
669 return;
670 }
671
672 PMAP_COUNT(destroy);
673 KASSERT(pmap->pm_count == 0);
674 kpreempt_disable();
675 pmap_tlb_miss_lock_enter();
676 pmap_tlb_asid_release_all(pmap);
677 pmap_segtab_destroy(pmap, NULL, 0);
678 pmap_tlb_miss_lock_exit();
679
680 #ifdef MULTIPROCESSOR
681 kcpuset_destroy(pmap->pm_active);
682 kcpuset_destroy(pmap->pm_onproc);
683 pmap->pm_active = NULL;
684 pmap->pm_onproc = NULL;
685 #endif
686
687 pool_put(&pmap_pmap_pool, pmap);
688 kpreempt_enable();
689
690 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
691 }
692
693 /*
694 * Add a reference to the specified pmap.
695 */
696 void
697 pmap_reference(pmap_t pmap)
698 {
699 UVMHIST_FUNC(__func__);
700 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
701 PMAP_COUNT(reference);
702
703 if (pmap != NULL) {
704 atomic_inc_uint(&pmap->pm_count);
705 }
706
707 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
708 }
709
710 /*
711 * Make a new pmap (vmspace) active for the given process.
712 */
713 void
714 pmap_activate(struct lwp *l)
715 {
716 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
717
718 UVMHIST_FUNC(__func__);
719 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
720 (uintptr_t)pmap, 0, 0);
721 PMAP_COUNT(activate);
722
723 kpreempt_disable();
724 pmap_tlb_miss_lock_enter();
725 pmap_tlb_asid_acquire(pmap, l);
726 if (l == curlwp) {
727 pmap_segtab_activate(pmap, l);
728 }
729 pmap_tlb_miss_lock_exit();
730 kpreempt_enable();
731
732 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
733 l->l_lid, 0, 0);
734 }
735
736 /*
737 * Remove this page from all physical maps in which it resides.
738 * Reflects back modify bits to the pager.
739 */
740 void
741 pmap_page_remove(struct vm_page *pg)
742 {
743 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
744
745 kpreempt_disable();
746 VM_PAGEMD_PVLIST_LOCK(mdpg);
747 pmap_pvlist_check(mdpg);
748
749 UVMHIST_FUNC(__func__);
750 UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
751 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
752 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
753 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
754 #else
755 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
756 #endif
757 PMAP_COUNT(exec_uncached_remove);
758
759 pv_entry_t pv = &mdpg->mdpg_first;
760 if (pv->pv_pmap == NULL) {
761 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
762 kpreempt_enable();
763 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
764 return;
765 }
766
767 pv_entry_t npv;
768 pv_entry_t pvp = NULL;
769
770 for (; pv != NULL; pv = npv) {
771 npv = pv->pv_next;
772 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
773 if (PV_ISKENTER_P(pv)) {
774 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
775 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
776 pv->pv_va, 0);
777
778 KASSERT(pv->pv_pmap == pmap_kernel());
779
780 /* Assume no more - it'll get fixed if there are */
781 pv->pv_next = NULL;
782
783 /*
784 * pvp is non-null when we already have a PV_KENTER
785 * pv in pvh_first; otherwise we haven't seen a
786 * PV_KENTER pv and we need to copy this one to
787 * pvh_first
788 */
789 if (pvp) {
790 /*
791 * The previous PV_KENTER pv needs to point to
792 * this PV_KENTER pv
793 */
794 pvp->pv_next = pv;
795 } else {
796 pv_entry_t fpv = &mdpg->mdpg_first;
797 *fpv = *pv;
798 KASSERT(fpv->pv_pmap == pmap_kernel());
799 }
800 pvp = pv;
801 continue;
802 }
803 #endif
804 const pmap_t pmap = pv->pv_pmap;
805 vaddr_t va = trunc_page(pv->pv_va);
806 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
807 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
808 pmap_limits.virtual_end);
809 pt_entry_t pte = *ptep;
810 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
811 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
812 pte_value(pte));
813 if (!pte_valid_p(pte))
814 continue;
815 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
816 if (is_kernel_pmap_p) {
817 PMAP_COUNT(remove_kernel_pages);
818 } else {
819 PMAP_COUNT(remove_user_pages);
820 }
821 if (pte_wired_p(pte))
822 pmap->pm_stats.wired_count--;
823 pmap->pm_stats.resident_count--;
824
825 pmap_tlb_miss_lock_enter();
826 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
827 pte_set(ptep, npte);
828 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
829 /*
830 * Flush the TLB for the given address.
831 */
832 pmap_tlb_invalidate_addr(pmap, va);
833 }
834 pmap_tlb_miss_lock_exit();
835
836 /*
837 * non-null means this is a non-pvh_first pv, so we should
838 * free it.
839 */
840 if (pvp) {
841 KASSERT(pvp->pv_pmap == pmap_kernel());
842 KASSERT(pvp->pv_next == NULL);
843 pmap_pv_free(pv);
844 } else {
845 pv->pv_pmap = NULL;
846 pv->pv_next = NULL;
847 }
848 }
849
850 pmap_pvlist_check(mdpg);
851 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
852 kpreempt_enable();
853
854 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
855 }
856
857
858 /*
859 * Make a previously active pmap (vmspace) inactive.
860 */
861 void
862 pmap_deactivate(struct lwp *l)
863 {
864 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
865
866 UVMHIST_FUNC(__func__);
867 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
868 (uintptr_t)pmap, 0, 0);
869 PMAP_COUNT(deactivate);
870
871 kpreempt_disable();
872 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
873 pmap_tlb_miss_lock_enter();
874 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
875 #ifdef _LP64
876 curcpu()->ci_pmap_user_seg0tab = NULL;
877 #endif
878 pmap_tlb_asid_deactivate(pmap);
879 pmap_tlb_miss_lock_exit();
880 kpreempt_enable();
881
882 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
883 l->l_lid, 0, 0);
884 }
885
886 void
887 pmap_update(struct pmap *pmap)
888 {
889 UVMHIST_FUNC(__func__);
890 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
891 PMAP_COUNT(update);
892
893 kpreempt_disable();
894 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
895 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
896 if (pending && pmap_tlb_shootdown_bystanders(pmap))
897 PMAP_COUNT(shootdown_ipis);
898 #endif
899 pmap_tlb_miss_lock_enter();
900 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
901 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
902 #endif /* DEBUG */
903
904 /*
905 * If pmap_remove_all was called, we deactivated ourselves and nuked
906 * our ASID. Now we have to reactivate ourselves.
907 */
908 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
909 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
910 pmap_tlb_asid_acquire(pmap, curlwp);
911 pmap_segtab_activate(pmap, curlwp);
912 }
913 pmap_tlb_miss_lock_exit();
914 kpreempt_enable();
915
916 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
917 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
918 }
919
920 /*
921 * Remove the given range of addresses from the specified map.
922 *
923 * It is assumed that the start and end are properly
924 * rounded to the page size.
925 */
926
927 static bool
928 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
929 uintptr_t flags)
930 {
931 const pt_entry_t npte = flags;
932 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
933
934 UVMHIST_FUNC(__func__);
935 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
936 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
937 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
938 (uintptr_t)ptep, flags, 0, 0);
939
940 KASSERT(kpreempt_disabled());
941
942 for (; sva < eva; sva += NBPG, ptep++) {
943 const pt_entry_t pte = *ptep;
944 if (!pte_valid_p(pte))
945 continue;
946 if (is_kernel_pmap_p) {
947 PMAP_COUNT(remove_kernel_pages);
948 } else {
949 PMAP_COUNT(remove_user_pages);
950 }
951 if (pte_wired_p(pte))
952 pmap->pm_stats.wired_count--;
953 pmap->pm_stats.resident_count--;
954 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
955 if (__predict_true(pg != NULL)) {
956 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
957 }
958 pmap_tlb_miss_lock_enter();
959 pte_set(ptep, npte);
960 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
961
962 /*
963 * Flush the TLB for the given address.
964 */
965 pmap_tlb_invalidate_addr(pmap, sva);
966 }
967 pmap_tlb_miss_lock_exit();
968 }
969
970 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
971
972 return false;
973 }
974
975 void
976 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
977 {
978 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
979 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
980
981 UVMHIST_FUNC(__func__);
982 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
983 (uintptr_t)pmap, sva, eva, 0);
984
985 if (is_kernel_pmap_p) {
986 PMAP_COUNT(remove_kernel_calls);
987 } else {
988 PMAP_COUNT(remove_user_calls);
989 }
990 #ifdef PMAP_FAULTINFO
991 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
992 curpcb->pcb_faultinfo.pfi_repeats = 0;
993 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
994 #endif
995 kpreempt_disable();
996 pmap_addr_range_check(pmap, sva, eva, __func__);
997 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
998 kpreempt_enable();
999
1000 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1001 }
1002
1003 /*
1004 * pmap_page_protect:
1005 *
1006 * Lower the permission for all mappings to a given page.
1007 */
1008 void
1009 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1010 {
1011 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1012 pv_entry_t pv;
1013 vaddr_t va;
1014
1015 UVMHIST_FUNC(__func__);
1016 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1017 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1018 PMAP_COUNT(page_protect);
1019
1020 switch (prot) {
1021 case VM_PROT_READ|VM_PROT_WRITE:
1022 case VM_PROT_ALL:
1023 break;
1024
1025 /* copy_on_write */
1026 case VM_PROT_READ:
1027 case VM_PROT_READ|VM_PROT_EXECUTE:
1028 pv = &mdpg->mdpg_first;
1029 kpreempt_disable();
1030 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1031 pmap_pvlist_check(mdpg);
1032 /*
1033 * Loop over all current mappings setting/clearing as
1034 * appropriate.
1035 */
1036 if (pv->pv_pmap != NULL) {
1037 while (pv != NULL) {
1038 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1039 if (PV_ISKENTER_P(pv)) {
1040 pv = pv->pv_next;
1041 continue;
1042 }
1043 #endif
1044 const pmap_t pmap = pv->pv_pmap;
1045 va = trunc_page(pv->pv_va);
1046 const uintptr_t gen =
1047 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1048 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1049 KASSERT(pv->pv_pmap == pmap);
1050 pmap_update(pmap);
1051 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1052 pv = &mdpg->mdpg_first;
1053 } else {
1054 pv = pv->pv_next;
1055 }
1056 pmap_pvlist_check(mdpg);
1057 }
1058 }
1059 pmap_pvlist_check(mdpg);
1060 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1061 kpreempt_enable();
1062 break;
1063
1064 /* remove_all */
1065 default:
1066 pmap_page_remove(pg);
1067 }
1068
1069 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1070 }
1071
1072 static bool
1073 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1074 uintptr_t flags)
1075 {
1076 const vm_prot_t prot = (flags & VM_PROT_ALL);
1077
1078 UVMHIST_FUNC(__func__);
1079 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1080 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1081 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1082 (uintptr_t)ptep, flags, 0, 0);
1083
1084 KASSERT(kpreempt_disabled());
1085 /*
1086 * Change protection on every valid mapping within this segment.
1087 */
1088 for (; sva < eva; sva += NBPG, ptep++) {
1089 pt_entry_t pte = *ptep;
1090 if (!pte_valid_p(pte))
1091 continue;
1092 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1093 if (pg != NULL && pte_modified_p(pte)) {
1094 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1095 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1096 KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1097 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1098 if (VM_PAGEMD_CACHED_P(mdpg)) {
1099 #endif
1100 UVMHIST_LOG(pmapexechist,
1101 "pg %#jx (pa %#jx): "
1102 "syncicached performed",
1103 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1104 0, 0);
1105 pmap_page_syncicache(pg);
1106 PMAP_COUNT(exec_synced_protect);
1107 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1108 }
1109 #endif
1110 }
1111 }
1112 pte = pte_prot_downgrade(pte, prot);
1113 if (*ptep != pte) {
1114 pmap_tlb_miss_lock_enter();
1115 pte_set(ptep, pte);
1116 /*
1117 * Update the TLB if needed.
1118 */
1119 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1120 pmap_tlb_miss_lock_exit();
1121 }
1122 }
1123
1124 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1125
1126 return false;
1127 }
1128
1129 /*
1130 * Set the physical protection on the
1131 * specified range of this map as requested.
1132 */
1133 void
1134 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1135 {
1136 UVMHIST_FUNC(__func__);
1137 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1138 (uintptr_t)pmap, sva, eva, prot);
1139 PMAP_COUNT(protect);
1140
1141 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1142 pmap_remove(pmap, sva, eva);
1143 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1144 return;
1145 }
1146
1147 /*
1148 * Change protection on every valid mapping within this segment.
1149 */
1150 kpreempt_disable();
1151 pmap_addr_range_check(pmap, sva, eva, __func__);
1152 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1153 kpreempt_enable();
1154
1155 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1156 }
1157
1158 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1159 /*
1160 * pmap_page_cache:
1161 *
1162 * Change all mappings of a managed page to cached/uncached.
1163 */
1164 void
1165 pmap_page_cache(struct vm_page *pg, bool cached)
1166 {
1167 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1168
1169 UVMHIST_FUNC(__func__);
1170 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1171 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1172
1173 KASSERT(kpreempt_disabled());
1174 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1175
1176 if (cached) {
1177 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1178 PMAP_COUNT(page_cache_restorations);
1179 } else {
1180 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1181 PMAP_COUNT(page_cache_evictions);
1182 }
1183
1184 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1185 pmap_t pmap = pv->pv_pmap;
1186 vaddr_t va = trunc_page(pv->pv_va);
1187
1188 KASSERT(pmap != NULL);
1189 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1190 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1191 if (ptep == NULL)
1192 continue;
1193 pt_entry_t pte = *ptep;
1194 if (pte_valid_p(pte)) {
1195 pte = pte_cached_change(pte, cached);
1196 pmap_tlb_miss_lock_enter();
1197 pte_set(ptep, pte);
1198 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1199 pmap_tlb_miss_lock_exit();
1200 }
1201 }
1202
1203 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1204 }
1205 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1206
1207 /*
1208 * Insert the given physical page (p) at
1209 * the specified virtual address (v) in the
1210 * target physical map with the protection requested.
1211 *
1212 * If specified, the page will be wired down, meaning
1213 * that the related pte can not be reclaimed.
1214 *
1215 * NB: This is the only routine which MAY NOT lazy-evaluate
1216 * or lose information. That is, this routine must actually
1217 * insert this page into the given map NOW.
1218 */
1219 int
1220 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1221 {
1222 const bool wired = (flags & PMAP_WIRED) != 0;
1223 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1224 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1225 #ifdef UVMHIST
1226 struct kern_history * const histp =
1227 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1228 #endif
1229
1230 UVMHIST_FUNC(__func__);
1231 UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1232 (uintptr_t)pmap, va, pa, 0);
1233 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1234
1235 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1236 if (is_kernel_pmap_p) {
1237 PMAP_COUNT(kernel_mappings);
1238 if (!good_color)
1239 PMAP_COUNT(kernel_mappings_bad);
1240 } else {
1241 PMAP_COUNT(user_mappings);
1242 if (!good_color)
1243 PMAP_COUNT(user_mappings_bad);
1244 }
1245 pmap_addr_range_check(pmap, va, va, __func__);
1246
1247 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1248 VM_PROT_READ, prot);
1249
1250 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1251 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1252
1253 if (pg) {
1254 /* Set page referenced/modified status based on flags */
1255 if (flags & VM_PROT_WRITE) {
1256 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1257 } else if (flags & VM_PROT_ALL) {
1258 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1259 }
1260
1261 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1262 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1263 flags |= PMAP_NOCACHE;
1264 PMAP_COUNT(uncached_mappings);
1265 }
1266 #endif
1267
1268 PMAP_COUNT(managed_mappings);
1269 } else {
1270 /*
1271 * Assumption: if it is not part of our managed memory
1272 * then it must be device memory which may be volatile.
1273 */
1274 if ((flags & PMAP_CACHE_MASK) == 0)
1275 flags |= PMAP_NOCACHE;
1276 PMAP_COUNT(unmanaged_mappings);
1277 }
1278
1279 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1280 is_kernel_pmap_p);
1281
1282 kpreempt_disable();
1283
1284 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1285 if (__predict_false(ptep == NULL)) {
1286 kpreempt_enable();
1287 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1288 return ENOMEM;
1289 }
1290 const pt_entry_t opte = *ptep;
1291 const bool resident = pte_valid_p(opte);
1292 bool remap = false;
1293 if (resident) {
1294 if (pte_to_paddr(opte) != pa) {
1295 KASSERT(!is_kernel_pmap_p);
1296 const pt_entry_t rpte = pte_nv_entry(false);
1297
1298 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1299 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1300 rpte);
1301 PMAP_COUNT(user_mappings_changed);
1302 remap = true;
1303 }
1304 update_flags |= PMAP_TLB_NEED_IPI;
1305 }
1306
1307 if (!resident || remap) {
1308 pmap->pm_stats.resident_count++;
1309 }
1310
1311 /* Done after case that may sleep/return. */
1312 if (pg)
1313 pmap_enter_pv(pmap, va, pg, &npte, 0);
1314
1315 /*
1316 * Now validate mapping with desired protection/wiring.
1317 * Assume uniform modified and referenced status for all
1318 * MIPS pages in a MACH page.
1319 */
1320 if (wired) {
1321 pmap->pm_stats.wired_count++;
1322 npte = pte_wire_entry(npte);
1323 }
1324
1325 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1326 pte_value(npte), pa, 0, 0);
1327
1328 KASSERT(pte_valid_p(npte));
1329
1330 pmap_tlb_miss_lock_enter();
1331 pte_set(ptep, npte);
1332 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1333 pmap_tlb_miss_lock_exit();
1334 kpreempt_enable();
1335
1336 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1337 KASSERT(mdpg != NULL);
1338 PMAP_COUNT(exec_mappings);
1339 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1340 if (!pte_deferred_exec_p(npte)) {
1341 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1342 "immediate syncicache",
1343 va, (uintptr_t)pg, 0, 0);
1344 pmap_page_syncicache(pg);
1345 pmap_page_set_attributes(mdpg,
1346 VM_PAGEMD_EXECPAGE);
1347 PMAP_COUNT(exec_synced_mappings);
1348 } else {
1349 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1350 "syncicache: pte %#jx",
1351 va, (uintptr_t)pg, npte, 0);
1352 }
1353 } else {
1354 UVMHIST_LOG(*histp,
1355 "va=%#jx pg %#jx: no syncicache cached %jd",
1356 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1357 }
1358 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1359 KASSERT(mdpg != NULL);
1360 KASSERT(prot & VM_PROT_WRITE);
1361 PMAP_COUNT(exec_mappings);
1362 pmap_page_syncicache(pg);
1363 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1364 UVMHIST_LOG(*histp,
1365 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1366 va, (uintptr_t)pg, 0, 0);
1367 }
1368
1369 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1370 return 0;
1371 }
1372
1373 void
1374 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1375 {
1376 pmap_t pmap = pmap_kernel();
1377 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1378 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1379
1380 UVMHIST_FUNC(__func__);
1381 UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1382 va, pa, prot, flags);
1383 PMAP_COUNT(kenter_pa);
1384
1385 if (mdpg == NULL) {
1386 PMAP_COUNT(kenter_pa_unmanaged);
1387 if ((flags & PMAP_CACHE_MASK) == 0)
1388 flags |= PMAP_NOCACHE;
1389 } else {
1390 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1391 PMAP_COUNT(kenter_pa_bad);
1392 }
1393
1394 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1395 kpreempt_disable();
1396 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1397 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1398 pmap_limits.virtual_end);
1399 KASSERT(!pte_valid_p(*ptep));
1400
1401 /*
1402 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1403 */
1404 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1405 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1406 && pmap_md_virtual_cache_aliasing_p()) {
1407 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1408 }
1409 #endif
1410
1411 /*
1412 * We have the option to force this mapping into the TLB but we
1413 * don't. Instead let the next reference to the page do it.
1414 */
1415 pmap_tlb_miss_lock_enter();
1416 pte_set(ptep, npte);
1417 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1418 pmap_tlb_miss_lock_exit();
1419 kpreempt_enable();
1420 #if DEBUG > 1
1421 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1422 if (((long *)va)[i] != ((long *)pa)[i])
1423 panic("%s: contents (%lx) of va %#"PRIxVADDR
1424 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1425 ((long *)va)[i], va, ((long *)pa)[i], pa);
1426 }
1427 #endif
1428
1429 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1430 0);
1431 }
1432
1433 /*
1434 * Remove the given range of addresses from the kernel map.
1435 *
1436 * It is assumed that the start and end are properly
1437 * rounded to the page size.
1438 */
1439
1440 static bool
1441 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1442 uintptr_t flags)
1443 {
1444 const pt_entry_t new_pte = pte_nv_entry(true);
1445
1446 UVMHIST_FUNC(__func__);
1447 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1448 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1449
1450 KASSERT(kpreempt_disabled());
1451
1452 for (; sva < eva; sva += NBPG, ptep++) {
1453 pt_entry_t pte = *ptep;
1454 if (!pte_valid_p(pte))
1455 continue;
1456
1457 PMAP_COUNT(kremove_pages);
1458 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1459 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1460 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1461 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1462 }
1463 #endif
1464
1465 pmap_tlb_miss_lock_enter();
1466 pte_set(ptep, new_pte);
1467 pmap_tlb_invalidate_addr(pmap, sva);
1468 pmap_tlb_miss_lock_exit();
1469 }
1470
1471 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1472
1473 return false;
1474 }
1475
1476 void
1477 pmap_kremove(vaddr_t va, vsize_t len)
1478 {
1479 const vaddr_t sva = trunc_page(va);
1480 const vaddr_t eva = round_page(va + len);
1481
1482 UVMHIST_FUNC(__func__);
1483 UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1484
1485 kpreempt_disable();
1486 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1487 kpreempt_enable();
1488
1489 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1490 }
1491
1492 bool
1493 pmap_remove_all(struct pmap *pmap)
1494 {
1495 UVMHIST_FUNC(__func__);
1496 UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1497
1498 KASSERT(pmap != pmap_kernel());
1499
1500 kpreempt_disable();
1501 /*
1502 * Free all of our ASIDs which means we can skip doing all the
1503 * tlb_invalidate_addrs().
1504 */
1505 pmap_tlb_miss_lock_enter();
1506 #ifdef MULTIPROCESSOR
1507 // This should be the last CPU with this pmap onproc
1508 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1509 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1510 #endif
1511 pmap_tlb_asid_deactivate(pmap);
1512 #ifdef MULTIPROCESSOR
1513 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1514 #endif
1515 pmap_tlb_asid_release_all(pmap);
1516 pmap_tlb_miss_lock_exit();
1517 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1518
1519 #ifdef PMAP_FAULTINFO
1520 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1521 curpcb->pcb_faultinfo.pfi_repeats = 0;
1522 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1523 #endif
1524 kpreempt_enable();
1525
1526 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1527 return false;
1528 }
1529
1530 /*
1531 * Routine: pmap_unwire
1532 * Function: Clear the wired attribute for a map/virtual-address
1533 * pair.
1534 * In/out conditions:
1535 * The mapping must already exist in the pmap.
1536 */
1537 void
1538 pmap_unwire(pmap_t pmap, vaddr_t va)
1539 {
1540 UVMHIST_FUNC(__func__);
1541 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1542 0, 0);
1543 PMAP_COUNT(unwire);
1544
1545 /*
1546 * Don't need to flush the TLB since PG_WIRED is only in software.
1547 */
1548 kpreempt_disable();
1549 pmap_addr_range_check(pmap, va, va, __func__);
1550 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1551 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1552 pmap, va);
1553 pt_entry_t pte = *ptep;
1554 KASSERTMSG(pte_valid_p(pte),
1555 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1556 pmap, va, pte_value(pte), ptep);
1557
1558 if (pte_wired_p(pte)) {
1559 pmap_tlb_miss_lock_enter();
1560 pte_set(ptep, pte_unwire_entry(pte));
1561 pmap_tlb_miss_lock_exit();
1562 pmap->pm_stats.wired_count--;
1563 }
1564 #ifdef DIAGNOSTIC
1565 else {
1566 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1567 __func__, pmap, va);
1568 }
1569 #endif
1570 kpreempt_enable();
1571
1572 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1573 }
1574
1575 /*
1576 * Routine: pmap_extract
1577 * Function:
1578 * Extract the physical page address associated
1579 * with the given map/virtual_address pair.
1580 */
1581 bool
1582 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1583 {
1584 paddr_t pa;
1585
1586 if (pmap == pmap_kernel()) {
1587 if (pmap_md_direct_mapped_vaddr_p(va)) {
1588 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1589 goto done;
1590 }
1591 if (pmap_md_io_vaddr_p(va))
1592 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1593
1594 if (va >= pmap_limits.virtual_end)
1595 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1596 __func__, va);
1597 }
1598 kpreempt_disable();
1599 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1600 if (ptep == NULL || !pte_valid_p(*ptep)) {
1601 kpreempt_enable();
1602 return false;
1603 }
1604 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1605 kpreempt_enable();
1606 done:
1607 if (pap != NULL) {
1608 *pap = pa;
1609 }
1610 return true;
1611 }
1612
1613 /*
1614 * Copy the range specified by src_addr/len
1615 * from the source map to the range dst_addr/len
1616 * in the destination map.
1617 *
1618 * This routine is only advisory and need not do anything.
1619 */
1620 void
1621 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1622 vaddr_t src_addr)
1623 {
1624 UVMHIST_FUNC(__func__);
1625 UVMHIST_CALLED(pmaphist);
1626 PMAP_COUNT(copy);
1627 }
1628
1629 /*
1630 * pmap_clear_reference:
1631 *
1632 * Clear the reference bit on the specified physical page.
1633 */
1634 bool
1635 pmap_clear_reference(struct vm_page *pg)
1636 {
1637 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1638
1639 UVMHIST_FUNC(__func__);
1640 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1641 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1642
1643 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1644
1645 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1646
1647 return rv;
1648 }
1649
1650 /*
1651 * pmap_is_referenced:
1652 *
1653 * Return whether or not the specified physical page is referenced
1654 * by any physical maps.
1655 */
1656 bool
1657 pmap_is_referenced(struct vm_page *pg)
1658 {
1659 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1660 }
1661
1662 /*
1663 * Clear the modify bits on the specified physical page.
1664 */
1665 bool
1666 pmap_clear_modify(struct vm_page *pg)
1667 {
1668 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1669 pv_entry_t pv = &mdpg->mdpg_first;
1670 pv_entry_t pv_next;
1671
1672 UVMHIST_FUNC(__func__);
1673 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1674 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1675 PMAP_COUNT(clear_modify);
1676
1677 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1678 if (pv->pv_pmap == NULL) {
1679 UVMHIST_LOG(pmapexechist,
1680 "pg %#jx (pa %#jx): execpage cleared",
1681 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1682 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1683 PMAP_COUNT(exec_uncached_clear_modify);
1684 } else {
1685 UVMHIST_LOG(pmapexechist,
1686 "pg %#jx (pa %#jx): syncicache performed",
1687 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1688 pmap_page_syncicache(pg);
1689 PMAP_COUNT(exec_synced_clear_modify);
1690 }
1691 }
1692 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1693 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1694 return false;
1695 }
1696 if (pv->pv_pmap == NULL) {
1697 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1698 return true;
1699 }
1700
1701 /*
1702 * remove write access from any pages that are dirty
1703 * so we can tell if they are written to again later.
1704 * flush the VAC first if there is one.
1705 */
1706 kpreempt_disable();
1707 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1708 pmap_pvlist_check(mdpg);
1709 for (; pv != NULL; pv = pv_next) {
1710 pmap_t pmap = pv->pv_pmap;
1711 vaddr_t va = trunc_page(pv->pv_va);
1712
1713 pv_next = pv->pv_next;
1714 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1715 if (PV_ISKENTER_P(pv))
1716 continue;
1717 #endif
1718 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1719 KASSERT(ptep);
1720 pt_entry_t pte = pte_prot_nowrite(*ptep);
1721 if (*ptep == pte) {
1722 continue;
1723 }
1724 KASSERT(pte_valid_p(pte));
1725 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1726 pmap_tlb_miss_lock_enter();
1727 pte_set(ptep, pte);
1728 pmap_tlb_invalidate_addr(pmap, va);
1729 pmap_tlb_miss_lock_exit();
1730 pmap_update(pmap);
1731 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1732 /*
1733 * The list changed! So restart from the beginning.
1734 */
1735 pv_next = &mdpg->mdpg_first;
1736 pmap_pvlist_check(mdpg);
1737 }
1738 }
1739 pmap_pvlist_check(mdpg);
1740 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1741 kpreempt_enable();
1742
1743 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1744 return true;
1745 }
1746
1747 /*
1748 * pmap_is_modified:
1749 *
1750 * Return whether or not the specified physical page is modified
1751 * by any physical maps.
1752 */
1753 bool
1754 pmap_is_modified(struct vm_page *pg)
1755 {
1756 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1757 }
1758
1759 /*
1760 * pmap_set_modified:
1761 *
1762 * Sets the page modified reference bit for the specified page.
1763 */
1764 void
1765 pmap_set_modified(paddr_t pa)
1766 {
1767 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1768 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1769 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1770 }
1771
1772 /******************** pv_entry management ********************/
1773
1774 static void
1775 pmap_pvlist_check(struct vm_page_md *mdpg)
1776 {
1777 #ifdef DEBUG
1778 pv_entry_t pv = &mdpg->mdpg_first;
1779 if (pv->pv_pmap != NULL) {
1780 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1781 const u_int colormask = uvmexp.colormask;
1782 u_int colors = 0;
1783 #endif
1784 for (; pv != NULL; pv = pv->pv_next) {
1785 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1786 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1787 colors |= __BIT(atop(pv->pv_va) & colormask);
1788 #endif
1789 }
1790 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1791 // Assert that if there is more than 1 color mapped, that the
1792 // page is uncached.
1793 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1794 || colors == 0 || (colors & (colors-1)) == 0
1795 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1796 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1797 #endif
1798 } else {
1799 KASSERT(pv->pv_next == NULL);
1800 }
1801 #endif /* DEBUG */
1802 }
1803
1804 /*
1805 * Enter the pmap and virtual address into the
1806 * physical to virtual map table.
1807 */
1808 void
1809 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1810 u_int flags)
1811 {
1812 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1813 pv_entry_t pv, npv, apv;
1814 #ifdef UVMHIST
1815 bool first = false;
1816 #endif
1817
1818 UVMHIST_FUNC(__func__);
1819 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1820 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1821 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1822 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1823
1824 KASSERT(kpreempt_disabled());
1825 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1826 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1827 "va %#"PRIxVADDR, va);
1828
1829 apv = NULL;
1830 VM_PAGEMD_PVLIST_LOCK(mdpg);
1831 again:
1832 pv = &mdpg->mdpg_first;
1833 pmap_pvlist_check(mdpg);
1834 if (pv->pv_pmap == NULL) {
1835 KASSERT(pv->pv_next == NULL);
1836 /*
1837 * No entries yet, use header as the first entry
1838 */
1839 PMAP_COUNT(primary_mappings);
1840 PMAP_COUNT(mappings);
1841 #ifdef UVMHIST
1842 first = true;
1843 #endif
1844 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1845 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1846 // If the new mapping has an incompatible color the last
1847 // mapping of this page, clean the page before using it.
1848 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1849 pmap_md_vca_clean(pg, PMAP_WBINV);
1850 }
1851 #endif
1852 pv->pv_pmap = pmap;
1853 pv->pv_va = va | flags;
1854 } else {
1855 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1856 if (pmap_md_vca_add(pg, va, nptep)) {
1857 goto again;
1858 }
1859 #endif
1860
1861 /*
1862 * There is at least one other VA mapping this page.
1863 * Place this entry after the header.
1864 *
1865 * Note: the entry may already be in the table if
1866 * we are only changing the protection bits.
1867 */
1868
1869 #ifdef PARANOIADIAG
1870 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1871 #endif
1872 for (npv = pv; npv; npv = npv->pv_next) {
1873 if (pmap == npv->pv_pmap
1874 && va == trunc_page(npv->pv_va)) {
1875 #ifdef PARANOIADIAG
1876 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1877 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1878 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1879 printf("%s: found va %#"PRIxVADDR
1880 " pa %#"PRIxPADDR
1881 " in pv_table but != %#"PRIxPTE"\n",
1882 __func__, va, pa, pte_value(pte));
1883 #endif
1884 PMAP_COUNT(remappings);
1885 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1886 if (__predict_false(apv != NULL))
1887 pmap_pv_free(apv);
1888
1889 UVMHIST_LOG(pmaphist,
1890 " <-- done pv=%#jx (reused)",
1891 (uintptr_t)pv, 0, 0, 0);
1892 return;
1893 }
1894 }
1895 if (__predict_true(apv == NULL)) {
1896 /*
1897 * To allocate a PV, we have to release the PVLIST lock
1898 * so get the page generation. We allocate the PV, and
1899 * then reacquire the lock.
1900 */
1901 pmap_pvlist_check(mdpg);
1902 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1903
1904 apv = (pv_entry_t)pmap_pv_alloc();
1905 if (apv == NULL)
1906 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1907
1908 /*
1909 * If the generation has changed, then someone else
1910 * tinkered with this page so we should start over.
1911 */
1912 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1913 goto again;
1914 }
1915 npv = apv;
1916 apv = NULL;
1917 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1918 /*
1919 * If need to deal with virtual cache aliases, keep mappings
1920 * in the kernel pmap at the head of the list. This allows
1921 * the VCA code to easily use them for cache operations if
1922 * present.
1923 */
1924 pmap_t kpmap = pmap_kernel();
1925 if (pmap != kpmap) {
1926 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1927 pv = pv->pv_next;
1928 }
1929 }
1930 #endif
1931 npv->pv_va = va | flags;
1932 npv->pv_pmap = pmap;
1933 npv->pv_next = pv->pv_next;
1934 pv->pv_next = npv;
1935 PMAP_COUNT(mappings);
1936 }
1937 pmap_pvlist_check(mdpg);
1938 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1939 if (__predict_false(apv != NULL))
1940 pmap_pv_free(apv);
1941
1942 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1943 first, 0, 0);
1944 }
1945
1946 /*
1947 * Remove a physical to virtual address translation.
1948 * If cache was inhibited on this page, and there are no more cache
1949 * conflicts, restore caching.
1950 * Flush the cache if the last page is removed (should always be cached
1951 * at this point).
1952 */
1953 void
1954 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1955 {
1956 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1957 pv_entry_t pv, npv;
1958 bool last;
1959
1960 UVMHIST_FUNC(__func__);
1961 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1962 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1963 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1964
1965 KASSERT(kpreempt_disabled());
1966 KASSERT((va & PAGE_MASK) == 0);
1967 pv = &mdpg->mdpg_first;
1968
1969 VM_PAGEMD_PVLIST_LOCK(mdpg);
1970 pmap_pvlist_check(mdpg);
1971
1972 /*
1973 * If it is the first entry on the list, it is actually
1974 * in the header and we must copy the following entry up
1975 * to the header. Otherwise we must search the list for
1976 * the entry. In either case we free the now unused entry.
1977 */
1978
1979 last = false;
1980 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1981 npv = pv->pv_next;
1982 if (npv) {
1983 *pv = *npv;
1984 KASSERT(pv->pv_pmap != NULL);
1985 } else {
1986 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1987 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1988 #endif
1989 pv->pv_pmap = NULL;
1990 last = true; /* Last mapping removed */
1991 }
1992 PMAP_COUNT(remove_pvfirst);
1993 } else {
1994 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1995 PMAP_COUNT(remove_pvsearch);
1996 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1997 break;
1998 }
1999 if (npv) {
2000 pv->pv_next = npv->pv_next;
2001 }
2002 }
2003
2004 pmap_pvlist_check(mdpg);
2005 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2006
2007 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2008 pmap_md_vca_remove(pg, va, dirty, last);
2009 #endif
2010
2011 /*
2012 * Free the pv_entry if needed.
2013 */
2014 if (npv)
2015 pmap_pv_free(npv);
2016 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2017 if (last) {
2018 /*
2019 * If this was the page's last mapping, we no longer
2020 * care about its execness.
2021 */
2022 UVMHIST_LOG(pmapexechist,
2023 "pg %#jx (pa %#jx)last %ju: execpage cleared",
2024 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2025 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2026 PMAP_COUNT(exec_uncached_remove);
2027 } else {
2028 /*
2029 * Someone still has it mapped as an executable page
2030 * so we must sync it.
2031 */
2032 UVMHIST_LOG(pmapexechist,
2033 "pg %#jx (pa %#jx) last %ju: performed syncicache",
2034 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2035 pmap_page_syncicache(pg);
2036 PMAP_COUNT(exec_synced_remove);
2037 }
2038 }
2039
2040 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2041 }
2042
2043 #if defined(MULTIPROCESSOR)
2044 struct pmap_pvlist_info {
2045 kmutex_t *pli_locks[PAGE_SIZE / 32];
2046 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2047 volatile u_int pli_lock_index;
2048 u_int pli_lock_mask;
2049 } pmap_pvlist_info;
2050
2051 void
2052 pmap_pvlist_lock_init(size_t cache_line_size)
2053 {
2054 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2055 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2056 vaddr_t lock_va = lock_page;
2057 if (sizeof(kmutex_t) > cache_line_size) {
2058 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2059 }
2060 const size_t nlocks = PAGE_SIZE / cache_line_size;
2061 KASSERT((nlocks & (nlocks - 1)) == 0);
2062 /*
2063 * Now divide the page into a number of mutexes, one per cacheline.
2064 */
2065 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2066 kmutex_t * const lock = (kmutex_t *)lock_va;
2067 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2068 pli->pli_locks[i] = lock;
2069 }
2070 pli->pli_lock_mask = nlocks - 1;
2071 }
2072
2073 kmutex_t *
2074 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2075 {
2076 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2077 kmutex_t *lock = mdpg->mdpg_lock;
2078
2079 /*
2080 * Allocate a lock on an as-needed basis. This will hopefully give us
2081 * semi-random distribution not based on page color.
2082 */
2083 if (__predict_false(lock == NULL)) {
2084 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2085 size_t lockid = locknum & pli->pli_lock_mask;
2086 kmutex_t * const new_lock = pli->pli_locks[lockid];
2087 /*
2088 * Set the lock. If some other thread already did, just use
2089 * the one they assigned.
2090 */
2091 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2092 if (lock == NULL) {
2093 lock = new_lock;
2094 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2095 }
2096 }
2097
2098 /*
2099 * Now finally provide the lock.
2100 */
2101 return lock;
2102 }
2103 #else /* !MULTIPROCESSOR */
2104 void
2105 pmap_pvlist_lock_init(size_t cache_line_size)
2106 {
2107 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2108 }
2109
2110 #ifdef MODULAR
2111 kmutex_t *
2112 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2113 {
2114 /*
2115 * We just use a global lock.
2116 */
2117 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2118 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2119 }
2120
2121 /*
2122 * Now finally provide the lock.
2123 */
2124 return mdpg->mdpg_lock;
2125 }
2126 #endif /* MODULAR */
2127 #endif /* !MULTIPROCESSOR */
2128
2129 /*
2130 * pmap_pv_page_alloc:
2131 *
2132 * Allocate a page for the pv_entry pool.
2133 */
2134 void *
2135 pmap_pv_page_alloc(struct pool *pp, int flags)
2136 {
2137 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2138 if (pg == NULL)
2139 return NULL;
2140
2141 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2142 }
2143
2144 /*
2145 * pmap_pv_page_free:
2146 *
2147 * Free a pv_entry pool page.
2148 */
2149 void
2150 pmap_pv_page_free(struct pool *pp, void *v)
2151 {
2152 vaddr_t va = (vaddr_t)v;
2153
2154 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2155 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2156 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2157 KASSERT(pg != NULL);
2158 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2159 kpreempt_disable();
2160 pmap_md_vca_remove(pg, va, true, true);
2161 kpreempt_enable();
2162 #endif
2163 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2164 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2165 uvm_pagefree(pg);
2166 }
2167
2168 #ifdef PMAP_PREFER
2169 /*
2170 * Find first virtual address >= *vap that doesn't cause
2171 * a cache alias conflict.
2172 */
2173 void
2174 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2175 {
2176 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2177
2178 PMAP_COUNT(prefer_requests);
2179
2180 prefer_mask |= pmap_md_cache_prefer_mask();
2181
2182 if (prefer_mask) {
2183 vaddr_t va = *vap;
2184 vsize_t d = (foff - va) & prefer_mask;
2185 if (d) {
2186 if (td)
2187 *vap = trunc_page(va - ((-d) & prefer_mask));
2188 else
2189 *vap = round_page(va + d);
2190 PMAP_COUNT(prefer_adjustments);
2191 }
2192 }
2193 }
2194 #endif /* PMAP_PREFER */
2195
2196 #ifdef PMAP_MAP_POOLPAGE
2197 vaddr_t
2198 pmap_map_poolpage(paddr_t pa)
2199 {
2200 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2201 KASSERT(pg);
2202
2203 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2204 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2205
2206 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2207
2208 return pmap_md_map_poolpage(pa, NBPG);
2209 }
2210
2211 paddr_t
2212 pmap_unmap_poolpage(vaddr_t va)
2213 {
2214 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2215 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2216
2217 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2218 KASSERT(pg != NULL);
2219 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2220
2221 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2222 pmap_md_unmap_poolpage(va, NBPG);
2223
2224 return pa;
2225 }
2226 #endif /* PMAP_MAP_POOLPAGE */
2227