pmap.c revision 1.65 1 /* $NetBSD: pmap.c,v 1.65 2022/05/07 06:53:16 rin Exp $ */
2
3 /*-
4 * Copyright (c) 1998, 2001 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
9 * NASA Ames Research Center and by Chris G. Demetriou.
10 *
11 * Redistribution and use in source and binary forms, with or without
12 * modification, are permitted provided that the following conditions
13 * are met:
14 * 1. Redistributions of source code must retain the above copyright
15 * notice, this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright
17 * notice, this list of conditions and the following disclaimer in the
18 * documentation and/or other materials provided with the distribution.
19 *
20 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
22 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
24 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
25 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
26 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
27 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
28 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
29 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
30 * POSSIBILITY OF SUCH DAMAGE.
31 */
32
33 /*
34 * Copyright (c) 1992, 1993
35 * The Regents of the University of California. All rights reserved.
36 *
37 * This code is derived from software contributed to Berkeley by
38 * the Systems Programming Group of the University of Utah Computer
39 * Science Department and Ralph Campbell.
40 *
41 * Redistribution and use in source and binary forms, with or without
42 * modification, are permitted provided that the following conditions
43 * are met:
44 * 1. Redistributions of source code must retain the above copyright
45 * notice, this list of conditions and the following disclaimer.
46 * 2. Redistributions in binary form must reproduce the above copyright
47 * notice, this list of conditions and the following disclaimer in the
48 * documentation and/or other materials provided with the distribution.
49 * 3. Neither the name of the University nor the names of its contributors
50 * may be used to endorse or promote products derived from this software
51 * without specific prior written permission.
52 *
53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
63 * SUCH DAMAGE.
64 *
65 * @(#)pmap.c 8.4 (Berkeley) 1/26/94
66 */
67
68 #include <sys/cdefs.h>
69
70 __KERNEL_RCSID(0, "$NetBSD: pmap.c,v 1.65 2022/05/07 06:53:16 rin Exp $");
71
72 /*
73 * Manages physical address maps.
74 *
75 * In addition to hardware address maps, this
76 * module is called upon to provide software-use-only
77 * maps which may or may not be stored in the same
78 * form as hardware maps. These pseudo-maps are
79 * used to store intermediate results from copy
80 * operations to and from address spaces.
81 *
82 * Since the information managed by this module is
83 * also stored by the logical address mapping module,
84 * this module may throw away valid virtual-to-physical
85 * mappings at almost any time. However, invalidations
86 * of virtual-to-physical mappings must be done as
87 * requested.
88 *
89 * In order to cope with hardware architectures which
90 * make virtual-to-physical map invalidates expensive,
91 * this module may delay invalidate or reduced protection
92 * operations until such time as they are actually
93 * necessary. This module is given full information as
94 * to which processors are currently using which maps,
95 * and to when physical maps must be made correct.
96 */
97
98 #include "opt_modular.h"
99 #include "opt_multiprocessor.h"
100 #include "opt_sysv.h"
101
102 #define __PMAP_PRIVATE
103
104 #include <sys/param.h>
105
106 #include <sys/asan.h>
107 #include <sys/atomic.h>
108 #include <sys/buf.h>
109 #include <sys/cpu.h>
110 #include <sys/mutex.h>
111 #include <sys/pool.h>
112
113 #include <uvm/uvm.h>
114 #include <uvm/uvm_physseg.h>
115 #include <uvm/pmap/pmap_pvt.h>
116
117 #if defined(MULTIPROCESSOR) && defined(PMAP_VIRTUAL_CACHE_ALIASES) \
118 && !defined(PMAP_NO_PV_UNCACHED)
119 #error PMAP_VIRTUAL_CACHE_ALIASES with MULTIPROCESSOR requires \
120 PMAP_NO_PV_UNCACHED to be defined
121 #endif
122
123 #if defined(PMAP_PV_TRACK_ONLY_STUBS)
124 #undef __HAVE_PMAP_PV_TRACK
125 #endif
126
127 PMAP_COUNTER(remove_kernel_calls, "remove kernel calls");
128 PMAP_COUNTER(remove_kernel_pages, "kernel pages unmapped");
129 PMAP_COUNTER(remove_user_calls, "remove user calls");
130 PMAP_COUNTER(remove_user_pages, "user pages unmapped");
131 PMAP_COUNTER(remove_flushes, "remove cache flushes");
132 PMAP_COUNTER(remove_tlb_ops, "remove tlb ops");
133 PMAP_COUNTER(remove_pvfirst, "remove pv first");
134 PMAP_COUNTER(remove_pvsearch, "remove pv search");
135
136 PMAP_COUNTER(prefer_requests, "prefer requests");
137 PMAP_COUNTER(prefer_adjustments, "prefer adjustments");
138
139 PMAP_COUNTER(idlezeroed_pages, "pages idle zeroed");
140
141 PMAP_COUNTER(kenter_pa, "kernel fast mapped pages");
142 PMAP_COUNTER(kenter_pa_bad, "kernel fast mapped pages (bad color)");
143 PMAP_COUNTER(kenter_pa_unmanaged, "kernel fast mapped unmanaged pages");
144 PMAP_COUNTER(kremove_pages, "kernel fast unmapped pages");
145
146 PMAP_COUNTER(page_cache_evictions, "pages changed to uncacheable");
147 PMAP_COUNTER(page_cache_restorations, "pages changed to cacheable");
148
149 PMAP_COUNTER(kernel_mappings_bad, "kernel pages mapped (bad color)");
150 PMAP_COUNTER(user_mappings_bad, "user pages mapped (bad color)");
151 PMAP_COUNTER(kernel_mappings, "kernel pages mapped");
152 PMAP_COUNTER(user_mappings, "user pages mapped");
153 PMAP_COUNTER(user_mappings_changed, "user mapping changed");
154 PMAP_COUNTER(kernel_mappings_changed, "kernel mapping changed");
155 PMAP_COUNTER(uncached_mappings, "uncached pages mapped");
156 PMAP_COUNTER(unmanaged_mappings, "unmanaged pages mapped");
157 PMAP_COUNTER(pvtracked_mappings, "pv-tracked unmanaged pages mapped");
158 PMAP_COUNTER(managed_mappings, "managed pages mapped");
159 PMAP_COUNTER(mappings, "pages mapped");
160 PMAP_COUNTER(remappings, "pages remapped");
161 PMAP_COUNTER(unmappings, "pages unmapped");
162 PMAP_COUNTER(primary_mappings, "page initial mappings");
163 PMAP_COUNTER(primary_unmappings, "page final unmappings");
164 PMAP_COUNTER(tlb_hit, "page mapping");
165
166 PMAP_COUNTER(exec_mappings, "exec pages mapped");
167 PMAP_COUNTER(exec_synced_mappings, "exec pages synced");
168 PMAP_COUNTER(exec_synced_remove, "exec pages synced (PR)");
169 PMAP_COUNTER(exec_synced_clear_modify, "exec pages synced (CM)");
170 PMAP_COUNTER(exec_synced_page_protect, "exec pages synced (PP)");
171 PMAP_COUNTER(exec_synced_protect, "exec pages synced (P)");
172 PMAP_COUNTER(exec_uncached_page_protect, "exec pages uncached (PP)");
173 PMAP_COUNTER(exec_uncached_clear_modify, "exec pages uncached (CM)");
174 PMAP_COUNTER(exec_uncached_zero_page, "exec pages uncached (ZP)");
175 PMAP_COUNTER(exec_uncached_copy_page, "exec pages uncached (CP)");
176 PMAP_COUNTER(exec_uncached_remove, "exec pages uncached (PR)");
177
178 PMAP_COUNTER(create, "creates");
179 PMAP_COUNTER(reference, "references");
180 PMAP_COUNTER(dereference, "dereferences");
181 PMAP_COUNTER(destroy, "destroyed");
182 PMAP_COUNTER(activate, "activations");
183 PMAP_COUNTER(deactivate, "deactivations");
184 PMAP_COUNTER(update, "updates");
185 #ifdef MULTIPROCESSOR
186 PMAP_COUNTER(shootdown_ipis, "shootdown IPIs");
187 #endif
188 PMAP_COUNTER(unwire, "unwires");
189 PMAP_COUNTER(copy, "copies");
190 PMAP_COUNTER(clear_modify, "clear_modifies");
191 PMAP_COUNTER(protect, "protects");
192 PMAP_COUNTER(page_protect, "page_protects");
193
194 #define PMAP_ASID_RESERVED 0
195 CTASSERT(PMAP_ASID_RESERVED == 0);
196
197 #ifndef PMAP_SEGTAB_ALIGN
198 #define PMAP_SEGTAB_ALIGN /* nothing */
199 #endif
200 #ifdef _LP64
201 pmap_segtab_t pmap_kstart_segtab PMAP_SEGTAB_ALIGN; /* first mid-level segtab for kernel */
202 #endif
203 pmap_segtab_t pmap_kern_segtab PMAP_SEGTAB_ALIGN = { /* top level segtab for kernel */
204 #ifdef _LP64
205 .seg_seg[(VM_MIN_KERNEL_ADDRESS & XSEGOFSET) >> SEGSHIFT] = &pmap_kstart_segtab,
206 #endif
207 };
208
209 struct pmap_kernel kernel_pmap_store = {
210 .kernel_pmap = {
211 .pm_count = 1,
212 .pm_segtab = &pmap_kern_segtab,
213 .pm_minaddr = VM_MIN_KERNEL_ADDRESS,
214 .pm_maxaddr = VM_MAX_KERNEL_ADDRESS,
215 },
216 };
217
218 struct pmap * const kernel_pmap_ptr = &kernel_pmap_store.kernel_pmap;
219
220 /* The current top of kernel VM - gets updated by pmap_growkernel */
221 vaddr_t pmap_curmaxkvaddr;
222
223 struct pmap_limits pmap_limits = { /* VA and PA limits */
224 .virtual_start = VM_MIN_KERNEL_ADDRESS,
225 .virtual_end = VM_MAX_KERNEL_ADDRESS,
226 };
227
228 #ifdef UVMHIST
229 static struct kern_history_ent pmapexechistbuf[10000];
230 static struct kern_history_ent pmaphistbuf[10000];
231 static struct kern_history_ent pmapsegtabhistbuf[1000];
232 UVMHIST_DEFINE(pmapexechist) = UVMHIST_INITIALIZER(pmapexechist, pmapexechistbuf);
233 UVMHIST_DEFINE(pmaphist) = UVMHIST_INITIALIZER(pmaphist, pmaphistbuf);
234 UVMHIST_DEFINE(pmapsegtabhist) = UVMHIST_INITIALIZER(pmapsegtabhist, pmapsegtabhistbuf);
235 #endif
236
237 /*
238 * The pools from which pmap structures and sub-structures are allocated.
239 */
240 struct pool pmap_pmap_pool;
241 struct pool pmap_pv_pool;
242
243 #ifndef PMAP_PV_LOWAT
244 #define PMAP_PV_LOWAT 16
245 #endif
246 int pmap_pv_lowat = PMAP_PV_LOWAT;
247
248 bool pmap_initialized = false;
249 #define PMAP_PAGE_COLOROK_P(a, b) \
250 ((((int)(a) ^ (int)(b)) & pmap_page_colormask) == 0)
251 u_int pmap_page_colormask;
252
253 #define PAGE_IS_MANAGED(pa) (pmap_initialized && uvm_pageismanaged(pa))
254
255 #define PMAP_IS_ACTIVE(pm) \
256 ((pm) == pmap_kernel() || \
257 (pm) == curlwp->l_proc->p_vmspace->vm_map.pmap)
258
259 /* Forward function declarations */
260 void pmap_page_remove(struct vm_page_md *);
261 static void pmap_pvlist_check(struct vm_page_md *);
262 void pmap_remove_pv(pmap_t, vaddr_t, struct vm_page *, bool);
263 void pmap_enter_pv(pmap_t, vaddr_t, paddr_t, struct vm_page_md *, pt_entry_t *, u_int);
264
265 /*
266 * PV table management functions.
267 */
268 void *pmap_pv_page_alloc(struct pool *, int);
269 void pmap_pv_page_free(struct pool *, void *);
270
271 struct pool_allocator pmap_pv_page_allocator = {
272 pmap_pv_page_alloc, pmap_pv_page_free, 0,
273 };
274
275 #define pmap_pv_alloc() pool_get(&pmap_pv_pool, PR_NOWAIT)
276 #define pmap_pv_free(pv) pool_put(&pmap_pv_pool, (pv))
277
278 #ifndef PMAP_NEED_TLB_MISS_LOCK
279
280 #if defined(PMAP_MD_NEED_TLB_MISS_LOCK) || defined(DEBUG)
281 #define PMAP_NEED_TLB_MISS_LOCK
282 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK || DEBUG */
283
284 #endif /* PMAP_NEED_TLB_MISS_LOCK */
285
286 #ifdef PMAP_NEED_TLB_MISS_LOCK
287
288 #ifdef PMAP_MD_NEED_TLB_MISS_LOCK
289 #define pmap_tlb_miss_lock_init() __nothing /* MD code deals with this */
290 #define pmap_tlb_miss_lock_enter() pmap_md_tlb_miss_lock_enter()
291 #define pmap_tlb_miss_lock_exit() pmap_md_tlb_miss_lock_exit()
292 #else
293 kmutex_t pmap_tlb_miss_lock __cacheline_aligned;
294
295 static void
296 pmap_tlb_miss_lock_init(void)
297 {
298 mutex_init(&pmap_tlb_miss_lock, MUTEX_SPIN, IPL_HIGH);
299 }
300
301 static inline void
302 pmap_tlb_miss_lock_enter(void)
303 {
304 mutex_spin_enter(&pmap_tlb_miss_lock);
305 }
306
307 static inline void
308 pmap_tlb_miss_lock_exit(void)
309 {
310 mutex_spin_exit(&pmap_tlb_miss_lock);
311 }
312 #endif /* PMAP_MD_NEED_TLB_MISS_LOCK */
313
314 #else
315
316 #define pmap_tlb_miss_lock_init() __nothing
317 #define pmap_tlb_miss_lock_enter() __nothing
318 #define pmap_tlb_miss_lock_exit() __nothing
319
320 #endif /* PMAP_NEED_TLB_MISS_LOCK */
321
322 #ifndef MULTIPROCESSOR
323 kmutex_t pmap_pvlist_mutex __cacheline_aligned;
324 #endif
325
326 /*
327 * Debug functions.
328 */
329
330 #ifdef DEBUG
331 static inline void
332 pmap_asid_check(pmap_t pm, const char *func)
333 {
334 if (!PMAP_IS_ACTIVE(pm))
335 return;
336
337 struct pmap_asid_info * const pai = PMAP_PAI(pm, cpu_tlb_info(curcpu()));
338 tlb_asid_t asid = tlb_get_asid();
339 if (asid != pai->pai_asid)
340 panic("%s: inconsistency for active TLB update: %u <-> %u",
341 func, asid, pai->pai_asid);
342 }
343 #endif
344
345 static void
346 pmap_addr_range_check(pmap_t pmap, vaddr_t sva, vaddr_t eva, const char *func)
347 {
348 #ifdef DEBUG
349 if (pmap == pmap_kernel()) {
350 if (sva < VM_MIN_KERNEL_ADDRESS)
351 panic("%s: kva %#"PRIxVADDR" not in range",
352 func, sva);
353 if (eva >= pmap_limits.virtual_end)
354 panic("%s: kva %#"PRIxVADDR" not in range",
355 func, eva);
356 } else {
357 if (eva > VM_MAXUSER_ADDRESS)
358 panic("%s: uva %#"PRIxVADDR" not in range",
359 func, eva);
360 pmap_asid_check(pmap, func);
361 }
362 #endif
363 }
364
365 /*
366 * Misc. functions.
367 */
368
369 bool
370 pmap_page_clear_attributes(struct vm_page_md *mdpg, u_int clear_attributes)
371 {
372 volatile unsigned long * const attrp = &mdpg->mdpg_attrs;
373 #ifdef MULTIPROCESSOR
374 for (;;) {
375 u_int old_attr = *attrp;
376 if ((old_attr & clear_attributes) == 0)
377 return false;
378 u_int new_attr = old_attr & ~clear_attributes;
379 if (old_attr == atomic_cas_ulong(attrp, old_attr, new_attr))
380 return true;
381 }
382 #else
383 unsigned long old_attr = *attrp;
384 if ((old_attr & clear_attributes) == 0)
385 return false;
386 *attrp &= ~clear_attributes;
387 return true;
388 #endif
389 }
390
391 void
392 pmap_page_set_attributes(struct vm_page_md *mdpg, u_int set_attributes)
393 {
394 #ifdef MULTIPROCESSOR
395 atomic_or_ulong(&mdpg->mdpg_attrs, set_attributes);
396 #else
397 mdpg->mdpg_attrs |= set_attributes;
398 #endif
399 }
400
401 static void
402 pmap_page_syncicache(struct vm_page *pg)
403 {
404 UVMHIST_FUNC(__func__);
405 UVMHIST_CALLED(pmaphist);
406 #ifndef MULTIPROCESSOR
407 struct pmap * const curpmap = curlwp->l_proc->p_vmspace->vm_map.pmap;
408 #endif
409 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
410 pv_entry_t pv = &mdpg->mdpg_first;
411 kcpuset_t *onproc;
412 #ifdef MULTIPROCESSOR
413 kcpuset_create(&onproc, true);
414 KASSERT(onproc != NULL);
415 #else
416 onproc = NULL;
417 #endif
418 VM_PAGEMD_PVLIST_READLOCK(mdpg);
419 pmap_pvlist_check(mdpg);
420
421 UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx", (uintptr_t)pv,
422 (uintptr_t)pv->pv_pmap, 0, 0);
423
424 if (pv->pv_pmap != NULL) {
425 for (; pv != NULL; pv = pv->pv_next) {
426 #ifdef MULTIPROCESSOR
427 UVMHIST_LOG(pmaphist, "pv %#jx pv_pmap %#jx",
428 (uintptr_t)pv, (uintptr_t)pv->pv_pmap, 0, 0);
429 kcpuset_merge(onproc, pv->pv_pmap->pm_onproc);
430 if (kcpuset_match(onproc, kcpuset_running)) {
431 break;
432 }
433 #else
434 if (pv->pv_pmap == curpmap) {
435 onproc = curcpu()->ci_data.cpu_kcpuset;
436 break;
437 }
438 #endif
439 }
440 }
441 pmap_pvlist_check(mdpg);
442 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
443 kpreempt_disable();
444 pmap_md_page_syncicache(mdpg, onproc);
445 kpreempt_enable();
446 #ifdef MULTIPROCESSOR
447 kcpuset_destroy(onproc);
448 #endif
449 }
450
451 /*
452 * Define the initial bounds of the kernel virtual address space.
453 */
454 void
455 pmap_virtual_space(vaddr_t *vstartp, vaddr_t *vendp)
456 {
457
458 *vstartp = pmap_limits.virtual_start;
459 *vendp = pmap_limits.virtual_end;
460 }
461
462 vaddr_t
463 pmap_growkernel(vaddr_t maxkvaddr)
464 {
465 UVMHIST_FUNC(__func__);
466 UVMHIST_CALLARGS(pmaphist, "maxkvaddr=%#jx (%#jx)", maxkvaddr,
467 pmap_curmaxkvaddr, 0, 0);
468
469 vaddr_t virtual_end = pmap_curmaxkvaddr;
470 maxkvaddr = pmap_round_seg(maxkvaddr) - 1;
471
472 /*
473 * Don't exceed VM_MAX_KERNEL_ADDRESS!
474 */
475 if (maxkvaddr == 0 || maxkvaddr > VM_MAX_KERNEL_ADDRESS)
476 maxkvaddr = VM_MAX_KERNEL_ADDRESS;
477
478 /*
479 * Reserve PTEs for the new KVA space.
480 */
481 for (; virtual_end < maxkvaddr; virtual_end += NBSEG) {
482 pmap_pte_reserve(pmap_kernel(), virtual_end, 0);
483 }
484
485 kasan_shadow_map((void *)pmap_curmaxkvaddr,
486 (size_t)(virtual_end - pmap_curmaxkvaddr));
487
488 /*
489 * Update new end.
490 */
491 pmap_curmaxkvaddr = virtual_end;
492
493 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
494
495 return virtual_end;
496 }
497
498 /*
499 * Bootstrap memory allocator (alternative to vm_bootstrap_steal_memory()).
500 * This function allows for early dynamic memory allocation until the virtual
501 * memory system has been bootstrapped. After that point, either kmem_alloc
502 * or malloc should be used. This function works by stealing pages from the
503 * (to be) managed page pool, then implicitly mapping the pages (by using
504 * their direct mapped addresses) and zeroing them.
505 *
506 * It may be used once the physical memory segments have been pre-loaded
507 * into the vm_physmem[] array. Early memory allocation MUST use this
508 * interface! This cannot be used after vm_page_startup(), and will
509 * generate a panic if tried.
510 *
511 * Note that this memory will never be freed, and in essence it is wired
512 * down.
513 *
514 * We must adjust *vstartp and/or *vendp iff we use address space
515 * from the kernel virtual address range defined by pmap_virtual_space().
516 */
517 vaddr_t
518 pmap_steal_memory(vsize_t size, vaddr_t *vstartp, vaddr_t *vendp)
519 {
520 size_t npgs;
521 paddr_t pa;
522 vaddr_t va;
523
524 uvm_physseg_t maybe_bank = UVM_PHYSSEG_TYPE_INVALID;
525
526 size = round_page(size);
527 npgs = atop(size);
528
529 aprint_debug("%s: need %zu pages\n", __func__, npgs);
530
531 for (uvm_physseg_t bank = uvm_physseg_get_first();
532 uvm_physseg_valid_p(bank);
533 bank = uvm_physseg_get_next(bank)) {
534
535 if (uvm.page_init_done == true)
536 panic("pmap_steal_memory: called _after_ bootstrap");
537
538 aprint_debug("%s: seg %"PRIxPHYSSEG": %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR" %#"PRIxPADDR"\n",
539 __func__, bank,
540 uvm_physseg_get_avail_start(bank), uvm_physseg_get_start(bank),
541 uvm_physseg_get_avail_end(bank), uvm_physseg_get_end(bank));
542
543 if (uvm_physseg_get_avail_start(bank) != uvm_physseg_get_start(bank)
544 || uvm_physseg_get_avail_start(bank) >= uvm_physseg_get_avail_end(bank)) {
545 aprint_debug("%s: seg %"PRIxPHYSSEG": bad start\n", __func__, bank);
546 continue;
547 }
548
549 if (uvm_physseg_get_avail_end(bank) - uvm_physseg_get_avail_start(bank) < npgs) {
550 aprint_debug("%s: seg %"PRIxPHYSSEG": too small for %zu pages\n",
551 __func__, bank, npgs);
552 continue;
553 }
554
555 if (!pmap_md_ok_to_steal_p(bank, npgs)) {
556 continue;
557 }
558
559 /*
560 * Always try to allocate from the segment with the least
561 * amount of space left.
562 */
563 #define VM_PHYSMEM_SPACE(b) ((uvm_physseg_get_avail_end(b)) - (uvm_physseg_get_avail_start(b)))
564 if (uvm_physseg_valid_p(maybe_bank) == false
565 || VM_PHYSMEM_SPACE(bank) < VM_PHYSMEM_SPACE(maybe_bank)) {
566 maybe_bank = bank;
567 }
568 }
569
570 if (uvm_physseg_valid_p(maybe_bank)) {
571 const uvm_physseg_t bank = maybe_bank;
572
573 /*
574 * There are enough pages here; steal them!
575 */
576 pa = ptoa(uvm_physseg_get_start(bank));
577 uvm_physseg_unplug(atop(pa), npgs);
578
579 aprint_debug("%s: seg %"PRIxPHYSSEG": %zu pages stolen (%#"PRIxPADDR" left)\n",
580 __func__, bank, npgs, VM_PHYSMEM_SPACE(bank));
581
582 va = pmap_md_map_poolpage(pa, size);
583 memset((void *)va, 0, size);
584 return va;
585 }
586
587 /*
588 * If we got here, there was no memory left.
589 */
590 panic("pmap_steal_memory: no memory to steal %zu pages", npgs);
591 }
592
593 /*
594 * Bootstrap the system enough to run with virtual memory.
595 * (Common routine called by machine-dependent bootstrap code.)
596 */
597 void
598 pmap_bootstrap_common(void)
599 {
600 pmap_tlb_miss_lock_init();
601 }
602
603 /*
604 * Initialize the pmap module.
605 * Called by vm_init, to initialize any structures that the pmap
606 * system needs to map virtual memory.
607 */
608 void
609 pmap_init(void)
610 {
611 UVMHIST_LINK_STATIC(pmapexechist);
612 UVMHIST_LINK_STATIC(pmaphist);
613 UVMHIST_LINK_STATIC(pmapsegtabhist);
614
615 UVMHIST_FUNC(__func__);
616 UVMHIST_CALLED(pmaphist);
617
618 /*
619 * Initialize the segtab lock.
620 */
621 mutex_init(&pmap_segtab_lock, MUTEX_DEFAULT, IPL_HIGH);
622
623 /*
624 * Set a low water mark on the pv_entry pool, so that we are
625 * more likely to have these around even in extreme memory
626 * starvation.
627 */
628 pool_setlowat(&pmap_pv_pool, pmap_pv_lowat);
629
630 /*
631 * Set the page colormask but allow pmap_md_init to override it.
632 */
633 pmap_page_colormask = ptoa(uvmexp.colormask);
634
635 pmap_md_init();
636
637 /*
638 * Now it is safe to enable pv entry recording.
639 */
640 pmap_initialized = true;
641 }
642
643 /*
644 * Create and return a physical map.
645 *
646 * If the size specified for the map
647 * is zero, the map is an actual physical
648 * map, and may be referenced by the
649 * hardware.
650 *
651 * If the size specified is non-zero,
652 * the map will be used in software only, and
653 * is bounded by that size.
654 */
655 pmap_t
656 pmap_create(void)
657 {
658 UVMHIST_FUNC(__func__);
659 UVMHIST_CALLED(pmaphist);
660 PMAP_COUNT(create);
661
662 pmap_t pmap = pool_get(&pmap_pmap_pool, PR_WAITOK);
663 memset(pmap, 0, PMAP_SIZE);
664
665 KASSERT(pmap->pm_pai[0].pai_link.le_prev == NULL);
666
667 pmap->pm_count = 1;
668 pmap->pm_minaddr = VM_MIN_ADDRESS;
669 pmap->pm_maxaddr = VM_MAXUSER_ADDRESS;
670
671 pmap_segtab_init(pmap);
672
673 #ifdef MULTIPROCESSOR
674 kcpuset_create(&pmap->pm_active, true);
675 kcpuset_create(&pmap->pm_onproc, true);
676 KASSERT(pmap->pm_active != NULL);
677 KASSERT(pmap->pm_onproc != NULL);
678 #endif
679
680 UVMHIST_LOG(pmaphist, " <-- done (pmap=%#jx)", (uintptr_t)pmap,
681 0, 0, 0);
682
683 return pmap;
684 }
685
686 /*
687 * Retire the given physical map from service.
688 * Should only be called if the map contains
689 * no valid mappings.
690 */
691 void
692 pmap_destroy(pmap_t pmap)
693 {
694 UVMHIST_FUNC(__func__);
695 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
696
697 membar_release();
698 if (atomic_dec_uint_nv(&pmap->pm_count) > 0) {
699 PMAP_COUNT(dereference);
700 UVMHIST_LOG(pmaphist, " <-- done (deref)", 0, 0, 0, 0);
701 return;
702 }
703 membar_acquire();
704
705 PMAP_COUNT(destroy);
706 KASSERT(pmap->pm_count == 0);
707 kpreempt_disable();
708 pmap_tlb_miss_lock_enter();
709 pmap_tlb_asid_release_all(pmap);
710 pmap_segtab_destroy(pmap, NULL, 0);
711 pmap_tlb_miss_lock_exit();
712
713 #ifdef MULTIPROCESSOR
714 kcpuset_destroy(pmap->pm_active);
715 kcpuset_destroy(pmap->pm_onproc);
716 pmap->pm_active = NULL;
717 pmap->pm_onproc = NULL;
718 #endif
719
720 pool_put(&pmap_pmap_pool, pmap);
721 kpreempt_enable();
722
723 UVMHIST_LOG(pmaphist, " <-- done (freed)", 0, 0, 0, 0);
724 }
725
726 /*
727 * Add a reference to the specified pmap.
728 */
729 void
730 pmap_reference(pmap_t pmap)
731 {
732 UVMHIST_FUNC(__func__);
733 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
734 PMAP_COUNT(reference);
735
736 if (pmap != NULL) {
737 atomic_inc_uint(&pmap->pm_count);
738 }
739
740 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
741 }
742
743 /*
744 * Make a new pmap (vmspace) active for the given process.
745 */
746 void
747 pmap_activate(struct lwp *l)
748 {
749 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
750
751 UVMHIST_FUNC(__func__);
752 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
753 (uintptr_t)pmap, 0, 0);
754 PMAP_COUNT(activate);
755
756 kpreempt_disable();
757 pmap_tlb_miss_lock_enter();
758 pmap_tlb_asid_acquire(pmap, l);
759 pmap_segtab_activate(pmap, l);
760 pmap_tlb_miss_lock_exit();
761 kpreempt_enable();
762
763 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
764 l->l_lid, 0, 0);
765 }
766
767 /*
768 * Remove this page from all physical maps in which it resides.
769 * Reflects back modify bits to the pager.
770 */
771 void
772 pmap_page_remove(struct vm_page_md *mdpg)
773 {
774 kpreempt_disable();
775 VM_PAGEMD_PVLIST_LOCK(mdpg);
776 pmap_pvlist_check(mdpg);
777
778 struct vm_page * const pg =
779 VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) : NULL;
780
781 UVMHIST_FUNC(__func__);
782 if (pg) {
783 UVMHIST_CALLARGS(pmaphist, "mdpg %#jx pg %#jx (pa %#jx): "
784 "execpage cleared", (uintptr_t)mdpg, (uintptr_t)pg,
785 VM_PAGE_TO_PHYS(pg), 0);
786 } else {
787 UVMHIST_CALLARGS(pmaphist, "mdpg %#jx", (uintptr_t)mdpg, 0,
788 0, 0);
789 }
790
791 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
792 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE|VM_PAGEMD_UNCACHED);
793 #else
794 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
795 #endif
796 PMAP_COUNT(exec_uncached_remove);
797
798 pv_entry_t pv = &mdpg->mdpg_first;
799 if (pv->pv_pmap == NULL) {
800 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
801 kpreempt_enable();
802 UVMHIST_LOG(pmaphist, " <-- done (empty)", 0, 0, 0, 0);
803 return;
804 }
805
806 pv_entry_t npv;
807 pv_entry_t pvp = NULL;
808
809 for (; pv != NULL; pv = npv) {
810 npv = pv->pv_next;
811 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
812 if (PV_ISKENTER_P(pv)) {
813 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
814 " skip", (uintptr_t)pv, (uintptr_t)pv->pv_pmap,
815 pv->pv_va, 0);
816
817 KASSERT(pv->pv_pmap == pmap_kernel());
818
819 /* Assume no more - it'll get fixed if there are */
820 pv->pv_next = NULL;
821
822 /*
823 * pvp is non-null when we already have a PV_KENTER
824 * pv in pvh_first; otherwise we haven't seen a
825 * PV_KENTER pv and we need to copy this one to
826 * pvh_first
827 */
828 if (pvp) {
829 /*
830 * The previous PV_KENTER pv needs to point to
831 * this PV_KENTER pv
832 */
833 pvp->pv_next = pv;
834 } else {
835 pv_entry_t fpv = &mdpg->mdpg_first;
836 *fpv = *pv;
837 KASSERT(fpv->pv_pmap == pmap_kernel());
838 }
839 pvp = pv;
840 continue;
841 }
842 #endif
843 const pmap_t pmap = pv->pv_pmap;
844 vaddr_t va = trunc_page(pv->pv_va);
845 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
846 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
847 pmap_limits.virtual_end);
848 pt_entry_t pte = *ptep;
849 UVMHIST_LOG(pmaphist, " pv %#jx pmap %#jx va %#jx"
850 " pte %#jx", (uintptr_t)pv, (uintptr_t)pmap, va,
851 pte_value(pte));
852 if (!pte_valid_p(pte))
853 continue;
854 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
855 if (is_kernel_pmap_p) {
856 PMAP_COUNT(remove_kernel_pages);
857 } else {
858 PMAP_COUNT(remove_user_pages);
859 }
860 if (pte_wired_p(pte))
861 pmap->pm_stats.wired_count--;
862 pmap->pm_stats.resident_count--;
863
864 pmap_tlb_miss_lock_enter();
865 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
866 pte_set(ptep, npte);
867 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
868 /*
869 * Flush the TLB for the given address.
870 */
871 pmap_tlb_invalidate_addr(pmap, va);
872 }
873 pmap_tlb_miss_lock_exit();
874
875 /*
876 * non-null means this is a non-pvh_first pv, so we should
877 * free it.
878 */
879 if (pvp) {
880 KASSERT(pvp->pv_pmap == pmap_kernel());
881 KASSERT(pvp->pv_next == NULL);
882 pmap_pv_free(pv);
883 } else {
884 pv->pv_pmap = NULL;
885 pv->pv_next = NULL;
886 }
887 }
888
889 pmap_pvlist_check(mdpg);
890 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
891 kpreempt_enable();
892
893 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
894 }
895
896 #ifdef __HAVE_PMAP_PV_TRACK
897 /*
898 * pmap_pv_protect: change protection of an unmanaged pv-tracked page from
899 * all pmaps that map it
900 */
901 void
902 pmap_pv_protect(paddr_t pa, vm_prot_t prot)
903 {
904
905 /* the only case is remove at the moment */
906 KASSERT(prot == VM_PROT_NONE);
907 struct pmap_page *pp;
908
909 pp = pmap_pv_tracked(pa);
910 if (pp == NULL)
911 panic("pmap_pv_protect: page not pv-tracked: 0x%"PRIxPADDR,
912 pa);
913
914 struct vm_page_md *mdpg = PMAP_PAGE_TO_MD(pp);
915 pmap_page_remove(mdpg);
916 }
917 #endif
918
919 /*
920 * Make a previously active pmap (vmspace) inactive.
921 */
922 void
923 pmap_deactivate(struct lwp *l)
924 {
925 pmap_t pmap = l->l_proc->p_vmspace->vm_map.pmap;
926
927 UVMHIST_FUNC(__func__);
928 UVMHIST_CALLARGS(pmaphist, "(l=%#jx pmap=%#jx)", (uintptr_t)l,
929 (uintptr_t)pmap, 0, 0);
930 PMAP_COUNT(deactivate);
931
932 kpreempt_disable();
933 KASSERT(l == curlwp || l->l_cpu == curlwp->l_cpu);
934 pmap_tlb_miss_lock_enter();
935 pmap_tlb_asid_deactivate(pmap);
936 pmap_segtab_deactivate(pmap);
937 pmap_tlb_miss_lock_exit();
938 kpreempt_enable();
939
940 UVMHIST_LOG(pmaphist, " <-- done (%ju:%ju)", l->l_proc->p_pid,
941 l->l_lid, 0, 0);
942 }
943
944 void
945 pmap_update(struct pmap *pmap)
946 {
947 UVMHIST_FUNC(__func__);
948 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx)", (uintptr_t)pmap, 0, 0, 0);
949 PMAP_COUNT(update);
950
951 kpreempt_disable();
952 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
953 u_int pending = atomic_swap_uint(&pmap->pm_shootdown_pending, 0);
954 if (pending && pmap_tlb_shootdown_bystanders(pmap))
955 PMAP_COUNT(shootdown_ipis);
956 #endif
957 pmap_tlb_miss_lock_enter();
958 #if defined(DEBUG) && !defined(MULTIPROCESSOR)
959 pmap_tlb_check(pmap, pmap_md_tlb_check_entry);
960 #endif /* DEBUG */
961
962 /*
963 * If pmap_remove_all was called, we deactivated ourselves and nuked
964 * our ASID. Now we have to reactivate ourselves.
965 */
966 if (__predict_false(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE)) {
967 pmap->pm_flags ^= PMAP_DEFERRED_ACTIVATE;
968 pmap_tlb_asid_acquire(pmap, curlwp);
969 pmap_segtab_activate(pmap, curlwp);
970 }
971 pmap_tlb_miss_lock_exit();
972 kpreempt_enable();
973
974 UVMHIST_LOG(pmaphist, " <-- done (kernel=%jd)",
975 (pmap == pmap_kernel() ? 1 : 0), 0, 0, 0);
976 }
977
978 /*
979 * Remove the given range of addresses from the specified map.
980 *
981 * It is assumed that the start and end are properly
982 * rounded to the page size.
983 */
984
985 static bool
986 pmap_pte_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
987 uintptr_t flags)
988 {
989 const pt_entry_t npte = flags;
990 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
991
992 UVMHIST_FUNC(__func__);
993 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
994 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
995 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
996 (uintptr_t)ptep, flags, 0, 0);
997
998 KASSERT(kpreempt_disabled());
999
1000 for (; sva < eva; sva += NBPG, ptep++) {
1001 const pt_entry_t pte = *ptep;
1002 if (!pte_valid_p(pte))
1003 continue;
1004 if (is_kernel_pmap_p) {
1005 PMAP_COUNT(remove_kernel_pages);
1006 } else {
1007 PMAP_COUNT(remove_user_pages);
1008 }
1009 if (pte_wired_p(pte))
1010 pmap->pm_stats.wired_count--;
1011 pmap->pm_stats.resident_count--;
1012 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1013 if (__predict_true(pg != NULL)) {
1014 pmap_remove_pv(pmap, sva, pg, pte_modified_p(pte));
1015 }
1016 pmap_tlb_miss_lock_enter();
1017 pte_set(ptep, npte);
1018 if (__predict_true(!(pmap->pm_flags & PMAP_DEFERRED_ACTIVATE))) {
1019
1020 /*
1021 * Flush the TLB for the given address.
1022 */
1023 pmap_tlb_invalidate_addr(pmap, sva);
1024 }
1025 pmap_tlb_miss_lock_exit();
1026 }
1027
1028 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1029
1030 return false;
1031 }
1032
1033 void
1034 pmap_remove(pmap_t pmap, vaddr_t sva, vaddr_t eva)
1035 {
1036 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1037 const pt_entry_t npte = pte_nv_entry(is_kernel_pmap_p);
1038
1039 UVMHIST_FUNC(__func__);
1040 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx)",
1041 (uintptr_t)pmap, sva, eva, 0);
1042
1043 if (is_kernel_pmap_p) {
1044 PMAP_COUNT(remove_kernel_calls);
1045 } else {
1046 PMAP_COUNT(remove_user_calls);
1047 }
1048 #ifdef PMAP_FAULTINFO
1049 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1050 curpcb->pcb_faultinfo.pfi_repeats = 0;
1051 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1052 #endif
1053 kpreempt_disable();
1054 pmap_addr_range_check(pmap, sva, eva, __func__);
1055 pmap_pte_process(pmap, sva, eva, pmap_pte_remove, npte);
1056 kpreempt_enable();
1057
1058 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1059 }
1060
1061 /*
1062 * pmap_page_protect:
1063 *
1064 * Lower the permission for all mappings to a given page.
1065 */
1066 void
1067 pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
1068 {
1069 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1070 pv_entry_t pv;
1071 vaddr_t va;
1072
1073 UVMHIST_FUNC(__func__);
1074 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx) prot=%#jx)",
1075 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), prot, 0);
1076 PMAP_COUNT(page_protect);
1077
1078 switch (prot) {
1079 case VM_PROT_READ|VM_PROT_WRITE:
1080 case VM_PROT_ALL:
1081 break;
1082
1083 /* copy_on_write */
1084 case VM_PROT_READ:
1085 case VM_PROT_READ|VM_PROT_EXECUTE:
1086 pv = &mdpg->mdpg_first;
1087 kpreempt_disable();
1088 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1089 pmap_pvlist_check(mdpg);
1090 /*
1091 * Loop over all current mappings setting/clearing as
1092 * appropriate.
1093 */
1094 if (pv->pv_pmap != NULL) {
1095 while (pv != NULL) {
1096 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1097 if (PV_ISKENTER_P(pv)) {
1098 pv = pv->pv_next;
1099 continue;
1100 }
1101 #endif
1102 const pmap_t pmap = pv->pv_pmap;
1103 va = trunc_page(pv->pv_va);
1104 const uintptr_t gen =
1105 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1106 pmap_protect(pmap, va, va + PAGE_SIZE, prot);
1107 KASSERT(pv->pv_pmap == pmap);
1108 pmap_update(pmap);
1109 if (gen != VM_PAGEMD_PVLIST_READLOCK(mdpg)) {
1110 pv = &mdpg->mdpg_first;
1111 } else {
1112 pv = pv->pv_next;
1113 }
1114 pmap_pvlist_check(mdpg);
1115 }
1116 }
1117 pmap_pvlist_check(mdpg);
1118 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1119 kpreempt_enable();
1120 break;
1121
1122 /* remove_all */
1123 default:
1124 pmap_page_remove(mdpg);
1125 }
1126
1127 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1128 }
1129
1130 static bool
1131 pmap_pte_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1132 uintptr_t flags)
1133 {
1134 const vm_prot_t prot = (flags & VM_PROT_ALL);
1135
1136 UVMHIST_FUNC(__func__);
1137 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx kernel=%jd va=%#jx..%#jx)",
1138 (uintptr_t)pmap, (pmap == pmap_kernel() ? 1 : 0), sva, eva);
1139 UVMHIST_LOG(pmaphist, "ptep=%#jx, flags(npte)=%#jx)",
1140 (uintptr_t)ptep, flags, 0, 0);
1141
1142 KASSERT(kpreempt_disabled());
1143 /*
1144 * Change protection on every valid mapping within this segment.
1145 */
1146 for (; sva < eva; sva += NBPG, ptep++) {
1147 pt_entry_t pte = *ptep;
1148 if (!pte_valid_p(pte))
1149 continue;
1150 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1151 if (pg != NULL && pte_modified_p(pte)) {
1152 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1153 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1154 KASSERT(!VM_PAGEMD_PVLIST_EMPTY_P(mdpg));
1155 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1156 if (VM_PAGEMD_CACHED_P(mdpg)) {
1157 #endif
1158 UVMHIST_LOG(pmapexechist,
1159 "pg %#jx (pa %#jx): "
1160 "syncicached performed",
1161 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg),
1162 0, 0);
1163 pmap_page_syncicache(pg);
1164 PMAP_COUNT(exec_synced_protect);
1165 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1166 }
1167 #endif
1168 }
1169 }
1170 pte = pte_prot_downgrade(pte, prot);
1171 if (*ptep != pte) {
1172 pmap_tlb_miss_lock_enter();
1173 pte_set(ptep, pte);
1174 /*
1175 * Update the TLB if needed.
1176 */
1177 pmap_tlb_update_addr(pmap, sva, pte, PMAP_TLB_NEED_IPI);
1178 pmap_tlb_miss_lock_exit();
1179 }
1180 }
1181
1182 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1183
1184 return false;
1185 }
1186
1187 /*
1188 * Set the physical protection on the
1189 * specified range of this map as requested.
1190 */
1191 void
1192 pmap_protect(pmap_t pmap, vaddr_t sva, vaddr_t eva, vm_prot_t prot)
1193 {
1194 UVMHIST_FUNC(__func__);
1195 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx..%#jx, prot=%ju)",
1196 (uintptr_t)pmap, sva, eva, prot);
1197 PMAP_COUNT(protect);
1198
1199 if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1200 pmap_remove(pmap, sva, eva);
1201 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1202 return;
1203 }
1204
1205 /*
1206 * Change protection on every valid mapping within this segment.
1207 */
1208 kpreempt_disable();
1209 pmap_addr_range_check(pmap, sva, eva, __func__);
1210 pmap_pte_process(pmap, sva, eva, pmap_pte_protect, prot);
1211 kpreempt_enable();
1212
1213 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1214 }
1215
1216 #if defined(PMAP_VIRTUAL_CACHE_ALIASES) && !defined(PMAP_NO_PV_UNCACHED)
1217 /*
1218 * pmap_page_cache:
1219 *
1220 * Change all mappings of a managed page to cached/uncached.
1221 */
1222 void
1223 pmap_page_cache(struct vm_page_md *mdpg, bool cached)
1224 {
1225 #ifdef UVMHIST
1226 const bool vmpage_p = VM_PAGEMD_VMPAGE_P(mdpg);
1227 struct vm_page * const pg = vmpage_p ? VM_MD_TO_PAGE(mdpg) : NULL;
1228 #endif
1229
1230 UVMHIST_FUNC(__func__);
1231 UVMHIST_CALLARGS(pmaphist, "(mdpg=%#jx (pa %#jx) cached=%jd vmpage %jd)",
1232 (uintptr_t)mdpg, pg ? VM_PAGE_TO_PHYS(pg) : 0, cached, vmpage_p);
1233
1234 KASSERT(kpreempt_disabled());
1235 KASSERT(VM_PAGEMD_PVLIST_LOCKED_P(mdpg));
1236
1237 if (cached) {
1238 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
1239 PMAP_COUNT(page_cache_restorations);
1240 } else {
1241 pmap_page_set_attributes(mdpg, VM_PAGEMD_UNCACHED);
1242 PMAP_COUNT(page_cache_evictions);
1243 }
1244
1245 for (pv_entry_t pv = &mdpg->mdpg_first; pv != NULL; pv = pv->pv_next) {
1246 pmap_t pmap = pv->pv_pmap;
1247 vaddr_t va = trunc_page(pv->pv_va);
1248
1249 KASSERT(pmap != NULL);
1250 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1251 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1252 if (ptep == NULL)
1253 continue;
1254 pt_entry_t pte = *ptep;
1255 if (pte_valid_p(pte)) {
1256 pte = pte_cached_change(pte, cached);
1257 pmap_tlb_miss_lock_enter();
1258 pte_set(ptep, pte);
1259 pmap_tlb_update_addr(pmap, va, pte, PMAP_TLB_NEED_IPI);
1260 pmap_tlb_miss_lock_exit();
1261 }
1262 }
1263
1264 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1265 }
1266 #endif /* PMAP_VIRTUAL_CACHE_ALIASES && !PMAP_NO_PV_UNCACHED */
1267
1268 /*
1269 * Insert the given physical page (p) at
1270 * the specified virtual address (v) in the
1271 * target physical map with the protection requested.
1272 *
1273 * If specified, the page will be wired down, meaning
1274 * that the related pte can not be reclaimed.
1275 *
1276 * NB: This is the only routine which MAY NOT lazy-evaluate
1277 * or lose information. That is, this routine must actually
1278 * insert this page into the given map NOW.
1279 */
1280 int
1281 pmap_enter(pmap_t pmap, vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1282 {
1283 const bool wired = (flags & PMAP_WIRED) != 0;
1284 const bool is_kernel_pmap_p = (pmap == pmap_kernel());
1285 u_int update_flags = (flags & VM_PROT_ALL) != 0 ? PMAP_TLB_INSERT : 0;
1286 #ifdef UVMHIST
1287 struct kern_history * const histp =
1288 ((prot & VM_PROT_EXECUTE) ? &pmapexechist : &pmaphist);
1289 #endif
1290
1291 UVMHIST_FUNC(__func__);
1292 UVMHIST_CALLARGS(*histp, "(pmap=%#jx, va=%#jx, pa=%#jx",
1293 (uintptr_t)pmap, va, pa, 0);
1294 UVMHIST_LOG(*histp, "prot=%#jx flags=%#jx)", prot, flags, 0, 0);
1295
1296 const bool good_color = PMAP_PAGE_COLOROK_P(pa, va);
1297 if (is_kernel_pmap_p) {
1298 PMAP_COUNT(kernel_mappings);
1299 if (!good_color)
1300 PMAP_COUNT(kernel_mappings_bad);
1301 } else {
1302 PMAP_COUNT(user_mappings);
1303 if (!good_color)
1304 PMAP_COUNT(user_mappings_bad);
1305 }
1306 pmap_addr_range_check(pmap, va, va, __func__);
1307
1308 KASSERTMSG(prot & VM_PROT_READ, "no READ (%#x) in prot %#x",
1309 VM_PROT_READ, prot);
1310
1311 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1312 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1313
1314 struct vm_page_md *mdpp = NULL;
1315 #ifdef __HAVE_PMAP_PV_TRACK
1316 struct pmap_page *pp = pmap_pv_tracked(pa);
1317 mdpp = pp ? PMAP_PAGE_TO_MD(pp) : NULL;
1318 #endif
1319
1320 if (mdpg) {
1321 /* Set page referenced/modified status based on flags */
1322 if (flags & VM_PROT_WRITE) {
1323 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1324 } else if (flags & VM_PROT_ALL) {
1325 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1326 }
1327
1328 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1329 if (!VM_PAGEMD_CACHED_P(mdpg)) {
1330 flags |= PMAP_NOCACHE;
1331 PMAP_COUNT(uncached_mappings);
1332 }
1333 #endif
1334
1335 PMAP_COUNT(managed_mappings);
1336 } else if (mdpp) {
1337 #ifdef __HAVE_PMAP_PV_TRACK
1338 pmap_page_set_attributes(mdpg, VM_PAGEMD_REFERENCED);
1339
1340 PMAP_COUNT(pvtracked_mappings);
1341 #endif
1342 } else {
1343 /*
1344 * Assumption: if it is not part of our managed memory
1345 * then it must be device memory which may be volatile.
1346 */
1347 if ((flags & PMAP_CACHE_MASK) == 0)
1348 flags |= PMAP_NOCACHE;
1349 PMAP_COUNT(unmanaged_mappings);
1350 }
1351
1352 KASSERTMSG(mdpg == NULL || mdpp == NULL, "mdpg %p mdpp %p", mdpg, mdpp);
1353
1354 struct vm_page_md *md = (mdpg != NULL) ? mdpg : mdpp;
1355 pt_entry_t npte = pte_make_enter(pa, md, prot, flags,
1356 is_kernel_pmap_p);
1357
1358 kpreempt_disable();
1359
1360 pt_entry_t * const ptep = pmap_pte_reserve(pmap, va, flags);
1361 if (__predict_false(ptep == NULL)) {
1362 kpreempt_enable();
1363 UVMHIST_LOG(*histp, " <-- ENOMEM", 0, 0, 0, 0);
1364 return ENOMEM;
1365 }
1366 const pt_entry_t opte = *ptep;
1367 const bool resident = pte_valid_p(opte);
1368 bool remap = false;
1369 if (resident) {
1370 if (pte_to_paddr(opte) != pa) {
1371 KASSERT(!is_kernel_pmap_p);
1372 const pt_entry_t rpte = pte_nv_entry(false);
1373
1374 pmap_addr_range_check(pmap, va, va + NBPG, __func__);
1375 pmap_pte_process(pmap, va, va + NBPG, pmap_pte_remove,
1376 rpte);
1377 PMAP_COUNT(user_mappings_changed);
1378 remap = true;
1379 }
1380 update_flags |= PMAP_TLB_NEED_IPI;
1381 }
1382
1383 if (!resident || remap) {
1384 pmap->pm_stats.resident_count++;
1385 }
1386
1387 /* Done after case that may sleep/return. */
1388 if (md)
1389 pmap_enter_pv(pmap, va, pa, md, &npte, 0);
1390
1391 /*
1392 * Now validate mapping with desired protection/wiring.
1393 */
1394 if (wired) {
1395 pmap->pm_stats.wired_count++;
1396 npte = pte_wire_entry(npte);
1397 }
1398
1399 UVMHIST_LOG(*histp, "new pte %#jx (pa %#jx)",
1400 pte_value(npte), pa, 0, 0);
1401
1402 KASSERT(pte_valid_p(npte));
1403
1404 pmap_tlb_miss_lock_enter();
1405 pte_set(ptep, npte);
1406 pmap_tlb_update_addr(pmap, va, npte, update_flags);
1407 pmap_tlb_miss_lock_exit();
1408 kpreempt_enable();
1409
1410 if (pg != NULL && (prot == (VM_PROT_READ | VM_PROT_EXECUTE))) {
1411 KASSERT(mdpg != NULL);
1412 PMAP_COUNT(exec_mappings);
1413 if (!VM_PAGEMD_EXECPAGE_P(mdpg) && pte_cached_p(npte)) {
1414 if (!pte_deferred_exec_p(npte)) {
1415 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: "
1416 "immediate syncicache",
1417 va, (uintptr_t)pg, 0, 0);
1418 pmap_page_syncicache(pg);
1419 pmap_page_set_attributes(mdpg,
1420 VM_PAGEMD_EXECPAGE);
1421 PMAP_COUNT(exec_synced_mappings);
1422 } else {
1423 UVMHIST_LOG(*histp, "va=%#jx pg %#jx: defer "
1424 "syncicache: pte %#jx",
1425 va, (uintptr_t)pg, npte, 0);
1426 }
1427 } else {
1428 UVMHIST_LOG(*histp,
1429 "va=%#jx pg %#jx: no syncicache cached %jd",
1430 va, (uintptr_t)pg, pte_cached_p(npte), 0);
1431 }
1432 } else if (pg != NULL && (prot & VM_PROT_EXECUTE)) {
1433 KASSERT(mdpg != NULL);
1434 KASSERT(prot & VM_PROT_WRITE);
1435 PMAP_COUNT(exec_mappings);
1436 pmap_page_syncicache(pg);
1437 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1438 UVMHIST_LOG(*histp,
1439 "va=%#jx pg %#jx: immediate syncicache (writeable)",
1440 va, (uintptr_t)pg, 0, 0);
1441 }
1442
1443 UVMHIST_LOG(*histp, " <-- 0 (OK)", 0, 0, 0, 0);
1444 return 0;
1445 }
1446
1447 void
1448 pmap_kenter_pa(vaddr_t va, paddr_t pa, vm_prot_t prot, u_int flags)
1449 {
1450 pmap_t pmap = pmap_kernel();
1451 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1452 struct vm_page_md * const mdpg = (pg ? VM_PAGE_TO_MD(pg) : NULL);
1453
1454 UVMHIST_FUNC(__func__);
1455 UVMHIST_CALLARGS(pmaphist, "(va=%#jx pa=%#jx prot=%ju, flags=%#jx)",
1456 va, pa, prot, flags);
1457 PMAP_COUNT(kenter_pa);
1458
1459 if (mdpg == NULL) {
1460 PMAP_COUNT(kenter_pa_unmanaged);
1461 if ((flags & PMAP_CACHE_MASK) == 0)
1462 flags |= PMAP_NOCACHE;
1463 } else {
1464 if ((flags & PMAP_NOCACHE) == 0 && !PMAP_PAGE_COLOROK_P(pa, va))
1465 PMAP_COUNT(kenter_pa_bad);
1466 }
1467
1468 pt_entry_t npte = pte_make_kenter_pa(pa, mdpg, prot, flags);
1469 kpreempt_disable();
1470 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1471 KASSERTMSG(ptep != NULL, "%#"PRIxVADDR " %#"PRIxVADDR, va,
1472 pmap_limits.virtual_end);
1473 KASSERT(!pte_valid_p(*ptep));
1474
1475 /*
1476 * No need to track non-managed pages or PMAP_KMPAGEs pages for aliases
1477 */
1478 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1479 if (pg != NULL && (flags & PMAP_KMPAGE) == 0
1480 && pmap_md_virtual_cache_aliasing_p()) {
1481 pmap_enter_pv(pmap, va, pa, mdpg, &npte, PV_KENTER);
1482 }
1483 #endif
1484
1485 /*
1486 * We have the option to force this mapping into the TLB but we
1487 * don't. Instead let the next reference to the page do it.
1488 */
1489 pmap_tlb_miss_lock_enter();
1490 pte_set(ptep, npte);
1491 pmap_tlb_update_addr(pmap_kernel(), va, npte, 0);
1492 pmap_tlb_miss_lock_exit();
1493 kpreempt_enable();
1494 #if DEBUG > 1
1495 for (u_int i = 0; i < PAGE_SIZE / sizeof(long); i++) {
1496 if (((long *)va)[i] != ((long *)pa)[i])
1497 panic("%s: contents (%lx) of va %#"PRIxVADDR
1498 " != contents (%lx) of pa %#"PRIxPADDR, __func__,
1499 ((long *)va)[i], va, ((long *)pa)[i], pa);
1500 }
1501 #endif
1502
1503 UVMHIST_LOG(pmaphist, " <-- done (ptep=%#jx)", (uintptr_t)ptep, 0, 0,
1504 0);
1505 }
1506
1507 /*
1508 * Remove the given range of addresses from the kernel map.
1509 *
1510 * It is assumed that the start and end are properly
1511 * rounded to the page size.
1512 */
1513
1514 static bool
1515 pmap_pte_kremove(pmap_t pmap, vaddr_t sva, vaddr_t eva, pt_entry_t *ptep,
1516 uintptr_t flags)
1517 {
1518 const pt_entry_t new_pte = pte_nv_entry(true);
1519
1520 UVMHIST_FUNC(__func__);
1521 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, sva=%#jx eva=%#jx ptep=%#jx)",
1522 (uintptr_t)pmap, sva, eva, (uintptr_t)ptep);
1523
1524 KASSERT(kpreempt_disabled());
1525
1526 for (; sva < eva; sva += NBPG, ptep++) {
1527 pt_entry_t pte = *ptep;
1528 if (!pte_valid_p(pte))
1529 continue;
1530
1531 PMAP_COUNT(kremove_pages);
1532 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1533 struct vm_page * const pg = PHYS_TO_VM_PAGE(pte_to_paddr(pte));
1534 if (pg != NULL && pmap_md_virtual_cache_aliasing_p()) {
1535 pmap_remove_pv(pmap, sva, pg, !pte_readonly_p(pte));
1536 }
1537 #endif
1538
1539 pmap_tlb_miss_lock_enter();
1540 pte_set(ptep, new_pte);
1541 pmap_tlb_invalidate_addr(pmap, sva);
1542 pmap_tlb_miss_lock_exit();
1543 }
1544
1545 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1546
1547 return false;
1548 }
1549
1550 void
1551 pmap_kremove(vaddr_t va, vsize_t len)
1552 {
1553 const vaddr_t sva = trunc_page(va);
1554 const vaddr_t eva = round_page(va + len);
1555
1556 UVMHIST_FUNC(__func__);
1557 UVMHIST_CALLARGS(pmaphist, "(va=%#jx len=%#jx)", va, len, 0, 0);
1558
1559 kpreempt_disable();
1560 pmap_pte_process(pmap_kernel(), sva, eva, pmap_pte_kremove, 0);
1561 kpreempt_enable();
1562
1563 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1564 }
1565
1566 bool
1567 pmap_remove_all(struct pmap *pmap)
1568 {
1569 UVMHIST_FUNC(__func__);
1570 UVMHIST_CALLARGS(pmaphist, "(pm=%#jx)", (uintptr_t)pmap, 0, 0, 0);
1571
1572 KASSERT(pmap != pmap_kernel());
1573
1574 kpreempt_disable();
1575 /*
1576 * Free all of our ASIDs which means we can skip doing all the
1577 * tlb_invalidate_addrs().
1578 */
1579 pmap_tlb_miss_lock_enter();
1580 #ifdef MULTIPROCESSOR
1581 // This should be the last CPU with this pmap onproc
1582 KASSERT(!kcpuset_isotherset(pmap->pm_onproc, cpu_index(curcpu())));
1583 if (kcpuset_isset(pmap->pm_onproc, cpu_index(curcpu())))
1584 #endif
1585 pmap_tlb_asid_deactivate(pmap);
1586 #ifdef MULTIPROCESSOR
1587 KASSERT(kcpuset_iszero(pmap->pm_onproc));
1588 #endif
1589 pmap_tlb_asid_release_all(pmap);
1590 pmap_tlb_miss_lock_exit();
1591 pmap->pm_flags |= PMAP_DEFERRED_ACTIVATE;
1592
1593 #ifdef PMAP_FAULTINFO
1594 curpcb->pcb_faultinfo.pfi_faultaddr = 0;
1595 curpcb->pcb_faultinfo.pfi_repeats = 0;
1596 curpcb->pcb_faultinfo.pfi_faultptep = NULL;
1597 #endif
1598 kpreempt_enable();
1599
1600 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1601 return false;
1602 }
1603
1604 /*
1605 * Routine: pmap_unwire
1606 * Function: Clear the wired attribute for a map/virtual-address
1607 * pair.
1608 * In/out conditions:
1609 * The mapping must already exist in the pmap.
1610 */
1611 void
1612 pmap_unwire(pmap_t pmap, vaddr_t va)
1613 {
1614 UVMHIST_FUNC(__func__);
1615 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx)", (uintptr_t)pmap, va,
1616 0, 0);
1617 PMAP_COUNT(unwire);
1618
1619 /*
1620 * Don't need to flush the TLB since PG_WIRED is only in software.
1621 */
1622 kpreempt_disable();
1623 pmap_addr_range_check(pmap, va, va, __func__);
1624 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1625 KASSERTMSG(ptep != NULL, "pmap %p va %#"PRIxVADDR" invalid STE",
1626 pmap, va);
1627 pt_entry_t pte = *ptep;
1628 KASSERTMSG(pte_valid_p(pte),
1629 "pmap %p va %#"PRIxVADDR" invalid PTE %#"PRIxPTE" @ %p",
1630 pmap, va, pte_value(pte), ptep);
1631
1632 if (pte_wired_p(pte)) {
1633 pmap_tlb_miss_lock_enter();
1634 pte_set(ptep, pte_unwire_entry(pte));
1635 pmap_tlb_miss_lock_exit();
1636 pmap->pm_stats.wired_count--;
1637 }
1638 #ifdef DIAGNOSTIC
1639 else {
1640 printf("%s: wiring for pmap %p va %#"PRIxVADDR" unchanged!\n",
1641 __func__, pmap, va);
1642 }
1643 #endif
1644 kpreempt_enable();
1645
1646 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
1647 }
1648
1649 /*
1650 * Routine: pmap_extract
1651 * Function:
1652 * Extract the physical page address associated
1653 * with the given map/virtual_address pair.
1654 */
1655 bool
1656 pmap_extract(pmap_t pmap, vaddr_t va, paddr_t *pap)
1657 {
1658 paddr_t pa;
1659
1660 if (pmap == pmap_kernel()) {
1661 if (pmap_md_direct_mapped_vaddr_p(va)) {
1662 pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
1663 goto done;
1664 }
1665 if (pmap_md_io_vaddr_p(va))
1666 panic("pmap_extract: io address %#"PRIxVADDR"", va);
1667
1668 if (va >= pmap_limits.virtual_end)
1669 panic("%s: illegal kernel mapped address %#"PRIxVADDR,
1670 __func__, va);
1671 }
1672 kpreempt_disable();
1673 const pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1674 if (ptep == NULL || !pte_valid_p(*ptep)) {
1675 kpreempt_enable();
1676 return false;
1677 }
1678 pa = pte_to_paddr(*ptep) | (va & PGOFSET);
1679 kpreempt_enable();
1680 done:
1681 if (pap != NULL) {
1682 *pap = pa;
1683 }
1684 return true;
1685 }
1686
1687 /*
1688 * Copy the range specified by src_addr/len
1689 * from the source map to the range dst_addr/len
1690 * in the destination map.
1691 *
1692 * This routine is only advisory and need not do anything.
1693 */
1694 void
1695 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vaddr_t dst_addr, vsize_t len,
1696 vaddr_t src_addr)
1697 {
1698 UVMHIST_FUNC(__func__);
1699 UVMHIST_CALLED(pmaphist);
1700 PMAP_COUNT(copy);
1701 }
1702
1703 /*
1704 * pmap_clear_reference:
1705 *
1706 * Clear the reference bit on the specified physical page.
1707 */
1708 bool
1709 pmap_clear_reference(struct vm_page *pg)
1710 {
1711 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1712
1713 UVMHIST_FUNC(__func__);
1714 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (pa %#jx))",
1715 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1716
1717 bool rv = pmap_page_clear_attributes(mdpg, VM_PAGEMD_REFERENCED);
1718
1719 UVMHIST_LOG(pmaphist, " <-- wasref %ju", rv, 0, 0, 0);
1720
1721 return rv;
1722 }
1723
1724 /*
1725 * pmap_is_referenced:
1726 *
1727 * Return whether or not the specified physical page is referenced
1728 * by any physical maps.
1729 */
1730 bool
1731 pmap_is_referenced(struct vm_page *pg)
1732 {
1733 return VM_PAGEMD_REFERENCED_P(VM_PAGE_TO_MD(pg));
1734 }
1735
1736 /*
1737 * Clear the modify bits on the specified physical page.
1738 */
1739 bool
1740 pmap_clear_modify(struct vm_page *pg)
1741 {
1742 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1743 pv_entry_t pv = &mdpg->mdpg_first;
1744 pv_entry_t pv_next;
1745
1746 UVMHIST_FUNC(__func__);
1747 UVMHIST_CALLARGS(pmaphist, "(pg=%#jx (%#jx))",
1748 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0,0);
1749 PMAP_COUNT(clear_modify);
1750
1751 if (VM_PAGEMD_EXECPAGE_P(mdpg)) {
1752 if (pv->pv_pmap == NULL) {
1753 UVMHIST_LOG(pmapexechist,
1754 "pg %#jx (pa %#jx): execpage cleared",
1755 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1756 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
1757 PMAP_COUNT(exec_uncached_clear_modify);
1758 } else {
1759 UVMHIST_LOG(pmapexechist,
1760 "pg %#jx (pa %#jx): syncicache performed",
1761 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), 0, 0);
1762 pmap_page_syncicache(pg);
1763 PMAP_COUNT(exec_synced_clear_modify);
1764 }
1765 }
1766 if (!pmap_page_clear_attributes(mdpg, VM_PAGEMD_MODIFIED)) {
1767 UVMHIST_LOG(pmaphist, " <-- false", 0, 0, 0, 0);
1768 return false;
1769 }
1770 if (pv->pv_pmap == NULL) {
1771 UVMHIST_LOG(pmaphist, " <-- true (no mappings)", 0, 0, 0, 0);
1772 return true;
1773 }
1774
1775 /*
1776 * remove write access from any pages that are dirty
1777 * so we can tell if they are written to again later.
1778 * flush the VAC first if there is one.
1779 */
1780 kpreempt_disable();
1781 VM_PAGEMD_PVLIST_READLOCK(mdpg);
1782 pmap_pvlist_check(mdpg);
1783 for (; pv != NULL; pv = pv_next) {
1784 pmap_t pmap = pv->pv_pmap;
1785 vaddr_t va = trunc_page(pv->pv_va);
1786
1787 pv_next = pv->pv_next;
1788 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1789 if (PV_ISKENTER_P(pv))
1790 continue;
1791 #endif
1792 pt_entry_t * const ptep = pmap_pte_lookup(pmap, va);
1793 KASSERT(ptep);
1794 pt_entry_t pte = pte_prot_nowrite(*ptep);
1795 if (*ptep == pte) {
1796 continue;
1797 }
1798 KASSERT(pte_valid_p(pte));
1799 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1800 pmap_tlb_miss_lock_enter();
1801 pte_set(ptep, pte);
1802 pmap_tlb_invalidate_addr(pmap, va);
1803 pmap_tlb_miss_lock_exit();
1804 pmap_update(pmap);
1805 if (__predict_false(gen != VM_PAGEMD_PVLIST_READLOCK(mdpg))) {
1806 /*
1807 * The list changed! So restart from the beginning.
1808 */
1809 pv_next = &mdpg->mdpg_first;
1810 pmap_pvlist_check(mdpg);
1811 }
1812 }
1813 pmap_pvlist_check(mdpg);
1814 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1815 kpreempt_enable();
1816
1817 UVMHIST_LOG(pmaphist, " <-- true (mappings changed)", 0, 0, 0, 0);
1818 return true;
1819 }
1820
1821 /*
1822 * pmap_is_modified:
1823 *
1824 * Return whether or not the specified physical page is modified
1825 * by any physical maps.
1826 */
1827 bool
1828 pmap_is_modified(struct vm_page *pg)
1829 {
1830 return VM_PAGEMD_MODIFIED_P(VM_PAGE_TO_MD(pg));
1831 }
1832
1833 /*
1834 * pmap_set_modified:
1835 *
1836 * Sets the page modified reference bit for the specified page.
1837 */
1838 void
1839 pmap_set_modified(paddr_t pa)
1840 {
1841 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
1842 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
1843 pmap_page_set_attributes(mdpg, VM_PAGEMD_MODIFIED|VM_PAGEMD_REFERENCED);
1844 }
1845
1846 /******************** pv_entry management ********************/
1847
1848 static void
1849 pmap_pvlist_check(struct vm_page_md *mdpg)
1850 {
1851 #ifdef DEBUG
1852 pv_entry_t pv = &mdpg->mdpg_first;
1853 if (pv->pv_pmap != NULL) {
1854 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1855 const u_int colormask = uvmexp.colormask;
1856 u_int colors = 0;
1857 #endif
1858 for (; pv != NULL; pv = pv->pv_next) {
1859 KASSERT(pv->pv_pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(pv->pv_va));
1860 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1861 colors |= __BIT(atop(pv->pv_va) & colormask);
1862 #endif
1863 }
1864 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1865 // Assert that if there is more than 1 color mapped, that the
1866 // page is uncached.
1867 KASSERTMSG(!pmap_md_virtual_cache_aliasing_p()
1868 || colors == 0 || (colors & (colors-1)) == 0
1869 || VM_PAGEMD_UNCACHED_P(mdpg), "colors=%#x uncached=%u",
1870 colors, VM_PAGEMD_UNCACHED_P(mdpg));
1871 #endif
1872 } else {
1873 KASSERT(pv->pv_next == NULL);
1874 }
1875 #endif /* DEBUG */
1876 }
1877
1878 /*
1879 * Enter the pmap and virtual address into the
1880 * physical to virtual map table.
1881 */
1882 void
1883 pmap_enter_pv(pmap_t pmap, vaddr_t va, paddr_t pa, struct vm_page_md *mdpg,
1884 pt_entry_t *nptep, u_int flags)
1885 {
1886 pv_entry_t pv, npv, apv;
1887 #ifdef UVMHIST
1888 bool first = false;
1889 struct vm_page *pg = VM_PAGEMD_VMPAGE_P(mdpg) ? VM_MD_TO_PAGE(mdpg) :
1890 NULL;
1891 #endif
1892
1893 UVMHIST_FUNC(__func__);
1894 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx va=%#jx pg=%#jx (%#jx)",
1895 (uintptr_t)pmap, va, (uintptr_t)pg, pa);
1896 UVMHIST_LOG(pmaphist, "nptep=%#jx (%#jx))",
1897 (uintptr_t)nptep, pte_value(*nptep), 0, 0);
1898
1899 KASSERT(kpreempt_disabled());
1900 KASSERT(pmap != pmap_kernel() || !pmap_md_direct_mapped_vaddr_p(va));
1901 KASSERTMSG(pmap != pmap_kernel() || !pmap_md_io_vaddr_p(va),
1902 "va %#"PRIxVADDR, va);
1903
1904 apv = NULL;
1905 VM_PAGEMD_PVLIST_LOCK(mdpg);
1906 again:
1907 pv = &mdpg->mdpg_first;
1908 pmap_pvlist_check(mdpg);
1909 if (pv->pv_pmap == NULL) {
1910 KASSERT(pv->pv_next == NULL);
1911 /*
1912 * No entries yet, use header as the first entry
1913 */
1914 PMAP_COUNT(primary_mappings);
1915 PMAP_COUNT(mappings);
1916 #ifdef UVMHIST
1917 first = true;
1918 #endif
1919 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1920 KASSERT(VM_PAGEMD_CACHED_P(mdpg));
1921 // If the new mapping has an incompatible color the last
1922 // mapping of this page, clean the page before using it.
1923 if (!PMAP_PAGE_COLOROK_P(va, pv->pv_va)) {
1924 pmap_md_vca_clean(mdpg, PMAP_WBINV);
1925 }
1926 #endif
1927 pv->pv_pmap = pmap;
1928 pv->pv_va = va | flags;
1929 } else {
1930 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1931 if (pmap_md_vca_add(mdpg, va, nptep)) {
1932 goto again;
1933 }
1934 #endif
1935
1936 /*
1937 * There is at least one other VA mapping this page.
1938 * Place this entry after the header.
1939 *
1940 * Note: the entry may already be in the table if
1941 * we are only changing the protection bits.
1942 */
1943
1944 for (npv = pv; npv; npv = npv->pv_next) {
1945 if (pmap == npv->pv_pmap
1946 && va == trunc_page(npv->pv_va)) {
1947 #ifdef PARANOIADIAG
1948 pt_entry_t *ptep = pmap_pte_lookup(pmap, va);
1949 pt_entry_t pte = (ptep != NULL) ? *ptep : 0;
1950 if (!pte_valid_p(pte) || pte_to_paddr(pte) != pa)
1951 printf("%s: found va %#"PRIxVADDR
1952 " pa %#"PRIxPADDR
1953 " in pv_table but != %#"PRIxPTE"\n",
1954 __func__, va, pa, pte_value(pte));
1955 #endif
1956 PMAP_COUNT(remappings);
1957 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1958 if (__predict_false(apv != NULL))
1959 pmap_pv_free(apv);
1960
1961 UVMHIST_LOG(pmaphist,
1962 " <-- done pv=%#jx (reused)",
1963 (uintptr_t)pv, 0, 0, 0);
1964 return;
1965 }
1966 }
1967 if (__predict_true(apv == NULL)) {
1968 /*
1969 * To allocate a PV, we have to release the PVLIST lock
1970 * so get the page generation. We allocate the PV, and
1971 * then reacquire the lock.
1972 */
1973 pmap_pvlist_check(mdpg);
1974 const uintptr_t gen = VM_PAGEMD_PVLIST_UNLOCK(mdpg);
1975
1976 apv = (pv_entry_t)pmap_pv_alloc();
1977 if (apv == NULL)
1978 panic("pmap_enter_pv: pmap_pv_alloc() failed");
1979
1980 /*
1981 * If the generation has changed, then someone else
1982 * tinkered with this page so we should start over.
1983 */
1984 if (gen != VM_PAGEMD_PVLIST_LOCK(mdpg))
1985 goto again;
1986 }
1987 npv = apv;
1988 apv = NULL;
1989 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
1990 /*
1991 * If need to deal with virtual cache aliases, keep mappings
1992 * in the kernel pmap at the head of the list. This allows
1993 * the VCA code to easily use them for cache operations if
1994 * present.
1995 */
1996 pmap_t kpmap = pmap_kernel();
1997 if (pmap != kpmap) {
1998 while (pv->pv_pmap == kpmap && pv->pv_next != NULL) {
1999 pv = pv->pv_next;
2000 }
2001 }
2002 #endif
2003 npv->pv_va = va | flags;
2004 npv->pv_pmap = pmap;
2005 npv->pv_next = pv->pv_next;
2006 pv->pv_next = npv;
2007 PMAP_COUNT(mappings);
2008 }
2009 pmap_pvlist_check(mdpg);
2010 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2011 if (__predict_false(apv != NULL))
2012 pmap_pv_free(apv);
2013
2014 UVMHIST_LOG(pmaphist, " <-- done pv=%#jx (first %ju)", (uintptr_t)pv,
2015 first, 0, 0);
2016 }
2017
2018 /*
2019 * Remove a physical to virtual address translation.
2020 * If cache was inhibited on this page, and there are no more cache
2021 * conflicts, restore caching.
2022 * Flush the cache if the last page is removed (should always be cached
2023 * at this point).
2024 */
2025 void
2026 pmap_remove_pv(pmap_t pmap, vaddr_t va, struct vm_page *pg, bool dirty)
2027 {
2028 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2029 pv_entry_t pv, npv;
2030 bool last;
2031
2032 UVMHIST_FUNC(__func__);
2033 UVMHIST_CALLARGS(pmaphist, "(pmap=%#jx, va=%#jx, pg=%#jx (pa %#jx)",
2034 (uintptr_t)pmap, va, (uintptr_t)pg, VM_PAGE_TO_PHYS(pg));
2035 UVMHIST_LOG(pmaphist, "dirty=%ju)", dirty, 0, 0, 0);
2036
2037 KASSERT(kpreempt_disabled());
2038 KASSERT((va & PAGE_MASK) == 0);
2039 pv = &mdpg->mdpg_first;
2040
2041 VM_PAGEMD_PVLIST_LOCK(mdpg);
2042 pmap_pvlist_check(mdpg);
2043
2044 /*
2045 * If it is the first entry on the list, it is actually
2046 * in the header and we must copy the following entry up
2047 * to the header. Otherwise we must search the list for
2048 * the entry. In either case we free the now unused entry.
2049 */
2050
2051 last = false;
2052 if (pmap == pv->pv_pmap && va == trunc_page(pv->pv_va)) {
2053 npv = pv->pv_next;
2054 if (npv) {
2055 *pv = *npv;
2056 KASSERT(pv->pv_pmap != NULL);
2057 } else {
2058 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2059 pmap_page_clear_attributes(mdpg, VM_PAGEMD_UNCACHED);
2060 #endif
2061 pv->pv_pmap = NULL;
2062 last = true; /* Last mapping removed */
2063 }
2064 PMAP_COUNT(remove_pvfirst);
2065 } else {
2066 for (npv = pv->pv_next; npv; pv = npv, npv = npv->pv_next) {
2067 PMAP_COUNT(remove_pvsearch);
2068 if (pmap == npv->pv_pmap && va == trunc_page(npv->pv_va))
2069 break;
2070 }
2071 if (npv) {
2072 pv->pv_next = npv->pv_next;
2073 }
2074 }
2075
2076 pmap_pvlist_check(mdpg);
2077 VM_PAGEMD_PVLIST_UNLOCK(mdpg);
2078
2079 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2080 pmap_md_vca_remove(pg, va, dirty, last);
2081 #endif
2082
2083 /*
2084 * Free the pv_entry if needed.
2085 */
2086 if (npv)
2087 pmap_pv_free(npv);
2088 if (VM_PAGEMD_EXECPAGE_P(mdpg) && dirty) {
2089 if (last) {
2090 /*
2091 * If this was the page's last mapping, we no longer
2092 * care about its execness.
2093 */
2094 UVMHIST_LOG(pmapexechist,
2095 "pg %#jx (pa %#jx)last %ju: execpage cleared",
2096 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2097 pmap_page_clear_attributes(mdpg, VM_PAGEMD_EXECPAGE);
2098 PMAP_COUNT(exec_uncached_remove);
2099 } else {
2100 /*
2101 * Someone still has it mapped as an executable page
2102 * so we must sync it.
2103 */
2104 UVMHIST_LOG(pmapexechist,
2105 "pg %#jx (pa %#jx) last %ju: performed syncicache",
2106 (uintptr_t)pg, VM_PAGE_TO_PHYS(pg), last, 0);
2107 pmap_page_syncicache(pg);
2108 PMAP_COUNT(exec_synced_remove);
2109 }
2110 }
2111
2112 UVMHIST_LOG(pmaphist, " <-- done", 0, 0, 0, 0);
2113 }
2114
2115 #if defined(MULTIPROCESSOR)
2116 struct pmap_pvlist_info {
2117 kmutex_t *pli_locks[PAGE_SIZE / 32];
2118 volatile u_int pli_lock_refs[PAGE_SIZE / 32];
2119 volatile u_int pli_lock_index;
2120 u_int pli_lock_mask;
2121 } pmap_pvlist_info;
2122
2123 void
2124 pmap_pvlist_lock_init(size_t cache_line_size)
2125 {
2126 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2127 const vaddr_t lock_page = uvm_pageboot_alloc(PAGE_SIZE);
2128 vaddr_t lock_va = lock_page;
2129 if (sizeof(kmutex_t) > cache_line_size) {
2130 cache_line_size = roundup2(sizeof(kmutex_t), cache_line_size);
2131 }
2132 const size_t nlocks = PAGE_SIZE / cache_line_size;
2133 KASSERT((nlocks & (nlocks - 1)) == 0);
2134 /*
2135 * Now divide the page into a number of mutexes, one per cacheline.
2136 */
2137 for (size_t i = 0; i < nlocks; lock_va += cache_line_size, i++) {
2138 kmutex_t * const lock = (kmutex_t *)lock_va;
2139 mutex_init(lock, MUTEX_DEFAULT, IPL_HIGH);
2140 pli->pli_locks[i] = lock;
2141 }
2142 pli->pli_lock_mask = nlocks - 1;
2143 }
2144
2145 kmutex_t *
2146 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2147 {
2148 struct pmap_pvlist_info * const pli = &pmap_pvlist_info;
2149 kmutex_t *lock = mdpg->mdpg_lock;
2150
2151 /*
2152 * Allocate a lock on an as-needed basis. This will hopefully give us
2153 * semi-random distribution not based on page color.
2154 */
2155 if (__predict_false(lock == NULL)) {
2156 size_t locknum = atomic_add_int_nv(&pli->pli_lock_index, 37);
2157 size_t lockid = locknum & pli->pli_lock_mask;
2158 kmutex_t * const new_lock = pli->pli_locks[lockid];
2159 /*
2160 * Set the lock. If some other thread already did, just use
2161 * the one they assigned.
2162 */
2163 lock = atomic_cas_ptr(&mdpg->mdpg_lock, NULL, new_lock);
2164 if (lock == NULL) {
2165 lock = new_lock;
2166 atomic_inc_uint(&pli->pli_lock_refs[lockid]);
2167 }
2168 }
2169
2170 /*
2171 * Now finally provide the lock.
2172 */
2173 return lock;
2174 }
2175 #else /* !MULTIPROCESSOR */
2176 void
2177 pmap_pvlist_lock_init(size_t cache_line_size)
2178 {
2179 mutex_init(&pmap_pvlist_mutex, MUTEX_DEFAULT, IPL_HIGH);
2180 }
2181
2182 #ifdef MODULAR
2183 kmutex_t *
2184 pmap_pvlist_lock_addr(struct vm_page_md *mdpg)
2185 {
2186 /*
2187 * We just use a global lock.
2188 */
2189 if (__predict_false(mdpg->mdpg_lock == NULL)) {
2190 mdpg->mdpg_lock = &pmap_pvlist_mutex;
2191 }
2192
2193 /*
2194 * Now finally provide the lock.
2195 */
2196 return mdpg->mdpg_lock;
2197 }
2198 #endif /* MODULAR */
2199 #endif /* !MULTIPROCESSOR */
2200
2201 /*
2202 * pmap_pv_page_alloc:
2203 *
2204 * Allocate a page for the pv_entry pool.
2205 */
2206 void *
2207 pmap_pv_page_alloc(struct pool *pp, int flags)
2208 {
2209 struct vm_page * const pg = PMAP_ALLOC_POOLPAGE(UVM_PGA_USERESERVE);
2210 if (pg == NULL)
2211 return NULL;
2212
2213 return (void *)pmap_map_poolpage(VM_PAGE_TO_PHYS(pg));
2214 }
2215
2216 /*
2217 * pmap_pv_page_free:
2218 *
2219 * Free a pv_entry pool page.
2220 */
2221 void
2222 pmap_pv_page_free(struct pool *pp, void *v)
2223 {
2224 vaddr_t va = (vaddr_t)v;
2225
2226 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2227 const paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2228 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2229 KASSERT(pg != NULL);
2230 #ifdef PMAP_VIRTUAL_CACHE_ALIASES
2231 kpreempt_disable();
2232 pmap_md_vca_remove(pg, va, true, true);
2233 kpreempt_enable();
2234 #endif
2235 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2236 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2237 uvm_pagefree(pg);
2238 }
2239
2240 #ifdef PMAP_PREFER
2241 /*
2242 * Find first virtual address >= *vap that doesn't cause
2243 * a cache alias conflict.
2244 */
2245 void
2246 pmap_prefer(vaddr_t foff, vaddr_t *vap, vsize_t sz, int td)
2247 {
2248 vsize_t prefer_mask = ptoa(uvmexp.colormask);
2249
2250 PMAP_COUNT(prefer_requests);
2251
2252 prefer_mask |= pmap_md_cache_prefer_mask();
2253
2254 if (prefer_mask) {
2255 vaddr_t va = *vap;
2256 vsize_t d = (foff - va) & prefer_mask;
2257 if (d) {
2258 if (td)
2259 *vap = trunc_page(va - ((-d) & prefer_mask));
2260 else
2261 *vap = round_page(va + d);
2262 PMAP_COUNT(prefer_adjustments);
2263 }
2264 }
2265 }
2266 #endif /* PMAP_PREFER */
2267
2268 #ifdef PMAP_MAP_POOLPAGE
2269 vaddr_t
2270 pmap_map_poolpage(paddr_t pa)
2271 {
2272 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2273 KASSERT(pg);
2274
2275 struct vm_page_md * const mdpg = VM_PAGE_TO_MD(pg);
2276 KASSERT(!VM_PAGEMD_EXECPAGE_P(mdpg));
2277
2278 pmap_page_set_attributes(mdpg, VM_PAGEMD_POOLPAGE);
2279
2280 return pmap_md_map_poolpage(pa, NBPG);
2281 }
2282
2283 paddr_t
2284 pmap_unmap_poolpage(vaddr_t va)
2285 {
2286 KASSERT(pmap_md_direct_mapped_vaddr_p(va));
2287 paddr_t pa = pmap_md_direct_mapped_vaddr_to_paddr(va);
2288
2289 struct vm_page * const pg = PHYS_TO_VM_PAGE(pa);
2290 KASSERT(pg != NULL);
2291 KASSERT(!VM_PAGEMD_EXECPAGE_P(VM_PAGE_TO_MD(pg)));
2292
2293 pmap_page_clear_attributes(VM_PAGE_TO_MD(pg), VM_PAGEMD_POOLPAGE);
2294 pmap_md_unmap_poolpage(va, NBPG);
2295
2296 return pa;
2297 }
2298 #endif /* PMAP_MAP_POOLPAGE */
2299