pmap.c revision 1.54 1 /* $NetBSD: pmap.c,v 1.54 2020/08/19 07:29:01 simonb Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.54 2020/08/19 07:29:01 simonb Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105
106 #include <sys/atomic.h>
107 #include <sys/buf.h>
108 #include <sys/cpu.h>
109 #include <sys/mutex.h>
110 #include <sys/pool.h>
111
112 #include <uvm/uvm.h>
113 #include <uvm/uvm_physseg.h>
114
115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
116 && !defined(PMAP_NO_PV_UNCACHED)
117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
118 PMAP_NO_PV_UNCACHED to be defined
119 #endif
120
121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
123 PMAP_COUNTER(remove_user_calls, "remove user calls");
124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
129
130 PMAP_COUNTER(prefer_requests, "prefer requests");
131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
132
133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
134
135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
139
140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
142
143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
146 PMAP_COUNTER(user_mappings, "user pages mapped");
147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
152 PMAP_COUNTER(mappings, "pages mapped");
153 PMAP_COUNTER(remappings, "pages remapped");
154 PMAP_COUNTER(unmappings, "pages unmapped");
155 PMAP_COUNTER(primary_mappings, "page initial mappings");
156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
157 PMAP_COUNTER(tlb_hit, "page mapping");
158
159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
170
171 PMAP_COUNTER(create, "creates");
172 PMAP_COUNTER(reference, "references");
173 PMAP_COUNTER(dereference, "dereferences");
174 PMAP_COUNTER(destroy, "destroyed");
175 PMAP_COUNTER(activate, "activations");
176 PMAP_COUNTER(deactivate, "deactivations");
177 PMAP_COUNTER(update, "updates");
178 #ifdef MULTIPROCESSOR
179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
180 #endif
181 PMAP_COUNTER(unwire, "unwires");
182 PMAP_COUNTER(copy, "copies");
183 PMAP_COUNTER(clear_modify, "clear_modifies");
184 PMAP_COUNTER(protect, "protects");
185 PMAP_COUNTER(page_protect, "page_protects");
186
187 #define PMAP_ASID_RESERVED 0
188 CTASSERT(PMAP_ASID_RESERVED == 0);
189
190 #ifndef PMAP_SEGTAB_ALIGN
191 #define PMAP_SEGTAB_ALIGN /* nothing */
192 #endif
193 #ifdef _LP64
194 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
195 #endif
196 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
197 #ifdef _LP64
198 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
199 #endif
200 };
201
202 struct pmap_kernel kernel_pmap_store = {
203 .kernel_pmap = {
204 .pm_count = 1,
205 .pm_segtab = &pmap_kern_segtab,
206 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
207 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
208 },
209 };
210
211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
212
213 struct pmap_limits pmap_limits = { /* VA and PA limits */
214 .virtual_start = VM_MIN_KERNEL_ADDRESS,
215 };
216
217 #ifdef UVMHIST
218 static struct kern_history_ent pmapexechistbuf[10000];
219 static struct kern_history_ent pmaphistbuf[10000];
220 UVMHIST_DEFINE(pmapexechist);
221 UVMHIST_DEFINE(pmaphist);
222 #endif
223
224 /*
225 * The pools from which pmap structures and sub-structures are allocated.
226 */
227 struct pool pmap_pmap_pool;
228 struct pool pmap_pv_pool;
229
230 #ifndef PMAP_PV_LOWAT
231 #define PMAP_PV_LOWAT 16
232 #endif
233 int pmap_pv_lowat = PMAP_PV_LOWAT;
234
235 bool pmap_initialized = false;
236 #define PMAP_PAGE_COLOROK_P(a, b) \
237 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
238 u_int pmap_page_colormask;
239
240 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
241
242 #define PMAP_IS_ACTIVE(pm) \
243 ((pm) == pmap_kernel() || \
244 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
245
246 /* Forward function declarations */
247 void pmap_page_remove(struct vm_page *);
248 static void pmap_pvlist_check(struct vm_page_md *);
249 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
250 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
251
252 /*
253 * PV table management functions.
254 */
255 void *pmap_pv_page_alloc(struct pool *, int);
256 void pmap_pv_page_free(struct pool *, void *);
257
258 struct pool_allocator pmap_pv_page_allocator = {
259 pmap_pv_page_alloc, pmap_pv_page_free, 0,
260 };
261
262 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
263 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
264
265 #ifndef PMAP_NEED_TLB_MISS_LOCK
266
267 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
268 #define PMAP_NEED_TLB_MISS_LOCK
269 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
270
271 #endif /* PMAP_NEED_TLB_MISS_LOCK */
272
273 #ifdef PMAP_NEED_TLB_MISS_LOCK
274
275 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
276 #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */
277 #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter()
278 #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit()
279 #else
280 kmutex_t pmap_tlb_miss_lock __cacheline_aligned;
281
282 static void
283 pmap_tlb_miss_lock_init(void)
284 {
285 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
286 }
287
288 static inline void
289 pmap_tlb_miss_lock_enter(void)
290 {
291 mutex_spin_enter(&pmap_tlb_miss_lock);
292 }
293
294 static inline void
295 pmap_tlb_miss_lock_exit(void)
296 {
297 mutex_spin_exit(&pmap_tlb_miss_lock);
298 }
299 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
300
301 #else
302
303 #define pmap_tlb_miss_lock_init() __nothing
304 #define pmap_tlb_miss_lock_enter() __nothing
305 #define pmap_tlb_miss_lock_exit() __nothing
306
307 #endif /* PMAP_NEED_TLB_MISS_LOCK */
308
309 #ifndef MULTIPROCESSOR
310 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
311 #endif
312
313 /*
314 * Debug functions.
315 */
316
317 #ifdef DEBUG
318 static inline void
319 pmap_asid_check(pmap_t pm, const char *func)
320 {
321 if (!PMAP_IS_ACTIVE(pm))
322 return;
323
324 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
325 tlb_asid_t asid = tlb_get_asid();
326 if (asid != pai->pai_asid)
327 panic("%s: inconsistency for active TLB update: %u <-> %u",
328 func, asid, pai->pai_asid);
329 }
330 #endif
331
332 static void
333 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
334 {
335 #ifdef DEBUG
336 if (pmap == pmap_kernel()) {
337 if (sva < VM_MIN_KERNEL_ADDRESS)
338 panic("%s: kva %#"PRIxVADDR" not in range",
339 func, sva);
340 if (eva >= pmap_limits.virtual_end)
341 panic("%s: kva %#"PRIxVADDR" not in range",
342 func, eva);
343 } else {
344 if (eva > VM_MAXUSER_ADDRESS)
345 panic("%s: uva %#"PRIxVADDR" not in range",
346 func, eva);
347 pmap_asid_check(pmap, func);
348 }
349 #endif
350 }
351
352 /*
353 * Misc. functions.
354 */
355
356 bool
357 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
358 {
359 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
360 #ifdef MULTIPROCESSOR
361 for (;;) {
362 u_int old_attr = *attrp;
363 if ((old_attr & clear_attributes) == 0)
364 return false;
365 u_int new_attr = old_attr & ~clear_attributes;
366 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
367 return true;
368 }
369 #else
370 unsigned long old_attr = *attrp;
371 if ((old_attr & clear_attributes) == 0)
372 return false;
373 *attrp &= ~clear_attributes;
374 return true;
375 #endif
376 }
377
378 void
379 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
380 {
381 #ifdef MULTIPROCESSOR
382 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
383 #else
384 mdpg->mdpg_attrs |= set_attributes;
385 #endif
386 }
387
388 static void
389 pmap_page_syncicache(struct vm_page *pg)
390 {
391 UVMHIST_FUNC(__func__);
392 UVMHIST_CALLED(pmaphist);
393 #ifndef MULTIPROCESSOR
394 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
395 #endif
396 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
397 pv_entry_t pv = &mdpg->mdpg_first;
398 kcpuset_t *onproc;
399 #ifdef MULTIPROCESSOR
400 kcpuset_create(&onproc, true);
401 KASSERT(onproc != NULL);
402 #else
403 onproc = NULL;
404 #endif
405 VM_PAGEMD_PVLIST_READLOCK(mdpg);
406 pmap_pvlist_check(mdpg);
407
408 UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx", (uintptr_t)pv,
409 (uintptr_t)pv->pv_pmap, 0, 0);
410
411 if (pv->pv_pmap != NULL) {
412 for (; pv != NULL; pv = pv->pv_next) {
413 #ifdef MULTIPROCESSOR
414 UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx",
415 (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
416 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
417 if (kcpuset_match(onproc, kcpuset_running)) {
418 break;
419 }
420 #else
421 if (pv->pv_pmap == curpmap) {
422 onproc = curcpu()->ci_data.cpu_kcpuset;
423 break;
424 }
425 #endif
426 }
427 }
428 pmap_pvlist_check(mdpg);
429 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
430 kpreempt_disable();
431 pmap_md_page_syncicache(pg, onproc);
432 kpreempt_enable();
433 #ifdef MULTIPROCESSOR
434 kcpuset_destroy(onproc);
435 #endif
436 }
437
438 /*
439 * Define the initial bounds of the kernel virtual address space.
440 */
441 void
442 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
443 {
444
445 *vstartp = pmap_limits.virtual_start;
446 *vendp = pmap_limits.virtual_end;
447 }
448
449 vaddr_t
450 pmap_growkernel(vaddr_t maxkvaddr)
451 {
452 vaddr_t virtual_end = pmap_limits.virtual_end;
453 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
454
455 /*
456 * Reserve PTEs for the new KVA space.
457 */
458 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
459 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
460 }
461
462 /*
463 * Don't exceed VM_MAX_KERNEL_ADDRESS!
464 */
465 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
466 virtual_end = VM_MAX_KERNEL_ADDRESS;
467
468 /*
469 * Update new end.
470 */
471 pmap_limits.virtual_end = virtual_end;
472 return virtual_end;
473 }
474
475 /*
476 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
477 * This function allows for early dynamic memory allocation until the virtual
478 * memory system has been bootstrapped. After that point, either kmem_alloc
479 * or malloc should be used. This function works by stealing pages from the
480 * (to be) managed page pool, then implicitly mapping the pages (by using
481 * their direct mapped addresses) and zeroing them.
482 *
483 * It may be used once the physical memory segments have been pre-loaded
484 * into the vm_physmem[] array. Early memory allocation MUST use this
485 * interface! This cannot be used after vm_page_startup(), and will
486 * generate a panic if tried.
487 *
488 * Note that this memory will never be freed, and in essence it is wired
489 * down.
490 *
491 * We must adjust *vstartp and/or *vendp iff we use address space
492 * from the kernel virtual address range defined by pmap_virtual_space().
493 */
494 vaddr_t
495 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
496 {
497 size_t npgs;
498 paddr_t pa;
499 vaddr_t va;
500
501 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
502
503 size = round_page(size);
504 npgs = atop(size);
505
506 aprint_debug("%s: need %zu pages\n", __func__, npgs);
507
508 for (uvm_physseg_t bank = uvm_physseg_get_first();
509 uvm_physseg_valid_p(bank);
510 bank = uvm_physseg_get_next(bank)) {
511
512 if (uvm.page_init_done == true)
513 panic("pmap_steal_memory: called _after_ bootstrap");
514
515 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
516 __func__, bank,
517 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
518 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
519
520 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
521 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
522 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
523 continue;
524 }
525
526 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
527 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
528 __func__, bank, npgs);
529 continue;
530 }
531
532 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
533 continue;
534 }
535
536 /*
537 * Always try to allocate from the segment with the least
538 * amount of space left.
539 */
540 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
541 if (uvm_physseg_valid_p(maybe_bank) == false
542 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
543 maybe_bank = bank;
544 }
545 }
546
547 if (uvm_physseg_valid_p(maybe_bank)) {
548 const uvm_physseg_t bank = maybe_bank;
549
550 /*
551 * There are enough pages here; steal them!
552 */
553 pa = ptoa(uvm_physseg_get_start(bank));
554 uvm_physseg_unplug(atop(pa), npgs);
555
556 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
557 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
558
559 va = pmap_md_map_poolpage(pa, size);
560 memset((void *)va, 0, size);
561 return va;
562 }
563
564 /*
565 * If we got here, there was no memory left.
566 */
567 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
568 }
569
570 /*
571 * Bootstrap the system enough to run with virtual memory.
572 * (Common routine called by machine-dependent bootstrap code.)
573 */
574 void
575 pmap_bootstrap_common(void)
576 {
577 pmap_tlb_miss_lock_init();
578 }
579
580 /*
581 * Initialize the pmap module.
582 * Called by vm_init, to initialize any structures that the pmap
583 * system needs to map virtual memory.
584 */
585 void
586 pmap_init(void)
587 {
588 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
589 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
590
591 UVMHIST_FUNC(__func__);
592 UVMHIST_CALLED(pmaphist);
593
594 /*
595 * Initialize the segtab lock.
596 */
597 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
598
599 /*
600 * Set a low water mark on the pv_entry pool, so that we are
601 * more likely to have these around even in extreme memory
602 * starvation.
603 */
604 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
605
606 /*
607 * Set the page colormask but allow pmap_md_init to override it.
608 */
609 pmap_page_colormask = ptoa(uvmexp.colormask);
610
611 pmap_md_init();
612
613 /*
614 * Now it is safe to enable pv entry recording.
615 */
616 pmap_initialized = true;
617 }
618
619 /*
620 * Create and return a physical map.
621 *
622 * If the size specified for the map
623 * is zero, the map is an actual physical
624 * map, and may be referenced by the
625 * hardware.
626 *
627 * If the size specified is non-zero,
628 * the map will be used in software only, and
629 * is bounded by that size.
630 */
631 pmap_t
632 pmap_create(void)
633 {
634 UVMHIST_FUNC(__func__);
635 UVMHIST_CALLED(pmaphist);
636 PMAP_COUNT(create);
637
638 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
639 memset(pmap, 0, PMAP_SIZE);
640
641 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
642
643 pmap->pm_count = 1;
644 pmap->pm_minaddr = VM_MIN_ADDRESS;
645 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
646
647 pmap_segtab_init(pmap);
648
649 #ifdef MULTIPROCESSOR
650 kcpuset_create(&pmap->pm_active, true);
651 kcpuset_create(&pmap->pm_onproc, true);
652 KASSERT(pmap->pm_active != NULL);
653 KASSERT(pmap->pm_onproc != NULL);
654 #endif
655
656 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
657 0, 0, 0);
658
659 return pmap;
660 }
661
662 /*
663 * Retire the given physical map from service.
664 * Should only be called if the map contains
665 * no valid mappings.
666 */
667 void
668 pmap_destroy(pmap_t pmap)
669 {
670 UVMHIST_FUNC(__func__);
671 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
672
673 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
674 PMAP_COUNT(dereference);
675 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
676 return;
677 }
678
679 PMAP_COUNT(destroy);
680 KASSERT(pmap->pm_count == 0);
681 kpreempt_disable();
682 pmap_tlb_miss_lock_enter();
683 pmap_tlb_asid_release_all(pmap);
684 pmap_segtab_destroy(pmap, NULL, 0);
685 pmap_tlb_miss_lock_exit();
686
687 #ifdef MULTIPROCESSOR
688 kcpuset_destroy(pmap->pm_active);
689 kcpuset_destroy(pmap->pm_onproc);
690 pmap->pm_active = NULL;
691 pmap->pm_onproc = NULL;
692 #endif
693
694 pool_put(&pmap_pmap_pool, pmap);
695 kpreempt_enable();
696
697 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
698 }
699
700 /*
701 * Add a reference to the specified pmap.
702 */
703 void
704 pmap_reference(pmap_t pmap)
705 {
706 UVMHIST_FUNC(__func__);
707 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
708 PMAP_COUNT(reference);
709
710 if (pmap != NULL) {
711 atomic_inc_uint(&pmap->pm_count);
712 }
713
714 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
715 }
716
717 /*
718 * Make a new pmap (vmspace) active for the given process.
719 */
720 void
721 pmap_activate(struct lwp *l)
722 {
723 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
724
725 UVMHIST_FUNC(__func__);
726 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
727 (uintptr_t)pmap, 0, 0);
728 PMAP_COUNT(activate);
729
730 kpreempt_disable();
731 pmap_tlb_miss_lock_enter();
732 pmap_tlb_asid_acquire(pmap, l);
733 pmap_segtab_activate(pmap, l);
734 pmap_tlb_miss_lock_exit();
735 kpreempt_enable();
736
737 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
738 l->l_lid, 0, 0);
739 }
740
741 /*
742 * Remove this page from all physical maps in which it resides.
743 * Reflects back modify bits to the pager.
744 */
745 void
746 pmap_page_remove(struct vm_page *pg)
747 {
748 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
749
750 kpreempt_disable();
751 VM_PAGEMD_PVLIST_LOCK(mdpg);
752 pmap_pvlist_check(mdpg);
753
754 UVMHIST_FUNC(__func__);
755 UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
756 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
757 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
758 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
759 #else
760 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
761 #endif
762 PMAP_COUNT(exec_uncached_remove);
763
764 pv_entry_t pv = &mdpg->mdpg_first;
765 if (pv->pv_pmap == NULL) {
766 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
767 kpreempt_enable();
768 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
769 return;
770 }
771
772 pv_entry_t npv;
773 pv_entry_t pvp = NULL;
774
775 for (; pv != NULL; pv = npv) {
776 npv = pv->pv_next;
777 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
778 if (PV_ISKENTER_P(pv)) {
779 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
780 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
781 pv->pv_va, 0);
782
783 KASSERT(pv->pv_pmap == pmap_kernel());
784
785 /* Assume no more - it'll get fixed if there are */
786 pv->pv_next = NULL;
787
788 /*
789 * pvp is non-null when we already have a PV_KENTER
790 * pv in pvh_first; otherwise we haven't seen a
791 * PV_KENTER pv and we need to copy this one to
792 * pvh_first
793 */
794 if (pvp) {
795 /*
796 * The previous PV_KENTER pv needs to point to
797 * this PV_KENTER pv
798 */
799 pvp->pv_next = pv;
800 } else {
801 pv_entry_t fpv = &mdpg->mdpg_first;
802 *fpv = *pv;
803 KASSERT(fpv->pv_pmap == pmap_kernel());
804 }
805 pvp = pv;
806 continue;
807 }
808 #endif
809 const pmap_t pmap = pv->pv_pmap;
810 vaddr_t va = trunc_page(pv->pv_va);
811 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
812 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
813 pmap_limits.virtual_end);
814 pt_entry_t pte = *ptep;
815 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
816 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
817 pte_value(pte));
818 if (!pte_valid_p(pte))
819 continue;
820 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
821 if (is_kernel_pmap_p) {
822 PMAP_COUNT(remove_kernel_pages);
823 } else {
824 PMAP_COUNT(remove_user_pages);
825 }
826 if (pte_wired_p(pte))
827 pmap->pm_stats.wired_count--;
828 pmap->pm_stats.resident_count--;
829
830 pmap_tlb_miss_lock_enter();
831 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
832 pte_set(ptep, npte);
833 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
834 /*
835 * Flush the TLB for the given address.
836 */
837 pmap_tlb_invalidate_addr(pmap, va);
838 }
839 pmap_tlb_miss_lock_exit();
840
841 /*
842 * non-null means this is a non-pvh_first pv, so we should
843 * free it.
844 */
845 if (pvp) {
846 KASSERT(pvp->pv_pmap == pmap_kernel());
847 KASSERT(pvp->pv_next == NULL);
848 pmap_pv_free(pv);
849 } else {
850 pv->pv_pmap = NULL;
851 pv->pv_next = NULL;
852 }
853 }
854
855 pmap_pvlist_check(mdpg);
856 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
857 kpreempt_enable();
858
859 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
860 }
861
862
863 /*
864 * Make a previously active pmap (vmspace) inactive.
865 */
866 void
867 pmap_deactivate(struct lwp *l)
868 {
869 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
870
871 UVMHIST_FUNC(__func__);
872 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
873 (uintptr_t)pmap, 0, 0);
874 PMAP_COUNT(deactivate);
875
876 kpreempt_disable();
877 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
878 pmap_tlb_miss_lock_enter();
879 pmap_tlb_asid_deactivate(pmap);
880 pmap_segtab_deactivate(pmap);
881 pmap_tlb_miss_lock_exit();
882 kpreempt_enable();
883
884 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
885 l->l_lid, 0, 0);
886 }
887
888 void
889 pmap_update(struct pmap *pmap)
890 {
891 UVMHIST_FUNC(__func__);
892 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
893 PMAP_COUNT(update);
894
895 kpreempt_disable();
896 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
897 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
898 if (pending && pmap_tlb_shootdown_bystanders(pmap))
899 PMAP_COUNT(shootdown_ipis);
900 #endif
901 pmap_tlb_miss_lock_enter();
902 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
903 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
904 #endif /* DEBUG */
905
906 /*
907 * If pmap_remove_all was called, we deactivated ourselves and nuked
908 * our ASID. Now we have to reactivate ourselves.
909 */
910 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
911 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
912 pmap_tlb_asid_acquire(pmap, curlwp);
913 pmap_segtab_activate(pmap, curlwp);
914 }
915 pmap_tlb_miss_lock_exit();
916 kpreempt_enable();
917
918 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
919 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
920 }
921
922 /*
923 * Remove the given range of addresses from the specified map.
924 *
925 * It is assumed that the start and end are properly
926 * rounded to the page size.
927 */
928
929 static bool
930 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
931 uintptr_t flags)
932 {
933 const pt_entry_t npte = flags;
934 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
935
936 UVMHIST_FUNC(__func__);
937 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
938 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
939 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
940 (uintptr_t)ptep, flags, 0, 0);
941
942 KASSERT(kpreempt_disabled());
943
944 for (; sva < eva; sva += NBPG, ptep++) {
945 const pt_entry_t pte = *ptep;
946 if (!pte_valid_p(pte))
947 continue;
948 if (is_kernel_pmap_p) {
949 PMAP_COUNT(remove_kernel_pages);
950 } else {
951 PMAP_COUNT(remove_user_pages);
952 }
953 if (pte_wired_p(pte))
954 pmap->pm_stats.wired_count--;
955 pmap->pm_stats.resident_count--;
956 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
957 if (__predict_true(pg != NULL)) {
958 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
959 }
960 pmap_tlb_miss_lock_enter();
961 pte_set(ptep, npte);
962 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
963
964 /*
965 * Flush the TLB for the given address.
966 */
967 pmap_tlb_invalidate_addr(pmap, sva);
968 }
969 pmap_tlb_miss_lock_exit();
970 }
971
972 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
973
974 return false;
975 }
976
977 void
978 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
979 {
980 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
981 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
982
983 UVMHIST_FUNC(__func__);
984 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
985 (uintptr_t)pmap, sva, eva, 0);
986
987 if (is_kernel_pmap_p) {
988 PMAP_COUNT(remove_kernel_calls);
989 } else {
990 PMAP_COUNT(remove_user_calls);
991 }
992 #ifdef PMAP_FAULTINFO
993 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
994 curpcb->pcb_faultinfo.pfi_repeats = 0;
995 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
996 #endif
997 kpreempt_disable();
998 pmap_addr_range_check(pmap, sva, eva, __func__);
999 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
1000 kpreempt_enable();
1001
1002 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1003 }
1004
1005 /*
1006 * pmap_page_protect:
1007 *
1008 * Lower the permission for all mappings to a given page.
1009 */
1010 void
1011 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1012 {
1013 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1014 pv_entry_t pv;
1015 vaddr_t va;
1016
1017 UVMHIST_FUNC(__func__);
1018 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1019 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1020 PMAP_COUNT(page_protect);
1021
1022 switch (prot) {
1023 case VM_PROT_READ|VM_PROT_WRITE:
1024 case VM_PROT_ALL:
1025 break;
1026
1027 /* copy_on_write */
1028 case VM_PROT_READ:
1029 case VM_PROT_READ|VM_PROT_EXECUTE:
1030 pv = &mdpg->mdpg_first;
1031 kpreempt_disable();
1032 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1033 pmap_pvlist_check(mdpg);
1034 /*
1035 * Loop over all current mappings setting/clearing as
1036 * appropriate.
1037 */
1038 if (pv->pv_pmap != NULL) {
1039 while (pv != NULL) {
1040 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1041 if (PV_ISKENTER_P(pv)) {
1042 pv = pv->pv_next;
1043 continue;
1044 }
1045 #endif
1046 const pmap_t pmap = pv->pv_pmap;
1047 va = trunc_page(pv->pv_va);
1048 const uintptr_t gen =
1049 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1050 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1051 KASSERT(pv->pv_pmap == pmap);
1052 pmap_update(pmap);
1053 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1054 pv = &mdpg->mdpg_first;
1055 } else {
1056 pv = pv->pv_next;
1057 }
1058 pmap_pvlist_check(mdpg);
1059 }
1060 }
1061 pmap_pvlist_check(mdpg);
1062 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1063 kpreempt_enable();
1064 break;
1065
1066 /* remove_all */
1067 default:
1068 pmap_page_remove(pg);
1069 }
1070
1071 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1072 }
1073
1074 static bool
1075 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1076 uintptr_t flags)
1077 {
1078 const vm_prot_t prot = (flags & VM_PROT_ALL);
1079
1080 UVMHIST_FUNC(__func__);
1081 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1082 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1083 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1084 (uintptr_t)ptep, flags, 0, 0);
1085
1086 KASSERT(kpreempt_disabled());
1087 /*
1088 * Change protection on every valid mapping within this segment.
1089 */
1090 for (; sva < eva; sva += NBPG, ptep++) {
1091 pt_entry_t pte = *ptep;
1092 if (!pte_valid_p(pte))
1093 continue;
1094 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1095 if (pg != NULL && pte_modified_p(pte)) {
1096 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1097 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1098 KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1099 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1100 if (VM_PAGEMD_CACHED_P(mdpg)) {
1101 #endif
1102 UVMHIST_LOG(pmapexechist,
1103 "pg %#jx (pa %#jx): "
1104 "syncicached performed",
1105 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1106 0, 0);
1107 pmap_page_syncicache(pg);
1108 PMAP_COUNT(exec_synced_protect);
1109 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1110 }
1111 #endif
1112 }
1113 }
1114 pte = pte_prot_downgrade(pte, prot);
1115 if (*ptep != pte) {
1116 pmap_tlb_miss_lock_enter();
1117 pte_set(ptep, pte);
1118 /*
1119 * Update the TLB if needed.
1120 */
1121 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1122 pmap_tlb_miss_lock_exit();
1123 }
1124 }
1125
1126 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1127
1128 return false;
1129 }
1130
1131 /*
1132 * Set the physical protection on the
1133 * specified range of this map as requested.
1134 */
1135 void
1136 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1137 {
1138 UVMHIST_FUNC(__func__);
1139 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1140 (uintptr_t)pmap, sva, eva, prot);
1141 PMAP_COUNT(protect);
1142
1143 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1144 pmap_remove(pmap, sva, eva);
1145 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1146 return;
1147 }
1148
1149 /*
1150 * Change protection on every valid mapping within this segment.
1151 */
1152 kpreempt_disable();
1153 pmap_addr_range_check(pmap, sva, eva, __func__);
1154 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1155 kpreempt_enable();
1156
1157 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1158 }
1159
1160 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1161 /*
1162 * pmap_page_cache:
1163 *
1164 * Change all mappings of a managed page to cached/uncached.
1165 */
1166 void
1167 pmap_page_cache(struct vm_page *pg, bool cached)
1168 {
1169 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1170
1171 UVMHIST_FUNC(__func__);
1172 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1173 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1174
1175 KASSERT(kpreempt_disabled());
1176 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1177
1178 if (cached) {
1179 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1180 PMAP_COUNT(page_cache_restorations);
1181 } else {
1182 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1183 PMAP_COUNT(page_cache_evictions);
1184 }
1185
1186 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1187 pmap_t pmap = pv->pv_pmap;
1188 vaddr_t va = trunc_page(pv->pv_va);
1189
1190 KASSERT(pmap != NULL);
1191 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1192 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1193 if (ptep == NULL)
1194 continue;
1195 pt_entry_t pte = *ptep;
1196 if (pte_valid_p(pte)) {
1197 pte = pte_cached_change(pte, cached);
1198 pmap_tlb_miss_lock_enter();
1199 pte_set(ptep, pte);
1200 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1201 pmap_tlb_miss_lock_exit();
1202 }
1203 }
1204
1205 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1206 }
1207 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1208
1209 /*
1210 * Insert the given physical page (p) at
1211 * the specified virtual address (v) in the
1212 * target physical map with the protection requested.
1213 *
1214 * If specified, the page will be wired down, meaning
1215 * that the related pte can not be reclaimed.
1216 *
1217 * NB: This is the only routine which MAY NOT lazy-evaluate
1218 * or lose information. That is, this routine must actually
1219 * insert this page into the given map NOW.
1220 */
1221 int
1222 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1223 {
1224 const bool wired = (flags & PMAP_WIRED) != 0;
1225 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1226 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1227 #ifdef UVMHIST
1228 struct kern_history * const histp =
1229 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1230 #endif
1231
1232 UVMHIST_FUNC(__func__);
1233 UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1234 (uintptr_t)pmap, va, pa, 0);
1235 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1236
1237 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1238 if (is_kernel_pmap_p) {
1239 PMAP_COUNT(kernel_mappings);
1240 if (!good_color)
1241 PMAP_COUNT(kernel_mappings_bad);
1242 } else {
1243 PMAP_COUNT(user_mappings);
1244 if (!good_color)
1245 PMAP_COUNT(user_mappings_bad);
1246 }
1247 pmap_addr_range_check(pmap, va, va, __func__);
1248
1249 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1250 VM_PROT_READ, prot);
1251
1252 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1253 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1254
1255 if (pg) {
1256 /* Set page referenced/modified status based on flags */
1257 if (flags & VM_PROT_WRITE) {
1258 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1259 } else if (flags & VM_PROT_ALL) {
1260 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1261 }
1262
1263 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1264 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1265 flags |= PMAP_NOCACHE;
1266 PMAP_COUNT(uncached_mappings);
1267 }
1268 #endif
1269
1270 PMAP_COUNT(managed_mappings);
1271 } else {
1272 /*
1273 * Assumption: if it is not part of our managed memory
1274 * then it must be device memory which may be volatile.
1275 */
1276 if ((flags & PMAP_CACHE_MASK) == 0)
1277 flags |= PMAP_NOCACHE;
1278 PMAP_COUNT(unmanaged_mappings);
1279 }
1280
1281 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1282 is_kernel_pmap_p);
1283
1284 kpreempt_disable();
1285
1286 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1287 if (__predict_false(ptep == NULL)) {
1288 kpreempt_enable();
1289 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1290 return ENOMEM;
1291 }
1292 const pt_entry_t opte = *ptep;
1293 const bool resident = pte_valid_p(opte);
1294 bool remap = false;
1295 if (resident) {
1296 if (pte_to_paddr(opte) != pa) {
1297 KASSERT(!is_kernel_pmap_p);
1298 const pt_entry_t rpte = pte_nv_entry(false);
1299
1300 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1301 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1302 rpte);
1303 PMAP_COUNT(user_mappings_changed);
1304 remap = true;
1305 }
1306 update_flags |= PMAP_TLB_NEED_IPI;
1307 }
1308
1309 if (!resident || remap) {
1310 pmap->pm_stats.resident_count++;
1311 }
1312
1313 /* Done after case that may sleep/return. */
1314 if (pg)
1315 pmap_enter_pv(pmap, va, pg, &npte, 0);
1316
1317 /*
1318 * Now validate mapping with desired protection/wiring.
1319 */
1320 if (wired) {
1321 pmap->pm_stats.wired_count++;
1322 npte = pte_wire_entry(npte);
1323 }
1324
1325 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1326 pte_value(npte), pa, 0, 0);
1327
1328 KASSERT(pte_valid_p(npte));
1329
1330 pmap_tlb_miss_lock_enter();
1331 pte_set(ptep, npte);
1332 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1333 pmap_tlb_miss_lock_exit();
1334 kpreempt_enable();
1335
1336 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1337 KASSERT(mdpg != NULL);
1338 PMAP_COUNT(exec_mappings);
1339 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1340 if (!pte_deferred_exec_p(npte)) {
1341 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1342 "immediate syncicache",
1343 va, (uintptr_t)pg, 0, 0);
1344 pmap_page_syncicache(pg);
1345 pmap_page_set_attributes(mdpg,
1346 VM_PAGEMD_EXECPAGE);
1347 PMAP_COUNT(exec_synced_mappings);
1348 } else {
1349 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1350 "syncicache: pte %#jx",
1351 va, (uintptr_t)pg, npte, 0);
1352 }
1353 } else {
1354 UVMHIST_LOG(*histp,
1355 "va=%#jx pg %#jx: no syncicache cached %jd",
1356 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1357 }
1358 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1359 KASSERT(mdpg != NULL);
1360 KASSERT(prot & VM_PROT_WRITE);
1361 PMAP_COUNT(exec_mappings);
1362 pmap_page_syncicache(pg);
1363 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1364 UVMHIST_LOG(*histp,
1365 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1366 va, (uintptr_t)pg, 0, 0);
1367 }
1368
1369 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1370 return 0;
1371 }
1372
1373 void
1374 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1375 {
1376 pmap_t pmap = pmap_kernel();
1377 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1378 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1379
1380 UVMHIST_FUNC(__func__);
1381 UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1382 va, pa, prot, flags);
1383 PMAP_COUNT(kenter_pa);
1384
1385 if (mdpg == NULL) {
1386 PMAP_COUNT(kenter_pa_unmanaged);
1387 if ((flags & PMAP_CACHE_MASK) == 0)
1388 flags |= PMAP_NOCACHE;
1389 } else {
1390 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1391 PMAP_COUNT(kenter_pa_bad);
1392 }
1393
1394 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1395 kpreempt_disable();
1396 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1397 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1398 pmap_limits.virtual_end);
1399 KASSERT(!pte_valid_p(*ptep));
1400
1401 /*
1402 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1403 */
1404 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1405 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1406 && pmap_md_virtual_cache_aliasing_p()) {
1407 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1408 }
1409 #endif
1410
1411 /*
1412 * We have the option to force this mapping into the TLB but we
1413 * don't. Instead let the next reference to the page do it.
1414 */
1415 pmap_tlb_miss_lock_enter();
1416 pte_set(ptep, npte);
1417 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1418 pmap_tlb_miss_lock_exit();
1419 kpreempt_enable();
1420 #if DEBUG > 1
1421 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1422 if (((long *)va)[i] != ((long *)pa)[i])
1423 panic("%s: contents (%lx) of va %#"PRIxVADDR
1424 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1425 ((long *)va)[i], va, ((long *)pa)[i], pa);
1426 }
1427 #endif
1428
1429 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1430 0);
1431 }
1432
1433 /*
1434 * Remove the given range of addresses from the kernel map.
1435 *
1436 * It is assumed that the start and end are properly
1437 * rounded to the page size.
1438 */
1439
1440 static bool
1441 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1442 uintptr_t flags)
1443 {
1444 const pt_entry_t new_pte = pte_nv_entry(true);
1445
1446 UVMHIST_FUNC(__func__);
1447 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1448 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1449
1450 KASSERT(kpreempt_disabled());
1451
1452 for (; sva < eva; sva += NBPG, ptep++) {
1453 pt_entry_t pte = *ptep;
1454 if (!pte_valid_p(pte))
1455 continue;
1456
1457 PMAP_COUNT(kremove_pages);
1458 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1459 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1460 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1461 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1462 }
1463 #endif
1464
1465 pmap_tlb_miss_lock_enter();
1466 pte_set(ptep, new_pte);
1467 pmap_tlb_invalidate_addr(pmap, sva);
1468 pmap_tlb_miss_lock_exit();
1469 }
1470
1471 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1472
1473 return false;
1474 }
1475
1476 void
1477 pmap_kremove(vaddr_t va, vsize_t len)
1478 {
1479 const vaddr_t sva = trunc_page(va);
1480 const vaddr_t eva = round_page(va + len);
1481
1482 UVMHIST_FUNC(__func__);
1483 UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1484
1485 kpreempt_disable();
1486 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1487 kpreempt_enable();
1488
1489 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1490 }
1491
1492 bool
1493 pmap_remove_all(struct pmap *pmap)
1494 {
1495 UVMHIST_FUNC(__func__);
1496 UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1497
1498 KASSERT(pmap != pmap_kernel());
1499
1500 kpreempt_disable();
1501 /*
1502 * Free all of our ASIDs which means we can skip doing all the
1503 * tlb_invalidate_addrs().
1504 */
1505 pmap_tlb_miss_lock_enter();
1506 #ifdef MULTIPROCESSOR
1507 // This should be the last CPU with this pmap onproc
1508 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1509 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1510 #endif
1511 pmap_tlb_asid_deactivate(pmap);
1512 #ifdef MULTIPROCESSOR
1513 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1514 #endif
1515 pmap_tlb_asid_release_all(pmap);
1516 pmap_tlb_miss_lock_exit();
1517 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1518
1519 #ifdef PMAP_FAULTINFO
1520 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1521 curpcb->pcb_faultinfo.pfi_repeats = 0;
1522 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1523 #endif
1524 kpreempt_enable();
1525
1526 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1527 return false;
1528 }
1529
1530 /*
1531 * Routine: pmap_unwire
1532 * Function: Clear the wired attribute for a map/virtual-address
1533 * pair.
1534 * In/out conditions:
1535 * The mapping must already exist in the pmap.
1536 */
1537 void
1538 pmap_unwire(pmap_t pmap, vaddr_t va)
1539 {
1540 UVMHIST_FUNC(__func__);
1541 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1542 0, 0);
1543 PMAP_COUNT(unwire);
1544
1545 /*
1546 * Don't need to flush the TLB since PG_WIRED is only in software.
1547 */
1548 kpreempt_disable();
1549 pmap_addr_range_check(pmap, va, va, __func__);
1550 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1551 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1552 pmap, va);
1553 pt_entry_t pte = *ptep;
1554 KASSERTMSG(pte_valid_p(pte),
1555 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1556 pmap, va, pte_value(pte), ptep);
1557
1558 if (pte_wired_p(pte)) {
1559 pmap_tlb_miss_lock_enter();
1560 pte_set(ptep, pte_unwire_entry(pte));
1561 pmap_tlb_miss_lock_exit();
1562 pmap->pm_stats.wired_count--;
1563 }
1564 #ifdef DIAGNOSTIC
1565 else {
1566 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1567 __func__, pmap, va);
1568 }
1569 #endif
1570 kpreempt_enable();
1571
1572 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1573 }
1574
1575 /*
1576 * Routine: pmap_extract
1577 * Function:
1578 * Extract the physical page address associated
1579 * with the given map/virtual_address pair.
1580 */
1581 bool
1582 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1583 {
1584 paddr_t pa;
1585
1586 if (pmap == pmap_kernel()) {
1587 if (pmap_md_direct_mapped_vaddr_p(va)) {
1588 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1589 goto done;
1590 }
1591 if (pmap_md_io_vaddr_p(va))
1592 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1593
1594 if (va >= pmap_limits.virtual_end)
1595 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1596 __func__, va);
1597 }
1598 kpreempt_disable();
1599 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1600 if (ptep == NULL || !pte_valid_p(*ptep)) {
1601 kpreempt_enable();
1602 return false;
1603 }
1604 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1605 kpreempt_enable();
1606 done:
1607 if (pap != NULL) {
1608 *pap = pa;
1609 }
1610 return true;
1611 }
1612
1613 /*
1614 * Copy the range specified by src_addr/len
1615 * from the source map to the range dst_addr/len
1616 * in the destination map.
1617 *
1618 * This routine is only advisory and need not do anything.
1619 */
1620 void
1621 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1622 vaddr_t src_addr)
1623 {
1624 UVMHIST_FUNC(__func__);
1625 UVMHIST_CALLED(pmaphist);
1626 PMAP_COUNT(copy);
1627 }
1628
1629 /*
1630 * pmap_clear_reference:
1631 *
1632 * Clear the reference bit on the specified physical page.
1633 */
1634 bool
1635 pmap_clear_reference(struct vm_page *pg)
1636 {
1637 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1638
1639 UVMHIST_FUNC(__func__);
1640 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1641 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1642
1643 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1644
1645 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1646
1647 return rv;
1648 }
1649
1650 /*
1651 * pmap_is_referenced:
1652 *
1653 * Return whether or not the specified physical page is referenced
1654 * by any physical maps.
1655 */
1656 bool
1657 pmap_is_referenced(struct vm_page *pg)
1658 {
1659 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1660 }
1661
1662 /*
1663 * Clear the modify bits on the specified physical page.
1664 */
1665 bool
1666 pmap_clear_modify(struct vm_page *pg)
1667 {
1668 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1669 pv_entry_t pv = &mdpg->mdpg_first;
1670 pv_entry_t pv_next;
1671
1672 UVMHIST_FUNC(__func__);
1673 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1674 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1675 PMAP_COUNT(clear_modify);
1676
1677 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1678 if (pv->pv_pmap == NULL) {
1679 UVMHIST_LOG(pmapexechist,
1680 "pg %#jx (pa %#jx): execpage cleared",
1681 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1682 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1683 PMAP_COUNT(exec_uncached_clear_modify);
1684 } else {
1685 UVMHIST_LOG(pmapexechist,
1686 "pg %#jx (pa %#jx): syncicache performed",
1687 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1688 pmap_page_syncicache(pg);
1689 PMAP_COUNT(exec_synced_clear_modify);
1690 }
1691 }
1692 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1693 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1694 return false;
1695 }
1696 if (pv->pv_pmap == NULL) {
1697 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1698 return true;
1699 }
1700
1701 /*
1702 * remove write access from any pages that are dirty
1703 * so we can tell if they are written to again later.
1704 * flush the VAC first if there is one.
1705 */
1706 kpreempt_disable();
1707 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1708 pmap_pvlist_check(mdpg);
1709 for (; pv != NULL; pv = pv_next) {
1710 pmap_t pmap = pv->pv_pmap;
1711 vaddr_t va = trunc_page(pv->pv_va);
1712
1713 pv_next = pv->pv_next;
1714 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1715 if (PV_ISKENTER_P(pv))
1716 continue;
1717 #endif
1718 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1719 KASSERT(ptep);
1720 pt_entry_t pte = pte_prot_nowrite(*ptep);
1721 if (*ptep == pte) {
1722 continue;
1723 }
1724 KASSERT(pte_valid_p(pte));
1725 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1726 pmap_tlb_miss_lock_enter();
1727 pte_set(ptep, pte);
1728 pmap_tlb_invalidate_addr(pmap, va);
1729 pmap_tlb_miss_lock_exit();
1730 pmap_update(pmap);
1731 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1732 /*
1733 * The list changed! So restart from the beginning.
1734 */
1735 pv_next = &mdpg->mdpg_first;
1736 pmap_pvlist_check(mdpg);
1737 }
1738 }
1739 pmap_pvlist_check(mdpg);
1740 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1741 kpreempt_enable();
1742
1743 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1744 return true;
1745 }
1746
1747 /*
1748 * pmap_is_modified:
1749 *
1750 * Return whether or not the specified physical page is modified
1751 * by any physical maps.
1752 */
1753 bool
1754 pmap_is_modified(struct vm_page *pg)
1755 {
1756 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1757 }
1758
1759 /*
1760 * pmap_set_modified:
1761 *
1762 * Sets the page modified reference bit for the specified page.
1763 */
1764 void
1765 pmap_set_modified(paddr_t pa)
1766 {
1767 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1768 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1769 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1770 }
1771
1772 /******************** pv_entry management ********************/
1773
1774 static void
1775 pmap_pvlist_check(struct vm_page_md *mdpg)
1776 {
1777 #ifdef DEBUG
1778 pv_entry_t pv = &mdpg->mdpg_first;
1779 if (pv->pv_pmap != NULL) {
1780 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1781 const u_int colormask = uvmexp.colormask;
1782 u_int colors = 0;
1783 #endif
1784 for (; pv != NULL; pv = pv->pv_next) {
1785 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1786 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1787 colors |= __BIT(atop(pv->pv_va) & colormask);
1788 #endif
1789 }
1790 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1791 // Assert that if there is more than 1 color mapped, that the
1792 // page is uncached.
1793 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1794 || colors == 0 || (colors & (colors-1)) == 0
1795 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1796 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1797 #endif
1798 } else {
1799 KASSERT(pv->pv_next == NULL);
1800 }
1801 #endif /* DEBUG */
1802 }
1803
1804 /*
1805 * Enter the pmap and virtual address into the
1806 * physical to virtual map table.
1807 */
1808 void
1809 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1810 u_int flags)
1811 {
1812 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1813 pv_entry_t pv, npv, apv;
1814 #ifdef UVMHIST
1815 bool first = false;
1816 #endif
1817
1818 UVMHIST_FUNC(__func__);
1819 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1820 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1821 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1822 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1823
1824 KASSERT(kpreempt_disabled());
1825 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1826 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1827 "va %#"PRIxVADDR, va);
1828
1829 apv = NULL;
1830 VM_PAGEMD_PVLIST_LOCK(mdpg);
1831 again:
1832 pv = &mdpg->mdpg_first;
1833 pmap_pvlist_check(mdpg);
1834 if (pv->pv_pmap == NULL) {
1835 KASSERT(pv->pv_next == NULL);
1836 /*
1837 * No entries yet, use header as the first entry
1838 */
1839 PMAP_COUNT(primary_mappings);
1840 PMAP_COUNT(mappings);
1841 #ifdef UVMHIST
1842 first = true;
1843 #endif
1844 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1845 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1846 // If the new mapping has an incompatible color the last
1847 // mapping of this page, clean the page before using it.
1848 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1849 pmap_md_vca_clean(pg, PMAP_WBINV);
1850 }
1851 #endif
1852 pv->pv_pmap = pmap;
1853 pv->pv_va = va | flags;
1854 } else {
1855 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1856 if (pmap_md_vca_add(pg, va, nptep)) {
1857 goto again;
1858 }
1859 #endif
1860
1861 /*
1862 * There is at least one other VA mapping this page.
1863 * Place this entry after the header.
1864 *
1865 * Note: the entry may already be in the table if
1866 * we are only changing the protection bits.
1867 */
1868
1869 #ifdef PARANOIADIAG
1870 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1871 #endif
1872 for (npv = pv; npv; npv = npv->pv_next) {
1873 if (pmap == npv->pv_pmap
1874 && va == trunc_page(npv->pv_va)) {
1875 #ifdef PARANOIADIAG
1876 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1877 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1878 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1879 printf("%s: found va %#"PRIxVADDR
1880 " pa %#"PRIxPADDR
1881 " in pv_table but != %#"PRIxPTE"\n",
1882 __func__, va, pa, pte_value(pte));
1883 #endif
1884 PMAP_COUNT(remappings);
1885 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1886 if (__predict_false(apv != NULL))
1887 pmap_pv_free(apv);
1888
1889 UVMHIST_LOG(pmaphist,
1890 " <-- done pv=%#jx (reused)",
1891 (uintptr_t)pv, 0, 0, 0);
1892 return;
1893 }
1894 }
1895 if (__predict_true(apv == NULL)) {
1896 /*
1897 * To allocate a PV, we have to release the PVLIST lock
1898 * so get the page generation. We allocate the PV, and
1899 * then reacquire the lock.
1900 */
1901 pmap_pvlist_check(mdpg);
1902 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1903
1904 apv = (pv_entry_t)pmap_pv_alloc();
1905 if (apv == NULL)
1906 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1907
1908 /*
1909 * If the generation has changed, then someone else
1910 * tinkered with this page so we should start over.
1911 */
1912 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1913 goto again;
1914 }
1915 npv = apv;
1916 apv = NULL;
1917 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1918 /*
1919 * If need to deal with virtual cache aliases, keep mappings
1920 * in the kernel pmap at the head of the list. This allows
1921 * the VCA code to easily use them for cache operations if
1922 * present.
1923 */
1924 pmap_t kpmap = pmap_kernel();
1925 if (pmap != kpmap) {
1926 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1927 pv = pv->pv_next;
1928 }
1929 }
1930 #endif
1931 npv->pv_va = va | flags;
1932 npv->pv_pmap = pmap;
1933 npv->pv_next = pv->pv_next;
1934 pv->pv_next = npv;
1935 PMAP_COUNT(mappings);
1936 }
1937 pmap_pvlist_check(mdpg);
1938 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1939 if (__predict_false(apv != NULL))
1940 pmap_pv_free(apv);
1941
1942 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1943 first, 0, 0);
1944 }
1945
1946 /*
1947 * Remove a physical to virtual address translation.
1948 * If cache was inhibited on this page, and there are no more cache
1949 * conflicts, restore caching.
1950 * Flush the cache if the last page is removed (should always be cached
1951 * at this point).
1952 */
1953 void
1954 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1955 {
1956 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1957 pv_entry_t pv, npv;
1958 bool last;
1959
1960 UVMHIST_FUNC(__func__);
1961 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1962 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1963 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1964
1965 KASSERT(kpreempt_disabled());
1966 KASSERT((va & PAGE_MASK) == 0);
1967 pv = &mdpg->mdpg_first;
1968
1969 VM_PAGEMD_PVLIST_LOCK(mdpg);
1970 pmap_pvlist_check(mdpg);
1971
1972 /*
1973 * If it is the first entry on the list, it is actually
1974 * in the header and we must copy the following entry up
1975 * to the header. Otherwise we must search the list for
1976 * the entry. In either case we free the now unused entry.
1977 */
1978
1979 last = false;
1980 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1981 npv = pv->pv_next;
1982 if (npv) {
1983 *pv = *npv;
1984 KASSERT(pv->pv_pmap != NULL);
1985 } else {
1986 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1987 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1988 #endif
1989 pv->pv_pmap = NULL;
1990 last = true; /* Last mapping removed */
1991 }
1992 PMAP_COUNT(remove_pvfirst);
1993 } else {
1994 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1995 PMAP_COUNT(remove_pvsearch);
1996 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
1997 break;
1998 }
1999 if (npv) {
2000 pv->pv_next = npv->pv_next;
2001 }
2002 }
2003
2004 pmap_pvlist_check(mdpg);
2005 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2006
2007 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2008 pmap_md_vca_remove(pg, va, dirty, last);
2009 #endif
2010
2011 /*
2012 * Free the pv_entry if needed.
2013 */
2014 if (npv)
2015 pmap_pv_free(npv);
2016 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2017 if (last) {
2018 /*
2019 * If this was the page's last mapping, we no longer
2020 * care about its execness.
2021 */
2022 UVMHIST_LOG(pmapexechist,
2023 "pg %#jx (pa %#jx)last %ju: execpage cleared",
2024 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2025 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2026 PMAP_COUNT(exec_uncached_remove);
2027 } else {
2028 /*
2029 * Someone still has it mapped as an executable page
2030 * so we must sync it.
2031 */
2032 UVMHIST_LOG(pmapexechist,
2033 "pg %#jx (pa %#jx) last %ju: performed syncicache",
2034 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2035 pmap_page_syncicache(pg);
2036 PMAP_COUNT(exec_synced_remove);
2037 }
2038 }
2039
2040 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2041 }
2042
2043 #if defined(MULTIPROCESSOR)
2044 struct pmap_pvlist_info {
2045 kmutex_t *pli_locks[PAGE_SIZE / 32];
2046 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2047 volatile u_int pli_lock_index;
2048 u_int pli_lock_mask;
2049 } pmap_pvlist_info;
2050
2051 void
2052 pmap_pvlist_lock_init(size_t cache_line_size)
2053 {
2054 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2055 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2056 vaddr_t lock_va = lock_page;
2057 if (sizeof(kmutex_t) > cache_line_size) {
2058 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2059 }
2060 const size_t nlocks = PAGE_SIZE / cache_line_size;
2061 KASSERT((nlocks & (nlocks - 1)) == 0);
2062 /*
2063 * Now divide the page into a number of mutexes, one per cacheline.
2064 */
2065 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2066 kmutex_t * const lock = (kmutex_t *)lock_va;
2067 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2068 pli->pli_locks[i] = lock;
2069 }
2070 pli->pli_lock_mask = nlocks - 1;
2071 }
2072
2073 kmutex_t *
2074 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2075 {
2076 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2077 kmutex_t *lock = mdpg->mdpg_lock;
2078
2079 /*
2080 * Allocate a lock on an as-needed basis. This will hopefully give us
2081 * semi-random distribution not based on page color.
2082 */
2083 if (__predict_false(lock == NULL)) {
2084 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2085 size_t lockid = locknum & pli->pli_lock_mask;
2086 kmutex_t * const new_lock = pli->pli_locks[lockid];
2087 /*
2088 * Set the lock. If some other thread already did, just use
2089 * the one they assigned.
2090 */
2091 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2092 if (lock == NULL) {
2093 lock = new_lock;
2094 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2095 }
2096 }
2097
2098 /*
2099 * Now finally provide the lock.
2100 */
2101 return lock;
2102 }
2103 #else /* !MULTIPROCESSOR */
2104 void
2105 pmap_pvlist_lock_init(size_t cache_line_size)
2106 {
2107 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2108 }
2109
2110 #ifdef MODULAR
2111 kmutex_t *
2112 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2113 {
2114 /*
2115 * We just use a global lock.
2116 */
2117 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2118 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2119 }
2120
2121 /*
2122 * Now finally provide the lock.
2123 */
2124 return mdpg->mdpg_lock;
2125 }
2126 #endif /* MODULAR */
2127 #endif /* !MULTIPROCESSOR */
2128
2129 /*
2130 * pmap_pv_page_alloc:
2131 *
2132 * Allocate a page for the pv_entry pool.
2133 */
2134 void *
2135 pmap_pv_page_alloc(struct pool *pp, int flags)
2136 {
2137 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2138 if (pg == NULL)
2139 return NULL;
2140
2141 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2142 }
2143
2144 /*
2145 * pmap_pv_page_free:
2146 *
2147 * Free a pv_entry pool page.
2148 */
2149 void
2150 pmap_pv_page_free(struct pool *pp, void *v)
2151 {
2152 vaddr_t va = (vaddr_t)v;
2153
2154 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2155 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2156 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2157 KASSERT(pg != NULL);
2158 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2159 kpreempt_disable();
2160 pmap_md_vca_remove(pg, va, true, true);
2161 kpreempt_enable();
2162 #endif
2163 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2164 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2165 uvm_pagefree(pg);
2166 }
2167
2168 #ifdef PMAP_PREFER
2169 /*
2170 * Find first virtual address >= *vap that doesn't cause
2171 * a cache alias conflict.
2172 */
2173 void
2174 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2175 {
2176 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2177
2178 PMAP_COUNT(prefer_requests);
2179
2180 prefer_mask |= pmap_md_cache_prefer_mask();
2181
2182 if (prefer_mask) {
2183 vaddr_t va = *vap;
2184 vsize_t d = (foff - va) & prefer_mask;
2185 if (d) {
2186 if (td)
2187 *vap = trunc_page(va - ((-d) & prefer_mask));
2188 else
2189 *vap = round_page(va + d);
2190 PMAP_COUNT(prefer_adjustments);
2191 }
2192 }
2193 }
2194 #endif /* PMAP_PREFER */
2195
2196 #ifdef PMAP_MAP_POOLPAGE
2197 vaddr_t
2198 pmap_map_poolpage(paddr_t pa)
2199 {
2200 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2201 KASSERT(pg);
2202
2203 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2204 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2205
2206 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2207
2208 return pmap_md_map_poolpage(pa, NBPG);
2209 }
2210
2211 paddr_t
2212 pmap_unmap_poolpage(vaddr_t va)
2213 {
2214 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2215 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2216
2217 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2218 KASSERT(pg != NULL);
2219 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2220
2221 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2222 pmap_md_unmap_poolpage(va, NBPG);
2223
2224 return pa;
2225 }
2226 #endif /* PMAP_MAP_POOLPAGE */
2227