Home | History | Annotate | Line # | Download | only in pmap
pmap.c revision 1.62
      1 /*	$NetBSD: pmap.c,v 1.62 2021/04/17 01:53:58 mrg Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
      5  * All rights reserved.
      6  *
      7  * This code is derived from software contributed to The NetBSD Foundation
      8  * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
      9  * NASA Ames Research Center and by Chris G. Demetriou.
     10  *
     11  * Redistribution and use in source and binary forms, with or without
     12  * modification, are permitted provided that the following conditions
     13  * are met:
     14  * 1. Redistributions of source code must retain the above copyright
     15  *    notice, this list of conditions and the following disclaimer.
     16  * 2. Redistributions in binary form must reproduce the above copyright
     17  *    notice, this list of conditions and the following disclaimer in the
     18  *    documentation and/or other materials provided with the distribution.
     19  *
     20  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     21  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     22  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     23  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     24  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     25  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     26  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     27  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     28  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     29  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     30  * POSSIBILITY OF SUCH DAMAGE.
     31  */
     32 
     33 /*
     34  * Copyright (c) 1992, 1993
     35  *	The Regents of the University of California.  All rights reserved.
     36  *
     37  * This code is derived from software contributed to Berkeley by
     38  * the Systems Programming Group of the University of Utah Computer
     39  * Science Department and Ralph Campbell.
     40  *
     41  * Redistribution and use in source and binary forms, with or without
     42  * modification, are permitted provided that the following conditions
     43  * are met:
     44  * 1. Redistributions of source code must retain the above copyright
     45  *    notice, this list of conditions and the following disclaimer.
     46  * 2. Redistributions in binary form must reproduce the above copyright
     47  *    notice, this list of conditions and the following disclaimer in the
     48  *    documentation and/or other materials provided with the distribution.
     49  * 3. Neither the name of the University nor the names of its contributors
     50  *    may be used to endorse or promote products derived from this software
     51  *    without specific prior written permission.
     52  *
     53  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     54  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     55  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     56  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     57  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     58  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     59  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     60  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     61  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     62  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     63  * SUCH DAMAGE.
     64  *
     65  *	@(#)pmap.c	8.4 (Berkeley) 1/26/94
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 
     70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.62 2021/04/17 01:53:58 mrg Exp $");
     71 
     72 /*
     73  *	Manages physical address maps.
     74  *
     75  *	In addition to hardware address maps, this
     76  *	module is called upon to provide software-use-only
     77  *	maps which may or may not be stored in the same
     78  *	form as hardware maps.  These pseudo-maps are
     79  *	used to store intermediate results from copy
     80  *	operations to and from address spaces.
     81  *
     82  *	Since the information managed by this module is
     83  *	also stored by the logical address mapping module,
     84  *	this module may throw away valid virtual-to-physical
     85  *	mappings at almost any time.  However, invalidations
     86  *	of virtual-to-physical mappings must be done as
     87  *	requested.
     88  *
     89  *	In order to cope with hardware architectures which
     90  *	make virtual-to-physical map invalidates expensive,
     91  *	this module may delay invalidate or reduced protection
     92  *	operations until such time as they are actually
     93  *	necessary.  This module is given full information as
     94  *	to which processors are currently using which maps,
     95  *	and to when physical maps must be made correct.
     96  */
     97 
     98 #include "opt_modular.h"
     99 #include "opt_multiprocessor.h"
    100 #include "opt_sysv.h"
    101 
    102 #define __PMAP_PRIVATE
    103 
    104 #include <sys/param.h>
    105 
    106 #include <sys/asan.h>
    107 #include <sys/atomic.h>
    108 #include <sys/buf.h>
    109 #include <sys/cpu.h>
    110 #include <sys/mutex.h>
    111 #include <sys/pool.h>
    112 
    113 #include <uvm/uvm.h>
    114 #include <uvm/uvm_physseg.h>
    115 #include <uvm/pmap/pmap_pvt.h>
    116 
    117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
    118     && !defined(PMAP_NO_PV_UNCACHED)
    119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
    120  PMAP_NO_PV_UNCACHED to be defined
    121 #endif
    122 
    123 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
    124 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
    125 PMAP_COUNTER(remove_user_calls, "remove user calls");
    126 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
    127 PMAP_COUNTER(remove_flushes, "remove cache flushes");
    128 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
    129 PMAP_COUNTER(remove_pvfirst, "remove pv first");
    130 PMAP_COUNTER(remove_pvsearch, "remove pv search");
    131 
    132 PMAP_COUNTER(prefer_requests, "prefer requests");
    133 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
    134 
    135 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
    136 
    137 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
    138 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
    139 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
    140 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
    141 
    142 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
    143 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
    144 
    145 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
    146 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
    147 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
    148 PMAP_COUNTER(user_mappings, "user pages mapped");
    149 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
    150 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
    151 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
    152 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
    153 PMAP_COUNTER(pvtracked_mappings, "pv-tracked unmanaged pages mapped");
    154 PMAP_COUNTER(managed_mappings, "managed pages mapped");
    155 PMAP_COUNTER(mappings, "pages mapped");
    156 PMAP_COUNTER(remappings, "pages remapped");
    157 PMAP_COUNTER(unmappings, "pages unmapped");
    158 PMAP_COUNTER(primary_mappings, "page initial mappings");
    159 PMAP_COUNTER(primary_unmappings, "page final unmappings");
    160 PMAP_COUNTER(tlb_hit, "page mapping");
    161 
    162 PMAP_COUNTER(exec_mappings, "exec pages mapped");
    163 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
    164 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
    165 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
    166 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
    167 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
    168 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
    169 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
    170 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
    171 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
    172 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
    173 
    174 PMAP_COUNTER(create, "creates");
    175 PMAP_COUNTER(reference, "references");
    176 PMAP_COUNTER(dereference, "dereferences");
    177 PMAP_COUNTER(destroy, "destroyed");
    178 PMAP_COUNTER(activate, "activations");
    179 PMAP_COUNTER(deactivate, "deactivations");
    180 PMAP_COUNTER(update, "updates");
    181 #ifdef MULTIPROCESSOR
    182 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
    183 #endif
    184 PMAP_COUNTER(unwire, "unwires");
    185 PMAP_COUNTER(copy, "copies");
    186 PMAP_COUNTER(clear_modify, "clear_modifies");
    187 PMAP_COUNTER(protect, "protects");
    188 PMAP_COUNTER(page_protect, "page_protects");
    189 
    190 #define PMAP_ASID_RESERVED 0
    191 CTASSERT(PMAP_ASID_RESERVED == 0);
    192 
    193 #ifndef PMAP_SEGTAB_ALIGN
    194 #define PMAP_SEGTAB_ALIGN	/* nothing */
    195 #endif
    196 #ifdef _LP64
    197 pmap_segtab_t	pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
    198 #endif
    199 pmap_segtab_t	pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
    200 #ifdef _LP64
    201 	.seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
    202 #endif
    203 };
    204 
    205 struct pmap_kernel kernel_pmap_store = {
    206 	.kernel_pmap = {
    207 		.pm_count = 1,
    208 		.pm_segtab = &pmap_kern_segtab,
    209 		.pm_minaddr = VM_MIN_KERNEL_ADDRESS,
    210 		.pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
    211 	},
    212 };
    213 
    214 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
    215 
    216 /* The current top of kernel VM - gets updated by pmap_growkernel */
    217 vaddr_t pmap_curmaxkvaddr;
    218 
    219 struct pmap_limits pmap_limits = {	/* VA and PA limits */
    220 	.virtual_start = VM_MIN_KERNEL_ADDRESS,
    221 	.virtual_end = VM_MAX_KERNEL_ADDRESS,
    222 };
    223 
    224 #ifdef UVMHIST
    225 static struct kern_history_ent pmapexechistbuf[10000];
    226 static struct kern_history_ent pmaphistbuf[10000];
    227 static struct kern_history_ent pmapsegtabhistbuf[1000];
    228 UVMHIST_DEFINE(pmapexechist) = UVMHIST_INITIALIZER(pmapexechist, pmapexechistbuf);
    229 UVMHIST_DEFINE(pmaphist) = UVMHIST_INITIALIZER(pmaphist, pmaphistbuf);
    230 UVMHIST_DEFINE(pmapsegtabhist) = UVMHIST_INITIALIZER(pmapsegtabhist, pmapsegtabhistbuf);
    231 #endif
    232 
    233 /*
    234  * The pools from which pmap structures and sub-structures are allocated.
    235  */
    236 struct pool pmap_pmap_pool;
    237 struct pool pmap_pv_pool;
    238 
    239 #ifndef PMAP_PV_LOWAT
    240 #define	PMAP_PV_LOWAT	16
    241 #endif
    242 int	pmap_pv_lowat = PMAP_PV_LOWAT;
    243 
    244 bool	pmap_initialized = false;
    245 #define	PMAP_PAGE_COLOROK_P(a, b) \
    246 		((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
    247 u_int	pmap_page_colormask;
    248 
    249 #define PAGE_IS_MANAGED(pa)	(pmap_initialized && uvm_pageismanaged(pa))
    250 
    251 #define PMAP_IS_ACTIVE(pm)						\
    252 	((pm) == pmap_kernel() || 					\
    253 	 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
    254 
    255 /* Forward function declarations */
    256 void pmap_page_remove(struct vm_page_md *);
    257 static void pmap_pvlist_check(struct vm_page_md *);
    258 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
    259 void pmap_enter_pv(pmap_t, vaddr_t, paddr_t, struct vm_page_md *, pt_entry_t *, u_int);
    260 
    261 /*
    262  * PV table management functions.
    263  */
    264 void	*pmap_pv_page_alloc(struct pool *, int);
    265 void	pmap_pv_page_free(struct pool *, void *);
    266 
    267 struct pool_allocator pmap_pv_page_allocator = {
    268 	pmap_pv_page_alloc, pmap_pv_page_free, 0,
    269 };
    270 
    271 #define	pmap_pv_alloc()		pool_get(&pmap_pv_pool, PR_NOWAIT)
    272 #define	pmap_pv_free(pv)	pool_put(&pmap_pv_pool, (pv))
    273 
    274 #ifndef PMAP_NEED_TLB_MISS_LOCK
    275 
    276 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
    277 #define	PMAP_NEED_TLB_MISS_LOCK
    278 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
    279 
    280 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    281 
    282 #ifdef PMAP_NEED_TLB_MISS_LOCK
    283 
    284 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
    285 #define	pmap_tlb_miss_lock_init()	__nothing /* MD code deals with this */
    286 #define	pmap_tlb_miss_lock_enter()	pmap_md_tlb_miss_lock_enter()
    287 #define	pmap_tlb_miss_lock_exit()	pmap_md_tlb_miss_lock_exit()
    288 #else
    289 kmutex_t pmap_tlb_miss_lock 		__cacheline_aligned;
    290 
    291 static void
    292 pmap_tlb_miss_lock_init(void)
    293 {
    294 	mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
    295 }
    296 
    297 static inline void
    298 pmap_tlb_miss_lock_enter(void)
    299 {
    300 	mutex_spin_enter(&pmap_tlb_miss_lock);
    301 }
    302 
    303 static inline void
    304 pmap_tlb_miss_lock_exit(void)
    305 {
    306 	mutex_spin_exit(&pmap_tlb_miss_lock);
    307 }
    308 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
    309 
    310 #else
    311 
    312 #define	pmap_tlb_miss_lock_init()	__nothing
    313 #define	pmap_tlb_miss_lock_enter()	__nothing
    314 #define	pmap_tlb_miss_lock_exit()	__nothing
    315 
    316 #endif /* PMAP_NEED_TLB_MISS_LOCK */
    317 
    318 #ifndef MULTIPROCESSOR
    319 kmutex_t pmap_pvlist_mutex	__cacheline_aligned;
    320 #endif
    321 
    322 /*
    323  * Debug functions.
    324  */
    325 
    326 #ifdef DEBUG
    327 static inline void
    328 pmap_asid_check(pmap_t pm, const char *func)
    329 {
    330 	if (!PMAP_IS_ACTIVE(pm))
    331 		return;
    332 
    333 	struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
    334 	tlb_asid_t asid = tlb_get_asid();
    335 	if (asid != pai->pai_asid)
    336 		panic("%s: inconsistency for active TLB update: %u <-> %u",
    337 		    func, asid, pai->pai_asid);
    338 }
    339 #endif
    340 
    341 static void
    342 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
    343 {
    344 #ifdef DEBUG
    345 	if (pmap == pmap_kernel()) {
    346 		if (sva < VM_MIN_KERNEL_ADDRESS)
    347 			panic("%s: kva %#"PRIxVADDR" not in range",
    348 			    func, sva);
    349 		if (eva >= pmap_limits.virtual_end)
    350 			panic("%s: kva %#"PRIxVADDR" not in range",
    351 			    func, eva);
    352 	} else {
    353 		if (eva > VM_MAXUSER_ADDRESS)
    354 			panic("%s: uva %#"PRIxVADDR" not in range",
    355 			    func, eva);
    356 		pmap_asid_check(pmap, func);
    357 	}
    358 #endif
    359 }
    360 
    361 /*
    362  * Misc. functions.
    363  */
    364 
    365 bool
    366 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
    367 {
    368 	volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
    369 #ifdef MULTIPROCESSOR
    370 	for (;;) {
    371 		u_int old_attr = *attrp;
    372 		if ((old_attr & clear_attributes) == 0)
    373 			return false;
    374 		u_int new_attr = old_attr & ~clear_attributes;
    375 		if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
    376 			return true;
    377 	}
    378 #else
    379 	unsigned long old_attr = *attrp;
    380 	if ((old_attr & clear_attributes) == 0)
    381 		return false;
    382 	*attrp &= ~clear_attributes;
    383 	return true;
    384 #endif
    385 }
    386 
    387 void
    388 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
    389 {
    390 #ifdef MULTIPROCESSOR
    391 	atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
    392 #else
    393 	mdpg->mdpg_attrs |= set_attributes;
    394 #endif
    395 }
    396 
    397 static void
    398 pmap_page_syncicache(struct vm_page *pg)
    399 {
    400 	UVMHIST_FUNC(__func__);
    401 	UVMHIST_CALLED(pmaphist);
    402 #ifndef MULTIPROCESSOR
    403 	struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
    404 #endif
    405 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
    406 	pv_entry_t pv = &mdpg->mdpg_first;
    407 	kcpuset_t *onproc;
    408 #ifdef MULTIPROCESSOR
    409 	kcpuset_create(&onproc, true);
    410 	KASSERT(onproc != NULL);
    411 #else
    412 	onproc = NULL;
    413 #endif
    414 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
    415 	pmap_pvlist_check(mdpg);
    416 
    417 	UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx", (uintptr_t)pv,
    418 	    (uintptr_t)pv->pv_pmap, 0, 0);
    419 
    420 	if (pv->pv_pmap != NULL) {
    421 		for (; pv != NULL; pv = pv->pv_next) {
    422 #ifdef MULTIPROCESSOR
    423 			UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx",
    424 			    (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
    425 			kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
    426 			if (kcpuset_match(onproc, kcpuset_running)) {
    427 				break;
    428 			}
    429 #else
    430 			if (pv->pv_pmap == curpmap) {
    431 				onproc = curcpu()->ci_data.cpu_kcpuset;
    432 				break;
    433 			}
    434 #endif
    435 		}
    436 	}
    437 	pmap_pvlist_check(mdpg);
    438 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    439 	kpreempt_disable();
    440 	pmap_md_page_syncicache(mdpg, onproc);
    441 	kpreempt_enable();
    442 #ifdef MULTIPROCESSOR
    443 	kcpuset_destroy(onproc);
    444 #endif
    445 }
    446 
    447 /*
    448  * Define the initial bounds of the kernel virtual address space.
    449  */
    450 void
    451 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
    452 {
    453 
    454 	*vstartp = pmap_limits.virtual_start;
    455 	*vendp = pmap_limits.virtual_end;
    456 }
    457 
    458 vaddr_t
    459 pmap_growkernel(vaddr_t maxkvaddr)
    460 {
    461 	UVMHIST_FUNC(__func__);
    462 	UVMHIST_CALLARGS(pmaphist, "maxkvaddr=%#jx (%#jx)", maxkvaddr,
    463 	    pmap_curmaxkvaddr, 0, 0);
    464 
    465 	vaddr_t virtual_end = pmap_curmaxkvaddr;
    466 	maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
    467 
    468 	/*
    469 	 * Don't exceed VM_MAX_KERNEL_ADDRESS!
    470 	 */
    471 	if (maxkvaddr == 0 || maxkvaddr > VM_MAX_KERNEL_ADDRESS)
    472 		maxkvaddr = VM_MAX_KERNEL_ADDRESS;
    473 
    474 	/*
    475 	 * Reserve PTEs for the new KVA space.
    476 	 */
    477 	for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
    478 		pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
    479 	}
    480 
    481 	kasan_shadow_map((void *)pmap_curmaxkvaddr,
    482 	    (size_t)(virtual_end - pmap_curmaxkvaddr));
    483 
    484 	/*
    485 	 * Update new end.
    486 	 */
    487 	pmap_curmaxkvaddr = virtual_end;
    488 
    489 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    490 
    491 	return virtual_end;
    492 }
    493 
    494 /*
    495  * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
    496  * This function allows for early dynamic memory allocation until the virtual
    497  * memory system has been bootstrapped.  After that point, either kmem_alloc
    498  * or malloc should be used.  This function works by stealing pages from the
    499  * (to be) managed page pool, then implicitly mapping the pages (by using
    500  * their direct mapped addresses) and zeroing them.
    501  *
    502  * It may be used once the physical memory segments have been pre-loaded
    503  * into the vm_physmem[] array.  Early memory allocation MUST use this
    504  * interface!  This cannot be used after vm_page_startup(), and will
    505  * generate a panic if tried.
    506  *
    507  * Note that this memory will never be freed, and in essence it is wired
    508  * down.
    509  *
    510  * We must adjust *vstartp and/or *vendp iff we use address space
    511  * from the kernel virtual address range defined by pmap_virtual_space().
    512  */
    513 vaddr_t
    514 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
    515 {
    516 	size_t npgs;
    517 	paddr_t pa;
    518 	vaddr_t va;
    519 
    520 	uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
    521 
    522 	size = round_page(size);
    523 	npgs = atop(size);
    524 
    525 	aprint_debug("%s: need %zu pages\n", __func__, npgs);
    526 
    527 	for (uvm_physseg_t bank = uvm_physseg_get_first();
    528 	     uvm_physseg_valid_p(bank);
    529 	     bank = uvm_physseg_get_next(bank)) {
    530 
    531 		if (uvm.page_init_done == true)
    532 			panic("pmap_steal_memory: called _after_ bootstrap");
    533 
    534 		aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
    535 		    __func__, bank,
    536 		    uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
    537 		    uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
    538 
    539 		if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
    540 		    || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
    541 			aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
    542 			continue;
    543 		}
    544 
    545 		if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
    546 			aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
    547 			    __func__, bank, npgs);
    548 			continue;
    549 		}
    550 
    551 		if (!pmap_md_ok_to_steal_p(bank, npgs)) {
    552 			continue;
    553 		}
    554 
    555 		/*
    556 		 * Always try to allocate from the segment with the least
    557 		 * amount of space left.
    558 		 */
    559 #define VM_PHYSMEM_SPACE(b)	((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
    560 		if (uvm_physseg_valid_p(maybe_bank) == false
    561 		    || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
    562 			maybe_bank = bank;
    563 		}
    564 	}
    565 
    566 	if (uvm_physseg_valid_p(maybe_bank)) {
    567 		const uvm_physseg_t bank = maybe_bank;
    568 
    569 		/*
    570 		 * There are enough pages here; steal them!
    571 		 */
    572 		pa = ptoa(uvm_physseg_get_start(bank));
    573 		uvm_physseg_unplug(atop(pa), npgs);
    574 
    575 		aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
    576 		    __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
    577 
    578 		va = pmap_md_map_poolpage(pa, size);
    579 		memset((void *)va, 0, size);
    580 		return va;
    581 	}
    582 
    583 	/*
    584 	 * If we got here, there was no memory left.
    585 	 */
    586 	panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
    587 }
    588 
    589 /*
    590  *	Bootstrap the system enough to run with virtual memory.
    591  *	(Common routine called by machine-dependent bootstrap code.)
    592  */
    593 void
    594 pmap_bootstrap_common(void)
    595 {
    596 	pmap_tlb_miss_lock_init();
    597 }
    598 
    599 /*
    600  *	Initialize the pmap module.
    601  *	Called by vm_init, to initialize any structures that the pmap
    602  *	system needs to map virtual memory.
    603  */
    604 void
    605 pmap_init(void)
    606 {
    607 	UVMHIST_LINK_STATIC(pmapexechist);
    608 	UVMHIST_LINK_STATIC(pmaphist);
    609 	UVMHIST_LINK_STATIC(pmapsegtabhist);
    610 
    611 	UVMHIST_FUNC(__func__);
    612 	UVMHIST_CALLED(pmaphist);
    613 
    614 	/*
    615 	 * Initialize the segtab lock.
    616 	 */
    617 	mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
    618 
    619 	/*
    620 	 * Set a low water mark on the pv_entry pool, so that we are
    621 	 * more likely to have these around even in extreme memory
    622 	 * starvation.
    623 	 */
    624 	pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
    625 
    626 	/*
    627 	 * Set the page colormask but allow pmap_md_init to override it.
    628 	 */
    629 	pmap_page_colormask = ptoa(uvmexp.colormask);
    630 
    631 	pmap_md_init();
    632 
    633 	/*
    634 	 * Now it is safe to enable pv entry recording.
    635 	 */
    636 	pmap_initialized = true;
    637 }
    638 
    639 /*
    640  *	Create and return a physical map.
    641  *
    642  *	If the size specified for the map
    643  *	is zero, the map is an actual physical
    644  *	map, and may be referenced by the
    645  *	hardware.
    646  *
    647  *	If the size specified is non-zero,
    648  *	the map will be used in software only, and
    649  *	is bounded by that size.
    650  */
    651 pmap_t
    652 pmap_create(void)
    653 {
    654 	UVMHIST_FUNC(__func__);
    655 	UVMHIST_CALLED(pmaphist);
    656 	PMAP_COUNT(create);
    657 
    658 	pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
    659 	memset(pmap, 0, PMAP_SIZE);
    660 
    661 	KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
    662 
    663 	pmap->pm_count = 1;
    664 	pmap->pm_minaddr = VM_MIN_ADDRESS;
    665 	pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
    666 
    667 	pmap_segtab_init(pmap);
    668 
    669 #ifdef MULTIPROCESSOR
    670 	kcpuset_create(&pmap->pm_active, true);
    671 	kcpuset_create(&pmap->pm_onproc, true);
    672 	KASSERT(pmap->pm_active != NULL);
    673 	KASSERT(pmap->pm_onproc != NULL);
    674 #endif
    675 
    676 	UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
    677 	    0, 0, 0);
    678 
    679 	return pmap;
    680 }
    681 
    682 /*
    683  *	Retire the given physical map from service.
    684  *	Should only be called if the map contains
    685  *	no valid mappings.
    686  */
    687 void
    688 pmap_destroy(pmap_t pmap)
    689 {
    690 	UVMHIST_FUNC(__func__);
    691 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    692 
    693 	if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
    694 		PMAP_COUNT(dereference);
    695 		UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
    696 		return;
    697 	}
    698 
    699 	PMAP_COUNT(destroy);
    700 	KASSERT(pmap->pm_count == 0);
    701 	kpreempt_disable();
    702 	pmap_tlb_miss_lock_enter();
    703 	pmap_tlb_asid_release_all(pmap);
    704 	pmap_segtab_destroy(pmap, NULL, 0);
    705 	pmap_tlb_miss_lock_exit();
    706 
    707 #ifdef MULTIPROCESSOR
    708 	kcpuset_destroy(pmap->pm_active);
    709 	kcpuset_destroy(pmap->pm_onproc);
    710 	pmap->pm_active = NULL;
    711 	pmap->pm_onproc = NULL;
    712 #endif
    713 
    714 	pool_put(&pmap_pmap_pool, pmap);
    715 	kpreempt_enable();
    716 
    717 	UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
    718 }
    719 
    720 /*
    721  *	Add a reference to the specified pmap.
    722  */
    723 void
    724 pmap_reference(pmap_t pmap)
    725 {
    726 	UVMHIST_FUNC(__func__);
    727 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    728 	PMAP_COUNT(reference);
    729 
    730 	if (pmap != NULL) {
    731 		atomic_inc_uint(&pmap->pm_count);
    732 	}
    733 
    734 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    735 }
    736 
    737 /*
    738  *	Make a new pmap (vmspace) active for the given process.
    739  */
    740 void
    741 pmap_activate(struct lwp *l)
    742 {
    743 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    744 
    745 	UVMHIST_FUNC(__func__);
    746 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    747 	    (uintptr_t)pmap, 0, 0);
    748 	PMAP_COUNT(activate);
    749 
    750 	kpreempt_disable();
    751 	pmap_tlb_miss_lock_enter();
    752 	pmap_tlb_asid_acquire(pmap, l);
    753 	pmap_segtab_activate(pmap, l);
    754 	pmap_tlb_miss_lock_exit();
    755 	kpreempt_enable();
    756 
    757 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    758 	    l->l_lid, 0, 0);
    759 }
    760 
    761 /*
    762  * Remove this page from all physical maps in which it resides.
    763  * Reflects back modify bits to the pager.
    764  */
    765 void
    766 pmap_page_remove(struct vm_page_md *mdpg)
    767 {
    768 	kpreempt_disable();
    769 	VM_PAGEMD_PVLIST_LOCK(mdpg);
    770 	pmap_pvlist_check(mdpg);
    771 
    772 	struct vm_page * const pg =
    773 	    VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) : NULL;
    774 
    775 	UVMHIST_FUNC(__func__);
    776 	if (pg) {
    777 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx pg %#jx (pa %#jx): "
    778 		    "execpage cleared", (uintptr_t)mdpg, (uintptr_t)pg,
    779 		    VM_PAGE_TO_PHYS(pg), 0);
    780 	} else {
    781 		UVMHIST_CALLARGS(pmaphist, "mdpg %#jx", (uintptr_t)mdpg, 0,
    782 		    0, 0);
    783 	}
    784 
    785 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    786 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
    787 #else
    788 	pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
    789 #endif
    790 	PMAP_COUNT(exec_uncached_remove);
    791 
    792 	pv_entry_t pv = &mdpg->mdpg_first;
    793 	if (pv->pv_pmap == NULL) {
    794 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    795 		kpreempt_enable();
    796 		UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
    797 		return;
    798 	}
    799 
    800 	pv_entry_t npv;
    801 	pv_entry_t pvp = NULL;
    802 
    803 	for (; pv != NULL; pv = npv) {
    804 		npv = pv->pv_next;
    805 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
    806 		if (PV_ISKENTER_P(pv)) {
    807 			UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
    808 			    " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
    809 			    pv->pv_va, 0);
    810 
    811 			KASSERT(pv->pv_pmap == pmap_kernel());
    812 
    813 			/* Assume no more - it'll get fixed if there are */
    814 			pv->pv_next = NULL;
    815 
    816 			/*
    817 			 * pvp is non-null when we already have a PV_KENTER
    818 			 * pv in pvh_first; otherwise we haven't seen a
    819 			 * PV_KENTER pv and we need to copy this one to
    820 			 * pvh_first
    821 			 */
    822 			if (pvp) {
    823 				/*
    824 				 * The previous PV_KENTER pv needs to point to
    825 				 * this PV_KENTER pv
    826 				 */
    827 				pvp->pv_next = pv;
    828 			} else {
    829 				pv_entry_t fpv = &mdpg->mdpg_first;
    830 				*fpv = *pv;
    831 				KASSERT(fpv->pv_pmap == pmap_kernel());
    832 			}
    833 			pvp = pv;
    834 			continue;
    835 		}
    836 #endif
    837 		const pmap_t pmap = pv->pv_pmap;
    838 		vaddr_t va = trunc_page(pv->pv_va);
    839 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
    840 		KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
    841 		    pmap_limits.virtual_end);
    842 		pt_entry_t pte = *ptep;
    843 		UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
    844 		    " pte %#jx", (uintptr_t)pv, (uintptr_t)pmap, va,
    845 		    pte_value(pte));
    846 		if (!pte_valid_p(pte))
    847 			continue;
    848 		const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    849 		if (is_kernel_pmap_p) {
    850 			PMAP_COUNT(remove_kernel_pages);
    851 		} else {
    852 			PMAP_COUNT(remove_user_pages);
    853 		}
    854 		if (pte_wired_p(pte))
    855 			pmap->pm_stats.wired_count--;
    856 		pmap->pm_stats.resident_count--;
    857 
    858 		pmap_tlb_miss_lock_enter();
    859 		const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
    860 		pte_set(ptep, npte);
    861 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
    862 			/*
    863 			 * Flush the TLB for the given address.
    864 			 */
    865 			pmap_tlb_invalidate_addr(pmap, va);
    866 		}
    867 		pmap_tlb_miss_lock_exit();
    868 
    869 		/*
    870 		 * non-null means this is a non-pvh_first pv, so we should
    871 		 * free it.
    872 		 */
    873 		if (pvp) {
    874 			KASSERT(pvp->pv_pmap == pmap_kernel());
    875 			KASSERT(pvp->pv_next == NULL);
    876 			pmap_pv_free(pv);
    877 		} else {
    878 			pv->pv_pmap = NULL;
    879 			pv->pv_next = NULL;
    880 		}
    881 	}
    882 
    883 	pmap_pvlist_check(mdpg);
    884 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
    885 	kpreempt_enable();
    886 
    887 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
    888 }
    889 
    890 #ifdef __HAVE_PMAP_PV_TRACK
    891 /*
    892  * pmap_pv_protect: change protection of an unmanaged pv-tracked page from
    893  * all pmaps that map it
    894  */
    895 void
    896 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
    897 {
    898 
    899 	/* the only case is remove at the moment */
    900 	KASSERT(prot == VM_PROT_NONE);
    901 	struct pmap_page *pp;
    902 
    903 	pp = pmap_pv_tracked(pa);
    904 	if (pp == NULL)
    905 		panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
    906 		    pa);
    907 
    908 	struct vm_page_md *mdpg = PMAP_PAGE_TO_MD(pp);
    909 	pmap_page_remove(mdpg);
    910 }
    911 #endif
    912 
    913 /*
    914  *	Make a previously active pmap (vmspace) inactive.
    915  */
    916 void
    917 pmap_deactivate(struct lwp *l)
    918 {
    919 	pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
    920 
    921 	UVMHIST_FUNC(__func__);
    922 	UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
    923 	    (uintptr_t)pmap, 0, 0);
    924 	PMAP_COUNT(deactivate);
    925 
    926 	kpreempt_disable();
    927 	KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
    928 	pmap_tlb_miss_lock_enter();
    929 	pmap_tlb_asid_deactivate(pmap);
    930 	pmap_segtab_deactivate(pmap);
    931 	pmap_tlb_miss_lock_exit();
    932 	kpreempt_enable();
    933 
    934 	UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
    935 	    l->l_lid, 0, 0);
    936 }
    937 
    938 void
    939 pmap_update(struct pmap *pmap)
    940 {
    941 	UVMHIST_FUNC(__func__);
    942 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
    943 	PMAP_COUNT(update);
    944 
    945 	kpreempt_disable();
    946 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
    947 	u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
    948 	if (pending && pmap_tlb_shootdown_bystanders(pmap))
    949 		PMAP_COUNT(shootdown_ipis);
    950 #endif
    951 	pmap_tlb_miss_lock_enter();
    952 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
    953 	pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
    954 #endif /* DEBUG */
    955 
    956 	/*
    957 	 * If pmap_remove_all was called, we deactivated ourselves and nuked
    958 	 * our ASID.  Now we have to reactivate ourselves.
    959 	 */
    960 	if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
    961 		pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
    962 		pmap_tlb_asid_acquire(pmap, curlwp);
    963 		pmap_segtab_activate(pmap, curlwp);
    964 	}
    965 	pmap_tlb_miss_lock_exit();
    966 	kpreempt_enable();
    967 
    968 	UVMHIST_LOG(pmaphist, " <-- done (kernel=%jd)",
    969 		    (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
    970 }
    971 
    972 /*
    973  *	Remove the given range of addresses from the specified map.
    974  *
    975  *	It is assumed that the start and end are properly
    976  *	rounded to the page size.
    977  */
    978 
    979 static bool
    980 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
    981 	uintptr_t flags)
    982 {
    983 	const pt_entry_t npte = flags;
    984 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
    985 
    986 	UVMHIST_FUNC(__func__);
    987 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
    988 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
    989 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
    990 	    (uintptr_t)ptep, flags, 0, 0);
    991 
    992 	KASSERT(kpreempt_disabled());
    993 
    994 	for (; sva < eva; sva += NBPG, ptep++) {
    995 		const pt_entry_t pte = *ptep;
    996 		if (!pte_valid_p(pte))
    997 			continue;
    998 		if (is_kernel_pmap_p) {
    999 			PMAP_COUNT(remove_kernel_pages);
   1000 		} else {
   1001 			PMAP_COUNT(remove_user_pages);
   1002 		}
   1003 		if (pte_wired_p(pte))
   1004 			pmap->pm_stats.wired_count--;
   1005 		pmap->pm_stats.resident_count--;
   1006 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1007 		if (__predict_true(pg != NULL)) {
   1008 			pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
   1009 		}
   1010 		pmap_tlb_miss_lock_enter();
   1011 		pte_set(ptep, npte);
   1012 		if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
   1013 
   1014 			/*
   1015 			 * Flush the TLB for the given address.
   1016 			 */
   1017 			pmap_tlb_invalidate_addr(pmap, sva);
   1018 		}
   1019 		pmap_tlb_miss_lock_exit();
   1020 	}
   1021 
   1022 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1023 
   1024 	return false;
   1025 }
   1026 
   1027 void
   1028 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
   1029 {
   1030 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
   1031 	const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
   1032 
   1033 	UVMHIST_FUNC(__func__);
   1034 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
   1035 	    (uintptr_t)pmap, sva, eva, 0);
   1036 
   1037 	if (is_kernel_pmap_p) {
   1038 		PMAP_COUNT(remove_kernel_calls);
   1039 	} else {
   1040 		PMAP_COUNT(remove_user_calls);
   1041 	}
   1042 #ifdef PMAP_FAULTINFO
   1043 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
   1044 	curpcb->pcb_faultinfo.pfi_repeats = 0;
   1045 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
   1046 #endif
   1047 	kpreempt_disable();
   1048 	pmap_addr_range_check(pmap, sva, eva, __func__);
   1049 	pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
   1050 	kpreempt_enable();
   1051 
   1052 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1053 }
   1054 
   1055 /*
   1056  *	pmap_page_protect:
   1057  *
   1058  *	Lower the permission for all mappings to a given page.
   1059  */
   1060 void
   1061 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
   1062 {
   1063 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1064 	pv_entry_t pv;
   1065 	vaddr_t va;
   1066 
   1067 	UVMHIST_FUNC(__func__);
   1068 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
   1069 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
   1070 	PMAP_COUNT(page_protect);
   1071 
   1072 	switch (prot) {
   1073 	case VM_PROT_READ|VM_PROT_WRITE:
   1074 	case VM_PROT_ALL:
   1075 		break;
   1076 
   1077 	/* copy_on_write */
   1078 	case VM_PROT_READ:
   1079 	case VM_PROT_READ|VM_PROT_EXECUTE:
   1080 		pv = &mdpg->mdpg_first;
   1081 		kpreempt_disable();
   1082 		VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1083 		pmap_pvlist_check(mdpg);
   1084 		/*
   1085 		 * Loop over all current mappings setting/clearing as
   1086 		 * appropriate.
   1087 		 */
   1088 		if (pv->pv_pmap != NULL) {
   1089 			while (pv != NULL) {
   1090 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1091 				if (PV_ISKENTER_P(pv)) {
   1092 					pv = pv->pv_next;
   1093 					continue;
   1094 				}
   1095 #endif
   1096 				const pmap_t pmap = pv->pv_pmap;
   1097 				va = trunc_page(pv->pv_va);
   1098 				const uintptr_t gen =
   1099 				    VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1100 				pmap_protect(pmap, va, va + PAGE_SIZE, prot);
   1101 				KASSERT(pv->pv_pmap == pmap);
   1102 				pmap_update(pmap);
   1103 				if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
   1104 					pv = &mdpg->mdpg_first;
   1105 				} else {
   1106 					pv = pv->pv_next;
   1107 				}
   1108 				pmap_pvlist_check(mdpg);
   1109 			}
   1110 		}
   1111 		pmap_pvlist_check(mdpg);
   1112 		VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1113 		kpreempt_enable();
   1114 		break;
   1115 
   1116 	/* remove_all */
   1117 	default:
   1118 		pmap_page_remove(mdpg);
   1119 	}
   1120 
   1121 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1122 }
   1123 
   1124 static bool
   1125 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1126 	uintptr_t flags)
   1127 {
   1128 	const vm_prot_t prot = (flags & VM_PROT_ALL);
   1129 
   1130 	UVMHIST_FUNC(__func__);
   1131 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
   1132 	    (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
   1133 	UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
   1134 	    (uintptr_t)ptep, flags, 0, 0);
   1135 
   1136 	KASSERT(kpreempt_disabled());
   1137 	/*
   1138 	 * Change protection on every valid mapping within this segment.
   1139 	 */
   1140 	for (; sva < eva; sva += NBPG, ptep++) {
   1141 		pt_entry_t pte = *ptep;
   1142 		if (!pte_valid_p(pte))
   1143 			continue;
   1144 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1145 		if (pg != NULL && pte_modified_p(pte)) {
   1146 			struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1147 			if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1148 				KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
   1149 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1150 				if (VM_PAGEMD_CACHED_P(mdpg)) {
   1151 #endif
   1152 					UVMHIST_LOG(pmapexechist,
   1153 					    "pg %#jx (pa %#jx): "
   1154 					    "syncicached performed",
   1155 					    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
   1156 					    0, 0);
   1157 					pmap_page_syncicache(pg);
   1158 					PMAP_COUNT(exec_synced_protect);
   1159 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1160 				}
   1161 #endif
   1162 			}
   1163 		}
   1164 		pte = pte_prot_downgrade(pte, prot);
   1165 		if (*ptep != pte) {
   1166 			pmap_tlb_miss_lock_enter();
   1167 			pte_set(ptep, pte);
   1168 			/*
   1169 			 * Update the TLB if needed.
   1170 			 */
   1171 			pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
   1172 			pmap_tlb_miss_lock_exit();
   1173 		}
   1174 	}
   1175 
   1176 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1177 
   1178 	return false;
   1179 }
   1180 
   1181 /*
   1182  *	Set the physical protection on the
   1183  *	specified range of this map as requested.
   1184  */
   1185 void
   1186 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
   1187 {
   1188 	UVMHIST_FUNC(__func__);
   1189 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
   1190 	    (uintptr_t)pmap, sva, eva, prot);
   1191 	PMAP_COUNT(protect);
   1192 
   1193 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
   1194 		pmap_remove(pmap, sva, eva);
   1195 		UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1196 		return;
   1197 	}
   1198 
   1199 	/*
   1200 	 * Change protection on every valid mapping within this segment.
   1201 	 */
   1202 	kpreempt_disable();
   1203 	pmap_addr_range_check(pmap, sva, eva, __func__);
   1204 	pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
   1205 	kpreempt_enable();
   1206 
   1207 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1208 }
   1209 
   1210 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
   1211 /*
   1212  *	pmap_page_cache:
   1213  *
   1214  *	Change all mappings of a managed page to cached/uncached.
   1215  */
   1216 void
   1217 pmap_page_cache(struct vm_page_md *mdpg, bool cached)
   1218 {
   1219 #ifdef UVMHIST
   1220 	const bool vmpage_p = VM_PAGEMD_VMPAGE_P(mdpg);
   1221 	struct vm_page * const pg = vmpage_p ? VM_MD_TO_PAGE(mdpg) : NULL;
   1222 #endif
   1223 
   1224 	UVMHIST_FUNC(__func__);
   1225 	UVMHIST_CALLARGS(pmaphist, "(mdpg=%#jx (pa %#jx) cached=%jd vmpage %jd)",
   1226 	    (uintptr_t)mdpg, pg ? VM_PAGE_TO_PHYS(pg) : 0, cached, vmpage_p);
   1227 
   1228 	KASSERT(kpreempt_disabled());
   1229 	KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
   1230 
   1231 	if (cached) {
   1232 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1233 		PMAP_COUNT(page_cache_restorations);
   1234 	} else {
   1235 		pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
   1236 		PMAP_COUNT(page_cache_evictions);
   1237 	}
   1238 
   1239 	for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
   1240 		pmap_t pmap = pv->pv_pmap;
   1241 		vaddr_t va = trunc_page(pv->pv_va);
   1242 
   1243 		KASSERT(pmap != NULL);
   1244 		KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1245 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1246 		if (ptep == NULL)
   1247 			continue;
   1248 		pt_entry_t pte = *ptep;
   1249 		if (pte_valid_p(pte)) {
   1250 			pte = pte_cached_change(pte, cached);
   1251 			pmap_tlb_miss_lock_enter();
   1252 			pte_set(ptep, pte);
   1253 			pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
   1254 			pmap_tlb_miss_lock_exit();
   1255 		}
   1256 	}
   1257 
   1258 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1259 }
   1260 #endif	/* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
   1261 
   1262 /*
   1263  *	Insert the given physical page (p) at
   1264  *	the specified virtual address (v) in the
   1265  *	target physical map with the protection requested.
   1266  *
   1267  *	If specified, the page will be wired down, meaning
   1268  *	that the related pte can not be reclaimed.
   1269  *
   1270  *	NB:  This is the only routine which MAY NOT lazy-evaluate
   1271  *	or lose information.  That is, this routine must actually
   1272  *	insert this page into the given map NOW.
   1273  */
   1274 int
   1275 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1276 {
   1277 	const bool wired = (flags & PMAP_WIRED) != 0;
   1278 	const bool is_kernel_pmap_p = (pmap == pmap_kernel());
   1279 	u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
   1280 #ifdef UVMHIST
   1281 	struct kern_history * const histp =
   1282 	    ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
   1283 #endif
   1284 
   1285 	UVMHIST_FUNC(__func__);
   1286 	UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
   1287 	    (uintptr_t)pmap, va, pa, 0);
   1288 	UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
   1289 
   1290 	const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
   1291 	if (is_kernel_pmap_p) {
   1292 		PMAP_COUNT(kernel_mappings);
   1293 		if (!good_color)
   1294 			PMAP_COUNT(kernel_mappings_bad);
   1295 	} else {
   1296 		PMAP_COUNT(user_mappings);
   1297 		if (!good_color)
   1298 			PMAP_COUNT(user_mappings_bad);
   1299 	}
   1300 	pmap_addr_range_check(pmap, va, va, __func__);
   1301 
   1302 	KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
   1303 	    VM_PROT_READ, prot);
   1304 
   1305 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1306 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1307 
   1308 	struct vm_page_md *mdpp = NULL;
   1309 #ifdef __HAVE_PMAP_PV_TRACK
   1310 	struct pmap_page *pp = pmap_pv_tracked(pa);
   1311 	mdpp = pp ? PMAP_PAGE_TO_MD(pp) : NULL;
   1312 #endif
   1313 
   1314 	if (mdpg) {
   1315 		/* Set page referenced/modified status based on flags */
   1316 		if (flags & VM_PROT_WRITE) {
   1317 			pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1318 		} else if (flags & VM_PROT_ALL) {
   1319 			pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1320 		}
   1321 
   1322 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1323 		if (!VM_PAGEMD_CACHED_P(mdpg)) {
   1324 			flags |= PMAP_NOCACHE;
   1325 			PMAP_COUNT(uncached_mappings);
   1326 		}
   1327 #endif
   1328 
   1329 		PMAP_COUNT(managed_mappings);
   1330 	} else if (mdpp) {
   1331 #ifdef __HAVE_PMAP_PV_TRACK
   1332 		pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1333 
   1334 		PMAP_COUNT(pvtracked_mappings);
   1335 #endif
   1336 	} else {
   1337 		/*
   1338 		 * Assumption: if it is not part of our managed memory
   1339 		 * then it must be device memory which may be volatile.
   1340 		 */
   1341 		if ((flags & PMAP_CACHE_MASK) == 0)
   1342 			flags |= PMAP_NOCACHE;
   1343 		PMAP_COUNT(unmanaged_mappings);
   1344 	}
   1345 
   1346 	KASSERTMSG(mdpg == NULL || mdpp == NULL, "mdpg %p mdpp %p", mdpg, mdpp);
   1347 
   1348 	struct vm_page_md *md = (mdpg != NULL) ? mdpg : mdpp;
   1349 	pt_entry_t npte = pte_make_enter(pa, md, prot, flags,
   1350 	    is_kernel_pmap_p);
   1351 
   1352 	kpreempt_disable();
   1353 
   1354 	pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
   1355 	if (__predict_false(ptep == NULL)) {
   1356 		kpreempt_enable();
   1357 		UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
   1358 		return ENOMEM;
   1359 	}
   1360 	const pt_entry_t opte = *ptep;
   1361 	const bool resident = pte_valid_p(opte);
   1362 	bool remap = false;
   1363 	if (resident) {
   1364 		if (pte_to_paddr(opte) != pa) {
   1365 			KASSERT(!is_kernel_pmap_p);
   1366 		    	const pt_entry_t rpte = pte_nv_entry(false);
   1367 
   1368 			pmap_addr_range_check(pmap, va, va + NBPG, __func__);
   1369 			pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
   1370 			    rpte);
   1371 			PMAP_COUNT(user_mappings_changed);
   1372 			remap = true;
   1373 		}
   1374 		update_flags |= PMAP_TLB_NEED_IPI;
   1375 	}
   1376 
   1377 	if (!resident || remap) {
   1378 		pmap->pm_stats.resident_count++;
   1379 	}
   1380 
   1381 	/* Done after case that may sleep/return. */
   1382 	if (md)
   1383 		pmap_enter_pv(pmap, va, pa, md, &npte, 0);
   1384 
   1385 	/*
   1386 	 * Now validate mapping with desired protection/wiring.
   1387 	 */
   1388 	if (wired) {
   1389 		pmap->pm_stats.wired_count++;
   1390 		npte = pte_wire_entry(npte);
   1391 	}
   1392 
   1393 	UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
   1394 	    pte_value(npte), pa, 0, 0);
   1395 
   1396 	KASSERT(pte_valid_p(npte));
   1397 
   1398 	pmap_tlb_miss_lock_enter();
   1399 	pte_set(ptep, npte);
   1400 	pmap_tlb_update_addr(pmap, va, npte, update_flags);
   1401 	pmap_tlb_miss_lock_exit();
   1402 	kpreempt_enable();
   1403 
   1404 	if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
   1405 		KASSERT(mdpg != NULL);
   1406 		PMAP_COUNT(exec_mappings);
   1407 		if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
   1408 			if (!pte_deferred_exec_p(npte)) {
   1409 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
   1410 				    "immediate syncicache",
   1411 				    va, (uintptr_t)pg, 0, 0);
   1412 				pmap_page_syncicache(pg);
   1413 				pmap_page_set_attributes(mdpg,
   1414 				    VM_PAGEMD_EXECPAGE);
   1415 				PMAP_COUNT(exec_synced_mappings);
   1416 			} else {
   1417 				UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
   1418 				    "syncicache: pte %#jx",
   1419 				    va, (uintptr_t)pg, npte, 0);
   1420 			}
   1421 		} else {
   1422 			UVMHIST_LOG(*histp,
   1423 			    "va=%#jx pg %#jx: no syncicache cached %jd",
   1424 			    va, (uintptr_t)pg, pte_cached_p(npte), 0);
   1425 		}
   1426 	} else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
   1427 		KASSERT(mdpg != NULL);
   1428 		KASSERT(prot & VM_PROT_WRITE);
   1429 		PMAP_COUNT(exec_mappings);
   1430 		pmap_page_syncicache(pg);
   1431 		pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1432 		UVMHIST_LOG(*histp,
   1433 		    "va=%#jx pg %#jx: immediate syncicache (writeable)",
   1434 		    va, (uintptr_t)pg, 0, 0);
   1435 	}
   1436 
   1437 	UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
   1438 	return 0;
   1439 }
   1440 
   1441 void
   1442 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
   1443 {
   1444 	pmap_t pmap = pmap_kernel();
   1445 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1446 	struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
   1447 
   1448 	UVMHIST_FUNC(__func__);
   1449 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
   1450 	    va, pa, prot, flags);
   1451 	PMAP_COUNT(kenter_pa);
   1452 
   1453 	if (mdpg == NULL) {
   1454 		PMAP_COUNT(kenter_pa_unmanaged);
   1455 		if ((flags & PMAP_CACHE_MASK) == 0)
   1456 			flags |= PMAP_NOCACHE;
   1457 	} else {
   1458 		if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
   1459 			PMAP_COUNT(kenter_pa_bad);
   1460 	}
   1461 
   1462 	pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
   1463 	kpreempt_disable();
   1464 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1465 	KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
   1466 	    pmap_limits.virtual_end);
   1467 	KASSERT(!pte_valid_p(*ptep));
   1468 
   1469 	/*
   1470 	 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
   1471 	 */
   1472 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1473 	if (pg != NULL && (flags & PMAP_KMPAGE) == 0
   1474 	    && pmap_md_virtual_cache_aliasing_p()) {
   1475 		pmap_enter_pv(pmap, va, pa, mdpg, &npte, PV_KENTER);
   1476 	}
   1477 #endif
   1478 
   1479 	/*
   1480 	 * We have the option to force this mapping into the TLB but we
   1481 	 * don't.  Instead let the next reference to the page do it.
   1482 	 */
   1483 	pmap_tlb_miss_lock_enter();
   1484 	pte_set(ptep, npte);
   1485 	pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
   1486 	pmap_tlb_miss_lock_exit();
   1487 	kpreempt_enable();
   1488 #if DEBUG > 1
   1489 	for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
   1490 		if (((long *)va)[i] != ((long *)pa)[i])
   1491 			panic("%s: contents (%lx) of va %#"PRIxVADDR
   1492 			    " != contents (%lx) of pa %#"PRIxPADDR, __func__,
   1493 			    ((long *)va)[i], va, ((long *)pa)[i], pa);
   1494 	}
   1495 #endif
   1496 
   1497 	UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
   1498 	    0);
   1499 }
   1500 
   1501 /*
   1502  *	Remove the given range of addresses from the kernel map.
   1503  *
   1504  *	It is assumed that the start and end are properly
   1505  *	rounded to the page size.
   1506  */
   1507 
   1508 static bool
   1509 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
   1510 	uintptr_t flags)
   1511 {
   1512 	const pt_entry_t new_pte = pte_nv_entry(true);
   1513 
   1514 	UVMHIST_FUNC(__func__);
   1515 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
   1516 	    (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
   1517 
   1518 	KASSERT(kpreempt_disabled());
   1519 
   1520 	for (; sva < eva; sva += NBPG, ptep++) {
   1521 		pt_entry_t pte = *ptep;
   1522 		if (!pte_valid_p(pte))
   1523 			continue;
   1524 
   1525 		PMAP_COUNT(kremove_pages);
   1526 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1527 		struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
   1528 		if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
   1529 			pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
   1530 		}
   1531 #endif
   1532 
   1533 		pmap_tlb_miss_lock_enter();
   1534 		pte_set(ptep, new_pte);
   1535 		pmap_tlb_invalidate_addr(pmap, sva);
   1536 		pmap_tlb_miss_lock_exit();
   1537 	}
   1538 
   1539 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1540 
   1541 	return false;
   1542 }
   1543 
   1544 void
   1545 pmap_kremove(vaddr_t va, vsize_t len)
   1546 {
   1547 	const vaddr_t sva = trunc_page(va);
   1548 	const vaddr_t eva = round_page(va + len);
   1549 
   1550 	UVMHIST_FUNC(__func__);
   1551 	UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
   1552 
   1553 	kpreempt_disable();
   1554 	pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
   1555 	kpreempt_enable();
   1556 
   1557 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1558 }
   1559 
   1560 bool
   1561 pmap_remove_all(struct pmap *pmap)
   1562 {
   1563 	UVMHIST_FUNC(__func__);
   1564 	UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
   1565 
   1566 	KASSERT(pmap != pmap_kernel());
   1567 
   1568 	kpreempt_disable();
   1569 	/*
   1570 	 * Free all of our ASIDs which means we can skip doing all the
   1571 	 * tlb_invalidate_addrs().
   1572 	 */
   1573 	pmap_tlb_miss_lock_enter();
   1574 #ifdef MULTIPROCESSOR
   1575 	// This should be the last CPU with this pmap onproc
   1576 	KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
   1577 	if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
   1578 #endif
   1579 		pmap_tlb_asid_deactivate(pmap);
   1580 #ifdef MULTIPROCESSOR
   1581 	KASSERT(kcpuset_iszero(pmap->pm_onproc));
   1582 #endif
   1583 	pmap_tlb_asid_release_all(pmap);
   1584 	pmap_tlb_miss_lock_exit();
   1585 	pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
   1586 
   1587 #ifdef PMAP_FAULTINFO
   1588 	curpcb->pcb_faultinfo.pfi_faultaddr = 0;
   1589 	curpcb->pcb_faultinfo.pfi_repeats = 0;
   1590 	curpcb->pcb_faultinfo.pfi_faultptep = NULL;
   1591 #endif
   1592 	kpreempt_enable();
   1593 
   1594 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1595 	return false;
   1596 }
   1597 
   1598 /*
   1599  *	Routine:	pmap_unwire
   1600  *	Function:	Clear the wired attribute for a map/virtual-address
   1601  *			pair.
   1602  *	In/out conditions:
   1603  *			The mapping must already exist in the pmap.
   1604  */
   1605 void
   1606 pmap_unwire(pmap_t pmap, vaddr_t va)
   1607 {
   1608 	UVMHIST_FUNC(__func__);
   1609 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
   1610 	    0, 0);
   1611 	PMAP_COUNT(unwire);
   1612 
   1613 	/*
   1614 	 * Don't need to flush the TLB since PG_WIRED is only in software.
   1615 	 */
   1616 	kpreempt_disable();
   1617 	pmap_addr_range_check(pmap, va, va, __func__);
   1618 	pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1619 	KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
   1620 	    pmap, va);
   1621 	pt_entry_t pte = *ptep;
   1622 	KASSERTMSG(pte_valid_p(pte),
   1623 	    "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
   1624 	    pmap, va, pte_value(pte), ptep);
   1625 
   1626 	if (pte_wired_p(pte)) {
   1627 		pmap_tlb_miss_lock_enter();
   1628 		pte_set(ptep, pte_unwire_entry(pte));
   1629 		pmap_tlb_miss_lock_exit();
   1630 		pmap->pm_stats.wired_count--;
   1631 	}
   1632 #ifdef DIAGNOSTIC
   1633 	else {
   1634 		printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
   1635 		    __func__, pmap, va);
   1636 	}
   1637 #endif
   1638 	kpreempt_enable();
   1639 
   1640 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   1641 }
   1642 
   1643 /*
   1644  *	Routine:	pmap_extract
   1645  *	Function:
   1646  *		Extract the physical page address associated
   1647  *		with the given map/virtual_address pair.
   1648  */
   1649 bool
   1650 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
   1651 {
   1652 	paddr_t pa;
   1653 
   1654 	if (pmap == pmap_kernel()) {
   1655 		if (pmap_md_direct_mapped_vaddr_p(va)) {
   1656 			pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   1657 			goto done;
   1658 		}
   1659 		if (pmap_md_io_vaddr_p(va))
   1660 			panic("pmap_extract: io address %#"PRIxVADDR"", va);
   1661 
   1662 		if (va >= pmap_limits.virtual_end)
   1663 			panic("%s: illegal kernel mapped address %#"PRIxVADDR,
   1664 			    __func__, va);
   1665 	}
   1666 	kpreempt_disable();
   1667 	const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1668 	if (ptep == NULL || !pte_valid_p(*ptep)) {
   1669 		kpreempt_enable();
   1670 		return false;
   1671 	}
   1672 	pa = pte_to_paddr(*ptep) | (va & PGOFSET);
   1673 	kpreempt_enable();
   1674 done:
   1675 	if (pap != NULL) {
   1676 		*pap = pa;
   1677 	}
   1678 	return true;
   1679 }
   1680 
   1681 /*
   1682  *	Copy the range specified by src_addr/len
   1683  *	from the source map to the range dst_addr/len
   1684  *	in the destination map.
   1685  *
   1686  *	This routine is only advisory and need not do anything.
   1687  */
   1688 void
   1689 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
   1690     vaddr_t src_addr)
   1691 {
   1692 	UVMHIST_FUNC(__func__);
   1693 	UVMHIST_CALLED(pmaphist);
   1694 	PMAP_COUNT(copy);
   1695 }
   1696 
   1697 /*
   1698  *	pmap_clear_reference:
   1699  *
   1700  *	Clear the reference bit on the specified physical page.
   1701  */
   1702 bool
   1703 pmap_clear_reference(struct vm_page *pg)
   1704 {
   1705 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1706 
   1707 	UVMHIST_FUNC(__func__);
   1708 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
   1709 	   (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1710 
   1711 	bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
   1712 
   1713 	UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
   1714 
   1715 	return rv;
   1716 }
   1717 
   1718 /*
   1719  *	pmap_is_referenced:
   1720  *
   1721  *	Return whether or not the specified physical page is referenced
   1722  *	by any physical maps.
   1723  */
   1724 bool
   1725 pmap_is_referenced(struct vm_page *pg)
   1726 {
   1727 	return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
   1728 }
   1729 
   1730 /*
   1731  *	Clear the modify bits on the specified physical page.
   1732  */
   1733 bool
   1734 pmap_clear_modify(struct vm_page *pg)
   1735 {
   1736 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1737 	pv_entry_t pv = &mdpg->mdpg_first;
   1738 	pv_entry_t pv_next;
   1739 
   1740 	UVMHIST_FUNC(__func__);
   1741 	UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
   1742 	    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
   1743 	PMAP_COUNT(clear_modify);
   1744 
   1745 	if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
   1746 		if (pv->pv_pmap == NULL) {
   1747 			UVMHIST_LOG(pmapexechist,
   1748 			    "pg %#jx (pa %#jx): execpage cleared",
   1749 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1750 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   1751 			PMAP_COUNT(exec_uncached_clear_modify);
   1752 		} else {
   1753 			UVMHIST_LOG(pmapexechist,
   1754 			    "pg %#jx (pa %#jx): syncicache performed",
   1755 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
   1756 			pmap_page_syncicache(pg);
   1757 			PMAP_COUNT(exec_synced_clear_modify);
   1758 		}
   1759 	}
   1760 	if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
   1761 		UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
   1762 		return false;
   1763 	}
   1764 	if (pv->pv_pmap == NULL) {
   1765 		UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
   1766 		return true;
   1767 	}
   1768 
   1769 	/*
   1770 	 * remove write access from any pages that are dirty
   1771 	 * so we can tell if they are written to again later.
   1772 	 * flush the VAC first if there is one.
   1773 	 */
   1774 	kpreempt_disable();
   1775 	VM_PAGEMD_PVLIST_READLOCK(mdpg);
   1776 	pmap_pvlist_check(mdpg);
   1777 	for (; pv != NULL; pv = pv_next) {
   1778 		pmap_t pmap = pv->pv_pmap;
   1779 		vaddr_t va = trunc_page(pv->pv_va);
   1780 
   1781 		pv_next = pv->pv_next;
   1782 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1783 		if (PV_ISKENTER_P(pv))
   1784 			continue;
   1785 #endif
   1786 		pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
   1787 		KASSERT(ptep);
   1788 		pt_entry_t pte = pte_prot_nowrite(*ptep);
   1789 		if (*ptep == pte) {
   1790 			continue;
   1791 		}
   1792 		KASSERT(pte_valid_p(pte));
   1793 		const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1794 		pmap_tlb_miss_lock_enter();
   1795 		pte_set(ptep, pte);
   1796 		pmap_tlb_invalidate_addr(pmap, va);
   1797 		pmap_tlb_miss_lock_exit();
   1798 		pmap_update(pmap);
   1799 		if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
   1800 			/*
   1801 			 * The list changed!  So restart from the beginning.
   1802 			 */
   1803 			pv_next = &mdpg->mdpg_first;
   1804 			pmap_pvlist_check(mdpg);
   1805 		}
   1806 	}
   1807 	pmap_pvlist_check(mdpg);
   1808 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1809 	kpreempt_enable();
   1810 
   1811 	UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
   1812 	return true;
   1813 }
   1814 
   1815 /*
   1816  *	pmap_is_modified:
   1817  *
   1818  *	Return whether or not the specified physical page is modified
   1819  *	by any physical maps.
   1820  */
   1821 bool
   1822 pmap_is_modified(struct vm_page *pg)
   1823 {
   1824 	return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
   1825 }
   1826 
   1827 /*
   1828  *	pmap_set_modified:
   1829  *
   1830  *	Sets the page modified reference bit for the specified page.
   1831  */
   1832 void
   1833 pmap_set_modified(paddr_t pa)
   1834 {
   1835 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   1836 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   1837 	pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
   1838 }
   1839 
   1840 /******************** pv_entry management ********************/
   1841 
   1842 static void
   1843 pmap_pvlist_check(struct vm_page_md *mdpg)
   1844 {
   1845 #ifdef DEBUG
   1846 	pv_entry_t pv = &mdpg->mdpg_first;
   1847 	if (pv->pv_pmap != NULL) {
   1848 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1849 		const u_int colormask = uvmexp.colormask;
   1850 		u_int colors = 0;
   1851 #endif
   1852 		for (; pv != NULL; pv = pv->pv_next) {
   1853 			KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
   1854 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1855 			colors |= __BIT(atop(pv->pv_va) & colormask);
   1856 #endif
   1857 		}
   1858 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1859 		// Assert that if there is more than 1 color mapped, that the
   1860 		// page is uncached.
   1861 		KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
   1862 		    || colors == 0 || (colors & (colors-1)) == 0
   1863 		    || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
   1864 		    colors, VM_PAGEMD_UNCACHED_P(mdpg));
   1865 #endif
   1866 	} else {
   1867     		KASSERT(pv->pv_next == NULL);
   1868 	}
   1869 #endif /* DEBUG */
   1870 }
   1871 
   1872 /*
   1873  * Enter the pmap and virtual address into the
   1874  * physical to virtual map table.
   1875  */
   1876 void
   1877 pmap_enter_pv(pmap_t pmap, vaddr_t va, paddr_t pa, struct vm_page_md *mdpg,
   1878     pt_entry_t *nptep, u_int flags)
   1879 {
   1880 	pv_entry_t pv, npv, apv;
   1881 #ifdef UVMHIST
   1882 	bool first = false;
   1883 	struct vm_page *pg = VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) :
   1884 	    NULL;
   1885 #endif
   1886 
   1887 	UVMHIST_FUNC(__func__);
   1888 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
   1889 	    (uintptr_t)pmap, va, (uintptr_t)pg, pa);
   1890 	UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
   1891 	    (uintptr_t)nptep, pte_value(*nptep), 0, 0);
   1892 
   1893 	KASSERT(kpreempt_disabled());
   1894 	KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
   1895 	KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
   1896 	    "va %#"PRIxVADDR, va);
   1897 
   1898 	apv = NULL;
   1899 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   1900 again:
   1901 	pv = &mdpg->mdpg_first;
   1902 	pmap_pvlist_check(mdpg);
   1903 	if (pv->pv_pmap == NULL) {
   1904 		KASSERT(pv->pv_next == NULL);
   1905 		/*
   1906 		 * No entries yet, use header as the first entry
   1907 		 */
   1908 		PMAP_COUNT(primary_mappings);
   1909 		PMAP_COUNT(mappings);
   1910 #ifdef UVMHIST
   1911 		first = true;
   1912 #endif
   1913 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1914 		KASSERT(VM_PAGEMD_CACHED_P(mdpg));
   1915 		// If the new mapping has an incompatible color the last
   1916 		// mapping of this page, clean the page before using it.
   1917 		if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
   1918 			pmap_md_vca_clean(mdpg, PMAP_WBINV);
   1919 		}
   1920 #endif
   1921 		pv->pv_pmap = pmap;
   1922 		pv->pv_va = va | flags;
   1923 	} else {
   1924 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1925 		if (pmap_md_vca_add(mdpg, va, nptep)) {
   1926 			goto again;
   1927 		}
   1928 #endif
   1929 
   1930 		/*
   1931 		 * There is at least one other VA mapping this page.
   1932 		 * Place this entry after the header.
   1933 		 *
   1934 		 * Note: the entry may already be in the table if
   1935 		 * we are only changing the protection bits.
   1936 		 */
   1937 
   1938 		for (npv = pv; npv; npv = npv->pv_next) {
   1939 			if (pmap == npv->pv_pmap
   1940 			    && va == trunc_page(npv->pv_va)) {
   1941 #ifdef PARANOIADIAG
   1942 				pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
   1943 				pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
   1944 				if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
   1945 					printf("%s: found va %#"PRIxVADDR
   1946 					    " pa %#"PRIxPADDR
   1947 					    " in pv_table but != %#"PRIxPTE"\n",
   1948 					    __func__, va, pa, pte_value(pte));
   1949 #endif
   1950 				PMAP_COUNT(remappings);
   1951 				VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1952 				if (__predict_false(apv != NULL))
   1953 					pmap_pv_free(apv);
   1954 
   1955 				UVMHIST_LOG(pmaphist,
   1956 				    " <-- done pv=%#jx (reused)",
   1957 				    (uintptr_t)pv, 0, 0, 0);
   1958 				return;
   1959 			}
   1960 		}
   1961 		if (__predict_true(apv == NULL)) {
   1962 			/*
   1963 			 * To allocate a PV, we have to release the PVLIST lock
   1964 			 * so get the page generation.  We allocate the PV, and
   1965 			 * then reacquire the lock.
   1966 			 */
   1967 			pmap_pvlist_check(mdpg);
   1968 			const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   1969 
   1970 			apv = (pv_entry_t)pmap_pv_alloc();
   1971 			if (apv == NULL)
   1972 				panic("pmap_enter_pv: pmap_pv_alloc() failed");
   1973 
   1974 			/*
   1975 			 * If the generation has changed, then someone else
   1976 			 * tinkered with this page so we should start over.
   1977 			 */
   1978 			if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
   1979 				goto again;
   1980 		}
   1981 		npv = apv;
   1982 		apv = NULL;
   1983 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   1984 		/*
   1985 		 * If need to deal with virtual cache aliases, keep mappings
   1986 		 * in the kernel pmap at the head of the list.  This allows
   1987 		 * the VCA code to easily use them for cache operations if
   1988 		 * present.
   1989 		 */
   1990 		pmap_t kpmap = pmap_kernel();
   1991 		if (pmap != kpmap) {
   1992 			while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
   1993 				pv = pv->pv_next;
   1994 			}
   1995 		}
   1996 #endif
   1997 		npv->pv_va = va | flags;
   1998 		npv->pv_pmap = pmap;
   1999 		npv->pv_next = pv->pv_next;
   2000 		pv->pv_next = npv;
   2001 		PMAP_COUNT(mappings);
   2002 	}
   2003 	pmap_pvlist_check(mdpg);
   2004 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   2005 	if (__predict_false(apv != NULL))
   2006 		pmap_pv_free(apv);
   2007 
   2008 	UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
   2009 	    first, 0, 0);
   2010 }
   2011 
   2012 /*
   2013  * Remove a physical to virtual address translation.
   2014  * If cache was inhibited on this page, and there are no more cache
   2015  * conflicts, restore caching.
   2016  * Flush the cache if the last page is removed (should always be cached
   2017  * at this point).
   2018  */
   2019 void
   2020 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
   2021 {
   2022 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   2023 	pv_entry_t pv, npv;
   2024 	bool last;
   2025 
   2026 	UVMHIST_FUNC(__func__);
   2027 	UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
   2028 	    (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
   2029 	UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
   2030 
   2031 	KASSERT(kpreempt_disabled());
   2032 	KASSERT((va & PAGE_MASK) == 0);
   2033 	pv = &mdpg->mdpg_first;
   2034 
   2035 	VM_PAGEMD_PVLIST_LOCK(mdpg);
   2036 	pmap_pvlist_check(mdpg);
   2037 
   2038 	/*
   2039 	 * If it is the first entry on the list, it is actually
   2040 	 * in the header and we must copy the following entry up
   2041 	 * to the header.  Otherwise we must search the list for
   2042 	 * the entry.  In either case we free the now unused entry.
   2043 	 */
   2044 
   2045 	last = false;
   2046 	if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
   2047 		npv = pv->pv_next;
   2048 		if (npv) {
   2049 			*pv = *npv;
   2050 			KASSERT(pv->pv_pmap != NULL);
   2051 		} else {
   2052 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2053 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
   2054 #endif
   2055 			pv->pv_pmap = NULL;
   2056 			last = true;	/* Last mapping removed */
   2057 		}
   2058 		PMAP_COUNT(remove_pvfirst);
   2059 	} else {
   2060 		for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
   2061 			PMAP_COUNT(remove_pvsearch);
   2062 			if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
   2063 				break;
   2064 		}
   2065 		if (npv) {
   2066 			pv->pv_next = npv->pv_next;
   2067 		}
   2068 	}
   2069 
   2070 	pmap_pvlist_check(mdpg);
   2071 	VM_PAGEMD_PVLIST_UNLOCK(mdpg);
   2072 
   2073 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2074 	pmap_md_vca_remove(pg, va, dirty, last);
   2075 #endif
   2076 
   2077 	/*
   2078 	 * Free the pv_entry if needed.
   2079 	 */
   2080 	if (npv)
   2081 		pmap_pv_free(npv);
   2082 	if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
   2083 		if (last) {
   2084 			/*
   2085 			 * If this was the page's last mapping, we no longer
   2086 			 * care about its execness.
   2087 			 */
   2088 			UVMHIST_LOG(pmapexechist,
   2089 			    "pg %#jx (pa %#jx)last %ju: execpage cleared",
   2090 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2091 			pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
   2092 			PMAP_COUNT(exec_uncached_remove);
   2093 		} else {
   2094 			/*
   2095 			 * Someone still has it mapped as an executable page
   2096 			 * so we must sync it.
   2097 			 */
   2098 			UVMHIST_LOG(pmapexechist,
   2099 			    "pg %#jx (pa %#jx) last %ju: performed syncicache",
   2100 			    (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
   2101 			pmap_page_syncicache(pg);
   2102 			PMAP_COUNT(exec_synced_remove);
   2103 		}
   2104 	}
   2105 
   2106 	UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
   2107 }
   2108 
   2109 #if defined(MULTIPROCESSOR)
   2110 struct pmap_pvlist_info {
   2111 	kmutex_t *pli_locks[PAGE_SIZE / 32];
   2112 	volatile u_int pli_lock_refs[PAGE_SIZE / 32];
   2113 	volatile u_int pli_lock_index;
   2114 	u_int pli_lock_mask;
   2115 } pmap_pvlist_info;
   2116 
   2117 void
   2118 pmap_pvlist_lock_init(size_t cache_line_size)
   2119 {
   2120 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2121 	const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
   2122 	vaddr_t lock_va = lock_page;
   2123 	if (sizeof(kmutex_t) > cache_line_size) {
   2124 		cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
   2125 	}
   2126 	const size_t nlocks = PAGE_SIZE / cache_line_size;
   2127 	KASSERT((nlocks & (nlocks - 1)) == 0);
   2128 	/*
   2129 	 * Now divide the page into a number of mutexes, one per cacheline.
   2130 	 */
   2131 	for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
   2132 		kmutex_t * const lock = (kmutex_t *)lock_va;
   2133 		mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
   2134 		pli->pli_locks[i] = lock;
   2135 	}
   2136 	pli->pli_lock_mask = nlocks - 1;
   2137 }
   2138 
   2139 kmutex_t *
   2140 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2141 {
   2142 	struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
   2143 	kmutex_t *lock = mdpg->mdpg_lock;
   2144 
   2145 	/*
   2146 	 * Allocate a lock on an as-needed basis.  This will hopefully give us
   2147 	 * semi-random distribution not based on page color.
   2148 	 */
   2149 	if (__predict_false(lock == NULL)) {
   2150 		size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
   2151 		size_t lockid = locknum & pli->pli_lock_mask;
   2152 		kmutex_t * const new_lock = pli->pli_locks[lockid];
   2153 		/*
   2154 		 * Set the lock.  If some other thread already did, just use
   2155 		 * the one they assigned.
   2156 		 */
   2157 		lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
   2158 		if (lock == NULL) {
   2159 			lock = new_lock;
   2160 			atomic_inc_uint(&pli->pli_lock_refs[lockid]);
   2161 		}
   2162 	}
   2163 
   2164 	/*
   2165 	 * Now finally provide the lock.
   2166 	 */
   2167 	return lock;
   2168 }
   2169 #else /* !MULTIPROCESSOR */
   2170 void
   2171 pmap_pvlist_lock_init(size_t cache_line_size)
   2172 {
   2173 	mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
   2174 }
   2175 
   2176 #ifdef MODULAR
   2177 kmutex_t *
   2178 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
   2179 {
   2180 	/*
   2181 	 * We just use a global lock.
   2182 	 */
   2183 	if (__predict_false(mdpg->mdpg_lock == NULL)) {
   2184 		mdpg->mdpg_lock = &pmap_pvlist_mutex;
   2185 	}
   2186 
   2187 	/*
   2188 	 * Now finally provide the lock.
   2189 	 */
   2190 	return mdpg->mdpg_lock;
   2191 }
   2192 #endif /* MODULAR */
   2193 #endif /* !MULTIPROCESSOR */
   2194 
   2195 /*
   2196  * pmap_pv_page_alloc:
   2197  *
   2198  *	Allocate a page for the pv_entry pool.
   2199  */
   2200 void *
   2201 pmap_pv_page_alloc(struct pool *pp, int flags)
   2202 {
   2203 	struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
   2204 	if (pg == NULL)
   2205 		return NULL;
   2206 
   2207 	return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
   2208 }
   2209 
   2210 /*
   2211  * pmap_pv_page_free:
   2212  *
   2213  *	Free a pv_entry pool page.
   2214  */
   2215 void
   2216 pmap_pv_page_free(struct pool *pp, void *v)
   2217 {
   2218 	vaddr_t va = (vaddr_t)v;
   2219 
   2220 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2221 	const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2222 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2223 	KASSERT(pg != NULL);
   2224 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
   2225 	kpreempt_disable();
   2226 	pmap_md_vca_remove(pg, va, true, true);
   2227 	kpreempt_enable();
   2228 #endif
   2229 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2230 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2231 	uvm_pagefree(pg);
   2232 }
   2233 
   2234 #ifdef PMAP_PREFER
   2235 /*
   2236  * Find first virtual address >= *vap that doesn't cause
   2237  * a cache alias conflict.
   2238  */
   2239 void
   2240 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
   2241 {
   2242 	vsize_t prefer_mask = ptoa(uvmexp.colormask);
   2243 
   2244 	PMAP_COUNT(prefer_requests);
   2245 
   2246 	prefer_mask |= pmap_md_cache_prefer_mask();
   2247 
   2248 	if (prefer_mask) {
   2249 		vaddr_t	va = *vap;
   2250 		vsize_t d = (foff - va) & prefer_mask;
   2251 		if (d) {
   2252 			if (td)
   2253 				*vap = trunc_page(va - ((-d) & prefer_mask));
   2254 			else
   2255 				*vap = round_page(va + d);
   2256 			PMAP_COUNT(prefer_adjustments);
   2257 		}
   2258 	}
   2259 }
   2260 #endif /* PMAP_PREFER */
   2261 
   2262 #ifdef PMAP_MAP_POOLPAGE
   2263 vaddr_t
   2264 pmap_map_poolpage(paddr_t pa)
   2265 {
   2266 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2267 	KASSERT(pg);
   2268 
   2269 	struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
   2270 	KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
   2271 
   2272 	pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
   2273 
   2274 	return pmap_md_map_poolpage(pa, NBPG);
   2275 }
   2276 
   2277 paddr_t
   2278 pmap_unmap_poolpage(vaddr_t va)
   2279 {
   2280 	KASSERT(pmap_md_direct_mapped_vaddr_p(va));
   2281 	paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
   2282 
   2283 	struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
   2284 	KASSERT(pg != NULL);
   2285 	KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
   2286 
   2287 	pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
   2288 	pmap_md_unmap_poolpage(va, NBPG);
   2289 
   2290 	return pa;
   2291 }
   2292 #endif /* PMAP_MAP_POOLPAGE */
   2293