pmap.c revision 1.56 1 /* $NetBSD: pmap.c,v 1.56 2020/09/24 06:45:58 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.56 2020/09/24 06:45:58 skrll Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105
106 #include <sys/atomic.h>
107 #include <sys/buf.h>
108 #include <sys/cpu.h>
109 #include <sys/mutex.h>
110 #include <sys/pool.h>
111
112 #include <uvm/uvm.h>
113 #include <uvm/uvm_physseg.h>
114
115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
116 && !defined(PMAP_NO_PV_UNCACHED)
117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
118 PMAP_NO_PV_UNCACHED to be defined
119 #endif
120
121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
123 PMAP_COUNTER(remove_user_calls, "remove user calls");
124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
129
130 PMAP_COUNTER(prefer_requests, "prefer requests");
131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
132
133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
134
135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
139
140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
142
143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
146 PMAP_COUNTER(user_mappings, "user pages mapped");
147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
152 PMAP_COUNTER(mappings, "pages mapped");
153 PMAP_COUNTER(remappings, "pages remapped");
154 PMAP_COUNTER(unmappings, "pages unmapped");
155 PMAP_COUNTER(primary_mappings, "page initial mappings");
156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
157 PMAP_COUNTER(tlb_hit, "page mapping");
158
159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
170
171 PMAP_COUNTER(create, "creates");
172 PMAP_COUNTER(reference, "references");
173 PMAP_COUNTER(dereference, "dereferences");
174 PMAP_COUNTER(destroy, "destroyed");
175 PMAP_COUNTER(activate, "activations");
176 PMAP_COUNTER(deactivate, "deactivations");
177 PMAP_COUNTER(update, "updates");
178 #ifdef MULTIPROCESSOR
179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
180 #endif
181 PMAP_COUNTER(unwire, "unwires");
182 PMAP_COUNTER(copy, "copies");
183 PMAP_COUNTER(clear_modify, "clear_modifies");
184 PMAP_COUNTER(protect, "protects");
185 PMAP_COUNTER(page_protect, "page_protects");
186
187 #define PMAP_ASID_RESERVED 0
188 CTASSERT(PMAP_ASID_RESERVED == 0);
189
190 #ifndef PMAP_SEGTAB_ALIGN
191 #define PMAP_SEGTAB_ALIGN /* nothing */
192 #endif
193 #ifdef _LP64
194 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
195 #endif
196 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
197 #ifdef _LP64
198 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
199 #endif
200 };
201
202 struct pmap_kernel kernel_pmap_store = {
203 .kernel_pmap = {
204 .pm_count = 1,
205 .pm_segtab = &pmap_kern_segtab,
206 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
207 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
208 },
209 };
210
211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
212
213 struct pmap_limits pmap_limits = { /* VA and PA limits */
214 .virtual_start = VM_MIN_KERNEL_ADDRESS,
215 };
216
217 #ifdef UVMHIST
218 static struct kern_history_ent pmapexechistbuf[10000];
219 static struct kern_history_ent pmaphistbuf[10000];
220 static struct kern_history_ent pmapsegtabhistbuf[1000];
221 UVMHIST_DEFINE(pmapexechist);
222 UVMHIST_DEFINE(pmaphist);
223 UVMHIST_DEFINE(pmapsegtabhist);
224 #endif
225
226 /*
227 * The pools from which pmap structures and sub-structures are allocated.
228 */
229 struct pool pmap_pmap_pool;
230 struct pool pmap_pv_pool;
231
232 #ifndef PMAP_PV_LOWAT
233 #define PMAP_PV_LOWAT 16
234 #endif
235 int pmap_pv_lowat = PMAP_PV_LOWAT;
236
237 bool pmap_initialized = false;
238 #define PMAP_PAGE_COLOROK_P(a, b) \
239 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
240 u_int pmap_page_colormask;
241
242 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
243
244 #define PMAP_IS_ACTIVE(pm) \
245 ((pm) == pmap_kernel() || \
246 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
247
248 /* Forward function declarations */
249 void pmap_page_remove(struct vm_page *);
250 static void pmap_pvlist_check(struct vm_page_md *);
251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
253
254 /*
255 * PV table management functions.
256 */
257 void *pmap_pv_page_alloc(struct pool *, int);
258 void pmap_pv_page_free(struct pool *, void *);
259
260 struct pool_allocator pmap_pv_page_allocator = {
261 pmap_pv_page_alloc, pmap_pv_page_free, 0,
262 };
263
264 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
265 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
266
267 #ifndef PMAP_NEED_TLB_MISS_LOCK
268
269 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
270 #define PMAP_NEED_TLB_MISS_LOCK
271 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
272
273 #endif /* PMAP_NEED_TLB_MISS_LOCK */
274
275 #ifdef PMAP_NEED_TLB_MISS_LOCK
276
277 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
278 #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */
279 #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter()
280 #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit()
281 #else
282 kmutex_t pmap_tlb_miss_lock __cacheline_aligned;
283
284 static void
285 pmap_tlb_miss_lock_init(void)
286 {
287 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
288 }
289
290 static inline void
291 pmap_tlb_miss_lock_enter(void)
292 {
293 mutex_spin_enter(&pmap_tlb_miss_lock);
294 }
295
296 static inline void
297 pmap_tlb_miss_lock_exit(void)
298 {
299 mutex_spin_exit(&pmap_tlb_miss_lock);
300 }
301 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
302
303 #else
304
305 #define pmap_tlb_miss_lock_init() __nothing
306 #define pmap_tlb_miss_lock_enter() __nothing
307 #define pmap_tlb_miss_lock_exit() __nothing
308
309 #endif /* PMAP_NEED_TLB_MISS_LOCK */
310
311 #ifndef MULTIPROCESSOR
312 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
313 #endif
314
315 /*
316 * Debug functions.
317 */
318
319 #ifdef DEBUG
320 static inline void
321 pmap_asid_check(pmap_t pm, const char *func)
322 {
323 if (!PMAP_IS_ACTIVE(pm))
324 return;
325
326 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
327 tlb_asid_t asid = tlb_get_asid();
328 if (asid != pai->pai_asid)
329 panic("%s: inconsistency for active TLB update: %u <-> %u",
330 func, asid, pai->pai_asid);
331 }
332 #endif
333
334 static void
335 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
336 {
337 #ifdef DEBUG
338 if (pmap == pmap_kernel()) {
339 if (sva < VM_MIN_KERNEL_ADDRESS)
340 panic("%s: kva %#"PRIxVADDR" not in range",
341 func, sva);
342 if (eva >= pmap_limits.virtual_end)
343 panic("%s: kva %#"PRIxVADDR" not in range",
344 func, eva);
345 } else {
346 if (eva > VM_MAXUSER_ADDRESS)
347 panic("%s: uva %#"PRIxVADDR" not in range",
348 func, eva);
349 pmap_asid_check(pmap, func);
350 }
351 #endif
352 }
353
354 /*
355 * Misc. functions.
356 */
357
358 bool
359 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
360 {
361 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
362 #ifdef MULTIPROCESSOR
363 for (;;) {
364 u_int old_attr = *attrp;
365 if ((old_attr & clear_attributes) == 0)
366 return false;
367 u_int new_attr = old_attr & ~clear_attributes;
368 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
369 return true;
370 }
371 #else
372 unsigned long old_attr = *attrp;
373 if ((old_attr & clear_attributes) == 0)
374 return false;
375 *attrp &= ~clear_attributes;
376 return true;
377 #endif
378 }
379
380 void
381 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
382 {
383 #ifdef MULTIPROCESSOR
384 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
385 #else
386 mdpg->mdpg_attrs |= set_attributes;
387 #endif
388 }
389
390 static void
391 pmap_page_syncicache(struct vm_page *pg)
392 {
393 UVMHIST_FUNC(__func__);
394 UVMHIST_CALLED(pmaphist);
395 #ifndef MULTIPROCESSOR
396 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
397 #endif
398 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
399 pv_entry_t pv = &mdpg->mdpg_first;
400 kcpuset_t *onproc;
401 #ifdef MULTIPROCESSOR
402 kcpuset_create(&onproc, true);
403 KASSERT(onproc != NULL);
404 #else
405 onproc = NULL;
406 #endif
407 VM_PAGEMD_PVLIST_READLOCK(mdpg);
408 pmap_pvlist_check(mdpg);
409
410 UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx", (uintptr_t)pv,
411 (uintptr_t)pv->pv_pmap, 0, 0);
412
413 if (pv->pv_pmap != NULL) {
414 for (; pv != NULL; pv = pv->pv_next) {
415 #ifdef MULTIPROCESSOR
416 UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx",
417 (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
418 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
419 if (kcpuset_match(onproc, kcpuset_running)) {
420 break;
421 }
422 #else
423 if (pv->pv_pmap == curpmap) {
424 onproc = curcpu()->ci_data.cpu_kcpuset;
425 break;
426 }
427 #endif
428 }
429 }
430 pmap_pvlist_check(mdpg);
431 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
432 kpreempt_disable();
433 pmap_md_page_syncicache(pg, onproc);
434 kpreempt_enable();
435 #ifdef MULTIPROCESSOR
436 kcpuset_destroy(onproc);
437 #endif
438 }
439
440 /*
441 * Define the initial bounds of the kernel virtual address space.
442 */
443 void
444 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
445 {
446
447 *vstartp = pmap_limits.virtual_start;
448 *vendp = pmap_limits.virtual_end;
449 }
450
451 vaddr_t
452 pmap_growkernel(vaddr_t maxkvaddr)
453 {
454 vaddr_t virtual_end = pmap_limits.virtual_end;
455 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
456
457 /*
458 * Reserve PTEs for the new KVA space.
459 */
460 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
461 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
462 }
463
464 /*
465 * Don't exceed VM_MAX_KERNEL_ADDRESS!
466 */
467 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
468 virtual_end = VM_MAX_KERNEL_ADDRESS;
469
470 /*
471 * Update new end.
472 */
473 pmap_limits.virtual_end = virtual_end;
474 return virtual_end;
475 }
476
477 /*
478 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
479 * This function allows for early dynamic memory allocation until the virtual
480 * memory system has been bootstrapped. After that point, either kmem_alloc
481 * or malloc should be used. This function works by stealing pages from the
482 * (to be) managed page pool, then implicitly mapping the pages (by using
483 * their direct mapped addresses) and zeroing them.
484 *
485 * It may be used once the physical memory segments have been pre-loaded
486 * into the vm_physmem[] array. Early memory allocation MUST use this
487 * interface! This cannot be used after vm_page_startup(), and will
488 * generate a panic if tried.
489 *
490 * Note that this memory will never be freed, and in essence it is wired
491 * down.
492 *
493 * We must adjust *vstartp and/or *vendp iff we use address space
494 * from the kernel virtual address range defined by pmap_virtual_space().
495 */
496 vaddr_t
497 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
498 {
499 size_t npgs;
500 paddr_t pa;
501 vaddr_t va;
502
503 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
504
505 size = round_page(size);
506 npgs = atop(size);
507
508 aprint_debug("%s: need %zu pages\n", __func__, npgs);
509
510 for (uvm_physseg_t bank = uvm_physseg_get_first();
511 uvm_physseg_valid_p(bank);
512 bank = uvm_physseg_get_next(bank)) {
513
514 if (uvm.page_init_done == true)
515 panic("pmap_steal_memory: called _after_ bootstrap");
516
517 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
518 __func__, bank,
519 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
520 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
521
522 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
523 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
524 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
525 continue;
526 }
527
528 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
529 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
530 __func__, bank, npgs);
531 continue;
532 }
533
534 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
535 continue;
536 }
537
538 /*
539 * Always try to allocate from the segment with the least
540 * amount of space left.
541 */
542 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
543 if (uvm_physseg_valid_p(maybe_bank) == false
544 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
545 maybe_bank = bank;
546 }
547 }
548
549 if (uvm_physseg_valid_p(maybe_bank)) {
550 const uvm_physseg_t bank = maybe_bank;
551
552 /*
553 * There are enough pages here; steal them!
554 */
555 pa = ptoa(uvm_physseg_get_start(bank));
556 uvm_physseg_unplug(atop(pa), npgs);
557
558 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
559 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
560
561 va = pmap_md_map_poolpage(pa, size);
562 memset((void *)va, 0, size);
563 return va;
564 }
565
566 /*
567 * If we got here, there was no memory left.
568 */
569 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
570 }
571
572 /*
573 * Bootstrap the system enough to run with virtual memory.
574 * (Common routine called by machine-dependent bootstrap code.)
575 */
576 void
577 pmap_bootstrap_common(void)
578 {
579 pmap_tlb_miss_lock_init();
580 }
581
582 /*
583 * Initialize the pmap module.
584 * Called by vm_init, to initialize any structures that the pmap
585 * system needs to map virtual memory.
586 */
587 void
588 pmap_init(void)
589 {
590 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
591 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
592 UVMHIST_INIT_STATIC(pmapsegtabhist, pmapsegtabhistbuf);
593
594 UVMHIST_FUNC(__func__);
595 UVMHIST_CALLED(pmaphist);
596
597 /*
598 * Initialize the segtab lock.
599 */
600 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
601
602 /*
603 * Set a low water mark on the pv_entry pool, so that we are
604 * more likely to have these around even in extreme memory
605 * starvation.
606 */
607 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
608
609 /*
610 * Set the page colormask but allow pmap_md_init to override it.
611 */
612 pmap_page_colormask = ptoa(uvmexp.colormask);
613
614 pmap_md_init();
615
616 /*
617 * Now it is safe to enable pv entry recording.
618 */
619 pmap_initialized = true;
620 }
621
622 /*
623 * Create and return a physical map.
624 *
625 * If the size specified for the map
626 * is zero, the map is an actual physical
627 * map, and may be referenced by the
628 * hardware.
629 *
630 * If the size specified is non-zero,
631 * the map will be used in software only, and
632 * is bounded by that size.
633 */
634 pmap_t
635 pmap_create(void)
636 {
637 UVMHIST_FUNC(__func__);
638 UVMHIST_CALLED(pmaphist);
639 PMAP_COUNT(create);
640
641 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
642 memset(pmap, 0, PMAP_SIZE);
643
644 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
645
646 pmap->pm_count = 1;
647 pmap->pm_minaddr = VM_MIN_ADDRESS;
648 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
649
650 pmap_segtab_init(pmap);
651
652 #ifdef MULTIPROCESSOR
653 kcpuset_create(&pmap->pm_active, true);
654 kcpuset_create(&pmap->pm_onproc, true);
655 KASSERT(pmap->pm_active != NULL);
656 KASSERT(pmap->pm_onproc != NULL);
657 #endif
658
659 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
660 0, 0, 0);
661
662 return pmap;
663 }
664
665 /*
666 * Retire the given physical map from service.
667 * Should only be called if the map contains
668 * no valid mappings.
669 */
670 void
671 pmap_destroy(pmap_t pmap)
672 {
673 UVMHIST_FUNC(__func__);
674 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
675
676 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
677 PMAP_COUNT(dereference);
678 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
679 return;
680 }
681
682 PMAP_COUNT(destroy);
683 KASSERT(pmap->pm_count == 0);
684 kpreempt_disable();
685 pmap_tlb_miss_lock_enter();
686 pmap_tlb_asid_release_all(pmap);
687 pmap_segtab_destroy(pmap, NULL, 0);
688 pmap_tlb_miss_lock_exit();
689
690 #ifdef MULTIPROCESSOR
691 kcpuset_destroy(pmap->pm_active);
692 kcpuset_destroy(pmap->pm_onproc);
693 pmap->pm_active = NULL;
694 pmap->pm_onproc = NULL;
695 #endif
696
697 pool_put(&pmap_pmap_pool, pmap);
698 kpreempt_enable();
699
700 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
701 }
702
703 /*
704 * Add a reference to the specified pmap.
705 */
706 void
707 pmap_reference(pmap_t pmap)
708 {
709 UVMHIST_FUNC(__func__);
710 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
711 PMAP_COUNT(reference);
712
713 if (pmap != NULL) {
714 atomic_inc_uint(&pmap->pm_count);
715 }
716
717 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
718 }
719
720 /*
721 * Make a new pmap (vmspace) active for the given process.
722 */
723 void
724 pmap_activate(struct lwp *l)
725 {
726 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
727
728 UVMHIST_FUNC(__func__);
729 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
730 (uintptr_t)pmap, 0, 0);
731 PMAP_COUNT(activate);
732
733 kpreempt_disable();
734 pmap_tlb_miss_lock_enter();
735 pmap_tlb_asid_acquire(pmap, l);
736 pmap_segtab_activate(pmap, l);
737 pmap_tlb_miss_lock_exit();
738 kpreempt_enable();
739
740 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
741 l->l_lid, 0, 0);
742 }
743
744 /*
745 * Remove this page from all physical maps in which it resides.
746 * Reflects back modify bits to the pager.
747 */
748 void
749 pmap_page_remove(struct vm_page *pg)
750 {
751 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
752
753 kpreempt_disable();
754 VM_PAGEMD_PVLIST_LOCK(mdpg);
755 pmap_pvlist_check(mdpg);
756
757 UVMHIST_FUNC(__func__);
758 UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
759 "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
760 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
761 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
762 #else
763 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
764 #endif
765 PMAP_COUNT(exec_uncached_remove);
766
767 pv_entry_t pv = &mdpg->mdpg_first;
768 if (pv->pv_pmap == NULL) {
769 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
770 kpreempt_enable();
771 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
772 return;
773 }
774
775 pv_entry_t npv;
776 pv_entry_t pvp = NULL;
777
778 for (; pv != NULL; pv = npv) {
779 npv = pv->pv_next;
780 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
781 if (PV_ISKENTER_P(pv)) {
782 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
783 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
784 pv->pv_va, 0);
785
786 KASSERT(pv->pv_pmap == pmap_kernel());
787
788 /* Assume no more - it'll get fixed if there are */
789 pv->pv_next = NULL;
790
791 /*
792 * pvp is non-null when we already have a PV_KENTER
793 * pv in pvh_first; otherwise we haven't seen a
794 * PV_KENTER pv and we need to copy this one to
795 * pvh_first
796 */
797 if (pvp) {
798 /*
799 * The previous PV_KENTER pv needs to point to
800 * this PV_KENTER pv
801 */
802 pvp->pv_next = pv;
803 } else {
804 pv_entry_t fpv = &mdpg->mdpg_first;
805 *fpv = *pv;
806 KASSERT(fpv->pv_pmap == pmap_kernel());
807 }
808 pvp = pv;
809 continue;
810 }
811 #endif
812 const pmap_t pmap = pv->pv_pmap;
813 vaddr_t va = trunc_page(pv->pv_va);
814 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
815 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
816 pmap_limits.virtual_end);
817 pt_entry_t pte = *ptep;
818 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
819 " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
820 pte_value(pte));
821 if (!pte_valid_p(pte))
822 continue;
823 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
824 if (is_kernel_pmap_p) {
825 PMAP_COUNT(remove_kernel_pages);
826 } else {
827 PMAP_COUNT(remove_user_pages);
828 }
829 if (pte_wired_p(pte))
830 pmap->pm_stats.wired_count--;
831 pmap->pm_stats.resident_count--;
832
833 pmap_tlb_miss_lock_enter();
834 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
835 pte_set(ptep, npte);
836 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
837 /*
838 * Flush the TLB for the given address.
839 */
840 pmap_tlb_invalidate_addr(pmap, va);
841 }
842 pmap_tlb_miss_lock_exit();
843
844 /*
845 * non-null means this is a non-pvh_first pv, so we should
846 * free it.
847 */
848 if (pvp) {
849 KASSERT(pvp->pv_pmap == pmap_kernel());
850 KASSERT(pvp->pv_next == NULL);
851 pmap_pv_free(pv);
852 } else {
853 pv->pv_pmap = NULL;
854 pv->pv_next = NULL;
855 }
856 }
857
858 pmap_pvlist_check(mdpg);
859 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
860 kpreempt_enable();
861
862 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
863 }
864
865
866 /*
867 * Make a previously active pmap (vmspace) inactive.
868 */
869 void
870 pmap_deactivate(struct lwp *l)
871 {
872 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
873
874 UVMHIST_FUNC(__func__);
875 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
876 (uintptr_t)pmap, 0, 0);
877 PMAP_COUNT(deactivate);
878
879 kpreempt_disable();
880 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
881 pmap_tlb_miss_lock_enter();
882 pmap_tlb_asid_deactivate(pmap);
883 pmap_segtab_deactivate(pmap);
884 pmap_tlb_miss_lock_exit();
885 kpreempt_enable();
886
887 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
888 l->l_lid, 0, 0);
889 }
890
891 void
892 pmap_update(struct pmap *pmap)
893 {
894 UVMHIST_FUNC(__func__);
895 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
896 PMAP_COUNT(update);
897
898 kpreempt_disable();
899 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
900 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
901 if (pending && pmap_tlb_shootdown_bystanders(pmap))
902 PMAP_COUNT(shootdown_ipis);
903 #endif
904 pmap_tlb_miss_lock_enter();
905 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
906 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
907 #endif /* DEBUG */
908
909 /*
910 * If pmap_remove_all was called, we deactivated ourselves and nuked
911 * our ASID. Now we have to reactivate ourselves.
912 */
913 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
914 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
915 pmap_tlb_asid_acquire(pmap, curlwp);
916 pmap_segtab_activate(pmap, curlwp);
917 }
918 pmap_tlb_miss_lock_exit();
919 kpreempt_enable();
920
921 UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
922 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
923 }
924
925 /*
926 * Remove the given range of addresses from the specified map.
927 *
928 * It is assumed that the start and end are properly
929 * rounded to the page size.
930 */
931
932 static bool
933 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
934 uintptr_t flags)
935 {
936 const pt_entry_t npte = flags;
937 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
938
939 UVMHIST_FUNC(__func__);
940 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
941 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
942 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
943 (uintptr_t)ptep, flags, 0, 0);
944
945 KASSERT(kpreempt_disabled());
946
947 for (; sva < eva; sva += NBPG, ptep++) {
948 const pt_entry_t pte = *ptep;
949 if (!pte_valid_p(pte))
950 continue;
951 if (is_kernel_pmap_p) {
952 PMAP_COUNT(remove_kernel_pages);
953 } else {
954 PMAP_COUNT(remove_user_pages);
955 }
956 if (pte_wired_p(pte))
957 pmap->pm_stats.wired_count--;
958 pmap->pm_stats.resident_count--;
959 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
960 if (__predict_true(pg != NULL)) {
961 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
962 }
963 pmap_tlb_miss_lock_enter();
964 pte_set(ptep, npte);
965 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
966
967 /*
968 * Flush the TLB for the given address.
969 */
970 pmap_tlb_invalidate_addr(pmap, sva);
971 }
972 pmap_tlb_miss_lock_exit();
973 }
974
975 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
976
977 return false;
978 }
979
980 void
981 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
982 {
983 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
984 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
985
986 UVMHIST_FUNC(__func__);
987 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
988 (uintptr_t)pmap, sva, eva, 0);
989
990 if (is_kernel_pmap_p) {
991 PMAP_COUNT(remove_kernel_calls);
992 } else {
993 PMAP_COUNT(remove_user_calls);
994 }
995 #ifdef PMAP_FAULTINFO
996 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
997 curpcb->pcb_faultinfo.pfi_repeats = 0;
998 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
999 #endif
1000 kpreempt_disable();
1001 pmap_addr_range_check(pmap, sva, eva, __func__);
1002 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
1003 kpreempt_enable();
1004
1005 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1006 }
1007
1008 /*
1009 * pmap_page_protect:
1010 *
1011 * Lower the permission for all mappings to a given page.
1012 */
1013 void
1014 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1015 {
1016 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1017 pv_entry_t pv;
1018 vaddr_t va;
1019
1020 UVMHIST_FUNC(__func__);
1021 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1022 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1023 PMAP_COUNT(page_protect);
1024
1025 switch (prot) {
1026 case VM_PROT_READ|VM_PROT_WRITE:
1027 case VM_PROT_ALL:
1028 break;
1029
1030 /* copy_on_write */
1031 case VM_PROT_READ:
1032 case VM_PROT_READ|VM_PROT_EXECUTE:
1033 pv = &mdpg->mdpg_first;
1034 kpreempt_disable();
1035 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1036 pmap_pvlist_check(mdpg);
1037 /*
1038 * Loop over all current mappings setting/clearing as
1039 * appropriate.
1040 */
1041 if (pv->pv_pmap != NULL) {
1042 while (pv != NULL) {
1043 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1044 if (PV_ISKENTER_P(pv)) {
1045 pv = pv->pv_next;
1046 continue;
1047 }
1048 #endif
1049 const pmap_t pmap = pv->pv_pmap;
1050 va = trunc_page(pv->pv_va);
1051 const uintptr_t gen =
1052 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1053 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1054 KASSERT(pv->pv_pmap == pmap);
1055 pmap_update(pmap);
1056 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1057 pv = &mdpg->mdpg_first;
1058 } else {
1059 pv = pv->pv_next;
1060 }
1061 pmap_pvlist_check(mdpg);
1062 }
1063 }
1064 pmap_pvlist_check(mdpg);
1065 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1066 kpreempt_enable();
1067 break;
1068
1069 /* remove_all */
1070 default:
1071 pmap_page_remove(pg);
1072 }
1073
1074 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1075 }
1076
1077 static bool
1078 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1079 uintptr_t flags)
1080 {
1081 const vm_prot_t prot = (flags & VM_PROT_ALL);
1082
1083 UVMHIST_FUNC(__func__);
1084 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
1085 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1086 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1087 (uintptr_t)ptep, flags, 0, 0);
1088
1089 KASSERT(kpreempt_disabled());
1090 /*
1091 * Change protection on every valid mapping within this segment.
1092 */
1093 for (; sva < eva; sva += NBPG, ptep++) {
1094 pt_entry_t pte = *ptep;
1095 if (!pte_valid_p(pte))
1096 continue;
1097 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1098 if (pg != NULL && pte_modified_p(pte)) {
1099 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1100 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1101 KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1102 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1103 if (VM_PAGEMD_CACHED_P(mdpg)) {
1104 #endif
1105 UVMHIST_LOG(pmapexechist,
1106 "pg %#jx (pa %#jx): "
1107 "syncicached performed",
1108 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1109 0, 0);
1110 pmap_page_syncicache(pg);
1111 PMAP_COUNT(exec_synced_protect);
1112 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1113 }
1114 #endif
1115 }
1116 }
1117 pte = pte_prot_downgrade(pte, prot);
1118 if (*ptep != pte) {
1119 pmap_tlb_miss_lock_enter();
1120 pte_set(ptep, pte);
1121 /*
1122 * Update the TLB if needed.
1123 */
1124 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1125 pmap_tlb_miss_lock_exit();
1126 }
1127 }
1128
1129 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1130
1131 return false;
1132 }
1133
1134 /*
1135 * Set the physical protection on the
1136 * specified range of this map as requested.
1137 */
1138 void
1139 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1140 {
1141 UVMHIST_FUNC(__func__);
1142 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1143 (uintptr_t)pmap, sva, eva, prot);
1144 PMAP_COUNT(protect);
1145
1146 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1147 pmap_remove(pmap, sva, eva);
1148 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1149 return;
1150 }
1151
1152 /*
1153 * Change protection on every valid mapping within this segment.
1154 */
1155 kpreempt_disable();
1156 pmap_addr_range_check(pmap, sva, eva, __func__);
1157 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1158 kpreempt_enable();
1159
1160 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1161 }
1162
1163 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1164 /*
1165 * pmap_page_cache:
1166 *
1167 * Change all mappings of a managed page to cached/uncached.
1168 */
1169 void
1170 pmap_page_cache(struct vm_page *pg, bool cached)
1171 {
1172 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1173
1174 UVMHIST_FUNC(__func__);
1175 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
1176 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
1177
1178 KASSERT(kpreempt_disabled());
1179 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1180
1181 if (cached) {
1182 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1183 PMAP_COUNT(page_cache_restorations);
1184 } else {
1185 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1186 PMAP_COUNT(page_cache_evictions);
1187 }
1188
1189 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1190 pmap_t pmap = pv->pv_pmap;
1191 vaddr_t va = trunc_page(pv->pv_va);
1192
1193 KASSERT(pmap != NULL);
1194 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1195 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1196 if (ptep == NULL)
1197 continue;
1198 pt_entry_t pte = *ptep;
1199 if (pte_valid_p(pte)) {
1200 pte = pte_cached_change(pte, cached);
1201 pmap_tlb_miss_lock_enter();
1202 pte_set(ptep, pte);
1203 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1204 pmap_tlb_miss_lock_exit();
1205 }
1206 }
1207
1208 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1209 }
1210 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1211
1212 /*
1213 * Insert the given physical page (p) at
1214 * the specified virtual address (v) in the
1215 * target physical map with the protection requested.
1216 *
1217 * If specified, the page will be wired down, meaning
1218 * that the related pte can not be reclaimed.
1219 *
1220 * NB: This is the only routine which MAY NOT lazy-evaluate
1221 * or lose information. That is, this routine must actually
1222 * insert this page into the given map NOW.
1223 */
1224 int
1225 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1226 {
1227 const bool wired = (flags & PMAP_WIRED) != 0;
1228 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1229 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1230 #ifdef UVMHIST
1231 struct kern_history * const histp =
1232 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1233 #endif
1234
1235 UVMHIST_FUNC(__func__);
1236 UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1237 (uintptr_t)pmap, va, pa, 0);
1238 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1239
1240 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1241 if (is_kernel_pmap_p) {
1242 PMAP_COUNT(kernel_mappings);
1243 if (!good_color)
1244 PMAP_COUNT(kernel_mappings_bad);
1245 } else {
1246 PMAP_COUNT(user_mappings);
1247 if (!good_color)
1248 PMAP_COUNT(user_mappings_bad);
1249 }
1250 pmap_addr_range_check(pmap, va, va, __func__);
1251
1252 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1253 VM_PROT_READ, prot);
1254
1255 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1256 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1257
1258 if (pg) {
1259 /* Set page referenced/modified status based on flags */
1260 if (flags & VM_PROT_WRITE) {
1261 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1262 } else if (flags & VM_PROT_ALL) {
1263 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1264 }
1265
1266 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1267 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1268 flags |= PMAP_NOCACHE;
1269 PMAP_COUNT(uncached_mappings);
1270 }
1271 #endif
1272
1273 PMAP_COUNT(managed_mappings);
1274 } else {
1275 /*
1276 * Assumption: if it is not part of our managed memory
1277 * then it must be device memory which may be volatile.
1278 */
1279 if ((flags & PMAP_CACHE_MASK) == 0)
1280 flags |= PMAP_NOCACHE;
1281 PMAP_COUNT(unmanaged_mappings);
1282 }
1283
1284 pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
1285 is_kernel_pmap_p);
1286
1287 kpreempt_disable();
1288
1289 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1290 if (__predict_false(ptep == NULL)) {
1291 kpreempt_enable();
1292 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1293 return ENOMEM;
1294 }
1295 const pt_entry_t opte = *ptep;
1296 const bool resident = pte_valid_p(opte);
1297 bool remap = false;
1298 if (resident) {
1299 if (pte_to_paddr(opte) != pa) {
1300 KASSERT(!is_kernel_pmap_p);
1301 const pt_entry_t rpte = pte_nv_entry(false);
1302
1303 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1304 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1305 rpte);
1306 PMAP_COUNT(user_mappings_changed);
1307 remap = true;
1308 }
1309 update_flags |= PMAP_TLB_NEED_IPI;
1310 }
1311
1312 if (!resident || remap) {
1313 pmap->pm_stats.resident_count++;
1314 }
1315
1316 /* Done after case that may sleep/return. */
1317 if (pg)
1318 pmap_enter_pv(pmap, va, pg, &npte, 0);
1319
1320 /*
1321 * Now validate mapping with desired protection/wiring.
1322 */
1323 if (wired) {
1324 pmap->pm_stats.wired_count++;
1325 npte = pte_wire_entry(npte);
1326 }
1327
1328 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1329 pte_value(npte), pa, 0, 0);
1330
1331 KASSERT(pte_valid_p(npte));
1332
1333 pmap_tlb_miss_lock_enter();
1334 pte_set(ptep, npte);
1335 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1336 pmap_tlb_miss_lock_exit();
1337 kpreempt_enable();
1338
1339 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1340 KASSERT(mdpg != NULL);
1341 PMAP_COUNT(exec_mappings);
1342 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1343 if (!pte_deferred_exec_p(npte)) {
1344 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1345 "immediate syncicache",
1346 va, (uintptr_t)pg, 0, 0);
1347 pmap_page_syncicache(pg);
1348 pmap_page_set_attributes(mdpg,
1349 VM_PAGEMD_EXECPAGE);
1350 PMAP_COUNT(exec_synced_mappings);
1351 } else {
1352 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1353 "syncicache: pte %#jx",
1354 va, (uintptr_t)pg, npte, 0);
1355 }
1356 } else {
1357 UVMHIST_LOG(*histp,
1358 "va=%#jx pg %#jx: no syncicache cached %jd",
1359 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1360 }
1361 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1362 KASSERT(mdpg != NULL);
1363 KASSERT(prot & VM_PROT_WRITE);
1364 PMAP_COUNT(exec_mappings);
1365 pmap_page_syncicache(pg);
1366 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1367 UVMHIST_LOG(*histp,
1368 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1369 va, (uintptr_t)pg, 0, 0);
1370 }
1371
1372 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1373 return 0;
1374 }
1375
1376 void
1377 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1378 {
1379 pmap_t pmap = pmap_kernel();
1380 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1381 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1382
1383 UVMHIST_FUNC(__func__);
1384 UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1385 va, pa, prot, flags);
1386 PMAP_COUNT(kenter_pa);
1387
1388 if (mdpg == NULL) {
1389 PMAP_COUNT(kenter_pa_unmanaged);
1390 if ((flags & PMAP_CACHE_MASK) == 0)
1391 flags |= PMAP_NOCACHE;
1392 } else {
1393 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1394 PMAP_COUNT(kenter_pa_bad);
1395 }
1396
1397 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1398 kpreempt_disable();
1399 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1400 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1401 pmap_limits.virtual_end);
1402 KASSERT(!pte_valid_p(*ptep));
1403
1404 /*
1405 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1406 */
1407 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1408 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1409 && pmap_md_virtual_cache_aliasing_p()) {
1410 pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
1411 }
1412 #endif
1413
1414 /*
1415 * We have the option to force this mapping into the TLB but we
1416 * don't. Instead let the next reference to the page do it.
1417 */
1418 pmap_tlb_miss_lock_enter();
1419 pte_set(ptep, npte);
1420 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1421 pmap_tlb_miss_lock_exit();
1422 kpreempt_enable();
1423 #if DEBUG > 1
1424 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1425 if (((long *)va)[i] != ((long *)pa)[i])
1426 panic("%s: contents (%lx) of va %#"PRIxVADDR
1427 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1428 ((long *)va)[i], va, ((long *)pa)[i], pa);
1429 }
1430 #endif
1431
1432 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1433 0);
1434 }
1435
1436 /*
1437 * Remove the given range of addresses from the kernel map.
1438 *
1439 * It is assumed that the start and end are properly
1440 * rounded to the page size.
1441 */
1442
1443 static bool
1444 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1445 uintptr_t flags)
1446 {
1447 const pt_entry_t new_pte = pte_nv_entry(true);
1448
1449 UVMHIST_FUNC(__func__);
1450 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1451 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1452
1453 KASSERT(kpreempt_disabled());
1454
1455 for (; sva < eva; sva += NBPG, ptep++) {
1456 pt_entry_t pte = *ptep;
1457 if (!pte_valid_p(pte))
1458 continue;
1459
1460 PMAP_COUNT(kremove_pages);
1461 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1462 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1463 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1464 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1465 }
1466 #endif
1467
1468 pmap_tlb_miss_lock_enter();
1469 pte_set(ptep, new_pte);
1470 pmap_tlb_invalidate_addr(pmap, sva);
1471 pmap_tlb_miss_lock_exit();
1472 }
1473
1474 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1475
1476 return false;
1477 }
1478
1479 void
1480 pmap_kremove(vaddr_t va, vsize_t len)
1481 {
1482 const vaddr_t sva = trunc_page(va);
1483 const vaddr_t eva = round_page(va + len);
1484
1485 UVMHIST_FUNC(__func__);
1486 UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1487
1488 kpreempt_disable();
1489 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1490 kpreempt_enable();
1491
1492 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1493 }
1494
1495 bool
1496 pmap_remove_all(struct pmap *pmap)
1497 {
1498 UVMHIST_FUNC(__func__);
1499 UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1500
1501 KASSERT(pmap != pmap_kernel());
1502
1503 kpreempt_disable();
1504 /*
1505 * Free all of our ASIDs which means we can skip doing all the
1506 * tlb_invalidate_addrs().
1507 */
1508 pmap_tlb_miss_lock_enter();
1509 #ifdef MULTIPROCESSOR
1510 // This should be the last CPU with this pmap onproc
1511 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1512 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1513 #endif
1514 pmap_tlb_asid_deactivate(pmap);
1515 #ifdef MULTIPROCESSOR
1516 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1517 #endif
1518 pmap_tlb_asid_release_all(pmap);
1519 pmap_tlb_miss_lock_exit();
1520 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1521
1522 #ifdef PMAP_FAULTINFO
1523 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1524 curpcb->pcb_faultinfo.pfi_repeats = 0;
1525 curpcb->pcb_faultinfo.pfi_faultpte = NULL;
1526 #endif
1527 kpreempt_enable();
1528
1529 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1530 return false;
1531 }
1532
1533 /*
1534 * Routine: pmap_unwire
1535 * Function: Clear the wired attribute for a map/virtual-address
1536 * pair.
1537 * In/out conditions:
1538 * The mapping must already exist in the pmap.
1539 */
1540 void
1541 pmap_unwire(pmap_t pmap, vaddr_t va)
1542 {
1543 UVMHIST_FUNC(__func__);
1544 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1545 0, 0);
1546 PMAP_COUNT(unwire);
1547
1548 /*
1549 * Don't need to flush the TLB since PG_WIRED is only in software.
1550 */
1551 kpreempt_disable();
1552 pmap_addr_range_check(pmap, va, va, __func__);
1553 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1554 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1555 pmap, va);
1556 pt_entry_t pte = *ptep;
1557 KASSERTMSG(pte_valid_p(pte),
1558 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1559 pmap, va, pte_value(pte), ptep);
1560
1561 if (pte_wired_p(pte)) {
1562 pmap_tlb_miss_lock_enter();
1563 pte_set(ptep, pte_unwire_entry(pte));
1564 pmap_tlb_miss_lock_exit();
1565 pmap->pm_stats.wired_count--;
1566 }
1567 #ifdef DIAGNOSTIC
1568 else {
1569 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1570 __func__, pmap, va);
1571 }
1572 #endif
1573 kpreempt_enable();
1574
1575 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1576 }
1577
1578 /*
1579 * Routine: pmap_extract
1580 * Function:
1581 * Extract the physical page address associated
1582 * with the given map/virtual_address pair.
1583 */
1584 bool
1585 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1586 {
1587 paddr_t pa;
1588
1589 if (pmap == pmap_kernel()) {
1590 if (pmap_md_direct_mapped_vaddr_p(va)) {
1591 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1592 goto done;
1593 }
1594 if (pmap_md_io_vaddr_p(va))
1595 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1596
1597 if (va >= pmap_limits.virtual_end)
1598 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1599 __func__, va);
1600 }
1601 kpreempt_disable();
1602 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1603 if (ptep == NULL || !pte_valid_p(*ptep)) {
1604 kpreempt_enable();
1605 return false;
1606 }
1607 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1608 kpreempt_enable();
1609 done:
1610 if (pap != NULL) {
1611 *pap = pa;
1612 }
1613 return true;
1614 }
1615
1616 /*
1617 * Copy the range specified by src_addr/len
1618 * from the source map to the range dst_addr/len
1619 * in the destination map.
1620 *
1621 * This routine is only advisory and need not do anything.
1622 */
1623 void
1624 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1625 vaddr_t src_addr)
1626 {
1627 UVMHIST_FUNC(__func__);
1628 UVMHIST_CALLED(pmaphist);
1629 PMAP_COUNT(copy);
1630 }
1631
1632 /*
1633 * pmap_clear_reference:
1634 *
1635 * Clear the reference bit on the specified physical page.
1636 */
1637 bool
1638 pmap_clear_reference(struct vm_page *pg)
1639 {
1640 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1641
1642 UVMHIST_FUNC(__func__);
1643 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1644 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1645
1646 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1647
1648 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1649
1650 return rv;
1651 }
1652
1653 /*
1654 * pmap_is_referenced:
1655 *
1656 * Return whether or not the specified physical page is referenced
1657 * by any physical maps.
1658 */
1659 bool
1660 pmap_is_referenced(struct vm_page *pg)
1661 {
1662 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1663 }
1664
1665 /*
1666 * Clear the modify bits on the specified physical page.
1667 */
1668 bool
1669 pmap_clear_modify(struct vm_page *pg)
1670 {
1671 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1672 pv_entry_t pv = &mdpg->mdpg_first;
1673 pv_entry_t pv_next;
1674
1675 UVMHIST_FUNC(__func__);
1676 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1677 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1678 PMAP_COUNT(clear_modify);
1679
1680 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1681 if (pv->pv_pmap == NULL) {
1682 UVMHIST_LOG(pmapexechist,
1683 "pg %#jx (pa %#jx): execpage cleared",
1684 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1685 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1686 PMAP_COUNT(exec_uncached_clear_modify);
1687 } else {
1688 UVMHIST_LOG(pmapexechist,
1689 "pg %#jx (pa %#jx): syncicache performed",
1690 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1691 pmap_page_syncicache(pg);
1692 PMAP_COUNT(exec_synced_clear_modify);
1693 }
1694 }
1695 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1696 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1697 return false;
1698 }
1699 if (pv->pv_pmap == NULL) {
1700 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1701 return true;
1702 }
1703
1704 /*
1705 * remove write access from any pages that are dirty
1706 * so we can tell if they are written to again later.
1707 * flush the VAC first if there is one.
1708 */
1709 kpreempt_disable();
1710 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1711 pmap_pvlist_check(mdpg);
1712 for (; pv != NULL; pv = pv_next) {
1713 pmap_t pmap = pv->pv_pmap;
1714 vaddr_t va = trunc_page(pv->pv_va);
1715
1716 pv_next = pv->pv_next;
1717 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1718 if (PV_ISKENTER_P(pv))
1719 continue;
1720 #endif
1721 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1722 KASSERT(ptep);
1723 pt_entry_t pte = pte_prot_nowrite(*ptep);
1724 if (*ptep == pte) {
1725 continue;
1726 }
1727 KASSERT(pte_valid_p(pte));
1728 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1729 pmap_tlb_miss_lock_enter();
1730 pte_set(ptep, pte);
1731 pmap_tlb_invalidate_addr(pmap, va);
1732 pmap_tlb_miss_lock_exit();
1733 pmap_update(pmap);
1734 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1735 /*
1736 * The list changed! So restart from the beginning.
1737 */
1738 pv_next = &mdpg->mdpg_first;
1739 pmap_pvlist_check(mdpg);
1740 }
1741 }
1742 pmap_pvlist_check(mdpg);
1743 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1744 kpreempt_enable();
1745
1746 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1747 return true;
1748 }
1749
1750 /*
1751 * pmap_is_modified:
1752 *
1753 * Return whether or not the specified physical page is modified
1754 * by any physical maps.
1755 */
1756 bool
1757 pmap_is_modified(struct vm_page *pg)
1758 {
1759 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1760 }
1761
1762 /*
1763 * pmap_set_modified:
1764 *
1765 * Sets the page modified reference bit for the specified page.
1766 */
1767 void
1768 pmap_set_modified(paddr_t pa)
1769 {
1770 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1771 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1772 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1773 }
1774
1775 /******************** pv_entry management ********************/
1776
1777 static void
1778 pmap_pvlist_check(struct vm_page_md *mdpg)
1779 {
1780 #ifdef DEBUG
1781 pv_entry_t pv = &mdpg->mdpg_first;
1782 if (pv->pv_pmap != NULL) {
1783 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1784 const u_int colormask = uvmexp.colormask;
1785 u_int colors = 0;
1786 #endif
1787 for (; pv != NULL; pv = pv->pv_next) {
1788 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1789 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1790 colors |= __BIT(atop(pv->pv_va) & colormask);
1791 #endif
1792 }
1793 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1794 // Assert that if there is more than 1 color mapped, that the
1795 // page is uncached.
1796 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1797 || colors == 0 || (colors & (colors-1)) == 0
1798 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1799 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1800 #endif
1801 } else {
1802 KASSERT(pv->pv_next == NULL);
1803 }
1804 #endif /* DEBUG */
1805 }
1806
1807 /*
1808 * Enter the pmap and virtual address into the
1809 * physical to virtual map table.
1810 */
1811 void
1812 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
1813 u_int flags)
1814 {
1815 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1816 pv_entry_t pv, npv, apv;
1817 #ifdef UVMHIST
1818 bool first = false;
1819 #endif
1820
1821 UVMHIST_FUNC(__func__);
1822 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1823 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1824 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1825 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1826
1827 KASSERT(kpreempt_disabled());
1828 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1829 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1830 "va %#"PRIxVADDR, va);
1831
1832 apv = NULL;
1833 VM_PAGEMD_PVLIST_LOCK(mdpg);
1834 again:
1835 pv = &mdpg->mdpg_first;
1836 pmap_pvlist_check(mdpg);
1837 if (pv->pv_pmap == NULL) {
1838 KASSERT(pv->pv_next == NULL);
1839 /*
1840 * No entries yet, use header as the first entry
1841 */
1842 PMAP_COUNT(primary_mappings);
1843 PMAP_COUNT(mappings);
1844 #ifdef UVMHIST
1845 first = true;
1846 #endif
1847 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1848 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1849 // If the new mapping has an incompatible color the last
1850 // mapping of this page, clean the page before using it.
1851 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1852 pmap_md_vca_clean(pg, PMAP_WBINV);
1853 }
1854 #endif
1855 pv->pv_pmap = pmap;
1856 pv->pv_va = va | flags;
1857 } else {
1858 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1859 if (pmap_md_vca_add(pg, va, nptep)) {
1860 goto again;
1861 }
1862 #endif
1863
1864 /*
1865 * There is at least one other VA mapping this page.
1866 * Place this entry after the header.
1867 *
1868 * Note: the entry may already be in the table if
1869 * we are only changing the protection bits.
1870 */
1871
1872 #ifdef PARANOIADIAG
1873 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1874 #endif
1875 for (npv = pv; npv; npv = npv->pv_next) {
1876 if (pmap == npv->pv_pmap
1877 && va == trunc_page(npv->pv_va)) {
1878 #ifdef PARANOIADIAG
1879 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1880 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1881 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1882 printf("%s: found va %#"PRIxVADDR
1883 " pa %#"PRIxPADDR
1884 " in pv_table but != %#"PRIxPTE"\n",
1885 __func__, va, pa, pte_value(pte));
1886 #endif
1887 PMAP_COUNT(remappings);
1888 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1889 if (__predict_false(apv != NULL))
1890 pmap_pv_free(apv);
1891
1892 UVMHIST_LOG(pmaphist,
1893 " <-- done pv=%#jx (reused)",
1894 (uintptr_t)pv, 0, 0, 0);
1895 return;
1896 }
1897 }
1898 if (__predict_true(apv == NULL)) {
1899 /*
1900 * To allocate a PV, we have to release the PVLIST lock
1901 * so get the page generation. We allocate the PV, and
1902 * then reacquire the lock.
1903 */
1904 pmap_pvlist_check(mdpg);
1905 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1906
1907 apv = (pv_entry_t)pmap_pv_alloc();
1908 if (apv == NULL)
1909 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1910
1911 /*
1912 * If the generation has changed, then someone else
1913 * tinkered with this page so we should start over.
1914 */
1915 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1916 goto again;
1917 }
1918 npv = apv;
1919 apv = NULL;
1920 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1921 /*
1922 * If need to deal with virtual cache aliases, keep mappings
1923 * in the kernel pmap at the head of the list. This allows
1924 * the VCA code to easily use them for cache operations if
1925 * present.
1926 */
1927 pmap_t kpmap = pmap_kernel();
1928 if (pmap != kpmap) {
1929 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1930 pv = pv->pv_next;
1931 }
1932 }
1933 #endif
1934 npv->pv_va = va | flags;
1935 npv->pv_pmap = pmap;
1936 npv->pv_next = pv->pv_next;
1937 pv->pv_next = npv;
1938 PMAP_COUNT(mappings);
1939 }
1940 pmap_pvlist_check(mdpg);
1941 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1942 if (__predict_false(apv != NULL))
1943 pmap_pv_free(apv);
1944
1945 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
1946 first, 0, 0);
1947 }
1948
1949 /*
1950 * Remove a physical to virtual address translation.
1951 * If cache was inhibited on this page, and there are no more cache
1952 * conflicts, restore caching.
1953 * Flush the cache if the last page is removed (should always be cached
1954 * at this point).
1955 */
1956 void
1957 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1958 {
1959 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1960 pv_entry_t pv, npv;
1961 bool last;
1962
1963 UVMHIST_FUNC(__func__);
1964 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
1965 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
1966 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
1967
1968 KASSERT(kpreempt_disabled());
1969 KASSERT((va & PAGE_MASK) == 0);
1970 pv = &mdpg->mdpg_first;
1971
1972 VM_PAGEMD_PVLIST_LOCK(mdpg);
1973 pmap_pvlist_check(mdpg);
1974
1975 /*
1976 * If it is the first entry on the list, it is actually
1977 * in the header and we must copy the following entry up
1978 * to the header. Otherwise we must search the list for
1979 * the entry. In either case we free the now unused entry.
1980 */
1981
1982 last = false;
1983 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
1984 npv = pv->pv_next;
1985 if (npv) {
1986 *pv = *npv;
1987 KASSERT(pv->pv_pmap != NULL);
1988 } else {
1989 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1990 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1991 #endif
1992 pv->pv_pmap = NULL;
1993 last = true; /* Last mapping removed */
1994 }
1995 PMAP_COUNT(remove_pvfirst);
1996 } else {
1997 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1998 PMAP_COUNT(remove_pvsearch);
1999 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
2000 break;
2001 }
2002 if (npv) {
2003 pv->pv_next = npv->pv_next;
2004 }
2005 }
2006
2007 pmap_pvlist_check(mdpg);
2008 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2009
2010 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2011 pmap_md_vca_remove(pg, va, dirty, last);
2012 #endif
2013
2014 /*
2015 * Free the pv_entry if needed.
2016 */
2017 if (npv)
2018 pmap_pv_free(npv);
2019 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2020 if (last) {
2021 /*
2022 * If this was the page's last mapping, we no longer
2023 * care about its execness.
2024 */
2025 UVMHIST_LOG(pmapexechist,
2026 "pg %#jx (pa %#jx)last %ju: execpage cleared",
2027 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2028 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2029 PMAP_COUNT(exec_uncached_remove);
2030 } else {
2031 /*
2032 * Someone still has it mapped as an executable page
2033 * so we must sync it.
2034 */
2035 UVMHIST_LOG(pmapexechist,
2036 "pg %#jx (pa %#jx) last %ju: performed syncicache",
2037 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2038 pmap_page_syncicache(pg);
2039 PMAP_COUNT(exec_synced_remove);
2040 }
2041 }
2042
2043 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2044 }
2045
2046 #if defined(MULTIPROCESSOR)
2047 struct pmap_pvlist_info {
2048 kmutex_t *pli_locks[PAGE_SIZE / 32];
2049 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2050 volatile u_int pli_lock_index;
2051 u_int pli_lock_mask;
2052 } pmap_pvlist_info;
2053
2054 void
2055 pmap_pvlist_lock_init(size_t cache_line_size)
2056 {
2057 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2058 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2059 vaddr_t lock_va = lock_page;
2060 if (sizeof(kmutex_t) > cache_line_size) {
2061 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2062 }
2063 const size_t nlocks = PAGE_SIZE / cache_line_size;
2064 KASSERT((nlocks & (nlocks - 1)) == 0);
2065 /*
2066 * Now divide the page into a number of mutexes, one per cacheline.
2067 */
2068 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2069 kmutex_t * const lock = (kmutex_t *)lock_va;
2070 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2071 pli->pli_locks[i] = lock;
2072 }
2073 pli->pli_lock_mask = nlocks - 1;
2074 }
2075
2076 kmutex_t *
2077 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2078 {
2079 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2080 kmutex_t *lock = mdpg->mdpg_lock;
2081
2082 /*
2083 * Allocate a lock on an as-needed basis. This will hopefully give us
2084 * semi-random distribution not based on page color.
2085 */
2086 if (__predict_false(lock == NULL)) {
2087 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2088 size_t lockid = locknum & pli->pli_lock_mask;
2089 kmutex_t * const new_lock = pli->pli_locks[lockid];
2090 /*
2091 * Set the lock. If some other thread already did, just use
2092 * the one they assigned.
2093 */
2094 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2095 if (lock == NULL) {
2096 lock = new_lock;
2097 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2098 }
2099 }
2100
2101 /*
2102 * Now finally provide the lock.
2103 */
2104 return lock;
2105 }
2106 #else /* !MULTIPROCESSOR */
2107 void
2108 pmap_pvlist_lock_init(size_t cache_line_size)
2109 {
2110 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2111 }
2112
2113 #ifdef MODULAR
2114 kmutex_t *
2115 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2116 {
2117 /*
2118 * We just use a global lock.
2119 */
2120 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2121 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2122 }
2123
2124 /*
2125 * Now finally provide the lock.
2126 */
2127 return mdpg->mdpg_lock;
2128 }
2129 #endif /* MODULAR */
2130 #endif /* !MULTIPROCESSOR */
2131
2132 /*
2133 * pmap_pv_page_alloc:
2134 *
2135 * Allocate a page for the pv_entry pool.
2136 */
2137 void *
2138 pmap_pv_page_alloc(struct pool *pp, int flags)
2139 {
2140 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2141 if (pg == NULL)
2142 return NULL;
2143
2144 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2145 }
2146
2147 /*
2148 * pmap_pv_page_free:
2149 *
2150 * Free a pv_entry pool page.
2151 */
2152 void
2153 pmap_pv_page_free(struct pool *pp, void *v)
2154 {
2155 vaddr_t va = (vaddr_t)v;
2156
2157 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2158 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2159 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2160 KASSERT(pg != NULL);
2161 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2162 kpreempt_disable();
2163 pmap_md_vca_remove(pg, va, true, true);
2164 kpreempt_enable();
2165 #endif
2166 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2167 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2168 uvm_pagefree(pg);
2169 }
2170
2171 #ifdef PMAP_PREFER
2172 /*
2173 * Find first virtual address >= *vap that doesn't cause
2174 * a cache alias conflict.
2175 */
2176 void
2177 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2178 {
2179 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2180
2181 PMAP_COUNT(prefer_requests);
2182
2183 prefer_mask |= pmap_md_cache_prefer_mask();
2184
2185 if (prefer_mask) {
2186 vaddr_t va = *vap;
2187 vsize_t d = (foff - va) & prefer_mask;
2188 if (d) {
2189 if (td)
2190 *vap = trunc_page(va - ((-d) & prefer_mask));
2191 else
2192 *vap = round_page(va + d);
2193 PMAP_COUNT(prefer_adjustments);
2194 }
2195 }
2196 }
2197 #endif /* PMAP_PREFER */
2198
2199 #ifdef PMAP_MAP_POOLPAGE
2200 vaddr_t
2201 pmap_map_poolpage(paddr_t pa)
2202 {
2203 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2204 KASSERT(pg);
2205
2206 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2207 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2208
2209 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2210
2211 return pmap_md_map_poolpage(pa, NBPG);
2212 }
2213
2214 paddr_t
2215 pmap_unmap_poolpage(vaddr_t va)
2216 {
2217 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2218 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2219
2220 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2221 KASSERT(pg != NULL);
2222 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2223
2224 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2225 pmap_md_unmap_poolpage(va, NBPG);
2226
2227 return pa;
2228 }
2229 #endif /* PMAP_MAP_POOLPAGE */
2230