pmap.c revision 1.6 1 /* $NetBSD: pmap.c,v 1.6 2014/12/22 11:11:34 nonaka Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.6 2014/12/22 11:11:34 nonaka Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105 #include <sys/systm.h>
106 #include <sys/proc.h>
107 #include <sys/buf.h>
108 #include <sys/pool.h>
109 #include <sys/atomic.h>
110 #include <sys/mutex.h>
111 #include <sys/atomic.h>
112 #ifdef SYSVSHM
113 #include <sys/shm.h>
114 #endif
115 #include <sys/socketvar.h> /* XXX: for sock_loan_thresh */
116
117 #include <uvm/uvm.h>
118
119 #define PMAP_COUNT(name) (pmap_evcnt_##name.ev_count++ + 0)
120 #define PMAP_COUNTER(name, desc) \
121 static struct evcnt pmap_evcnt_##name = \
122 EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "pmap", desc); \
123 EVCNT_ATTACH_STATIC(pmap_evcnt_##name)
124
125 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
126 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
127 PMAP_COUNTER(remove_user_calls, "remove user calls");
128 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
129 PMAP_COUNTER(remove_flushes, "remove cache flushes");
130 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
131 PMAP_COUNTER(remove_pvfirst, "remove pv first");
132 PMAP_COUNTER(remove_pvsearch, "remove pv search");
133
134 PMAP_COUNTER(prefer_requests, "prefer requests");
135 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
136
137 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
138 PMAP_COUNTER(zeroed_pages, "pages zeroed");
139 PMAP_COUNTER(copied_pages, "pages copied");
140
141 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
142 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
143 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
144 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
145
146 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
147 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
148
149 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
150 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
151 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
152 PMAP_COUNTER(user_mappings, "user pages mapped");
153 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
154 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
155 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
156 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
157 PMAP_COUNTER(managed_mappings, "managed pages mapped");
158 PMAP_COUNTER(mappings, "pages mapped");
159 PMAP_COUNTER(remappings, "pages remapped");
160 PMAP_COUNTER(unmappings, "pages unmapped");
161 PMAP_COUNTER(primary_mappings, "page initial mappings");
162 PMAP_COUNTER(primary_unmappings, "page final unmappings");
163 PMAP_COUNTER(tlb_hit, "page mapping");
164
165 PMAP_COUNTER(exec_mappings, "exec pages mapped");
166 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
167 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
168 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
169 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
170 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
171 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
172 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
173 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
174 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
175 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
176
177 PMAP_COUNTER(create, "creates");
178 PMAP_COUNTER(reference, "references");
179 PMAP_COUNTER(dereference, "dereferences");
180 PMAP_COUNTER(destroy, "destroyed");
181 PMAP_COUNTER(activate, "activations");
182 PMAP_COUNTER(deactivate, "deactivations");
183 PMAP_COUNTER(update, "updates");
184 #ifdef MULTIPROCESSOR
185 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
186 #endif
187 PMAP_COUNTER(unwire, "unwires");
188 PMAP_COUNTER(copy, "copies");
189 PMAP_COUNTER(clear_modify, "clear_modifies");
190 PMAP_COUNTER(protect, "protects");
191 PMAP_COUNTER(page_protect, "page_protects");
192
193 #define PMAP_ASID_RESERVED 0
194 CTASSERT(PMAP_ASID_RESERVED == 0);
195
196 /*
197 * Initialize the kernel pmap.
198 */
199 #ifdef MULTIPROCESSOR
200 #define PMAP_SIZE offsetof(struct pmap, pm_pai[MAXCPUS])
201 #else
202 #define PMAP_SIZE sizeof(struct pmap)
203 kmutex_t pmap_pvlist_mutex __aligned(COHERENCY_UNIT);
204 #endif
205
206 struct pmap_kernel kernel_pmap_store = {
207 .kernel_pmap = {
208 .pm_count = 1,
209 .pm_segtab = PMAP_INVALID_SEGTAB_ADDRESS,
210 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
211 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
212 },
213 };
214
215 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
216
217 struct pmap_limits pmap_limits;
218
219 #ifdef UVMHIST
220 static struct kern_history_ent pmapexechistbuf[10000];
221 static struct kern_history_ent pmaphistbuf[10000];
222 #endif
223
224 /*
225 * The pools from which pmap structures and sub-structures are allocated.
226 */
227 struct pool pmap_pmap_pool;
228 struct pool pmap_pv_pool;
229
230 #ifndef PMAP_PV_LOWAT
231 #define PMAP_PV_LOWAT 16
232 #endif
233 int pmap_pv_lowat = PMAP_PV_LOWAT;
234
235 bool pmap_initialized = false;
236 #define PMAP_PAGE_COLOROK_P(a, b) \
237 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
238 u_int pmap_page_colormask;
239
240 #define PAGE_IS_MANAGED(pa) \
241 (pmap_initialized == true && vm_physseg_find(atop(pa), NULL) != -1)
242
243 #define PMAP_IS_ACTIVE(pm) \
244 ((pm) == pmap_kernel() || \
245 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
246
247 /* Forward function declarations */
248 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
249 void pmap_enter_pv(pmap_t, vaddr_t, struct vm_page *, u_int *);
250
251 /*
252 * PV table management functions.
253 */
254 void *pmap_pv_page_alloc(struct pool *, int);
255 void pmap_pv_page_free(struct pool *, void *);
256
257 struct pool_allocator pmap_pv_page_allocator = {
258 pmap_pv_page_alloc, pmap_pv_page_free, 0,
259 };
260
261 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
262 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
263
264 /*
265 * Misc. functions.
266 */
267
268 bool
269 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
270 {
271 volatile u_int * const attrp = &mdpg->mdpg_attrs;
272 #ifdef MULTIPROCESSOR
273 for (;;) {
274 u_int old_attr = *attrp;
275 if ((old_attr & clear_attributes) == 0)
276 return false;
277 u_int new_attr = old_attr & ~clear_attributes;
278 if (old_attr == atomic_cas_uint(attrp, old_attr, new_attr))
279 return true;
280 }
281 #else
282 u_int old_attr = *attrp;
283 if ((old_attr & clear_attributes) == 0)
284 return false;
285 *attrp &= ~clear_attributes;
286 return true;
287 #endif
288 }
289
290 void
291 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
292 {
293 #ifdef MULTIPROCESSOR
294 atomic_or_uint(&mdpg->mdpg_attrs, set_attributes);
295 #else
296 mdpg->mdpg_attrs |= set_attributes;
297 #endif
298 }
299
300 static void
301 pmap_page_syncicache(struct vm_page *pg)
302 {
303 #ifndef MULTIPROCESSOR
304 struct pmap * const curpmap = curcpu()->ci_curpm;
305 #endif
306 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
307 pv_entry_t pv = &mdpg->mdpg_first;
308 kcpuset_t *onproc;
309 #ifdef MULTIPROCESSOR
310 kcpuset_create(&onproc, true);
311 #else
312 onproc = NULL;
313 #endif
314 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
315
316 if (pv->pv_pmap != NULL) {
317 for (; pv != NULL; pv = pv->pv_next) {
318 #ifdef MULTIPROCESSOR
319 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
320 if (kcpuset_match(onproc, kcpuset_running)) {
321 break;
322 }
323 #else
324 if (pv->pv_pmap == curpmap) {
325 onproc = curcpu()->ci_data.cpu_kcpuset;
326 break;
327 }
328 #endif
329 }
330 }
331 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
332 kpreempt_disable();
333 pmap_md_page_syncicache(pg, onproc);
334 #ifdef MULTIPROCESSOR
335 kcpuset_destroy(onproc);
336 #endif
337 kpreempt_enable();
338 }
339
340 /*
341 * Define the initial bounds of the kernel virtual address space.
342 */
343 void
344 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
345 {
346
347 *vstartp = VM_MIN_KERNEL_ADDRESS;
348 *vendp = VM_MAX_KERNEL_ADDRESS;
349 }
350
351 vaddr_t
352 pmap_growkernel(vaddr_t maxkvaddr)
353 {
354 vaddr_t virtual_end = pmap_limits.virtual_end;
355 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
356
357 /*
358 * Reserve PTEs for the new KVA space.
359 */
360 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
361 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
362 }
363
364 /*
365 * Don't exceed VM_MAX_KERNEL_ADDRESS!
366 */
367 if (virtual_end == 0 || virtual_end > VM_MAX_KERNEL_ADDRESS)
368 virtual_end = VM_MAX_KERNEL_ADDRESS;
369
370 /*
371 * Update new end.
372 */
373 pmap_limits.virtual_end = virtual_end;
374 return virtual_end;
375 }
376
377 /*
378 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
379 * This function allows for early dynamic memory allocation until the virtual
380 * memory system has been bootstrapped. After that point, either kmem_alloc
381 * or malloc should be used. This function works by stealing pages from the
382 * (to be) managed page pool, then implicitly mapping the pages (by using
383 * their k0seg addresses) and zeroing them.
384 *
385 * It may be used once the physical memory segments have been pre-loaded
386 * into the vm_physmem[] array. Early memory allocation MUST use this
387 * interface! This cannot be used after vm_page_startup(), and will
388 * generate a panic if tried.
389 *
390 * Note that this memory will never be freed, and in essence it is wired
391 * down.
392 *
393 * We must adjust *vstartp and/or *vendp iff we use address space
394 * from the kernel virtual address range defined by pmap_virtual_space().
395 */
396 vaddr_t
397 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
398 {
399 u_int npgs;
400 paddr_t pa;
401 vaddr_t va;
402
403 size = round_page(size);
404 npgs = atop(size);
405
406 for (u_int bank = 0; bank < vm_nphysseg; bank++) {
407 struct vm_physseg * const seg = VM_PHYSMEM_PTR(bank);
408 if (uvm.page_init_done == true)
409 panic("pmap_steal_memory: called _after_ bootstrap");
410
411 if (seg->avail_start != seg->start ||
412 seg->avail_start >= seg->avail_end)
413 continue;
414
415 if ((seg->avail_end - seg->avail_start) < npgs)
416 continue;
417
418 /*
419 * There are enough pages here; steal them!
420 */
421 pa = ptoa(seg->avail_start);
422 seg->avail_start += npgs;
423 seg->start += npgs;
424
425 /*
426 * Have we used up this segment?
427 */
428 if (seg->avail_start == seg->end) {
429 if (vm_nphysseg == 1)
430 panic("pmap_steal_memory: out of memory!");
431
432 /* Remove this segment from the list. */
433 vm_nphysseg--;
434 if (bank < vm_nphysseg)
435 memmove(seg, seg+1,
436 sizeof(*seg) * (vm_nphysseg - bank));
437 }
438
439 va = pmap_md_map_poolpage(pa, size);
440 memset((void *)va, 0, size);
441 return va;
442 }
443
444 /*
445 * If we got here, there was no memory left.
446 */
447 panic("pmap_steal_memory: no memory to steal");
448 }
449
450 /*
451 * Initialize the pmap module.
452 * Called by vm_init, to initialize any structures that the pmap
453 * system needs to map virtual memory.
454 */
455 void
456 pmap_init(void)
457 {
458 UVMHIST_INIT_STATIC(pmapexechist, pmapexechistbuf);
459 UVMHIST_INIT_STATIC(pmaphist, pmaphistbuf);
460
461 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
462
463 /*
464 * Initialize the segtab lock.
465 */
466 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
467
468 /*
469 * Set a low water mark on the pv_entry pool, so that we are
470 * more likely to have these around even in extreme memory
471 * starvation.
472 */
473 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
474
475 pmap_md_init();
476
477 /*
478 * Now it is safe to enable pv entry recording.
479 */
480 pmap_initialized = true;
481 }
482
483 /*
484 * Create and return a physical map.
485 *
486 * If the size specified for the map
487 * is zero, the map is an actual physical
488 * map, and may be referenced by the
489 * hardware.
490 *
491 * If the size specified is non-zero,
492 * the map will be used in software only, and
493 * is bounded by that size.
494 */
495 pmap_t
496 pmap_create(void)
497 {
498 pmap_t pmap;
499
500 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
501 PMAP_COUNT(create);
502
503 pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
504 memset(pmap, 0, PMAP_SIZE);
505
506 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
507
508 pmap->pm_count = 1;
509 pmap->pm_minaddr = VM_MIN_ADDRESS;
510 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
511
512 pmap_segtab_init(pmap);
513
514 #ifdef MULTIPROCESSOR
515 kcpuset_create(&pmap->pm_active, true);
516 kcpuset_create(&pmap->pm_onproc, true);
517 #endif
518
519 UVMHIST_LOG(pmaphist, "<- pmap %p", pmap,0,0,0);
520 return pmap;
521 }
522
523 /*
524 * Retire the given physical map from service.
525 * Should only be called if the map contains
526 * no valid mappings.
527 */
528 void
529 pmap_destroy(pmap_t pmap)
530 {
531 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
532 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
533
534 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
535 PMAP_COUNT(dereference);
536 return;
537 }
538
539 KASSERT(pmap->pm_count == 0);
540 PMAP_COUNT(destroy);
541 kpreempt_disable();
542 pmap_tlb_asid_release_all(pmap);
543 pmap_segtab_destroy(pmap, NULL, 0);
544
545 #ifdef MULTIPROCESSOR
546 kcpuset_destroy(&pmap->pm_active);
547 kcpuset_destroy(&pmap->pm_onproc);
548 #endif
549
550 pool_put(&pmap_pmap_pool, pmap);
551 kpreempt_enable();
552
553 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
554 }
555
556 /*
557 * Add a reference to the specified pmap.
558 */
559 void
560 pmap_reference(pmap_t pmap)
561 {
562
563 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
564 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
565 PMAP_COUNT(reference);
566
567 if (pmap != NULL) {
568 atomic_inc_uint(&pmap->pm_count);
569 }
570
571 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
572 }
573
574 /*
575 * Make a new pmap (vmspace) active for the given process.
576 */
577 void
578 pmap_activate(struct lwp *l)
579 {
580 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
581
582 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
583 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
584 PMAP_COUNT(activate);
585
586 kpreempt_disable();
587 pmap_tlb_asid_acquire(pmap, l);
588 if (l == curlwp) {
589 pmap_segtab_activate(pmap, l);
590 }
591 kpreempt_enable();
592
593 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
594 }
595
596 /*
597 * Make a previously active pmap (vmspace) inactive.
598 */
599 void
600 pmap_deactivate(struct lwp *l)
601 {
602 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
603
604 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
605 UVMHIST_LOG(pmaphist, "(l=%p (pmap=%p))", l, pmap, 0,0);
606 PMAP_COUNT(deactivate);
607
608 kpreempt_disable();
609 curcpu()->ci_pmap_user_segtab = PMAP_INVALID_SEGTAB_ADDRESS;
610 pmap_tlb_asid_deactivate(pmap);
611 kpreempt_enable();
612
613 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
614 }
615
616 void
617 pmap_update(struct pmap *pmap)
618 {
619
620 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
621 UVMHIST_LOG(pmaphist, "(pmap=%p)", pmap, 0,0,0);
622 PMAP_COUNT(update);
623
624 kpreempt_disable();
625 #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
626 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
627 if (pending && pmap_tlb_shootdown_bystanders(pmap))
628 PMAP_COUNT(shootdown_ipis);
629 #endif
630 #ifdef DEBUG
631 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
632 #endif /* DEBUG */
633
634 /*
635 * If pmap_remove_all was called, we deactivated ourselves and nuked
636 * our ASID. Now we have to reactivate ourselves.
637 */
638 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
639 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
640 pmap_tlb_asid_acquire(pmap, curlwp);
641 pmap_segtab_activate(pmap, curlwp);
642 }
643 kpreempt_enable();
644
645 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
646 }
647
648 /*
649 * Remove the given range of addresses from the specified map.
650 *
651 * It is assumed that the start and end are properly
652 * rounded to the page size.
653 */
654
655 static bool
656 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
657 uintptr_t flags)
658 {
659 const pt_entry_t npte = flags;
660 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
661
662 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
663 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
664 pmap, (is_kernel_pmap_p ? "(kernel) " : ""), sva, eva);
665 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
666 ptep, flags, 0, 0);
667
668 KASSERT(kpreempt_disabled());
669
670 for (; sva < eva; sva += NBPG, ptep++) {
671 pt_entry_t pt_entry = *ptep;
672 if (!pte_valid_p(pt_entry))
673 continue;
674 if (is_kernel_pmap_p)
675 PMAP_COUNT(remove_kernel_calls);
676 else
677 PMAP_COUNT(remove_user_pages);
678 if (pte_wired_p(pt_entry))
679 pmap->pm_stats.wired_count--;
680 pmap->pm_stats.resident_count--;
681 struct vm_page *pg = PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
682 if (__predict_true(pg != NULL)) {
683 pmap_remove_pv(pmap, sva, pg,
684 pte_modified_p(pt_entry));
685 }
686 *ptep = npte;
687 /*
688 * Flush the TLB for the given address.
689 */
690 pmap_tlb_invalidate_addr(pmap, sva);
691 }
692 return false;
693 }
694
695 void
696 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
697 {
698 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
699 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
700
701 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
702 UVMHIST_LOG(pmaphist, "(pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR")",
703 pmap, sva, eva, 0);
704
705 if (is_kernel_pmap_p)
706 PMAP_COUNT(remove_kernel_calls);
707 else
708 PMAP_COUNT(remove_user_calls);
709 #ifdef PARANOIADIAG
710 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
711 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
712 __func__, sva, eva - 1);
713 if (PMAP_IS_ACTIVE(pmap)) {
714 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
715 uint32_t asid = tlb_get_asid();
716 if (asid != pai->pai_asid) {
717 panic("%s: inconsistency for active TLB flush"
718 ": %d <-> %d", __func__, asid, pai->pai_asid);
719 }
720 }
721 #endif
722 kpreempt_disable();
723 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
724 kpreempt_enable();
725
726 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
727 }
728
729 /*
730 * pmap_page_protect:
731 *
732 * Lower the permission for all mappings to a given page.
733 */
734 void
735 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
736 {
737 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
738 pv_entry_t pv;
739 vaddr_t va;
740
741 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
742 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") prot=%#x)",
743 pg, VM_PAGE_TO_PHYS(pg), prot, 0);
744 PMAP_COUNT(page_protect);
745
746 switch (prot) {
747 case VM_PROT_READ|VM_PROT_WRITE:
748 case VM_PROT_ALL:
749 break;
750
751 /* copy_on_write */
752 case VM_PROT_READ:
753 case VM_PROT_READ|VM_PROT_EXECUTE:
754 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
755 pv = &mdpg->mdpg_first;
756 /*
757 * Loop over all current mappings setting/clearing as appropriate.
758 */
759 if (pv->pv_pmap != NULL) {
760 while (pv != NULL) {
761 const pmap_t pmap = pv->pv_pmap;
762 const uint16_t gen = VM_PAGEMD_PVLIST_GEN(mdpg);
763 va = pv->pv_va;
764 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
765 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
766 KASSERT(pv->pv_pmap == pmap);
767 pmap_update(pmap);
768 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false)) {
769 pv = &mdpg->mdpg_first;
770 } else {
771 pv = pv->pv_next;
772 }
773 }
774 }
775 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
776 break;
777
778 /* remove_all */
779 default:
780 /*
781 * Do this first so that for each unmapping, pmap_remove_pv
782 * won't try to sync the icache.
783 */
784 if (pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE)) {
785 UVMHIST_LOG(pmapexechist, "pg %p (pa %#"PRIxPADDR
786 "): execpage cleared", pg, VM_PAGE_TO_PHYS(pg),0,0);
787 PMAP_COUNT(exec_uncached_page_protect);
788 }
789 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
790 pv = &mdpg->mdpg_first;
791 while (pv->pv_pmap != NULL) {
792 const pmap_t pmap = pv->pv_pmap;
793 va = pv->pv_va;
794 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
795 pmap_remove(pmap, va, va + PAGE_SIZE);
796 pmap_update(pmap);
797 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, false);
798 }
799 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
800 }
801
802 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
803 }
804
805 static bool
806 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
807 uintptr_t flags)
808 {
809 const vm_prot_t prot = (flags & VM_PROT_ALL);
810
811 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
812 UVMHIST_LOG(pmaphist, "(pmap=%p %sva=%"PRIxVADDR"..%"PRIxVADDR,
813 pmap, (pmap == pmap_kernel() ? "(kernel) " : ""), sva, eva);
814 UVMHIST_LOG(pmaphist, "ptep=%p, flags(npte)=%#"PRIxPTR")",
815 ptep, flags, 0, 0);
816
817 KASSERT(kpreempt_disabled());
818 /*
819 * Change protection on every valid mapping within this segment.
820 */
821 for (; sva < eva; sva += NBPG, ptep++) {
822 pt_entry_t pt_entry = *ptep;
823 if (!pte_valid_p(pt_entry))
824 continue;
825 struct vm_page * const pg =
826 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
827 if (pg != NULL && pte_modified_p(pt_entry)) {
828 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
829 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
830 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
831 KASSERT(mdpg->mdpg_first.pv_pmap != NULL);
832 if (pte_cached_p(pt_entry)) {
833 UVMHIST_LOG(pmapexechist,
834 "pg %p (pa %#"PRIxPADDR"): %s",
835 pg, VM_PAGE_TO_PHYS(pg),
836 "syncicached performed", 0);
837 pmap_page_syncicache(pg);
838 PMAP_COUNT(exec_synced_protect);
839 }
840 }
841 }
842 pt_entry = pte_prot_downgrade(pt_entry, prot);
843 if (*ptep != pt_entry) {
844 *ptep = pt_entry;
845 /*
846 * Update the TLB if needed.
847 */
848 pmap_tlb_update_addr(pmap, sva, pt_entry,
849 PMAP_TLB_NEED_IPI);
850 }
851 }
852 return false;
853 }
854
855 /*
856 * Set the physical protection on the
857 * specified range of this map as requested.
858 */
859 void
860 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
861 {
862
863 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
864 UVMHIST_LOG(pmaphist,
865 " pmap=%p, va=%#"PRIxVADDR"..%#"PRIxVADDR" port=%#x)",
866 pmap, sva, eva, prot);
867 PMAP_COUNT(protect);
868
869 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
870 pmap_remove(pmap, sva, eva);
871 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
872 return;
873 }
874
875 #ifdef PARANOIADIAG
876 if (sva < pm->pm_minaddr || eva > pm->pm_maxaddr)
877 panic("%s: va range %#"PRIxVADDR"-%#"PRIxVADDR" not in range",
878 __func__, sva, eva - 1);
879 if (PMAP_IS_ACTIVE(pmap)) {
880 struct pmap_asid_info * const pai = PMAP_PAI(pmap, curcpu());
881 uint32_t asid = tlb_get_asid();
882 if (asid != pai->pai_asid) {
883 panic("%s: inconsistency for active TLB update"
884 ": %d <-> %d", __func__, asid, pai->pai_asid);
885 }
886 }
887 #endif
888
889 /*
890 * Change protection on every valid mapping within this segment.
891 */
892 kpreempt_disable();
893 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
894 kpreempt_enable();
895
896 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
897 }
898
899 #if defined(__PMAP_VIRTUAL_CACHE_ALIASES)
900 /*
901 * pmap_page_cache:
902 *
903 * Change all mappings of a managed page to cached/uncached.
904 */
905 static void
906 pmap_page_cache(struct vm_page *pg, bool cached)
907 {
908 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
909 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
910 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR") cached=%s)",
911 pg, VM_PAGE_TO_PHYS(pg), cached ? "true" : "false", 0);
912 KASSERT(kpreempt_disabled());
913
914 if (cached) {
915 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
916 PMAP_COUNT(page_cache_restorations);
917 } else {
918 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
919 PMAP_COUNT(page_cache_evictions);
920 }
921
922 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
923 KASSERT(kpreempt_disabled());
924 for (pv_entry_t pv = &mdpg->mdpg_first;
925 pv != NULL;
926 pv = pv->pv_next) {
927 pmap_t pmap = pv->pv_pmap;
928 vaddr_t va = pv->pv_va;
929
930 KASSERT(pmap != NULL);
931 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
932 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
933 if (ptep == NULL)
934 continue;
935 pt_entry_t pt_entry = *ptep;
936 if (pte_valid_p(pt_entry)) {
937 pt_entry = pte_cached_change(pt_entry, cached);
938 *ptep = pt_entry;
939 pmap_tlb_update_addr(pmap, va, pt_entry,
940 PMAP_TLB_NEED_IPI);
941 }
942 }
943 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
944 }
945 #endif /* __PMAP_VIRTUAL_CACHE_ALIASES */
946
947 /*
948 * Insert the given physical page (p) at
949 * the specified virtual address (v) in the
950 * target physical map with the protection requested.
951 *
952 * If specified, the page will be wired down, meaning
953 * that the related pte can not be reclaimed.
954 *
955 * NB: This is the only routine which MAY NOT lazy-evaluate
956 * or lose information. That is, this routine must actually
957 * insert this page into the given map NOW.
958 */
959 int
960 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
961 {
962 pt_entry_t npte;
963 const bool wired = (flags & PMAP_WIRED) != 0;
964 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
965 #ifdef UVMHIST
966 struct kern_history * const histp =
967 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
968 #endif
969
970 UVMHIST_FUNC(__func__);
971 #define VM_PROT_STRING(prot) \
972 &"\0 (R)\0 (W)\0 (RW)\0 (X)\0 (RX)\0 (WX)\0 (RWX)\0"[UVM_PROTECTION(prot)*6]
973 UVMHIST_CALLED(*histp);
974 UVMHIST_LOG(*histp, "(pmap=%p, va=%#"PRIxVADDR", pa=%#"PRIxPADDR,
975 pmap, va, pa, 0);
976 UVMHIST_LOG(*histp, "prot=%#x%s flags=%#x%s)",
977 prot, VM_PROT_STRING(prot), flags, VM_PROT_STRING(flags));
978
979 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
980 if (is_kernel_pmap_p) {
981 PMAP_COUNT(kernel_mappings);
982 if (!good_color)
983 PMAP_COUNT(kernel_mappings_bad);
984 } else {
985 PMAP_COUNT(user_mappings);
986 if (!good_color)
987 PMAP_COUNT(user_mappings_bad);
988 }
989 #if defined(DEBUG) || defined(DIAGNOSTIC) || defined(PARANOIADIAG)
990 if (va < pmap->pm_minaddr || va >= pmap->pm_maxaddr)
991 panic("%s: %s %#"PRIxVADDR" too big",
992 __func__, is_kernel_pmap_p ? "kva" : "uva", va);
993 #endif
994
995 KASSERTMSG(prot & VM_PROT_READ,
996 "%s: no READ (%#x) in prot %#x", __func__, VM_PROT_READ, prot);
997
998 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
999 struct vm_page_md *mdpg;
1000
1001 if (pg) {
1002 mdpg = VM_PAGE_TO_MD(pg);
1003 /* Set page referenced/modified status based on flags */
1004 if (flags & VM_PROT_WRITE)
1005 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1006 else if (flags & VM_PROT_ALL)
1007 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1008
1009 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1010 if (!VM_PAGEMD_CACHED(pg))
1011 flags |= PMAP_NOCACHE;
1012 #endif
1013
1014 PMAP_COUNT(managed_mappings);
1015 } else {
1016 /*
1017 * Assumption: if it is not part of our managed memory
1018 * then it must be device memory which may be volatile.
1019 */
1020 mdpg = NULL;
1021 flags |= PMAP_NOCACHE;
1022 PMAP_COUNT(unmanaged_mappings);
1023 }
1024
1025 npte = pte_make_enter(pa, mdpg, prot, flags, is_kernel_pmap_p);
1026
1027 kpreempt_disable();
1028 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1029 if (__predict_false(ptep == NULL)) {
1030 kpreempt_enable();
1031 UVMHIST_LOG(*histp, "<- ENOMEM", 0,0,0,0);
1032 return ENOMEM;
1033 }
1034 pt_entry_t opte = *ptep;
1035
1036 /* Done after case that may sleep/return. */
1037 if (pg)
1038 pmap_enter_pv(pmap, va, pg, &npte);
1039
1040 /*
1041 * Now validate mapping with desired protection/wiring.
1042 * Assume uniform modified and referenced status for all
1043 * MIPS pages in a MACH page.
1044 */
1045 if (wired) {
1046 pmap->pm_stats.wired_count++;
1047 npte = pte_wire_entry(npte);
1048 }
1049
1050 UVMHIST_LOG(*histp, "new pte %#x (pa %#"PRIxPADDR")", npte, pa, 0,0);
1051
1052 if (pte_valid_p(opte) && pte_to_paddr(opte) != pa) {
1053 pmap_remove(pmap, va, va + NBPG);
1054 PMAP_COUNT(user_mappings_changed);
1055 }
1056
1057 KASSERT(pte_valid_p(npte));
1058 bool resident = pte_valid_p(opte);
1059 if (!resident)
1060 pmap->pm_stats.resident_count++;
1061 *ptep = npte;
1062
1063 pmap_tlb_update_addr(pmap, va, npte,
1064 ((flags & VM_PROT_ALL) ? PMAP_TLB_INSERT : 0)
1065 | (resident ? PMAP_TLB_NEED_IPI : 0));
1066 kpreempt_enable();
1067
1068 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1069 KASSERT(mdpg != NULL);
1070 PMAP_COUNT(exec_mappings);
1071 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1072 if (!pte_deferred_exec_p(npte)) {
1073 UVMHIST_LOG(*histp,
1074 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1075 va, pg, "immediate", "");
1076 pmap_page_syncicache(pg);
1077 pmap_page_set_attributes(mdpg,
1078 VM_PAGEMD_EXECPAGE);
1079 PMAP_COUNT(exec_synced_mappings);
1080 } else {
1081 UVMHIST_LOG(*histp, "va=%#"PRIxVADDR
1082 " pg %p: %s syncicache: pte %#x",
1083 va, pg, "defer", npte);
1084 }
1085 } else {
1086 UVMHIST_LOG(*histp,
1087 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1088 va, pg, "no",
1089 (pte_cached_p(npte)
1090 ? " (already exec)"
1091 : " (uncached)"));
1092 }
1093 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1094 KASSERT(mdpg != NULL);
1095 KASSERT(prot & VM_PROT_WRITE);
1096 PMAP_COUNT(exec_mappings);
1097 pmap_page_syncicache(pg);
1098 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1099 UVMHIST_LOG(pmapexechist,
1100 "va=%#"PRIxVADDR" pg %p: %s syncicache%s",
1101 va, pg, "immediate", " (writeable)");
1102 }
1103
1104 if (prot & VM_PROT_EXECUTE) {
1105 UVMHIST_LOG(pmapexechist, "<- 0 (OK)", 0,0,0,0);
1106 } else {
1107 UVMHIST_LOG(pmaphist, "<- 0 (OK)", 0,0,0,0);
1108 }
1109 return 0;
1110 }
1111
1112 void
1113 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1114 {
1115 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1116 struct vm_page_md *mdpg;
1117
1118 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1119 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" pa=%#"PRIxPADDR
1120 ", prot=%#x, flags=%#x)", va, pa, prot, flags);
1121 PMAP_COUNT(kenter_pa);
1122
1123 if (pg == NULL) {
1124 mdpg = NULL;
1125 PMAP_COUNT(kenter_pa_unmanaged);
1126 flags |= PMAP_NOCACHE;
1127 } else {
1128 mdpg = VM_PAGE_TO_MD(pg);
1129 }
1130
1131 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1132 PMAP_COUNT(kenter_pa_bad);
1133
1134 const pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1135 kpreempt_disable();
1136 pt_entry_t * const ptep = pmap_pte_reserve(pmap_kernel(), va, 0);
1137 KASSERT(ptep != NULL);
1138 KASSERT(!pte_valid_p(*ptep));
1139 *ptep = npte;
1140 /*
1141 * We have the option to force this mapping into the TLB but we
1142 * don't. Instead let the next reference to the page do it.
1143 */
1144 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1145 kpreempt_enable();
1146 #if DEBUG > 1
1147 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1148 if (((long *)va)[i] != ((long *)pa)[i])
1149 panic("%s: contents (%lx) of va %#"PRIxVADDR
1150 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1151 ((long *)va)[i], va, ((long *)pa)[i], pa);
1152 }
1153 #endif
1154 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1155 }
1156
1157 static bool
1158 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1159 uintptr_t flags)
1160 {
1161 const pt_entry_t new_pt_entry = pte_nv_entry(true);
1162
1163 KASSERT(kpreempt_disabled());
1164
1165 /*
1166 * Set every pt on every valid mapping within this segment.
1167 */
1168 for (; sva < eva; sva += NBPG, ptep++) {
1169 pt_entry_t pt_entry = *ptep;
1170 if (!pte_valid_p(pt_entry)) {
1171 continue;
1172 }
1173
1174 PMAP_COUNT(kremove_pages);
1175 struct vm_page * const pg =
1176 PHYS_TO_VM_PAGE(pte_to_paddr(pt_entry));
1177 if (pg != NULL)
1178 pmap_md_vca_clean(pg, sva, PMAP_WBINV);
1179
1180 *ptep = new_pt_entry;
1181 pmap_tlb_invalidate_addr(pmap_kernel(), sva);
1182 }
1183
1184 return false;
1185 }
1186
1187 void
1188 pmap_kremove(vaddr_t va, vsize_t len)
1189 {
1190 const vaddr_t sva = trunc_page(va);
1191 const vaddr_t eva = round_page(va + len);
1192
1193 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1194 UVMHIST_LOG(pmaphist, "(va=%#"PRIxVADDR" len=%#"PRIxVSIZE")",
1195 va, len, 0,0);
1196
1197 kpreempt_disable();
1198 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1199 kpreempt_enable();
1200
1201 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1202 }
1203
1204 void
1205 pmap_remove_all(struct pmap *pmap)
1206 {
1207 KASSERT(pmap != pmap_kernel());
1208
1209 kpreempt_disable();
1210 /*
1211 * Free all of our ASIDs which means we can skip doing all the
1212 * tlb_invalidate_addrs().
1213 */
1214 pmap_tlb_asid_deactivate(pmap);
1215 pmap_tlb_asid_release_all(pmap);
1216 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1217
1218 kpreempt_enable();
1219 }
1220
1221 /*
1222 * Routine: pmap_unwire
1223 * Function: Clear the wired attribute for a map/virtual-address
1224 * pair.
1225 * In/out conditions:
1226 * The mapping must already exist in the pmap.
1227 */
1228 void
1229 pmap_unwire(pmap_t pmap, vaddr_t va)
1230 {
1231
1232 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1233 UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1234 PMAP_COUNT(unwire);
1235
1236 /*
1237 * Don't need to flush the TLB since PG_WIRED is only in software.
1238 */
1239 #ifdef PARANOIADIAG
1240 if (va < pmap->pm_minaddr || pmap->pm_maxaddr <= va)
1241 panic("pmap_unwire");
1242 #endif
1243 kpreempt_disable();
1244 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1245 pt_entry_t pt_entry = *ptep;
1246 #ifdef DIAGNOSTIC
1247 if (ptep == NULL)
1248 panic("%s: pmap %p va %#"PRIxVADDR" invalid STE",
1249 __func__, pmap, va);
1250 #endif
1251
1252 #ifdef DIAGNOSTIC
1253 if (!pte_valid_p(pt_entry))
1254 panic("pmap_unwire: pmap %p va %#"PRIxVADDR" invalid PTE",
1255 pmap, va);
1256 #endif
1257
1258 if (pte_wired_p(pt_entry)) {
1259 *ptep = pte_unwire_entry(*ptep);
1260 pmap->pm_stats.wired_count--;
1261 }
1262 #ifdef DIAGNOSTIC
1263 else {
1264 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1265 __func__, pmap, va);
1266 }
1267 #endif
1268 kpreempt_enable();
1269 }
1270
1271 /*
1272 * Routine: pmap_extract
1273 * Function:
1274 * Extract the physical page address associated
1275 * with the given map/virtual_address pair.
1276 */
1277 bool
1278 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1279 {
1280 paddr_t pa;
1281
1282 //UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1283 //UVMHIST_LOG(pmaphist, "(pmap=%p va=%#"PRIxVADDR")", pmap, va, 0,0);
1284 if (pmap == pmap_kernel()) {
1285 if (pmap_md_direct_mapped_vaddr_p(va)) {
1286 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1287 goto done;
1288 }
1289 if (pmap_md_io_vaddr_p(va))
1290 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1291 }
1292 kpreempt_disable();
1293 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1294 if (ptep == NULL) {
1295 //UVMHIST_LOG(pmaphist, "<- false (not in segmap)", 0,0,0,0);
1296 kpreempt_enable();
1297 return false;
1298 }
1299 if (!pte_valid_p(*ptep)) {
1300 //UVMHIST_LOG(pmaphist, "<- false (PTE not valid)", 0,0,0,0);
1301 kpreempt_enable();
1302 return false;
1303 }
1304 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1305 kpreempt_enable();
1306 done:
1307 if (pap != NULL) {
1308 *pap = pa;
1309 }
1310 //UVMHIST_LOG(pmaphist, "<- true (pa %#"PRIxPADDR")", pa, 0,0,0);
1311 return true;
1312 }
1313
1314 /*
1315 * Copy the range specified by src_addr/len
1316 * from the source map to the range dst_addr/len
1317 * in the destination map.
1318 *
1319 * This routine is only advisory and need not do anything.
1320 */
1321 void
1322 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1323 vaddr_t src_addr)
1324 {
1325
1326 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1327 PMAP_COUNT(copy);
1328 }
1329
1330 /*
1331 * pmap_clear_reference:
1332 *
1333 * Clear the reference bit on the specified physical page.
1334 */
1335 bool
1336 pmap_clear_reference(struct vm_page *pg)
1337 {
1338 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1339
1340 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1341 UVMHIST_LOG(pmaphist, "(pg=%p (pa %#"PRIxPADDR"))",
1342 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1343
1344 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1345
1346 UVMHIST_LOG(pmaphist, "<- %s", rv ? "true" : "false", 0,0,0);
1347
1348 return rv;
1349 }
1350
1351 /*
1352 * pmap_is_referenced:
1353 *
1354 * Return whether or not the specified physical page is referenced
1355 * by any physical maps.
1356 */
1357 bool
1358 pmap_is_referenced(struct vm_page *pg)
1359 {
1360
1361 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1362 }
1363
1364 /*
1365 * Clear the modify bits on the specified physical page.
1366 */
1367 bool
1368 pmap_clear_modify(struct vm_page *pg)
1369 {
1370 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1371 pv_entry_t pv = &mdpg->mdpg_first;
1372 pv_entry_t pv_next;
1373 uint16_t gen;
1374
1375 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1376 UVMHIST_LOG(pmaphist, "(pg=%p (%#"PRIxPADDR"))",
1377 pg, VM_PAGE_TO_PHYS(pg), 0,0);
1378 PMAP_COUNT(clear_modify);
1379
1380 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1381 if (pv->pv_pmap == NULL) {
1382 UVMHIST_LOG(pmapexechist,
1383 "pg %p (pa %#"PRIxPADDR"): %s",
1384 pg, VM_PAGE_TO_PHYS(pg), "execpage cleared", 0);
1385 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1386 PMAP_COUNT(exec_uncached_clear_modify);
1387 } else {
1388 UVMHIST_LOG(pmapexechist,
1389 "pg %p (pa %#"PRIxPADDR"): %s",
1390 pg, VM_PAGE_TO_PHYS(pg), "syncicache performed", 0);
1391 pmap_page_syncicache(pg);
1392 PMAP_COUNT(exec_synced_clear_modify);
1393 }
1394 }
1395 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1396 UVMHIST_LOG(pmaphist, "<- false", 0,0,0,0);
1397 return false;
1398 }
1399 if (pv->pv_pmap == NULL) {
1400 UVMHIST_LOG(pmaphist, "<- true (no mappings)", 0,0,0,0);
1401 return true;
1402 }
1403
1404 /*
1405 * remove write access from any pages that are dirty
1406 * so we can tell if they are written to again later.
1407 * flush the VAC first if there is one.
1408 */
1409 kpreempt_disable();
1410 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, false);
1411 for (; pv != NULL; pv = pv_next) {
1412 pmap_t pmap = pv->pv_pmap;
1413 vaddr_t va = pv->pv_va;
1414 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1415 KASSERT(ptep);
1416 pv_next = pv->pv_next;
1417 pt_entry_t pt_entry = pte_prot_nowrite(*ptep);
1418 if (*ptep == pt_entry) {
1419 continue;
1420 }
1421 pmap_md_vca_clean(pg, va, PMAP_WBINV);
1422 *ptep = pt_entry;
1423 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1424 pmap_tlb_invalidate_addr(pmap, va);
1425 pmap_update(pmap);
1426 if (__predict_false(gen != VM_PAGEMD_PVLIST_LOCK(mdpg, false))) {
1427 /*
1428 * The list changed! So restart from the beginning.
1429 */
1430 pv_next = &mdpg->mdpg_first;
1431 }
1432 }
1433 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1434 kpreempt_enable();
1435
1436 UVMHIST_LOG(pmaphist, "<- true (mappings changed)", 0,0,0,0);
1437 return true;
1438 }
1439
1440 /*
1441 * pmap_is_modified:
1442 *
1443 * Return whether or not the specified physical page is modified
1444 * by any physical maps.
1445 */
1446 bool
1447 pmap_is_modified(struct vm_page *pg)
1448 {
1449
1450 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1451 }
1452
1453 /*
1454 * pmap_set_modified:
1455 *
1456 * Sets the page modified reference bit for the specified page.
1457 */
1458 void
1459 pmap_set_modified(paddr_t pa)
1460 {
1461 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1462 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1463 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1464 }
1465
1466 /******************** pv_entry management ********************/
1467
1468 static void
1469 pmap_check_pvlist(struct vm_page *pg)
1470 {
1471 #ifdef PARANOIADIAG
1472 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1473 pt_entry_t pv = &mdpg->mdpg_first;
1474 if (pv->pv_pmap != NULL) {
1475 for (; pv != NULL; pv = pv->pv_next) {
1476 KASSERT(!pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1477 }
1478 }
1479 #endif /* PARANOIADIAG */
1480 }
1481
1482 /*
1483 * Enter the pmap and virtual address into the
1484 * physical to virtual map table.
1485 */
1486 void
1487 pmap_enter_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, u_int *npte)
1488 {
1489 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1490 pv_entry_t pv, npv, apv;
1491 int16_t gen;
1492 bool first __unused = false;
1493
1494 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1495 UVMHIST_LOG(pmaphist,
1496 "(pmap=%p va=%#"PRIxVADDR" pg=%p (%#"PRIxPADDR")",
1497 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1498 UVMHIST_LOG(pmaphist, "nptep=%p (%#x))", npte, *npte, 0, 0);
1499
1500 KASSERT(kpreempt_disabled());
1501 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1502
1503 apv = NULL;
1504 pv = &mdpg->mdpg_first;
1505 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1506 pmap_check_pvlist(pg);
1507 again:
1508 if (pv->pv_pmap == NULL) {
1509 KASSERT(pv->pv_next == NULL);
1510 /*
1511 * No entries yet, use header as the first entry
1512 */
1513 PMAP_COUNT(primary_mappings);
1514 PMAP_COUNT(mappings);
1515 first = true;
1516 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1517 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1518 #endif
1519 pv->pv_pmap = pmap;
1520 pv->pv_va = va;
1521 } else {
1522 if (pmap_md_vca_add(pg, va, npte))
1523 goto again;
1524
1525 /*
1526 * There is at least one other VA mapping this page.
1527 * Place this entry after the header.
1528 *
1529 * Note: the entry may already be in the table if
1530 * we are only changing the protection bits.
1531 */
1532
1533 #ifdef PARANOIADIAG
1534 const paddr_t pa = VM_PAGE_TO_PHYS(pg);
1535 #endif
1536 for (npv = pv; npv; npv = npv->pv_next) {
1537 if (pmap == npv->pv_pmap && va == npv->pv_va) {
1538 #ifdef PARANOIADIAG
1539 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1540 pt_entry_t pt_entry = (ptep ? *ptep : 0);
1541 if (!pte_valid_p(pt_entry)
1542 || pte_to_paddr(pt_entry) != pa)
1543 printf(
1544 "pmap_enter_pv: found va %#"PRIxVADDR" pa %#"PRIxPADDR" in pv_table but != %x\n",
1545 va, pa, pt_entry);
1546 #endif
1547 PMAP_COUNT(remappings);
1548 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1549 if (__predict_false(apv != NULL))
1550 pmap_pv_free(apv);
1551 return;
1552 }
1553 }
1554 if (__predict_true(apv == NULL)) {
1555 /*
1556 * To allocate a PV, we have to release the PVLIST lock
1557 * so get the page generation. We allocate the PV, and
1558 * then reacquire the lock.
1559 */
1560 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1561
1562 apv = (pv_entry_t)pmap_pv_alloc();
1563 if (apv == NULL)
1564 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1565
1566 /*
1567 * If the generation has changed, then someone else
1568 * tinkered with this page so we should
1569 * start over.
1570 */
1571 uint16_t oldgen = gen;
1572 gen = VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1573 if (gen != oldgen)
1574 goto again;
1575 }
1576 npv = apv;
1577 apv = NULL;
1578 npv->pv_va = va;
1579 npv->pv_pmap = pmap;
1580 npv->pv_next = pv->pv_next;
1581 pv->pv_next = npv;
1582 PMAP_COUNT(mappings);
1583 }
1584 pmap_check_pvlist(pg);
1585 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1586 if (__predict_false(apv != NULL))
1587 pmap_pv_free(apv);
1588
1589 UVMHIST_LOG(pmaphist, "<- done pv=%p%s",
1590 pv, first ? " (first pv)" : "",0,0);
1591 }
1592
1593 /*
1594 * Remove a physical to virtual address translation.
1595 * If cache was inhibited on this page, and there are no more cache
1596 * conflicts, restore caching.
1597 * Flush the cache if the last page is removed (should always be cached
1598 * at this point).
1599 */
1600 void
1601 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
1602 {
1603 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1604 pv_entry_t pv, npv;
1605 bool last;
1606
1607 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pmaphist);
1608 UVMHIST_LOG(pmaphist,
1609 "(pmap=%p va=%#"PRIxVADDR" pg=%p (pa %#"PRIxPADDR")\n",
1610 pmap, va, pg, VM_PAGE_TO_PHYS(pg));
1611 UVMHIST_LOG(pmaphist, "dirty=%s)", dirty ? "true" : "false", 0,0,0);
1612
1613 KASSERT(kpreempt_disabled());
1614 pv = &mdpg->mdpg_first;
1615
1616 (void)VM_PAGEMD_PVLIST_LOCK(mdpg, true);
1617 pmap_check_pvlist(pg);
1618
1619 /*
1620 * If it is the first entry on the list, it is actually
1621 * in the header and we must copy the following entry up
1622 * to the header. Otherwise we must search the list for
1623 * the entry. In either case we free the now unused entry.
1624 */
1625
1626 last = false;
1627 if (pmap == pv->pv_pmap && va == pv->pv_va) {
1628 npv = pv->pv_next;
1629 if (npv) {
1630 *pv = *npv;
1631 KASSERT(pv->pv_pmap != NULL);
1632 } else {
1633 #ifdef __PMAP_VIRTUAL_CACHE_ALIASES
1634 pmap_page_clear_attributes(pg, VM_PAGEMD_UNCACHED);
1635 #endif
1636 pv->pv_pmap = NULL;
1637 last = true; /* Last mapping removed */
1638 }
1639 PMAP_COUNT(remove_pvfirst);
1640 } else {
1641 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
1642 PMAP_COUNT(remove_pvsearch);
1643 if (pmap == npv->pv_pmap && va == npv->pv_va)
1644 break;
1645 }
1646 if (npv) {
1647 pv->pv_next = npv->pv_next;
1648 }
1649 }
1650 pmap_md_vca_remove(pg, va);
1651
1652 pmap_check_pvlist(pg);
1653 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1654
1655 /*
1656 * Free the pv_entry if needed.
1657 */
1658 if (npv)
1659 pmap_pv_free(npv);
1660 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
1661 if (last) {
1662 /*
1663 * If this was the page's last mapping, we no longer
1664 * care about its execness.
1665 */
1666 UVMHIST_LOG(pmapexechist,
1667 "pg %p (pa %#"PRIxPADDR")%s: %s",
1668 pg, VM_PAGE_TO_PHYS(pg),
1669 last ? " [last mapping]" : "",
1670 "execpage cleared");
1671 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1672 PMAP_COUNT(exec_uncached_remove);
1673 } else {
1674 /*
1675 * Someone still has it mapped as an executable page
1676 * so we must sync it.
1677 */
1678 UVMHIST_LOG(pmapexechist,
1679 "pg %p (pa %#"PRIxPADDR")%s: %s",
1680 pg, VM_PAGE_TO_PHYS(pg),
1681 last ? " [last mapping]" : "",
1682 "performed syncicache");
1683 pmap_page_syncicache(pg);
1684 PMAP_COUNT(exec_synced_remove);
1685 }
1686 }
1687 UVMHIST_LOG(pmaphist, "<- done", 0,0,0,0);
1688 }
1689
1690 #if defined(MULTIPROCESSOR)
1691 struct pmap_pvlist_info {
1692 kmutex_t *pli_locks[PAGE_SIZE / 32];
1693 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
1694 volatile u_int pli_lock_index;
1695 u_int pli_lock_mask;
1696 } pmap_pvlist_info;
1697
1698 void
1699 pmap_pvlist_lock_init(size_t cache_line_size)
1700 {
1701 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1702 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
1703 vaddr_t lock_va = lock_page;
1704 if (sizeof(kmutex_t) > cache_line_size) {
1705 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
1706 }
1707 const size_t nlocks = PAGE_SIZE / cache_line_size;
1708 KASSERT((nlocks & (nlocks - 1)) == 0);
1709 /*
1710 * Now divide the page into a number of mutexes, one per cacheline.
1711 */
1712 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
1713 kmutex_t * const lock = (kmutex_t *)lock_va;
1714 mutex_init(lock, MUTEX_DEFAULT, IPL_VM);
1715 pli->pli_locks[i] = lock;
1716 }
1717 pli->pli_lock_mask = nlocks - 1;
1718 }
1719
1720 uint16_t
1721 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1722 {
1723 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
1724 kmutex_t *lock = mdpg->mdpg_lock;
1725 int16_t gen;
1726
1727 /*
1728 * Allocate a lock on an as-needed basis. This will hopefully give us
1729 * semi-random distribution not based on page color.
1730 */
1731 if (__predict_false(lock == NULL)) {
1732 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
1733 size_t lockid = locknum & pli->pli_lock_mask;
1734 kmutex_t * const new_lock = pli->pli_locks[lockid];
1735 /*
1736 * Set the lock. If some other thread already did, just use
1737 * the one they assigned.
1738 */
1739 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
1740 if (lock == NULL) {
1741 lock = new_lock;
1742 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
1743 }
1744 }
1745
1746 /*
1747 * Now finally lock the pvlists.
1748 */
1749 mutex_spin_enter(lock);
1750
1751 /*
1752 * If the locker will be changing the list, increment the high 16 bits
1753 * of attrs so we use that as a generation number.
1754 */
1755 gen = VM_PAGEMD_PVLIST_GEN(mdpg); /* get old value */
1756 if (list_change)
1757 atomic_add_int(&mdpg->mdpg_attrs, 0x10000);
1758
1759 /*
1760 * Return the generation number.
1761 */
1762 return gen;
1763 }
1764 #else /* !MULTIPROCESSOR */
1765 void
1766 pmap_pvlist_lock_init(size_t cache_line_size)
1767 {
1768 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_VM);
1769 }
1770
1771 #ifdef MODULAR
1772 uint16_t
1773 pmap_pvlist_lock(struct vm_page_md *mdpg, bool list_change)
1774 {
1775 /*
1776 * We just use a global lock.
1777 */
1778 if (__predict_false(mdpg->mdpg_lock == NULL)) {
1779 mdpg->mdpg_lock = &pmap_pvlist_mutex;
1780 }
1781
1782 /*
1783 * Now finally lock the pvlists.
1784 */
1785 mutex_spin_enter(mdpg->mdpg_lock);
1786
1787 return 0;
1788 }
1789 #endif /* MODULAR */
1790 #endif /* !MULTIPROCESSOR */
1791
1792 /*
1793 * pmap_pv_page_alloc:
1794 *
1795 * Allocate a page for the pv_entry pool.
1796 */
1797 void *
1798 pmap_pv_page_alloc(struct pool *pp, int flags)
1799 {
1800 struct vm_page *pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
1801 if (pg == NULL)
1802 return NULL;
1803
1804 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
1805 }
1806
1807 /*
1808 * pmap_pv_page_free:
1809 *
1810 * Free a pv_entry pool page.
1811 */
1812 void
1813 pmap_pv_page_free(struct pool *pp, void *v)
1814 {
1815 vaddr_t va = (vaddr_t)v;
1816
1817 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1818 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1819 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1820 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1821 pmap_md_vca_remove(pg, va);
1822 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1823 uvm_pagefree(pg);
1824 }
1825
1826 #ifdef PMAP_PREFER
1827 /*
1828 * Find first virtual address >= *vap that doesn't cause
1829 * a cache alias conflict.
1830 */
1831 void
1832 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
1833 {
1834 vaddr_t va;
1835 vsize_t d;
1836 vsize_t prefer_mask = ptoa(uvmexp.colormask);
1837
1838 PMAP_COUNT(prefer_requests);
1839
1840 prefer_mask |= pmap_md_cache_prefer_mask();
1841
1842 if (prefer_mask) {
1843 va = *vap;
1844
1845 d = foff - va;
1846 d &= prefer_mask;
1847 if (d) {
1848 if (td)
1849 *vap = trunc_page(va -((-d) & prefer_mask));
1850 else
1851 *vap = round_page(va + d);
1852 PMAP_COUNT(prefer_adjustments);
1853 }
1854 }
1855 }
1856 #endif /* PMAP_PREFER */
1857
1858 #ifdef PMAP_MAP_POOLPAGE
1859 vaddr_t
1860 pmap_map_poolpage(paddr_t pa)
1861 {
1862
1863 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1864 KASSERT(pg);
1865 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1866 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1867
1868 const vaddr_t va = pmap_md_map_poolpage(pa, NBPG);
1869 pmap_md_vca_add(pg, va, NULL);
1870 return va;
1871 }
1872
1873 paddr_t
1874 pmap_unmap_poolpage(vaddr_t va)
1875 {
1876
1877 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
1878 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1879
1880 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1881 KASSERT(pg);
1882 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1883 pmap_page_clear_attributes(mdpg, VM_PAGEMD_POOLPAGE);
1884 pmap_md_unmap_poolpage(va, NBPG);
1885 pmap_md_vca_remove(pg, va);
1886
1887 return pa;
1888 }
1889 #endif /* PMAP_MAP_POOLPAGE */
1890