Home | History | Annotate | Line # | Download | only in pmap
pmap.c revision 1.56
      1 /*	$NetBSD: pmap.c,v 1.56 2020/09/24 06:45:58 skrll Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1992, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * This code is derived from software contributed to Berkeley by
     38  * the Systems Programming Group of the University of Utah Computer
     39  * Science Department and Ralph Campbell.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)pmap.c	8.4 (Berkeley) 1/26/94
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.56 2020/09/24 06:45:58 skrll Exp $");
     71 
     72 /*
     73  *	Manages physical address maps.
     74  *
     75  *	In addition to hardware address maps, this
     76  *	module is called upon to provide software-use-only
     77  *	maps which may or may not be stored in the same
     78  *	form as hardware maps.  These pseudo-maps are
     79  *	used to store intermediate results from copy
     80  *	operations to and from address spaces.
     81  *
     82  *	Since the information managed by this module is
     83  *	also stored by the logical address mapping module,
     84  *	this module may throw away valid virtual-to-physical
     85  *	mappings at almost any time.  However, invalidations
     86  *	of virtual-to-physical mappings must be done as
     87  *	requested.
     88  *
     89  *	In order to cope with hardware architectures which
     90  *	make virtual-to-physical map invalidates expensive,
     91  *	this module may delay invalidate or reduced protection
     92  *	operations until such time as they are actually
     93  *	necessary.  This module is given full information as
     94  *	to which processors are currently using which maps,
     95  *	and to when physical maps must be made correct.
     96  */
     97 
     98 #include "opt_modular.h"
     99 #include "opt_multiprocessor.h"
    100 #include "opt_sysv.h"
    101 
    102 #define __PMAP_PRIVATE
    103 
    104 #include <sys/param.h>
    105 
    106 #include <sys/atomic.h>
    107 #include <sys/buf.h>
    108 #include <sys/cpu.h>
    109 #include <sys/mutex.h>
    110 #include <sys/pool.h>
    111 
    112 #include <uvm/uvm.h>
    113 #include <uvm/uvm_physseg.h>
    114 
    115 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
    116     && !defined(PMAP_NO_PV_UNCACHED)
    117 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
    118  PMAP_NO_PV_UNCACHED to be defined
    119 #endif
    120 
    121 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
    122 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
    123 PMAP_COUNTER(remove_user_calls, "remove user calls");
    124 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
    125 PMAP_COUNTER(remove_flushes, "remove cache flushes");
    126 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
    127 PMAP_COUNTER(remove_pvfirst, "remove pv first");
    128 PMAP_COUNTER(remove_pvsearch, "remove pv search");
    129 
    130 PMAP_COUNTER(prefer_requests, "prefer requests");
    131 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
    132 
    133 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
    134 
    135 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
    136 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
    137 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
    138 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
    139 
    140 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
    141 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
    142 
    143 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
    144 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
    145 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
    146 PMAP_COUNTER(user_mappings, "user pages mapped");
    147 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
    148 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
    149 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
    150 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
    151 PMAP_COUNTER(managed_mappings, "managed pages mapped");
    152 PMAP_COUNTER(mappings, "pages mapped");
    153 PMAP_COUNTER(remappings, "pages remapped");
    154 PMAP_COUNTER(unmappings, "pages unmapped");
    155 PMAP_COUNTER(primary_mappings, "page initial mappings");
    156 PMAP_COUNTER(primary_unmappings, "page final unmappings");
    157 PMAP_COUNTER(tlb_hit, "page mapping");
    158 
    159 PMAP_COUNTER(exec_mappings, "exec pages mapped");
    160 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
    161 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
    162 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
    163 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
    164 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
    165 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
    166 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
    167 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
    168 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
    169 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
    170 
    171 PMAP_COUNTER(create, "creates");
    172 PMAP_COUNTER(reference, "references");
    173 PMAP_COUNTER(dereference, "dereferences");
    174 PMAP_COUNTER(destroy, "destroyed");
    175 PMAP_COUNTER(activate, "activations");
    176 PMAP_COUNTER(deactivate, "deactivations");
    177 PMAP_COUNTER(update, "updates");
    178 #ifdef MULTIPROCESSOR
    179 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
    180 #endif
    181 PMAP_COUNTER(unwire, "unwires");
    182 PMAP_COUNTER(copy, "copies");
    183 PMAP_COUNTER(clear_modify, "clear_modifies");
    184 PMAP_COUNTER(protect, "protects");
    185 PMAP_COUNTER(page_protect, "page_protects");
    186 
    187 #define PMAP_ASID_RESERVED 0
    188 CTASSERT(PMAP_ASID_RESERVED == 0);
    189 
    190 #ifndef PMAP_SEGTAB_ALIGN
    191 #define PMAP_SEGTAB_ALIGN	/* nothing */
    192 #endif
    193 #ifdef _LP64
    194 pmap_segtab_t	pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
    195 #endif
    196 pmap_segtab_t	pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
    197 #ifdef _LP64
    198 	.seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
    199 #endif
    200 };
    201 
    202 struct pmap_kernel kernel_pmap_store = {
    203 	.kernel_pmap = {
    204 		.pm_count = 1,
    205 		.pm_segtab = &pmap_kern_segtab,
    206 		.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
    207 		.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
    208 	},
    209 };
    210 
    211 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
    212 
    213 struct pmap_limits pmap_limits = {	/* VA and PA limits */
    214 	.virtual_start = VM_MIN_KERNEL_ADDRESS,
    215 };
    216 
    217 #ifdef UVMHIST
    218 static struct kern_history_ent pmapexechistbuf[10000];
    219 static struct kern_history_ent pmaphistbuf[10000];
    220 static struct kern_history_ent pmapsegtabhistbuf[1000];
    221 UVMHIST_DEFINE(pmapexechist);
    222 UVMHIST_DEFINE(pmaphist);
    223 UVMHIST_DEFINE(pmapsegtabhist);
    224 #endif
    225 
    226 /*
    227  * The pools from which pmap structures and sub-structures are allocated.
    228  */
    229 struct pool pmap_pmap_pool;
    230 struct pool pmap_pv_pool;
    231 
    232 #ifndef PMAP_PV_LOWAT
    233 #define	PMAP_PV_LOWAT	16
    234 #endif
    235 int	pmap_pv_lowat = PMAP_PV_LOWAT;
    236 
    237 bool	pmap_initialized = false;
    238 #define	PMAP_PAGE_COLOROK_P(a, b) \
    239 		((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
    240 u_int	pmap_page_colormask;
    241 
    242 #define PAGE_IS_MANAGED(pa)	(pmap_initialized && uvm_pageismanaged(pa))
    243 
    244 #define PMAP_IS_ACTIVE(pm)						\
    245 	((pm) == pmap_kernel() || 					\
    246 	 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
    247 
    248 /* Forward function declarations */
    249 void pmap_page_remove(struct vm_page *);
    250 static void pmap_pvlist_check(struct vm_page_md *);
    251 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
    252 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, pt_entry_t *, u_int);
    253 
    254 /*
    255  * PV table management functions.
    256  */
    257 void	*pmap_pv_page_alloc(struct pool *, int);
    258 void	pmap_pv_page_free(struct pool *, void *);
    259 
    260 struct pool_allocator pmap_pv_page_allocator = {
    261 	pmap_pv_page_alloc, pmap_pv_page_free, 0,
    262 };
    263 
    264 #define	pmap_pv_alloc()		pool_get(&pmap_pv_pool, PR_NOWAIT)
    265 #define	pmap_pv_free(pv)	pool_put(&pmap_pv_pool, (pv))
    266 
    267 #ifndef PMAP_NEED_TLB_MISS_LOCK
    268 
    269 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
    270 #define	PMAP_NEED_TLB_MISS_LOCK
    271 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
    272 
    273 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    274 
    275 #ifdef PMAP_NEED_TLB_MISS_LOCK
    276 
    277 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
    278 #define	pmap_tlb_miss_lock_init()	__nothing /* MD code deals with this */
    279 #define	pmap_tlb_miss_lock_enter()	pmap_md_tlb_miss_lock_enter()
    280 #define	pmap_tlb_miss_lock_exit()	pmap_md_tlb_miss_lock_exit()
    281 #else
    282 kmutex_t pmap_tlb_miss_lock 		__cacheline_aligned;
    283 
    284 static void
    285 pmap_tlb_miss_lock_init(void)
    286 {
    287 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    288 }
    289 
    290 static inline void
    291 pmap_tlb_miss_lock_enter(void)
    292 {
    293 	mutex_spin_enter(&pmap_tlb_miss_lock);
    294 }
    295 
    296 static inline void
    297 pmap_tlb_miss_lock_exit(void)
    298 {
    299 	mutex_spin_exit(&pmap_tlb_miss_lock);
    300 }
    301 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
    302 
    303 #else
    304 
    305 #define	pmap_tlb_miss_lock_init()	__nothing
    306 #define	pmap_tlb_miss_lock_enter()	__nothing
    307 #define	pmap_tlb_miss_lock_exit()	__nothing
    308 
    309 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    310 
    311 #ifndef MULTIPROCESSOR
    312 kmutex_t pmap_pvlist_mutex	__cacheline_aligned;
    313 #endif
    314 
    315 /*
    316  * Debug functions.
    317  */
    318 
    319 #ifdef DEBUG
    320 static inline void
    321 pmap_asid_check(pmap_t pm, const char *func)
    322 {
    323 	if (!PMAP_IS_ACTIVE(pm))
    324 		return;
    325 
    326 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
    327 	tlb_asid_t asid = tlb_get_asid();
    328 	if (asid != pai->pai_asid)
    329 		panic("%s: inconsistency for active TLB update: %u <-> %u",
    330 		    func, asid, pai->pai_asid);
    331 }
    332 #endif
    333 
    334 static void
    335 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
    336 {
    337 #ifdef DEBUG
    338 	if (pmap == pmap_kernel()) {
    339 		if (sva < VM_MIN_KERNEL_ADDRESS)
    340 			panic("%s: kva %#"PRIxVADDR" not in range",
    341 			    func, sva);
    342 		if (eva >= pmap_limits.virtual_end)
    343 			panic("%s: kva %#"PRIxVADDR" not in range",
    344 			    func, eva);
    345 	} else {
    346 		if (eva > VM_MAXUSER_ADDRESS)
    347 			panic("%s: uva %#"PRIxVADDR" not in range",
    348 			    func, eva);
    349 		pmap_asid_check(pmap, func);
    350 	}
    351 #endif
    352 }
    353 
    354 /*
    355  * Misc. functions.
    356  */
    357 
    358 bool
    359 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
    360 {
    361 	volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
    362 #ifdef MULTIPROCESSOR
    363 	for (;;) {
    364 		u_int old_attr = *attrp;
    365 		if ((old_attr & clear_attributes) == 0)
    366 			return false;
    367 		u_int new_attr = old_attr & ~clear_attributes;
    368 		if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
    369 			return true;
    370 	}
    371 #else
    372 	unsigned long old_attr = *attrp;
    373 	if ((old_attr & clear_attributes) == 0)
    374 		return false;
    375 	*attrp &= ~clear_attributes;
    376 	return true;
    377 #endif
    378 }
    379 
    380 void
    381 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
    382 {
    383 #ifdef MULTIPROCESSOR
    384 	atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
    385 #else
    386 	mdpg->mdpg_attrs |= set_attributes;
    387 #endif
    388 }
    389 
    390 static void
    391 pmap_page_syncicache(struct vm_page *pg)
    392 {
    393 	UVMHIST_FUNC(__func__);
    394 	UVMHIST_CALLED(pmaphist);
    395 #ifndef MULTIPROCESSOR
    396 	struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
    397 #endif
    398 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
    399 	pv_entry_t pv = &mdpg->mdpg_first;
    400 	kcpuset_t *onproc;
    401 #ifdef MULTIPROCESSOR
    402 	kcpuset_create(&onproc, true);
    403 	KASSERT(onproc != NULL);
    404 #else
    405 	onproc = NULL;
    406 #endif
    407 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
    408 	pmap_pvlist_check(mdpg);
    409 
    410 	UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx", (uintptr_t)pv,
    411 	    (uintptr_t)pv->pv_pmap, 0, 0);
    412 
    413 	if (pv->pv_pmap != NULL) {
    414 		for (; pv != NULL; pv = pv->pv_next) {
    415 #ifdef MULTIPROCESSOR
    416 			UVMHIST_LOG(pmaphist, "pv %jx pv_pmap %jx",
    417 			    (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
    418 			kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
    419 			if (kcpuset_match(onproc, kcpuset_running)) {
    420 				break;
    421 			}
    422 #else
    423 			if (pv->pv_pmap == curpmap) {
    424 				onproc = curcpu()->ci_data.cpu_kcpuset;
    425 				break;
    426 			}
    427 #endif
    428 		}
    429 	}
    430 	pmap_pvlist_check(mdpg);
    431 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    432 	kpreempt_disable();
    433 	pmap_md_page_syncicache(pg, onproc);
    434 	kpreempt_enable();
    435 #ifdef MULTIPROCESSOR
    436 	kcpuset_destroy(onproc);
    437 #endif
    438 }
    439 
    440 /*
    441  * Define the initial bounds of the kernel virtual address space.
    442  */
    443 void
    444 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
    445 {
    446 
    447 	*vstartp = pmap_limits.virtual_start;
    448 	*vendp = pmap_limits.virtual_end;
    449 }
    450 
    451 vaddr_t
    452 pmap_growkernel(vaddr_t maxkvaddr)
    453 {
    454 	vaddr_t virtual_end = pmap_limits.virtual_end;
    455 	maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
    456 
    457 	/*
    458 	 * Reserve PTEs for the new KVA space.
    459 	 */
    460 	for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
    461 		pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
    462 	}
    463 
    464 	/*
    465 	 * Don't exceed VM_MAX_KERNEL_ADDRESS!
    466 	 */
    467 	if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
    468 		virtual_end = VM_MAX_KERNEL_ADDRESS;
    469 
    470 	/*
    471 	 * Update new end.
    472 	 */
    473 	pmap_limits.virtual_end = virtual_end;
    474 	return virtual_end;
    475 }
    476 
    477 /*
    478  * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
    479  * This function allows for early dynamic memory allocation until the virtual
    480  * memory system has been bootstrapped.  After that point, either kmem_alloc
    481  * or malloc should be used.  This function works by stealing pages from the
    482  * (to be) managed page pool, then implicitly mapping the pages (by using
    483  * their direct mapped addresses) and zeroing them.
    484  *
    485  * It may be used once the physical memory segments have been pre-loaded
    486  * into the vm_physmem[] array.  Early memory allocation MUST use this
    487  * interface!  This cannot be used after vm_page_startup(), and will
    488  * generate a panic if tried.
    489  *
    490  * Note that this memory will never be freed, and in essence it is wired
    491  * down.
    492  *
    493  * We must adjust *vstartp and/or *vendp iff we use address space
    494  * from the kernel virtual address range defined by pmap_virtual_space().
    495  */
    496 vaddr_t
    497 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
    498 {
    499 	size_t npgs;
    500 	paddr_t pa;
    501 	vaddr_t va;
    502 
    503 	uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
    504 
    505 	size = round_page(size);
    506 	npgs = atop(size);
    507 
    508 	aprint_debug("%s: need %zu pages\n", __func__, npgs);
    509 
    510 	for (uvm_physseg_t bank = uvm_physseg_get_first();
    511 	     uvm_physseg_valid_p(bank);
    512 	     bank = uvm_physseg_get_next(bank)) {
    513 
    514 		if (uvm.page_init_done == true)
    515 			panic("pmap_steal_memory: called _after_ bootstrap");
    516 
    517 		aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
    518 		    __func__, bank,
    519 		    uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
    520 		    uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
    521 
    522 		if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
    523 		    || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
    524 			aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
    525 			continue;
    526 		}
    527 
    528 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
    529 			aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
    530 			    __func__, bank, npgs);
    531 			continue;
    532 		}
    533 
    534 		if (!pmap_md_ok_to_steal_p(bank, npgs)) {
    535 			continue;
    536 		}
    537 
    538 		/*
    539 		 * Always try to allocate from the segment with the least
    540 		 * amount of space left.
    541 		 */
    542 #define VM_PHYSMEM_SPACE(b)	((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
    543 		if (uvm_physseg_valid_p(maybe_bank) == false
    544 		    || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
    545 			maybe_bank = bank;
    546 		}
    547 	}
    548 
    549 	if (uvm_physseg_valid_p(maybe_bank)) {
    550 		const uvm_physseg_t bank = maybe_bank;
    551 
    552 		/*
    553 		 * There are enough pages here; steal them!
    554 		 */
    555 		pa = ptoa(uvm_physseg_get_start(bank));
    556 		uvm_physseg_unplug(atop(pa), npgs);
    557 
    558 		aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
    559 		    __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
    560 
    561 		va = pmap_md_map_poolpage(pa, size);
    562 		memset((void *)va, 0, size);
    563 		return va;
    564 	}
    565 
    566 	/*
    567 	 * If we got here, there was no memory left.
    568 	 */
    569 	panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
    570 }
    571 
    572 /*
    573  *	Bootstrap the system enough to run with virtual memory.
    574  *	(Common routine called by machine-dependent bootstrap code.)
    575  */
    576 void
    577 pmap_bootstrap_common(void)
    578 {
    579 	pmap_tlb_miss_lock_init();
    580 }
    581 
    582 /*
    583  *	Initialize the pmap module.
    584  *	Called by vm_init, to initialize any structures that the pmap
    585  *	system needs to map virtual memory.
    586  */
    587 void
    588 pmap_init(void)
    589 {
    590 	UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
    591 	UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
    592 	UVMHIST_INIT_STATIC(pmapsegtabhist, pmapsegtabhistbuf);
    593 
    594 	UVMHIST_FUNC(__func__);
    595 	UVMHIST_CALLED(pmaphist);
    596 
    597 	/*
    598 	 * Initialize the segtab lock.
    599 	 */
    600 	mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
    601 
    602 	/*
    603 	 * Set a low water mark on the pv_entry pool, so that we are
    604 	 * more likely to have these around even in extreme memory
    605 	 * starvation.
    606 	 */
    607 	pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
    608 
    609 	/*
    610 	 * Set the page colormask but allow pmap_md_init to override it.
    611 	 */
    612 	pmap_page_colormask = ptoa(uvmexp.colormask);
    613 
    614 	pmap_md_init();
    615 
    616 	/*
    617 	 * Now it is safe to enable pv entry recording.
    618 	 */
    619 	pmap_initialized = true;
    620 }
    621 
    622 /*
    623  *	Create and return a physical map.
    624  *
    625  *	If the size specified for the map
    626  *	is zero, the map is an actual physical
    627  *	map, and may be referenced by the
    628  *	hardware.
    629  *
    630  *	If the size specified is non-zero,
    631  *	the map will be used in software only, and
    632  *	is bounded by that size.
    633  */
    634 pmap_t
    635 pmap_create(void)
    636 {
    637 	UVMHIST_FUNC(__func__);
    638 	UVMHIST_CALLED(pmaphist);
    639 	PMAP_COUNT(create);
    640 
    641 	pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
    642 	memset(pmap, 0, PMAP_SIZE);
    643 
    644 	KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
    645 
    646 	pmap->pm_count = 1;
    647 	pmap->pm_minaddr = VM_MIN_ADDRESS;
    648 	pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
    649 
    650 	pmap_segtab_init(pmap);
    651 
    652 #ifdef MULTIPROCESSOR
    653 	kcpuset_create(&pmap->pm_active, true);
    654 	kcpuset_create(&pmap->pm_onproc, true);
    655 	KASSERT(pmap->pm_active != NULL);
    656 	KASSERT(pmap->pm_onproc != NULL);
    657 #endif
    658 
    659 	UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
    660 	    0, 0, 0);
    661 
    662 	return pmap;
    663 }
    664 
    665 /*
    666  *	Retire the given physical map from service.
    667  *	Should only be called if the map contains
    668  *	no valid mappings.
    669  */
    670 void
    671 pmap_destroy(pmap_t pmap)
    672 {
    673 	UVMHIST_FUNC(__func__);
    674 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    675 
    676 	if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
    677 		PMAP_COUNT(dereference);
    678 		UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
    679 		return;
    680 	}
    681 
    682 	PMAP_COUNT(destroy);
    683 	KASSERT(pmap->pm_count == 0);
    684 	kpreempt_disable();
    685 	pmap_tlb_miss_lock_enter();
    686 	pmap_tlb_asid_release_all(pmap);
    687 	pmap_segtab_destroy(pmap, NULL, 0);
    688 	pmap_tlb_miss_lock_exit();
    689 
    690 #ifdef MULTIPROCESSOR
    691 	kcpuset_destroy(pmap->pm_active);
    692 	kcpuset_destroy(pmap->pm_onproc);
    693 	pmap->pm_active = NULL;
    694 	pmap->pm_onproc = NULL;
    695 #endif
    696 
    697 	pool_put(&pmap_pmap_pool, pmap);
    698 	kpreempt_enable();
    699 
    700 	UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
    701 }
    702 
    703 /*
    704  *	Add a reference to the specified pmap.
    705  */
    706 void
    707 pmap_reference(pmap_t pmap)
    708 {
    709 	UVMHIST_FUNC(__func__);
    710 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    711 	PMAP_COUNT(reference);
    712 
    713 	if (pmap != NULL) {
    714 		atomic_inc_uint(&pmap->pm_count);
    715 	}
    716 
    717 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    718 }
    719 
    720 /*
    721  *	Make a new pmap (vmspace) active for the given process.
    722  */
    723 void
    724 pmap_activate(struct lwp *l)
    725 {
    726 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    727 
    728 	UVMHIST_FUNC(__func__);
    729 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    730 	    (uintptr_t)pmap, 0, 0);
    731 	PMAP_COUNT(activate);
    732 
    733 	kpreempt_disable();
    734 	pmap_tlb_miss_lock_enter();
    735 	pmap_tlb_asid_acquire(pmap, l);
    736 	pmap_segtab_activate(pmap, l);
    737 	pmap_tlb_miss_lock_exit();
    738 	kpreempt_enable();
    739 
    740 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    741 	    l->l_lid, 0, 0);
    742 }
    743 
    744 /*
    745  * Remove this page from all physical maps in which it resides.
    746  * Reflects back modify bits to the pager.
    747  */
    748 void
    749 pmap_page_remove(struct vm_page *pg)
    750 {
    751 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
    752 
    753 	kpreempt_disable();
    754 	VM_PAGEMD_PVLIST_LOCK(mdpg);
    755 	pmap_pvlist_check(mdpg);
    756 
    757 	UVMHIST_FUNC(__func__);
    758 	UVMHIST_CALLARGS(pmapexechist, "pg %#jx (pa %#jx) [page removed]: "
    759 	    "execpage cleared", (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
    760 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    761 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
    762 #else
    763 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
    764 #endif
    765 	PMAP_COUNT(exec_uncached_remove);
    766 
    767 	pv_entry_t pv = &mdpg->mdpg_first;
    768 	if (pv->pv_pmap == NULL) {
    769 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    770 		kpreempt_enable();
    771 		UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
    772 		return;
    773 	}
    774 
    775 	pv_entry_t npv;
    776 	pv_entry_t pvp = NULL;
    777 
    778 	for (; pv != NULL; pv = npv) {
    779 		npv = pv->pv_next;
    780 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    781 		if (PV_ISKENTER_P(pv)) {
    782 			UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
    783 			    " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
    784 			    pv->pv_va, 0);
    785 
    786 			KASSERT(pv->pv_pmap == pmap_kernel());
    787 
    788 			/* Assume no more - it'll get fixed if there are */
    789 			pv->pv_next = NULL;
    790 
    791 			/*
    792 			 * pvp is non-null when we already have a PV_KENTER
    793 			 * pv in pvh_first; otherwise we haven't seen a
    794 			 * PV_KENTER pv and we need to copy this one to
    795 			 * pvh_first
    796 			 */
    797 			if (pvp) {
    798 				/*
    799 				 * The previous PV_KENTER pv needs to point to
    800 				 * this PV_KENTER pv
    801 				 */
    802 				pvp->pv_next = pv;
    803 			} else {
    804 				pv_entry_t fpv = &mdpg->mdpg_first;
    805 				*fpv = *pv;
    806 				KASSERT(fpv->pv_pmap == pmap_kernel());
    807 			}
    808 			pvp = pv;
    809 			continue;
    810 		}
    811 #endif
    812 		const pmap_t pmap = pv->pv_pmap;
    813 		vaddr_t va = trunc_page(pv->pv_va);
    814 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
    815 		KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
    816 		    pmap_limits.virtual_end);
    817 		pt_entry_t pte = *ptep;
    818 		UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %jx"
    819 		    " pte %jx", (uintptr_t)pv, (uintptr_t)pmap, va,
    820 		    pte_value(pte));
    821 		if (!pte_valid_p(pte))
    822 			continue;
    823 		const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    824 		if (is_kernel_pmap_p) {
    825 			PMAP_COUNT(remove_kernel_pages);
    826 		} else {
    827 			PMAP_COUNT(remove_user_pages);
    828 		}
    829 		if (pte_wired_p(pte))
    830 			pmap->pm_stats.wired_count--;
    831 		pmap->pm_stats.resident_count--;
    832 
    833 		pmap_tlb_miss_lock_enter();
    834 		const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
    835 		pte_set(ptep, npte);
    836 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
    837 			/*
    838 			 * Flush the TLB for the given address.
    839 			 */
    840 			pmap_tlb_invalidate_addr(pmap, va);
    841 		}
    842 		pmap_tlb_miss_lock_exit();
    843 
    844 		/*
    845 		 * non-null means this is a non-pvh_first pv, so we should
    846 		 * free it.
    847 		 */
    848 		if (pvp) {
    849 			KASSERT(pvp->pv_pmap == pmap_kernel());
    850 			KASSERT(pvp->pv_next == NULL);
    851 			pmap_pv_free(pv);
    852 		} else {
    853 			pv->pv_pmap = NULL;
    854 			pv->pv_next = NULL;
    855 		}
    856 	}
    857 
    858 	pmap_pvlist_check(mdpg);
    859 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    860 	kpreempt_enable();
    861 
    862 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    863 }
    864 
    865 
    866 /*
    867  *	Make a previously active pmap (vmspace) inactive.
    868  */
    869 void
    870 pmap_deactivate(struct lwp *l)
    871 {
    872 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    873 
    874 	UVMHIST_FUNC(__func__);
    875 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    876 	    (uintptr_t)pmap, 0, 0);
    877 	PMAP_COUNT(deactivate);
    878 
    879 	kpreempt_disable();
    880 	KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
    881 	pmap_tlb_miss_lock_enter();
    882 	pmap_tlb_asid_deactivate(pmap);
    883 	pmap_segtab_deactivate(pmap);
    884 	pmap_tlb_miss_lock_exit();
    885 	kpreempt_enable();
    886 
    887 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    888 	    l->l_lid, 0, 0);
    889 }
    890 
    891 void
    892 pmap_update(struct pmap *pmap)
    893 {
    894 	UVMHIST_FUNC(__func__);
    895 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    896 	PMAP_COUNT(update);
    897 
    898 	kpreempt_disable();
    899 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
    900 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
    901 	if (pending && pmap_tlb_shootdown_bystanders(pmap))
    902 		PMAP_COUNT(shootdown_ipis);
    903 #endif
    904 	pmap_tlb_miss_lock_enter();
    905 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
    906 	pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
    907 #endif /* DEBUG */
    908 
    909 	/*
    910 	 * If pmap_remove_all was called, we deactivated ourselves and nuked
    911 	 * our ASID.  Now we have to reactivate ourselves.
    912 	 */
    913 	if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
    914 		pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
    915 		pmap_tlb_asid_acquire(pmap, curlwp);
    916 		pmap_segtab_activate(pmap, curlwp);
    917 	}
    918 	pmap_tlb_miss_lock_exit();
    919 	kpreempt_enable();
    920 
    921 	UVMHIST_LOG(pmaphist, " <-- done (kernel=%#jx)",
    922 		    (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
    923 }
    924 
    925 /*
    926  *	Remove the given range of addresses from the specified map.
    927  *
    928  *	It is assumed that the start and end are properly
    929  *	rounded to the page size.
    930  */
    931 
    932 static bool
    933 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
    934 	uintptr_t flags)
    935 {
    936 	const pt_entry_t npte = flags;
    937 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    938 
    939 	UVMHIST_FUNC(__func__);
    940 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
    941 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
    942 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
    943 	    (uintptr_t)ptep, flags, 0, 0);
    944 
    945 	KASSERT(kpreempt_disabled());
    946 
    947 	for (; sva < eva; sva += NBPG, ptep++) {
    948 		const pt_entry_t pte = *ptep;
    949 		if (!pte_valid_p(pte))
    950 			continue;
    951 		if (is_kernel_pmap_p) {
    952 			PMAP_COUNT(remove_kernel_pages);
    953 		} else {
    954 			PMAP_COUNT(remove_user_pages);
    955 		}
    956 		if (pte_wired_p(pte))
    957 			pmap->pm_stats.wired_count--;
    958 		pmap->pm_stats.resident_count--;
    959 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
    960 		if (__predict_true(pg != NULL)) {
    961 			pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
    962 		}
    963 		pmap_tlb_miss_lock_enter();
    964 		pte_set(ptep, npte);
    965 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
    966 
    967 			/*
    968 			 * Flush the TLB for the given address.
    969 			 */
    970 			pmap_tlb_invalidate_addr(pmap, sva);
    971 		}
    972 		pmap_tlb_miss_lock_exit();
    973 	}
    974 
    975 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    976 
    977 	return false;
    978 }
    979 
    980 void
    981 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
    982 {
    983 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    984 	const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
    985 
    986 	UVMHIST_FUNC(__func__);
    987 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
    988 	    (uintptr_t)pmap, sva, eva, 0);
    989 
    990 	if (is_kernel_pmap_p) {
    991 		PMAP_COUNT(remove_kernel_calls);
    992 	} else {
    993 		PMAP_COUNT(remove_user_calls);
    994 	}
    995 #ifdef PMAP_FAULTINFO
    996 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
    997 	curpcb->pcb_faultinfo.pfi_repeats = 0;
    998 	curpcb->pcb_faultinfo.pfi_faultpte = NULL;
    999 #endif
   1000 	kpreempt_disable();
   1001 	pmap_addr_range_check(pmap, sva, eva, __func__);
   1002 	pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
   1003 	kpreempt_enable();
   1004 
   1005 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1006 }
   1007 
   1008 /*
   1009  *	pmap_page_protect:
   1010  *
   1011  *	Lower the permission for all mappings to a given page.
   1012  */
   1013 void
   1014 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1015 {
   1016 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1017 	pv_entry_t pv;
   1018 	vaddr_t va;
   1019 
   1020 	UVMHIST_FUNC(__func__);
   1021 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
   1022 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
   1023 	PMAP_COUNT(page_protect);
   1024 
   1025 	switch (prot) {
   1026 	case VM_PROT_READ|VM_PROT_WRITE:
   1027 	case VM_PROT_ALL:
   1028 		break;
   1029 
   1030 	/* copy_on_write */
   1031 	case VM_PROT_READ:
   1032 	case VM_PROT_READ|VM_PROT_EXECUTE:
   1033 		pv = &mdpg->mdpg_first;
   1034 		kpreempt_disable();
   1035 		VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1036 		pmap_pvlist_check(mdpg);
   1037 		/*
   1038 		 * Loop over all current mappings setting/clearing as
   1039 		 * appropriate.
   1040 		 */
   1041 		if (pv->pv_pmap != NULL) {
   1042 			while (pv != NULL) {
   1043 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1044 				if (PV_ISKENTER_P(pv)) {
   1045 					pv = pv->pv_next;
   1046 					continue;
   1047 				}
   1048 #endif
   1049 				const pmap_t pmap = pv->pv_pmap;
   1050 				va = trunc_page(pv->pv_va);
   1051 				const uintptr_t gen =
   1052 				    VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1053 				pmap_protect(pmap, va, va + PAGE_SIZE, prot);
   1054 				KASSERT(pv->pv_pmap == pmap);
   1055 				pmap_update(pmap);
   1056 				if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
   1057 					pv = &mdpg->mdpg_first;
   1058 				} else {
   1059 					pv = pv->pv_next;
   1060 				}
   1061 				pmap_pvlist_check(mdpg);
   1062 			}
   1063 		}
   1064 		pmap_pvlist_check(mdpg);
   1065 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1066 		kpreempt_enable();
   1067 		break;
   1068 
   1069 	/* remove_all */
   1070 	default:
   1071 		pmap_page_remove(pg);
   1072 	}
   1073 
   1074 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1075 }
   1076 
   1077 static bool
   1078 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1079 	uintptr_t flags)
   1080 {
   1081 	const vm_prot_t prot = (flags & VM_PROT_ALL);
   1082 
   1083 	UVMHIST_FUNC(__func__);
   1084 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jx va=%#jx..%#jx)",
   1085 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
   1086 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
   1087 	    (uintptr_t)ptep, flags, 0, 0);
   1088 
   1089 	KASSERT(kpreempt_disabled());
   1090 	/*
   1091 	 * Change protection on every valid mapping within this segment.
   1092 	 */
   1093 	for (; sva < eva; sva += NBPG, ptep++) {
   1094 		pt_entry_t pte = *ptep;
   1095 		if (!pte_valid_p(pte))
   1096 			continue;
   1097 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1098 		if (pg != NULL && pte_modified_p(pte)) {
   1099 			struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1100 			if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1101 				KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
   1102 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1103 				if (VM_PAGEMD_CACHED_P(mdpg)) {
   1104 #endif
   1105 					UVMHIST_LOG(pmapexechist,
   1106 					    "pg %#jx (pa %#jx): "
   1107 					    "syncicached performed",
   1108 					    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
   1109 					    0, 0);
   1110 					pmap_page_syncicache(pg);
   1111 					PMAP_COUNT(exec_synced_protect);
   1112 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1113 				}
   1114 #endif
   1115 			}
   1116 		}
   1117 		pte = pte_prot_downgrade(pte, prot);
   1118 		if (*ptep != pte) {
   1119 			pmap_tlb_miss_lock_enter();
   1120 			pte_set(ptep, pte);
   1121 			/*
   1122 			 * Update the TLB if needed.
   1123 			 */
   1124 			pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
   1125 			pmap_tlb_miss_lock_exit();
   1126 		}
   1127 	}
   1128 
   1129 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1130 
   1131 	return false;
   1132 }
   1133 
   1134 /*
   1135  *	Set the physical protection on the
   1136  *	specified range of this map as requested.
   1137  */
   1138 void
   1139 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1140 {
   1141 	UVMHIST_FUNC(__func__);
   1142 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
   1143 	    (uintptr_t)pmap, sva, eva, prot);
   1144 	PMAP_COUNT(protect);
   1145 
   1146 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
   1147 		pmap_remove(pmap, sva, eva);
   1148 		UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1149 		return;
   1150 	}
   1151 
   1152 	/*
   1153 	 * Change protection on every valid mapping within this segment.
   1154 	 */
   1155 	kpreempt_disable();
   1156 	pmap_addr_range_check(pmap, sva, eva, __func__);
   1157 	pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
   1158 	kpreempt_enable();
   1159 
   1160 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1161 }
   1162 
   1163 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
   1164 /*
   1165  *	pmap_page_cache:
   1166  *
   1167  *	Change all mappings of a managed page to cached/uncached.
   1168  */
   1169 void
   1170 pmap_page_cache(struct vm_page *pg, bool cached)
   1171 {
   1172 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1173 
   1174 	UVMHIST_FUNC(__func__);
   1175 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) cached=%jd)",
   1176 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), cached, 0);
   1177 
   1178 	KASSERT(kpreempt_disabled());
   1179 	KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
   1180 
   1181 	if (cached) {
   1182 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1183 		PMAP_COUNT(page_cache_restorations);
   1184 	} else {
   1185 		pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1186 		PMAP_COUNT(page_cache_evictions);
   1187 	}
   1188 
   1189 	for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
   1190 		pmap_t pmap = pv->pv_pmap;
   1191 		vaddr_t va = trunc_page(pv->pv_va);
   1192 
   1193 		KASSERT(pmap != NULL);
   1194 		KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1195 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1196 		if (ptep == NULL)
   1197 			continue;
   1198 		pt_entry_t pte = *ptep;
   1199 		if (pte_valid_p(pte)) {
   1200 			pte = pte_cached_change(pte, cached);
   1201 			pmap_tlb_miss_lock_enter();
   1202 			pte_set(ptep, pte);
   1203 			pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
   1204 			pmap_tlb_miss_lock_exit();
   1205 		}
   1206 	}
   1207 
   1208 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1209 }
   1210 #endif	/* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
   1211 
   1212 /*
   1213  *	Insert the given physical page (p) at
   1214  *	the specified virtual address (v) in the
   1215  *	target physical map with the protection requested.
   1216  *
   1217  *	If specified, the page will be wired down, meaning
   1218  *	that the related pte can not be reclaimed.
   1219  *
   1220  *	NB:  This is the only routine which MAY NOT lazy-evaluate
   1221  *	or lose information.  That is, this routine must actually
   1222  *	insert this page into the given map NOW.
   1223  */
   1224 int
   1225 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1226 {
   1227 	const bool wired = (flags & PMAP_WIRED) != 0;
   1228 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
   1229 	u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
   1230 #ifdef UVMHIST
   1231 	struct kern_history * const histp =
   1232 	    ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
   1233 #endif
   1234 
   1235 	UVMHIST_FUNC(__func__);
   1236 	UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
   1237 	    (uintptr_t)pmap, va, pa, 0);
   1238 	UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
   1239 
   1240 	const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
   1241 	if (is_kernel_pmap_p) {
   1242 		PMAP_COUNT(kernel_mappings);
   1243 		if (!good_color)
   1244 			PMAP_COUNT(kernel_mappings_bad);
   1245 	} else {
   1246 		PMAP_COUNT(user_mappings);
   1247 		if (!good_color)
   1248 			PMAP_COUNT(user_mappings_bad);
   1249 	}
   1250 	pmap_addr_range_check(pmap, va, va, __func__);
   1251 
   1252 	KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
   1253 	    VM_PROT_READ, prot);
   1254 
   1255 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1256 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1257 
   1258 	if (pg) {
   1259 		/* Set page referenced/modified status based on flags */
   1260 		if (flags & VM_PROT_WRITE) {
   1261 			pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1262 		} else if (flags & VM_PROT_ALL) {
   1263 			pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1264 		}
   1265 
   1266 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1267 		if (!VM_PAGEMD_CACHED_P(mdpg)) {
   1268 			flags |= PMAP_NOCACHE;
   1269 			PMAP_COUNT(uncached_mappings);
   1270 		}
   1271 #endif
   1272 
   1273 		PMAP_COUNT(managed_mappings);
   1274 	} else {
   1275 		/*
   1276 		 * Assumption: if it is not part of our managed memory
   1277 		 * then it must be device memory which may be volatile.
   1278 		 */
   1279 		if ((flags & PMAP_CACHE_MASK) == 0)
   1280 			flags |= PMAP_NOCACHE;
   1281 		PMAP_COUNT(unmanaged_mappings);
   1282 	}
   1283 
   1284 	pt_entry_t npte = pte_make_enter(pa, mdpg, prot, flags,
   1285 	    is_kernel_pmap_p);
   1286 
   1287 	kpreempt_disable();
   1288 
   1289 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
   1290 	if (__predict_false(ptep == NULL)) {
   1291 		kpreempt_enable();
   1292 		UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
   1293 		return ENOMEM;
   1294 	}
   1295 	const pt_entry_t opte = *ptep;
   1296 	const bool resident = pte_valid_p(opte);
   1297 	bool remap = false;
   1298 	if (resident) {
   1299 		if (pte_to_paddr(opte) != pa) {
   1300 			KASSERT(!is_kernel_pmap_p);
   1301 		    	const pt_entry_t rpte = pte_nv_entry(false);
   1302 
   1303 			pmap_addr_range_check(pmap, va, va + NBPG, __func__);
   1304 			pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
   1305 			    rpte);
   1306 			PMAP_COUNT(user_mappings_changed);
   1307 			remap = true;
   1308 		}
   1309 		update_flags |= PMAP_TLB_NEED_IPI;
   1310 	}
   1311 
   1312 	if (!resident || remap) {
   1313 		pmap->pm_stats.resident_count++;
   1314 	}
   1315 
   1316 	/* Done after case that may sleep/return. */
   1317 	if (pg)
   1318 		pmap_enter_pv(pmap, va, pg, &npte, 0);
   1319 
   1320 	/*
   1321 	 * Now validate mapping with desired protection/wiring.
   1322 	 */
   1323 	if (wired) {
   1324 		pmap->pm_stats.wired_count++;
   1325 		npte = pte_wire_entry(npte);
   1326 	}
   1327 
   1328 	UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
   1329 	    pte_value(npte), pa, 0, 0);
   1330 
   1331 	KASSERT(pte_valid_p(npte));
   1332 
   1333 	pmap_tlb_miss_lock_enter();
   1334 	pte_set(ptep, npte);
   1335 	pmap_tlb_update_addr(pmap, va, npte, update_flags);
   1336 	pmap_tlb_miss_lock_exit();
   1337 	kpreempt_enable();
   1338 
   1339 	if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
   1340 		KASSERT(mdpg != NULL);
   1341 		PMAP_COUNT(exec_mappings);
   1342 		if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
   1343 			if (!pte_deferred_exec_p(npte)) {
   1344 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
   1345 				    "immediate syncicache",
   1346 				    va, (uintptr_t)pg, 0, 0);
   1347 				pmap_page_syncicache(pg);
   1348 				pmap_page_set_attributes(mdpg,
   1349 				    VM_PAGEMD_EXECPAGE);
   1350 				PMAP_COUNT(exec_synced_mappings);
   1351 			} else {
   1352 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
   1353 				    "syncicache: pte %#jx",
   1354 				    va, (uintptr_t)pg, npte, 0);
   1355 			}
   1356 		} else {
   1357 			UVMHIST_LOG(*histp,
   1358 			    "va=%#jx pg %#jx: no syncicache cached %jd",
   1359 			    va, (uintptr_t)pg, pte_cached_p(npte), 0);
   1360 		}
   1361 	} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
   1362 		KASSERT(mdpg != NULL);
   1363 		KASSERT(prot & VM_PROT_WRITE);
   1364 		PMAP_COUNT(exec_mappings);
   1365 		pmap_page_syncicache(pg);
   1366 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1367 		UVMHIST_LOG(*histp,
   1368 		    "va=%#jx pg %#jx: immediate syncicache (writeable)",
   1369 		    va, (uintptr_t)pg, 0, 0);
   1370 	}
   1371 
   1372 	UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
   1373 	return 0;
   1374 }
   1375 
   1376 void
   1377 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1378 {
   1379 	pmap_t pmap = pmap_kernel();
   1380 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1381 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1382 
   1383 	UVMHIST_FUNC(__func__);
   1384 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
   1385 	    va, pa, prot, flags);
   1386 	PMAP_COUNT(kenter_pa);
   1387 
   1388 	if (mdpg == NULL) {
   1389 		PMAP_COUNT(kenter_pa_unmanaged);
   1390 		if ((flags & PMAP_CACHE_MASK) == 0)
   1391 			flags |= PMAP_NOCACHE;
   1392 	} else {
   1393 		if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
   1394 			PMAP_COUNT(kenter_pa_bad);
   1395 	}
   1396 
   1397 	pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
   1398 	kpreempt_disable();
   1399 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1400 	KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
   1401 	    pmap_limits.virtual_end);
   1402 	KASSERT(!pte_valid_p(*ptep));
   1403 
   1404 	/*
   1405 	 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
   1406 	 */
   1407 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1408 	if (pg != NULL && (flags & PMAP_KMPAGE) == 0
   1409 	    && pmap_md_virtual_cache_aliasing_p()) {
   1410 		pmap_enter_pv(pmap, va, pg, &npte, PV_KENTER);
   1411 	}
   1412 #endif
   1413 
   1414 	/*
   1415 	 * We have the option to force this mapping into the TLB but we
   1416 	 * don't.  Instead let the next reference to the page do it.
   1417 	 */
   1418 	pmap_tlb_miss_lock_enter();
   1419 	pte_set(ptep, npte);
   1420 	pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
   1421 	pmap_tlb_miss_lock_exit();
   1422 	kpreempt_enable();
   1423 #if DEBUG > 1
   1424 	for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
   1425 		if (((long *)va)[i] != ((long *)pa)[i])
   1426 			panic("%s: contents (%lx) of va %#"PRIxVADDR
   1427 			    " != contents (%lx) of pa %#"PRIxPADDR, __func__,
   1428 			    ((long *)va)[i], va, ((long *)pa)[i], pa);
   1429 	}
   1430 #endif
   1431 
   1432 	UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
   1433 	    0);
   1434 }
   1435 
   1436 /*
   1437  *	Remove the given range of addresses from the kernel map.
   1438  *
   1439  *	It is assumed that the start and end are properly
   1440  *	rounded to the page size.
   1441  */
   1442 
   1443 static bool
   1444 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1445 	uintptr_t flags)
   1446 {
   1447 	const pt_entry_t new_pte = pte_nv_entry(true);
   1448 
   1449 	UVMHIST_FUNC(__func__);
   1450 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
   1451 	    (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
   1452 
   1453 	KASSERT(kpreempt_disabled());
   1454 
   1455 	for (; sva < eva; sva += NBPG, ptep++) {
   1456 		pt_entry_t pte = *ptep;
   1457 		if (!pte_valid_p(pte))
   1458 			continue;
   1459 
   1460 		PMAP_COUNT(kremove_pages);
   1461 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1462 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1463 		if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
   1464 			pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
   1465 		}
   1466 #endif
   1467 
   1468 		pmap_tlb_miss_lock_enter();
   1469 		pte_set(ptep, new_pte);
   1470 		pmap_tlb_invalidate_addr(pmap, sva);
   1471 		pmap_tlb_miss_lock_exit();
   1472 	}
   1473 
   1474 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1475 
   1476 	return false;
   1477 }
   1478 
   1479 void
   1480 pmap_kremove(vaddr_t va, vsize_t len)
   1481 {
   1482 	const vaddr_t sva = trunc_page(va);
   1483 	const vaddr_t eva = round_page(va + len);
   1484 
   1485 	UVMHIST_FUNC(__func__);
   1486 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
   1487 
   1488 	kpreempt_disable();
   1489 	pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
   1490 	kpreempt_enable();
   1491 
   1492 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1493 }
   1494 
   1495 bool
   1496 pmap_remove_all(struct pmap *pmap)
   1497 {
   1498 	UVMHIST_FUNC(__func__);
   1499 	UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
   1500 
   1501 	KASSERT(pmap != pmap_kernel());
   1502 
   1503 	kpreempt_disable();
   1504 	/*
   1505 	 * Free all of our ASIDs which means we can skip doing all the
   1506 	 * tlb_invalidate_addrs().
   1507 	 */
   1508 	pmap_tlb_miss_lock_enter();
   1509 #ifdef MULTIPROCESSOR
   1510 	// This should be the last CPU with this pmap onproc
   1511 	KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
   1512 	if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
   1513 #endif
   1514 		pmap_tlb_asid_deactivate(pmap);
   1515 #ifdef MULTIPROCESSOR
   1516 	KASSERT(kcpuset_iszero(pmap->pm_onproc));
   1517 #endif
   1518 	pmap_tlb_asid_release_all(pmap);
   1519 	pmap_tlb_miss_lock_exit();
   1520 	pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
   1521 
   1522 #ifdef PMAP_FAULTINFO
   1523 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
   1524 	curpcb->pcb_faultinfo.pfi_repeats = 0;
   1525 	curpcb->pcb_faultinfo.pfi_faultpte = NULL;
   1526 #endif
   1527 	kpreempt_enable();
   1528 
   1529 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1530 	return false;
   1531 }
   1532 
   1533 /*
   1534  *	Routine:	pmap_unwire
   1535  *	Function:	Clear the wired attribute for a map/virtual-address
   1536  *			pair.
   1537  *	In/out conditions:
   1538  *			The mapping must already exist in the pmap.
   1539  */
   1540 void
   1541 pmap_unwire(pmap_t pmap, vaddr_t va)
   1542 {
   1543 	UVMHIST_FUNC(__func__);
   1544 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
   1545 	    0, 0);
   1546 	PMAP_COUNT(unwire);
   1547 
   1548 	/*
   1549 	 * Don't need to flush the TLB since PG_WIRED is only in software.
   1550 	 */
   1551 	kpreempt_disable();
   1552 	pmap_addr_range_check(pmap, va, va, __func__);
   1553 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1554 	KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
   1555 	    pmap, va);
   1556 	pt_entry_t pte = *ptep;
   1557 	KASSERTMSG(pte_valid_p(pte),
   1558 	    "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
   1559 	    pmap, va, pte_value(pte), ptep);
   1560 
   1561 	if (pte_wired_p(pte)) {
   1562 		pmap_tlb_miss_lock_enter();
   1563 		pte_set(ptep, pte_unwire_entry(pte));
   1564 		pmap_tlb_miss_lock_exit();
   1565 		pmap->pm_stats.wired_count--;
   1566 	}
   1567 #ifdef DIAGNOSTIC
   1568 	else {
   1569 		printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
   1570 		    __func__, pmap, va);
   1571 	}
   1572 #endif
   1573 	kpreempt_enable();
   1574 
   1575 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1576 }
   1577 
   1578 /*
   1579  *	Routine:	pmap_extract
   1580  *	Function:
   1581  *		Extract the physical page address associated
   1582  *		with the given map/virtual_address pair.
   1583  */
   1584 bool
   1585 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   1586 {
   1587 	paddr_t pa;
   1588 
   1589 	if (pmap == pmap_kernel()) {
   1590 		if (pmap_md_direct_mapped_vaddr_p(va)) {
   1591 			pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   1592 			goto done;
   1593 		}
   1594 		if (pmap_md_io_vaddr_p(va))
   1595 			panic("pmap_extract: io address %#"PRIxVADDR"", va);
   1596 
   1597 		if (va >= pmap_limits.virtual_end)
   1598 			panic("%s: illegal kernel mapped address %#"PRIxVADDR,
   1599 			    __func__, va);
   1600 	}
   1601 	kpreempt_disable();
   1602 	const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1603 	if (ptep == NULL || !pte_valid_p(*ptep)) {
   1604 		kpreempt_enable();
   1605 		return false;
   1606 	}
   1607 	pa = pte_to_paddr(*ptep) | (va & PGOFSET);
   1608 	kpreempt_enable();
   1609 done:
   1610 	if (pap != NULL) {
   1611 		*pap = pa;
   1612 	}
   1613 	return true;
   1614 }
   1615 
   1616 /*
   1617  *	Copy the range specified by src_addr/len
   1618  *	from the source map to the range dst_addr/len
   1619  *	in the destination map.
   1620  *
   1621  *	This routine is only advisory and need not do anything.
   1622  */
   1623 void
   1624 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
   1625     vaddr_t src_addr)
   1626 {
   1627 	UVMHIST_FUNC(__func__);
   1628 	UVMHIST_CALLED(pmaphist);
   1629 	PMAP_COUNT(copy);
   1630 }
   1631 
   1632 /*
   1633  *	pmap_clear_reference:
   1634  *
   1635  *	Clear the reference bit on the specified physical page.
   1636  */
   1637 bool
   1638 pmap_clear_reference(struct vm_page *pg)
   1639 {
   1640 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1641 
   1642 	UVMHIST_FUNC(__func__);
   1643 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
   1644 	   (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1645 
   1646 	bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1647 
   1648 	UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
   1649 
   1650 	return rv;
   1651 }
   1652 
   1653 /*
   1654  *	pmap_is_referenced:
   1655  *
   1656  *	Return whether or not the specified physical page is referenced
   1657  *	by any physical maps.
   1658  */
   1659 bool
   1660 pmap_is_referenced(struct vm_page *pg)
   1661 {
   1662 	return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
   1663 }
   1664 
   1665 /*
   1666  *	Clear the modify bits on the specified physical page.
   1667  */
   1668 bool
   1669 pmap_clear_modify(struct vm_page *pg)
   1670 {
   1671 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1672 	pv_entry_t pv = &mdpg->mdpg_first;
   1673 	pv_entry_t pv_next;
   1674 
   1675 	UVMHIST_FUNC(__func__);
   1676 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
   1677 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1678 	PMAP_COUNT(clear_modify);
   1679 
   1680 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1681 		if (pv->pv_pmap == NULL) {
   1682 			UVMHIST_LOG(pmapexechist,
   1683 			    "pg %#jx (pa %#jx): execpage cleared",
   1684 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1685 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1686 			PMAP_COUNT(exec_uncached_clear_modify);
   1687 		} else {
   1688 			UVMHIST_LOG(pmapexechist,
   1689 			    "pg %#jx (pa %#jx): syncicache performed",
   1690 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1691 			pmap_page_syncicache(pg);
   1692 			PMAP_COUNT(exec_synced_clear_modify);
   1693 		}
   1694 	}
   1695 	if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
   1696 		UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
   1697 		return false;
   1698 	}
   1699 	if (pv->pv_pmap == NULL) {
   1700 		UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
   1701 		return true;
   1702 	}
   1703 
   1704 	/*
   1705 	 * remove write access from any pages that are dirty
   1706 	 * so we can tell if they are written to again later.
   1707 	 * flush the VAC first if there is one.
   1708 	 */
   1709 	kpreempt_disable();
   1710 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1711 	pmap_pvlist_check(mdpg);
   1712 	for (; pv != NULL; pv = pv_next) {
   1713 		pmap_t pmap = pv->pv_pmap;
   1714 		vaddr_t va = trunc_page(pv->pv_va);
   1715 
   1716 		pv_next = pv->pv_next;
   1717 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1718 		if (PV_ISKENTER_P(pv))
   1719 			continue;
   1720 #endif
   1721 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1722 		KASSERT(ptep);
   1723 		pt_entry_t pte = pte_prot_nowrite(*ptep);
   1724 		if (*ptep == pte) {
   1725 			continue;
   1726 		}
   1727 		KASSERT(pte_valid_p(pte));
   1728 		const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1729 		pmap_tlb_miss_lock_enter();
   1730 		pte_set(ptep, pte);
   1731 		pmap_tlb_invalidate_addr(pmap, va);
   1732 		pmap_tlb_miss_lock_exit();
   1733 		pmap_update(pmap);
   1734 		if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
   1735 			/*
   1736 			 * The list changed!  So restart from the beginning.
   1737 			 */
   1738 			pv_next = &mdpg->mdpg_first;
   1739 			pmap_pvlist_check(mdpg);
   1740 		}
   1741 	}
   1742 	pmap_pvlist_check(mdpg);
   1743 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1744 	kpreempt_enable();
   1745 
   1746 	UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
   1747 	return true;
   1748 }
   1749 
   1750 /*
   1751  *	pmap_is_modified:
   1752  *
   1753  *	Return whether or not the specified physical page is modified
   1754  *	by any physical maps.
   1755  */
   1756 bool
   1757 pmap_is_modified(struct vm_page *pg)
   1758 {
   1759 	return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
   1760 }
   1761 
   1762 /*
   1763  *	pmap_set_modified:
   1764  *
   1765  *	Sets the page modified reference bit for the specified page.
   1766  */
   1767 void
   1768 pmap_set_modified(paddr_t pa)
   1769 {
   1770 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1771 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1772 	pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1773 }
   1774 
   1775 /******************** pv_entry management ********************/
   1776 
   1777 static void
   1778 pmap_pvlist_check(struct vm_page_md *mdpg)
   1779 {
   1780 #ifdef DEBUG
   1781 	pv_entry_t pv = &mdpg->mdpg_first;
   1782 	if (pv->pv_pmap != NULL) {
   1783 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1784 		const u_int colormask = uvmexp.colormask;
   1785 		u_int colors = 0;
   1786 #endif
   1787 		for (; pv != NULL; pv = pv->pv_next) {
   1788 			KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
   1789 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1790 			colors |= __BIT(atop(pv->pv_va) & colormask);
   1791 #endif
   1792 		}
   1793 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1794 		// Assert that if there is more than 1 color mapped, that the
   1795 		// page is uncached.
   1796 		KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
   1797 		    || colors == 0 || (colors & (colors-1)) == 0
   1798 		    || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
   1799 		    colors, VM_PAGEMD_UNCACHED_P(mdpg));
   1800 #endif
   1801 	} else {
   1802     		KASSERT(pv->pv_next == NULL);
   1803 	}
   1804 #endif /* DEBUG */
   1805 }
   1806 
   1807 /*
   1808  * Enter the pmap and virtual address into the
   1809  * physical to virtual map table.
   1810  */
   1811 void
   1812 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, pt_entry_t *nptep,
   1813     u_int flags)
   1814 {
   1815 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1816 	pv_entry_t pv, npv, apv;
   1817 #ifdef UVMHIST
   1818 	bool first = false;
   1819 #endif
   1820 
   1821 	UVMHIST_FUNC(__func__);
   1822 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
   1823 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
   1824 	UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
   1825 	    (uintptr_t)nptep, pte_value(*nptep), 0, 0);
   1826 
   1827 	KASSERT(kpreempt_disabled());
   1828 	KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1829 	KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
   1830 	    "va %#"PRIxVADDR, va);
   1831 
   1832 	apv = NULL;
   1833 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   1834 again:
   1835 	pv = &mdpg->mdpg_first;
   1836 	pmap_pvlist_check(mdpg);
   1837 	if (pv->pv_pmap == NULL) {
   1838 		KASSERT(pv->pv_next == NULL);
   1839 		/*
   1840 		 * No entries yet, use header as the first entry
   1841 		 */
   1842 		PMAP_COUNT(primary_mappings);
   1843 		PMAP_COUNT(mappings);
   1844 #ifdef UVMHIST
   1845 		first = true;
   1846 #endif
   1847 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1848 		KASSERT(VM_PAGEMD_CACHED_P(mdpg));
   1849 		// If the new mapping has an incompatible color the last
   1850 		// mapping of this page, clean the page before using it.
   1851 		if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
   1852 			pmap_md_vca_clean(pg, PMAP_WBINV);
   1853 		}
   1854 #endif
   1855 		pv->pv_pmap = pmap;
   1856 		pv->pv_va = va | flags;
   1857 	} else {
   1858 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1859 		if (pmap_md_vca_add(pg, va, nptep)) {
   1860 			goto again;
   1861 		}
   1862 #endif
   1863 
   1864 		/*
   1865 		 * There is at least one other VA mapping this page.
   1866 		 * Place this entry after the header.
   1867 		 *
   1868 		 * Note: the entry may already be in the table if
   1869 		 * we are only changing the protection bits.
   1870 		 */
   1871 
   1872 #ifdef PARANOIADIAG
   1873 		const paddr_t pa = VM_PAGE_TO_PHYS(pg);
   1874 #endif
   1875 		for (npv = pv; npv; npv = npv->pv_next) {
   1876 			if (pmap == npv->pv_pmap
   1877 			    && va == trunc_page(npv->pv_va)) {
   1878 #ifdef PARANOIADIAG
   1879 				pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
   1880 				pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
   1881 				if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
   1882 					printf("%s: found va %#"PRIxVADDR
   1883 					    " pa %#"PRIxPADDR
   1884 					    " in pv_table but != %#"PRIxPTE"\n",
   1885 					    __func__, va, pa, pte_value(pte));
   1886 #endif
   1887 				PMAP_COUNT(remappings);
   1888 				VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1889 				if (__predict_false(apv != NULL))
   1890 					pmap_pv_free(apv);
   1891 
   1892 				UVMHIST_LOG(pmaphist,
   1893 				    " <-- done pv=%#jx (reused)",
   1894 				    (uintptr_t)pv, 0, 0, 0);
   1895 				return;
   1896 			}
   1897 		}
   1898 		if (__predict_true(apv == NULL)) {
   1899 			/*
   1900 			 * To allocate a PV, we have to release the PVLIST lock
   1901 			 * so get the page generation.  We allocate the PV, and
   1902 			 * then reacquire the lock.
   1903 			 */
   1904 			pmap_pvlist_check(mdpg);
   1905 			const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1906 
   1907 			apv = (pv_entry_t)pmap_pv_alloc();
   1908 			if (apv == NULL)
   1909 				panic("pmap_enter_pv: pmap_pv_alloc() failed");
   1910 
   1911 			/*
   1912 			 * If the generation has changed, then someone else
   1913 			 * tinkered with this page so we should start over.
   1914 			 */
   1915 			if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
   1916 				goto again;
   1917 		}
   1918 		npv = apv;
   1919 		apv = NULL;
   1920 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1921 		/*
   1922 		 * If need to deal with virtual cache aliases, keep mappings
   1923 		 * in the kernel pmap at the head of the list.  This allows
   1924 		 * the VCA code to easily use them for cache operations if
   1925 		 * present.
   1926 		 */
   1927 		pmap_t kpmap = pmap_kernel();
   1928 		if (pmap != kpmap) {
   1929 			while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
   1930 				pv = pv->pv_next;
   1931 			}
   1932 		}
   1933 #endif
   1934 		npv->pv_va = va | flags;
   1935 		npv->pv_pmap = pmap;
   1936 		npv->pv_next = pv->pv_next;
   1937 		pv->pv_next = npv;
   1938 		PMAP_COUNT(mappings);
   1939 	}
   1940 	pmap_pvlist_check(mdpg);
   1941 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1942 	if (__predict_false(apv != NULL))
   1943 		pmap_pv_free(apv);
   1944 
   1945 	UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
   1946 	    first, 0, 0);
   1947 }
   1948 
   1949 /*
   1950  * Remove a physical to virtual address translation.
   1951  * If cache was inhibited on this page, and there are no more cache
   1952  * conflicts, restore caching.
   1953  * Flush the cache if the last page is removed (should always be cached
   1954  * at this point).
   1955  */
   1956 void
   1957 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
   1958 {
   1959 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1960 	pv_entry_t pv, npv;
   1961 	bool last;
   1962 
   1963 	UVMHIST_FUNC(__func__);
   1964 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
   1965 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
   1966 	UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
   1967 
   1968 	KASSERT(kpreempt_disabled());
   1969 	KASSERT((va & PAGE_MASK) == 0);
   1970 	pv = &mdpg->mdpg_first;
   1971 
   1972 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   1973 	pmap_pvlist_check(mdpg);
   1974 
   1975 	/*
   1976 	 * If it is the first entry on the list, it is actually
   1977 	 * in the header and we must copy the following entry up
   1978 	 * to the header.  Otherwise we must search the list for
   1979 	 * the entry.  In either case we free the now unused entry.
   1980 	 */
   1981 
   1982 	last = false;
   1983 	if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
   1984 		npv = pv->pv_next;
   1985 		if (npv) {
   1986 			*pv = *npv;
   1987 			KASSERT(pv->pv_pmap != NULL);
   1988 		} else {
   1989 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1990 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1991 #endif
   1992 			pv->pv_pmap = NULL;
   1993 			last = true;	/* Last mapping removed */
   1994 		}
   1995 		PMAP_COUNT(remove_pvfirst);
   1996 	} else {
   1997 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
   1998 			PMAP_COUNT(remove_pvsearch);
   1999 			if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
   2000 				break;
   2001 		}
   2002 		if (npv) {
   2003 			pv->pv_next = npv->pv_next;
   2004 		}
   2005 	}
   2006 
   2007 	pmap_pvlist_check(mdpg);
   2008 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   2009 
   2010 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2011 	pmap_md_vca_remove(pg, va, dirty, last);
   2012 #endif
   2013 
   2014 	/*
   2015 	 * Free the pv_entry if needed.
   2016 	 */
   2017 	if (npv)
   2018 		pmap_pv_free(npv);
   2019 	if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
   2020 		if (last) {
   2021 			/*
   2022 			 * If this was the page's last mapping, we no longer
   2023 			 * care about its execness.
   2024 			 */
   2025 			UVMHIST_LOG(pmapexechist,
   2026 			    "pg %#jx (pa %#jx)last %ju: execpage cleared",
   2027 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2028 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   2029 			PMAP_COUNT(exec_uncached_remove);
   2030 		} else {
   2031 			/*
   2032 			 * Someone still has it mapped as an executable page
   2033 			 * so we must sync it.
   2034 			 */
   2035 			UVMHIST_LOG(pmapexechist,
   2036 			    "pg %#jx (pa %#jx) last %ju: performed syncicache",
   2037 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2038 			pmap_page_syncicache(pg);
   2039 			PMAP_COUNT(exec_synced_remove);
   2040 		}
   2041 	}
   2042 
   2043 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   2044 }
   2045 
   2046 #if defined(MULTIPROCESSOR)
   2047 struct pmap_pvlist_info {
   2048 	kmutex_t *pli_locks[PAGE_SIZE / 32];
   2049 	volatile u_int pli_lock_refs[PAGE_SIZE / 32];
   2050 	volatile u_int pli_lock_index;
   2051 	u_int pli_lock_mask;
   2052 } pmap_pvlist_info;
   2053 
   2054 void
   2055 pmap_pvlist_lock_init(size_t cache_line_size)
   2056 {
   2057 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2058 	const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
   2059 	vaddr_t lock_va = lock_page;
   2060 	if (sizeof(kmutex_t) > cache_line_size) {
   2061 		cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
   2062 	}
   2063 	const size_t nlocks = PAGE_SIZE / cache_line_size;
   2064 	KASSERT((nlocks & (nlocks - 1)) == 0);
   2065 	/*
   2066 	 * Now divide the page into a number of mutexes, one per cacheline.
   2067 	 */
   2068 	for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
   2069 		kmutex_t * const lock = (kmutex_t *)lock_va;
   2070 		mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
   2071 		pli->pli_locks[i] = lock;
   2072 	}
   2073 	pli->pli_lock_mask = nlocks - 1;
   2074 }
   2075 
   2076 kmutex_t *
   2077 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2078 {
   2079 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2080 	kmutex_t *lock = mdpg->mdpg_lock;
   2081 
   2082 	/*
   2083 	 * Allocate a lock on an as-needed basis.  This will hopefully give us
   2084 	 * semi-random distribution not based on page color.
   2085 	 */
   2086 	if (__predict_false(lock == NULL)) {
   2087 		size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
   2088 		size_t lockid = locknum & pli->pli_lock_mask;
   2089 		kmutex_t * const new_lock = pli->pli_locks[lockid];
   2090 		/*
   2091 		 * Set the lock.  If some other thread already did, just use
   2092 		 * the one they assigned.
   2093 		 */
   2094 		lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
   2095 		if (lock == NULL) {
   2096 			lock = new_lock;
   2097 			atomic_inc_uint(&pli->pli_lock_refs[lockid]);
   2098 		}
   2099 	}
   2100 
   2101 	/*
   2102 	 * Now finally provide the lock.
   2103 	 */
   2104 	return lock;
   2105 }
   2106 #else /* !MULTIPROCESSOR */
   2107 void
   2108 pmap_pvlist_lock_init(size_t cache_line_size)
   2109 {
   2110 	mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
   2111 }
   2112 
   2113 #ifdef MODULAR
   2114 kmutex_t *
   2115 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2116 {
   2117 	/*
   2118 	 * We just use a global lock.
   2119 	 */
   2120 	if (__predict_false(mdpg->mdpg_lock == NULL)) {
   2121 		mdpg->mdpg_lock = &pmap_pvlist_mutex;
   2122 	}
   2123 
   2124 	/*
   2125 	 * Now finally provide the lock.
   2126 	 */
   2127 	return mdpg->mdpg_lock;
   2128 }
   2129 #endif /* MODULAR */
   2130 #endif /* !MULTIPROCESSOR */
   2131 
   2132 /*
   2133  * pmap_pv_page_alloc:
   2134  *
   2135  *	Allocate a page for the pv_entry pool.
   2136  */
   2137 void *
   2138 pmap_pv_page_alloc(struct pool *pp, int flags)
   2139 {
   2140 	struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
   2141 	if (pg == NULL)
   2142 		return NULL;
   2143 
   2144 	return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
   2145 }
   2146 
   2147 /*
   2148  * pmap_pv_page_free:
   2149  *
   2150  *	Free a pv_entry pool page.
   2151  */
   2152 void
   2153 pmap_pv_page_free(struct pool *pp, void *v)
   2154 {
   2155 	vaddr_t va = (vaddr_t)v;
   2156 
   2157 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2158 	const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2159 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2160 	KASSERT(pg != NULL);
   2161 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2162 	kpreempt_disable();
   2163 	pmap_md_vca_remove(pg, va, true, true);
   2164 	kpreempt_enable();
   2165 #endif
   2166 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2167 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2168 	uvm_pagefree(pg);
   2169 }
   2170 
   2171 #ifdef PMAP_PREFER
   2172 /*
   2173  * Find first virtual address >= *vap that doesn't cause
   2174  * a cache alias conflict.
   2175  */
   2176 void
   2177 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
   2178 {
   2179 	vsize_t prefer_mask = ptoa(uvmexp.colormask);
   2180 
   2181 	PMAP_COUNT(prefer_requests);
   2182 
   2183 	prefer_mask |= pmap_md_cache_prefer_mask();
   2184 
   2185 	if (prefer_mask) {
   2186 		vaddr_t	va = *vap;
   2187 		vsize_t d = (foff - va) & prefer_mask;
   2188 		if (d) {
   2189 			if (td)
   2190 				*vap = trunc_page(va - ((-d) & prefer_mask));
   2191 			else
   2192 				*vap = round_page(va + d);
   2193 			PMAP_COUNT(prefer_adjustments);
   2194 		}
   2195 	}
   2196 }
   2197 #endif /* PMAP_PREFER */
   2198 
   2199 #ifdef PMAP_MAP_POOLPAGE
   2200 vaddr_t
   2201 pmap_map_poolpage(paddr_t pa)
   2202 {
   2203 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2204 	KASSERT(pg);
   2205 
   2206 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   2207 	KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
   2208 
   2209 	pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
   2210 
   2211 	return pmap_md_map_poolpage(pa, NBPG);
   2212 }
   2213 
   2214 paddr_t
   2215 pmap_unmap_poolpage(vaddr_t va)
   2216 {
   2217 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2218 	paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2219 
   2220 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2221 	KASSERT(pg != NULL);
   2222 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2223 
   2224 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2225 	pmap_md_unmap_poolpage(va, NBPG);
   2226 
   2227 	return pa;
   2228 }
   2229 #endif /* PMAP_MAP_POOLPAGE */
   2230