pmap_tlb.c revision 1.1 1 1.1 christos /* $NetBSD: pmap_tlb.c,v 1.1 2012/10/03 00:51:47 christos Exp $ */
2 1.1 christos
3 1.1 christos /*-
4 1.1 christos * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 1.1 christos * All rights reserved.
6 1.1 christos *
7 1.1 christos * This code is derived from software contributed to The NetBSD Foundation
8 1.1 christos * by Matt Thomas at 3am Software Foundry.
9 1.1 christos *
10 1.1 christos * Redistribution and use in source and binary forms, with or without
11 1.1 christos * modification, are permitted provided that the following conditions
12 1.1 christos * are met:
13 1.1 christos * 1. Redistributions of source code must retain the above copyright
14 1.1 christos * notice, this list of conditions and the following disclaimer.
15 1.1 christos * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 christos * notice, this list of conditions and the following disclaimer in the
17 1.1 christos * documentation and/or other materials provided with the distribution.
18 1.1 christos *
19 1.1 christos * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 christos * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 christos * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 christos * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 christos * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 christos * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 christos * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 christos * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 christos * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 christos * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 christos * POSSIBILITY OF SUCH DAMAGE.
30 1.1 christos */
31 1.1 christos
32 1.1 christos #include <sys/cdefs.h>
33 1.1 christos
34 1.1 christos __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.1 2012/10/03 00:51:47 christos Exp $");
35 1.1 christos
36 1.1 christos /*
37 1.1 christos * Manages address spaces in a TLB.
38 1.1 christos *
39 1.1 christos * Normally there is a 1:1 mapping between a TLB and a CPU. However, some
40 1.1 christos * implementations may share a TLB between multiple CPUs (really CPU thread
41 1.1 christos * contexts). This requires the TLB abstraction to be separated from the
42 1.1 christos * CPU abstraction. It also requires that the TLB be locked while doing
43 1.1 christos * TLB activities.
44 1.1 christos *
45 1.1 christos * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps
46 1.1 christos * that have a valid ASID.
47 1.1 christos *
48 1.1 christos * We allocate ASIDs in increasing order until we have exhausted the supply,
49 1.1 christos * then reinitialize the ASID space, and start allocating again at 1. When
50 1.1 christos * allocating from the ASID bitmap, we skip any ASID who has a corresponding
51 1.1 christos * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill
52 1.1 christos * and, when completely filled, a reinitialization of the ASID space.
53 1.1 christos *
54 1.1 christos * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs
55 1.1 christos * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries
56 1.1 christos * in TLB consume more than half of the ASID space, all ASIDs are invalidated,
57 1.1 christos * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise,
58 1.1 christos * (the normal case), any ASID present in the TLB (even those which are no
59 1.1 christos * longer used by a pmap) will remain active (allocated) and all other ASIDs
60 1.1 christos * will be freed. If the size of the TLB is much smaller than the ASID space,
61 1.1 christos * this algorithm completely avoids TLB invalidation.
62 1.1 christos *
63 1.1 christos * For multiprocessors, we also have to deal TLB invalidation requests from
64 1.1 christos * other CPUs, some of which are dealt with the reinitialization of the ASID
65 1.1 christos * space. Whereas above we keep the ASIDs of those pmaps which have active
66 1.1 christos * TLB entries, this type of reinitialization preserves the ASIDs of any
67 1.1 christos * "onproc" user pmap and all other ASIDs will be freed. We must do this
68 1.1 christos * since we can't change the current ASID.
69 1.1 christos *
70 1.1 christos * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active
71 1.1 christos * indicates whether that pmap has an allocated ASID for a CPU. Each bit in
72 1.1 christos * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0
73 1.1 christos * register EntryHi) on a CPU. The bit number comes from the CPU's cpu_index().
74 1.1 christos * Even though these bitmaps contain the bits for all CPUs, the bits that
75 1.1 christos * correspond to the bits belonging to the CPUs sharing a TLB can only be
76 1.1 christos * manipulated while holding that TLB's lock. Atomic ops must be used to
77 1.1 christos * update them since multiple CPUs may be changing different sets of bits at
78 1.1 christos * same time but these sets never overlap.
79 1.1 christos *
80 1.1 christos * When a change to the local TLB may require a change in the TLB's of other
81 1.1 christos * CPUs, we try to avoid sending an IPI if at all possible. For instance, if
82 1.1 christos * we are updating a PTE and that PTE previously was invalid and therefore
83 1.1 christos * couldn't support an active mapping, there's no need for an IPI since there
84 1.1 christos * can't be a TLB entry to invalidate. The other case is when we change a PTE
85 1.1 christos * to be modified we just update the local TLB. If another TLB has a stale
86 1.1 christos * entry, a TLB MOD exception will be raised and that will cause the local TLB
87 1.1 christos * to be updated.
88 1.1 christos *
89 1.1 christos * We never need to update a non-local TLB if the pmap doesn't have a valid
90 1.1 christos * ASID for that TLB. If it does have a valid ASID but isn't current "onproc"
91 1.1 christos * we simply reset its ASID for that TLB and then when it goes "onproc" it
92 1.1 christos * will allocate a new ASID and any existing TLB entries will be orphaned.
93 1.1 christos * Only in the case that pmap has an "onproc" ASID do we actually have to send
94 1.1 christos * an IPI.
95 1.1 christos *
96 1.1 christos * Once we determined we must send an IPI to shootdown a TLB, we need to send
97 1.1 christos * it to one of CPUs that share that TLB. We choose the lowest numbered CPU
98 1.1 christos * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that
99 1.1 christos * TLB would do, but interrupting an active CPU seems best.
100 1.1 christos *
101 1.1 christos * A TLB might have multiple shootdowns active concurrently. The shootdown
102 1.1 christos * logic compresses these into a few cases:
103 1.1 christos * 0) nobody needs to have its TLB entries invalidated
104 1.1 christos * 1) one ASID needs to have its TLB entries invalidated
105 1.1 christos * 2) more than one ASID needs to have its TLB entries invalidated
106 1.1 christos * 3) the kernel needs to have its TLB entries invalidated
107 1.1 christos * 4) the kernel and one or more ASID need their TLB entries invalidated.
108 1.1 christos *
109 1.1 christos * And for each case we do:
110 1.1 christos * 0) nothing,
111 1.1 christos * 1) if that ASID is still "onproc", we invalidate the TLB entries for
112 1.1 christos * that single ASID. If not, just reset the pmap's ASID to invalidate
113 1.1 christos * and let it allocate a new ASID the next time it goes "onproc",
114 1.1 christos * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and
115 1.1 christos * invalidate all non-wired non-global TLB entries,
116 1.1 christos * 3) we invalidate all of the non-wired global TLB entries,
117 1.1 christos * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs)
118 1.1 christos * invalidate all non-wired TLB entries.
119 1.1 christos *
120 1.1 christos * As you can see, shootdowns are not concerned with addresses, just address
121 1.1 christos * spaces. Since the number of TLB entries is usually quite small, this avoids
122 1.1 christos * a lot of overhead for not much gain.
123 1.1 christos */
124 1.1 christos
125 1.1 christos #define __PMAP_PRIVATE
126 1.1 christos
127 1.1 christos #include "opt_multiprocessor.h"
128 1.1 christos
129 1.1 christos #include <sys/param.h>
130 1.1 christos #include <sys/systm.h>
131 1.1 christos #include <sys/proc.h>
132 1.1 christos #include <sys/mutex.h>
133 1.1 christos #include <sys/atomic.h>
134 1.1 christos #include <sys/kernel.h> /* for cold */
135 1.1 christos #include <sys/cpu.h>
136 1.1 christos
137 1.1 christos #include <uvm/uvm.h>
138 1.1 christos
139 1.1 christos static kmutex_t pmap_tlb0_mutex __cacheline_aligned;
140 1.1 christos
141 1.1 christos #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0)
142 1.1 christos
143 1.1 christos struct pmap_tlb_info pmap_tlb0_info = {
144 1.1 christos .ti_name = "tlb0",
145 1.1 christos .ti_asid_hint = KERNEL_PID + 1,
146 1.1 christos #ifdef PMAP_TLB_NUM_PIDS
147 1.1 christos .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1),
148 1.1 christos .ti_asids_free = IFCONSTANT(PMAP_TLB_NUM_PIDS - (KERNEL_PID + 1)),
149 1.1 christos #endif
150 1.1 christos .ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1,
151 1.1 christos #ifdef PMAP_TLB_WIRED_UPAGES
152 1.1 christos .ti_wired = PMAP_TLB_WIRED_UPAGES,
153 1.1 christos #endif
154 1.1 christos .ti_lock = &pmap_tlb0_mutex,
155 1.1 christos .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais),
156 1.1 christos #if defined(MULTIPROCESSOR)
157 1.1 christos .ti_cpu_mask = 1,
158 1.1 christos .ti_tlbinvop = TLBINV_NOBODY,
159 1.1 christos #endif
160 1.1 christos };
161 1.1 christos
162 1.1 christos #undef IFCONSTANT
163 1.1 christos
164 1.1 christos #if defined(MULTIPROCESSOR)
165 1.1 christos struct pmap_tlb_info *pmap_tlbs[MAXCPUS] = {
166 1.1 christos [0] = &pmap_tlb0_info,
167 1.1 christos };
168 1.1 christos u_int pmap_ntlbs = 1;
169 1.1 christos #endif
170 1.1 christos
171 1.1 christos #define __BITMAP_SET(bm, n) \
172 1.1 christos ((bm)[(n) / (8*sizeof(bm[0]))] |= 1LU << ((n) % (8*sizeof(bm[0]))))
173 1.1 christos #define __BITMAP_CLR(bm, n) \
174 1.1 christos ((bm)[(n) / (8*sizeof(bm[0]))] &= ~(1LU << ((n) % (8*sizeof(bm[0])))))
175 1.1 christos #define __BITMAP_ISSET_P(bm, n) \
176 1.1 christos (((bm)[(n) / (8*sizeof(bm[0]))] & (1LU << ((n) % (8*sizeof(bm[0]))))) != 0)
177 1.1 christos
178 1.1 christos #define TLBINFO_ASID_MARK_USED(ti, asid) \
179 1.1 christos __BITMAP_SET((ti)->ti_asid_bitmap, (asid))
180 1.1 christos #define TLBINFO_ASID_INUSE_P(ti, asid) \
181 1.1 christos __BITMAP_ISSET_P((ti)->ti_asid_bitmap, (asid))
182 1.1 christos
183 1.1 christos static void
184 1.1 christos pmap_pai_check(struct pmap_tlb_info *ti)
185 1.1 christos {
186 1.1 christos #ifdef DIAGNOSTIC
187 1.1 christos struct pmap_asid_info *pai;
188 1.1 christos LIST_FOREACH(pai, &ti->ti_pais, pai_link) {
189 1.1 christos KASSERT(pai != NULL);
190 1.1 christos KASSERT(PAI_PMAP(pai, ti) != pmap_kernel());
191 1.1 christos KASSERT(pai->pai_asid > KERNEL_PID);
192 1.1 christos KASSERT(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid));
193 1.1 christos }
194 1.1 christos #endif
195 1.1 christos }
196 1.1 christos
197 1.1 christos static inline void
198 1.1 christos pmap_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai,
199 1.1 christos struct pmap *pm)
200 1.1 christos {
201 1.1 christos /*
202 1.1 christos * We must have an ASID but it must not be onproc (on a processor).
203 1.1 christos */
204 1.1 christos KASSERT(pai->pai_asid > KERNEL_PID);
205 1.1 christos #if defined(MULTIPROCESSOR)
206 1.1 christos KASSERT((pm->pm_onproc & ti->ti_cpu_mask) == 0);
207 1.1 christos #endif
208 1.1 christos LIST_REMOVE(pai, pai_link);
209 1.1 christos #ifdef DIAGNOSTIC
210 1.1 christos pai->pai_link.le_prev = NULL; /* tagged as unlinked */
211 1.1 christos #endif
212 1.1 christos /*
213 1.1 christos * Note that we don't mark the ASID as not in use in the TLB's ASID
214 1.1 christos * bitmap (thus it can't be allocated until the ASID space is exhausted
215 1.1 christos * and therefore reinitialized). We don't want to flush the TLB for
216 1.1 christos * entries belonging to this ASID so we will let natural TLB entry
217 1.1 christos * replacement flush them out of the TLB. Any new entries for this
218 1.1 christos * pmap will need a new ASID allocated.
219 1.1 christos */
220 1.1 christos pai->pai_asid = 0;
221 1.1 christos
222 1.1 christos #if defined(MULTIPROCESSOR)
223 1.1 christos /*
224 1.1 christos * The bits in pm_active belonging to this TLB can only be changed
225 1.1 christos * while this TLB's lock is held.
226 1.1 christos */
227 1.1 christos CPUSET_DELSET(pm->pm_active, ti->ti_cpu_mask);
228 1.1 christos #endif /* MULTIPROCESSOR */
229 1.1 christos }
230 1.1 christos
231 1.1 christos void
232 1.1 christos pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti)
233 1.1 christos {
234 1.1 christos #if defined(MULTIPROCESSOR)
235 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired,
236 1.1 christos EVCNT_TYPE_MISC, NULL,
237 1.1 christos ti->ti_name, "icache syncs desired");
238 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts,
239 1.1 christos EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
240 1.1 christos ti->ti_name, "icache sync asts");
241 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all,
242 1.1 christos EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
243 1.1 christos ti->ti_name, "icache full syncs");
244 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages,
245 1.1 christos EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
246 1.1 christos ti->ti_name, "icache pages synced");
247 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate,
248 1.1 christos EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
249 1.1 christos ti->ti_name, "icache dup pages skipped");
250 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred,
251 1.1 christos EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
252 1.1 christos ti->ti_name, "icache pages deferred");
253 1.1 christos #endif /* MULTIPROCESSOR */
254 1.1 christos evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits,
255 1.1 christos EVCNT_TYPE_MISC, NULL,
256 1.1 christos ti->ti_name, "asid pool reinit");
257 1.1 christos }
258 1.1 christos
259 1.1 christos void
260 1.1 christos pmap_tlb_info_init(struct pmap_tlb_info *ti)
261 1.1 christos {
262 1.1 christos #if defined(MULTIPROCESSOR)
263 1.1 christos if (ti != &pmap_tlb0_info) {
264 1.1 christos
265 1.1 christos KASSERT(pmap_tlbs[pmap_ntlbs] == NULL);
266 1.1 christos
267 1.1 christos ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
268 1.1 christos ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
269 1.1 christos ti->ti_asid_hint = KERNEL_PID + 1;
270 1.1 christos ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max;
271 1.1 christos ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
272 1.1 christos ti->ti_tlbinvop = TLBINV_NOBODY,
273 1.1 christos ti->ti_victim = NULL;
274 1.1 christos ti->ti_cpu_mask = 0;
275 1.1 christos ti->ti_index = pmap_ntlbs++;
276 1.1 christos ti->ti_wired = 0;
277 1.1 christos pmap_tlbs[ti->ti_index] = ti;
278 1.1 christos snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u",
279 1.1 christos ti->ti_index);
280 1.1 christos pmap_tlb_info_evcnt_attach(ti);
281 1.1 christos return;
282 1.1 christos }
283 1.1 christos #endif /* MULTIPROCESSOR */
284 1.1 christos KASSERT(ti == &pmap_tlb0_info);
285 1.1 christos mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED);
286 1.1 christos if (ti->ti_asid_max == 0) {
287 1.1 christos ti->ti_asid_max = pmap_md_tlb_asid_max();
288 1.1 christos ti->ti_asids_free = ti->ti_asid_max - (KERNEL_PID + 1);
289 1.1 christos }
290 1.1 christos
291 1.1 christos KASSERT(ti->ti_asid_max < sizeof(ti->ti_asid_bitmap)*8);
292 1.1 christos }
293 1.1 christos
294 1.1 christos #if defined(MULTIPROCESSOR)
295 1.1 christos void
296 1.1 christos pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
297 1.1 christos {
298 1.1 christos KASSERT(!CPU_IS_PRIMARY(ci));
299 1.1 christos KASSERT(ci->ci_data.cpu_idlelwp != NULL);
300 1.1 christos KASSERT(cold);
301 1.1 christos
302 1.1 christos TLBINFO_LOCK(ti);
303 1.1 christos const __cpuset_t cpu_mask = CPUSET_SINGLE(cpu_index(ci));
304 1.1 christos CPUSET_ADDSET(ti->ti_cpu_mask, cpu_mask);
305 1.1 christos ci->ci_tlb_info = ti;
306 1.1 christos
307 1.1 christos /*
308 1.1 christos * Do any MD tlb info init.
309 1.1 christos */
310 1.1 christos pmap_md_tlb_info_attach(ti, ci);
311 1.1 christos
312 1.1 christos /*
313 1.1 christos * Mark the kernel as active and "onproc" for this cpu. We assume
314 1.1 christos * we are the only CPU running so atomic ops are not needed.
315 1.1 christos */
316 1.1 christos CPUSET_ADDSET(pmap_kernel()->pm_active, cpu_mask);
317 1.1 christos CPUSET_ADDSET(pmap_kernel()->pm_onproc, cpu_mask);
318 1.1 christos TLBINFO_UNLOCK(ti);
319 1.1 christos }
320 1.1 christos #endif /* MULTIPROCESSOR */
321 1.1 christos
322 1.1 christos #ifdef DIAGNOSTIC
323 1.1 christos static size_t
324 1.1 christos pmap_tlb_asid_count(struct pmap_tlb_info *ti)
325 1.1 christos {
326 1.1 christos size_t count = 0;
327 1.1 christos for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) {
328 1.1 christos count += TLBINFO_ASID_INUSE_P(ti, asid);
329 1.1 christos }
330 1.1 christos return count;
331 1.1 christos }
332 1.1 christos #endif
333 1.1 christos
334 1.1 christos static void
335 1.1 christos pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op)
336 1.1 christos {
337 1.1 christos const size_t asid_bitmap_words =
338 1.1 christos ti->ti_asid_max / (8 * sizeof(ti->ti_asid_bitmap[0]));
339 1.1 christos
340 1.1 christos pmap_pai_check(ti);
341 1.1 christos
342 1.1 christos /*
343 1.1 christos * First, clear the ASID bitmap (except for ASID 0 which belongs
344 1.1 christos * to the kernel).
345 1.1 christos */
346 1.1 christos ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
347 1.1 christos ti->ti_asid_hint = KERNEL_PID + 1;
348 1.1 christos ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
349 1.1 christos for (size_t word = 1; word <= asid_bitmap_words; word++) {
350 1.1 christos ti->ti_asid_bitmap[word] = 0;
351 1.1 christos }
352 1.1 christos
353 1.1 christos switch (op) {
354 1.1 christos #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
355 1.1 christos case TLBINV_ALL:
356 1.1 christos tlb_invalidate_all();
357 1.1 christos break;
358 1.1 christos case TLBINV_ALLUSER:
359 1.1 christos tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
360 1.1 christos break;
361 1.1 christos #endif /* MULTIPROCESSOR && PMAP_NEED_TLB_SHOOTDOWN */
362 1.1 christos case TLBINV_NOBODY: {
363 1.1 christos /*
364 1.1 christos * If we are just reclaiming ASIDs in the TLB, let's go find
365 1.1 christos * what ASIDs are in use in the TLB. Since this is a
366 1.1 christos * semi-expensive operation, we don't want to do it too often.
367 1.1 christos * So if more half of the ASIDs are in use, we don't have
368 1.1 christos * enough free ASIDs so invalidate the TLB entries with ASIDs
369 1.1 christos * and clear the ASID bitmap. That will force everyone to
370 1.1 christos * allocate a new ASID.
371 1.1 christos */
372 1.1 christos #if !defined(MULTIPROCESSOR) || defined(PMAP_NEED_TLB_SHOOTDOWN)
373 1.1 christos pmap_tlb_asid_check();
374 1.1 christos const u_int asids_found = tlb_record_asids(ti->ti_asid_bitmap);
375 1.1 christos pmap_tlb_asid_check();
376 1.1 christos KASSERT(asids_found == pmap_tlb_asid_count(ti));
377 1.1 christos if (__predict_false(asids_found >= ti->ti_asid_max / 2)) {
378 1.1 christos tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
379 1.1 christos #else /* MULTIPROCESSOR && !PMAP_NEED_TLB_SHOOTDOWN */
380 1.1 christos /*
381 1.1 christos * For those systems (PowerPC) that don't need require
382 1.1 christos * cross cpu TLB shootdowns, we have to invalidate the
383 1.1 christos * entire TLB because we can't record the ASIDs in use
384 1.1 christos * on the other CPUs. This is hopefully cheaper than
385 1.1 christos * than trying to use an IPI to record all the ASIDs
386 1.1 christos * on all the CPUs (which would be a synchronization
387 1.1 christos * nightmare).
388 1.1 christos */
389 1.1 christos tlb_invalidate_all();
390 1.1 christos #endif /* MULTIPROCESSOR && !PMAP_NEED_TLB_SHOOTDOWN */
391 1.1 christos ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
392 1.1 christos for (size_t word = 1;
393 1.1 christos word <= asid_bitmap_words;
394 1.1 christos word++) {
395 1.1 christos ti->ti_asid_bitmap[word] = 0;
396 1.1 christos }
397 1.1 christos #if !defined(MULTIPROCESSOR) || defined(PMAP_NEED_TLB_SHOOTDOWN)
398 1.1 christos } else {
399 1.1 christos ti->ti_asids_free -= asids_found;
400 1.1 christos }
401 1.1 christos #endif /* !MULTIPROCESSOR || PMAP_NEED_TLB_SHOOTDOWN */
402 1.1 christos break;
403 1.1 christos }
404 1.1 christos default:
405 1.1 christos panic("%s: unexpected op %d", __func__, op);
406 1.1 christos }
407 1.1 christos
408 1.1 christos /*
409 1.1 christos * Now go through the active ASIDs. If the ASID is on a processor or
410 1.1 christos * we aren't invalidating all ASIDs and the TLB has an entry owned by
411 1.1 christos * that ASID, mark it as in use. Otherwise release the ASID.
412 1.1 christos */
413 1.1 christos struct pmap_asid_info *pai, *next;
414 1.1 christos for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) {
415 1.1 christos struct pmap * const pm = PAI_PMAP(pai, ti);
416 1.1 christos next = LIST_NEXT(pai, pai_link);
417 1.1 christos KASSERT(pm != pmap_kernel());
418 1.1 christos KASSERT(pai->pai_asid > KERNEL_PID);
419 1.1 christos #if defined(MULTIPROCESSOR)
420 1.1 christos if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask))) {
421 1.1 christos if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
422 1.1 christos TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
423 1.1 christos ti->ti_asids_free--;
424 1.1 christos }
425 1.1 christos continue;
426 1.1 christos }
427 1.1 christos #endif /* MULTIPROCESSOR */
428 1.1 christos if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
429 1.1 christos KASSERT(op == TLBINV_NOBODY);
430 1.1 christos } else {
431 1.1 christos pmap_pai_reset(ti, pai, pm);
432 1.1 christos }
433 1.1 christos }
434 1.1 christos #ifdef DIAGNOSTIC
435 1.1 christos size_t free_count = ti->ti_asid_max - pmap_tlb_asid_count(ti);
436 1.1 christos if (free_count != ti->ti_asids_free)
437 1.1 christos panic("%s: bitmap error: %zu != %u",
438 1.1 christos __func__, free_count, ti->ti_asids_free);
439 1.1 christos #endif
440 1.1 christos }
441 1.1 christos
442 1.1 christos #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
443 1.1 christos void
444 1.1 christos pmap_tlb_shootdown_process(void)
445 1.1 christos {
446 1.1 christos struct cpu_info * const ci = curcpu();
447 1.1 christos struct pmap_tlb_info * const ti = ci->ci_tlb_info;
448 1.1 christos #ifdef DIAGNOSTIC
449 1.1 christos struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
450 1.1 christos #endif
451 1.1 christos
452 1.1 christos KASSERT(cpu_intr_p());
453 1.1 christos KASSERTMSG(ci->ci_cpl >= IPL_SCHED,
454 1.1 christos "%s: cpl (%d) < IPL_SCHED (%d)",
455 1.1 christos __func__, ci->ci_cpl, IPL_SCHED);
456 1.1 christos
457 1.1 christos TLBINFO_LOCK(ti);
458 1.1 christos
459 1.1 christos switch (ti->ti_tlbinvop) {
460 1.1 christos case TLBINV_ONE: {
461 1.1 christos /*
462 1.1 christos * We only need to invalidate one user ASID.
463 1.1 christos */
464 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti);
465 1.1 christos KASSERT(ti->ti_victim != pmap_kernel());
466 1.1 christos if (!CPUSET_EMPTY_P(CPUSET_SUBSET(ti->ti_victim->pm_onproc, ti->ti_cpu_mask))) {
467 1.1 christos /*
468 1.1 christos * The victim is an active pmap so we will just
469 1.1 christos * invalidate its TLB entries.
470 1.1 christos */
471 1.1 christos KASSERT(pai->pai_asid > KERNEL_PID);
472 1.1 christos pmap_tlb_asid_check();
473 1.1 christos tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
474 1.1 christos pmap_tlb_asid_check();
475 1.1 christos } else if (pai->pai_asid) {
476 1.1 christos /*
477 1.1 christos * The victim is no longer an active pmap for this TLB.
478 1.1 christos * So simply clear its ASID and when pmap_activate is
479 1.1 christos * next called for this pmap, it will allocate a new
480 1.1 christos * ASID.
481 1.1 christos */
482 1.1 christos KASSERT(!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask)));
483 1.1 christos pmap_pai_reset(ti, pai, PAI_PMAP(pai, ti));
484 1.1 christos }
485 1.1 christos break;
486 1.1 christos }
487 1.1 christos case TLBINV_ALLUSER:
488 1.1 christos /*
489 1.1 christos * Flush all user TLB entries.
490 1.1 christos */
491 1.1 christos pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER);
492 1.1 christos break;
493 1.1 christos case TLBINV_ALLKERNEL:
494 1.1 christos /*
495 1.1 christos * We need to invalidate all global TLB entries.
496 1.1 christos */
497 1.1 christos pmap_tlb_asid_check();
498 1.1 christos tlb_invalidate_globals();
499 1.1 christos pmap_tlb_asid_check();
500 1.1 christos break;
501 1.1 christos case TLBINV_ALL:
502 1.1 christos /*
503 1.1 christos * Flush all the TLB entries (user and kernel).
504 1.1 christos */
505 1.1 christos pmap_tlb_asid_reinitialize(ti, TLBINV_ALL);
506 1.1 christos break;
507 1.1 christos case TLBINV_NOBODY:
508 1.1 christos /*
509 1.1 christos * Might be spurious or another SMT CPU sharing this TLB
510 1.1 christos * could have already done the work.
511 1.1 christos */
512 1.1 christos break;
513 1.1 christos }
514 1.1 christos
515 1.1 christos /*
516 1.1 christos * Indicate we are done with shutdown event.
517 1.1 christos */
518 1.1 christos ti->ti_victim = NULL;
519 1.1 christos ti->ti_tlbinvop = TLBINV_NOBODY;
520 1.1 christos TLBINFO_UNLOCK(ti);
521 1.1 christos }
522 1.1 christos
523 1.1 christos /*
524 1.1 christos * This state machine could be encoded into an array of integers but since all
525 1.1 christos * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which
526 1.1 christos * can be loaded in a single instruction.
527 1.1 christos */
528 1.1 christos #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \
529 1.1 christos (((( (nobody) << 3*TLBINV_NOBODY) \
530 1.1 christos | ( (one) << 3*TLBINV_ONE) \
531 1.1 christos | ( (alluser) << 3*TLBINV_ALLUSER) \
532 1.1 christos | ((allkernel) << 3*TLBINV_ALLKERNEL) \
533 1.1 christos | ( (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7)
534 1.1 christos
535 1.1 christos #define TLBINV_USER_MAP(op) \
536 1.1 christos TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \
537 1.1 christos TLBINV_ALL, TLBINV_ALL)
538 1.1 christos
539 1.1 christos #define TLBINV_KERNEL_MAP(op) \
540 1.1 christos TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \
541 1.1 christos TLBINV_ALLKERNEL, TLBINV_ALL)
542 1.1 christos
543 1.1 christos bool
544 1.1 christos pmap_tlb_shootdown_bystanders(pmap_t pm)
545 1.1 christos {
546 1.1 christos /*
547 1.1 christos * We don't need to deal our own TLB.
548 1.1 christos */
549 1.1 christos __cpuset_t pm_active =
550 1.1 christos CPUSET_EXCLUDE(pm->pm_active, curcpu()->ci_tlb_info->ti_cpu_mask);
551 1.1 christos const bool kernel_p = (pm == pmap_kernel());
552 1.1 christos bool ipi_sent = false;
553 1.1 christos
554 1.1 christos /*
555 1.1 christos * If pm_active gets more bits set, then it's after all our changes
556 1.1 christos * have been made so they will already be cognizant of them.
557 1.1 christos */
558 1.1 christos
559 1.1 christos for (size_t i = 0; !CPUSET_EMPTY_P(pm_active); i++) {
560 1.1 christos KASSERT(i < pmap_ntlbs);
561 1.1 christos struct pmap_tlb_info * const ti = pmap_tlbs[i];
562 1.1 christos KASSERT(tlbinfo_index(ti) == i);
563 1.1 christos /*
564 1.1 christos * Skip this TLB if there are no active mappings for it.
565 1.1 christos */
566 1.1 christos if (CPUSET_EMPTY_P(CPUSET_SUBSET(pm_active, ti->ti_cpu_mask)))
567 1.1 christos continue;
568 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
569 1.1 christos CPUSET_DELSET(pm_active, ti->ti_cpu_mask);
570 1.1 christos TLBINFO_LOCK(ti);
571 1.1 christos const __cpuset onproc = CPUSET_SUBSET(pm->pm_onproc,
572 1.1 christos ti->ti_cpu_mask);
573 1.1 christos if (onproc != 0) {
574 1.1 christos if (kernel_p) {
575 1.1 christos ti->ti_tlbinvop =
576 1.1 christos TLBINV_KERNEL_MAP(ti->ti_tlbinvop);
577 1.1 christos ti->ti_victim = NULL;
578 1.1 christos } else {
579 1.1 christos KASSERT(pai->pai_asid);
580 1.1 christos if (__predict_false(ti->ti_victim == pm)) {
581 1.1 christos KASSERT(ti->ti_tlbinvop == TLBINV_ONE);
582 1.1 christos /*
583 1.1 christos * We still need to invalidate this one
584 1.1 christos * ASID so there's nothing to change.
585 1.1 christos */
586 1.1 christos } else {
587 1.1 christos ti->ti_tlbinvop =
588 1.1 christos TLBINV_USER_MAP(ti->ti_tlbinvop);
589 1.1 christos if (ti->ti_tlbinvop == TLBINV_ONE)
590 1.1 christos ti->ti_victim = pm;
591 1.1 christos else
592 1.1 christos ti->ti_victim = NULL;
593 1.1 christos }
594 1.1 christos }
595 1.1 christos TLBINFO_UNLOCK(ti);
596 1.1 christos /*
597 1.1 christos * Now we can send out the shootdown IPIs to a CPU
598 1.1 christos * that shares this TLB and is currently using this
599 1.1 christos * pmap. That CPU will process the IPI and do the
600 1.1 christos * all the work. Any other CPUs sharing that TLB
601 1.1 christos * will take advantage of that work. pm_onproc might
602 1.1 christos * change now that we have released the lock but we
603 1.1 christos * can tolerate spurious shootdowns.
604 1.1 christos */
605 1.1 christos KASSERT(!CPUSET_EMPTY_P(onproc));
606 1.1 christos u_int j = CPUSET_NEXT(onproc);
607 1.1 christos cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN);
608 1.1 christos ipi_sent = true;
609 1.1 christos continue;
610 1.1 christos }
611 1.1 christos if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask) {
612 1.1 christos /*
613 1.1 christos * If this pmap has an ASID assigned but it's not
614 1.1 christos * currently running, nuke its ASID. Next time the
615 1.1 christos * pmap is activated, it will allocate a new ASID.
616 1.1 christos * And best of all, we avoid an IPI.
617 1.1 christos */
618 1.1 christos KASSERT(!kernel_p);
619 1.1 christos pmap_pai_reset(ti, pai, pm);
620 1.1 christos //ti->ti_evcnt_lazy_shots.ev_count++;
621 1.1 christos }
622 1.1 christos TLBINFO_UNLOCK(ti);
623 1.1 christos }
624 1.1 christos
625 1.1 christos return ipi_sent;
626 1.1 christos }
627 1.1 christos #endif /* MULTIPROCESSOR && PMAP_NEED_TLB_SHOOTDOWN */
628 1.1 christos
629 1.1 christos int
630 1.1 christos pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pt_entry, u_int flags)
631 1.1 christos {
632 1.1 christos struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
633 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
634 1.1 christos int rv = -1;
635 1.1 christos
636 1.1 christos KASSERT(kpreempt_disabled());
637 1.1 christos
638 1.1 christos TLBINFO_LOCK(ti);
639 1.1 christos if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
640 1.1 christos pmap_tlb_asid_check();
641 1.1 christos rv = tlb_update_addr(va, pai->pai_asid, pt_entry,
642 1.1 christos (flags & PMAP_TLB_INSERT) != 0);
643 1.1 christos pmap_tlb_asid_check();
644 1.1 christos }
645 1.1 christos #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
646 1.1 christos pm->pm_shootdown_pending = (flags & PMAP_TLB_NEED_IPI) != 0;
647 1.1 christos #endif
648 1.1 christos TLBINFO_UNLOCK(ti);
649 1.1 christos
650 1.1 christos return rv;
651 1.1 christos }
652 1.1 christos
653 1.1 christos void
654 1.1 christos pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va)
655 1.1 christos {
656 1.1 christos struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
657 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
658 1.1 christos
659 1.1 christos KASSERT(kpreempt_disabled());
660 1.1 christos
661 1.1 christos TLBINFO_LOCK(ti);
662 1.1 christos if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
663 1.1 christos pmap_tlb_asid_check();
664 1.1 christos tlb_invalidate_addr(va, pai->pai_asid);
665 1.1 christos pmap_tlb_asid_check();
666 1.1 christos }
667 1.1 christos #if defined(MULTIPROCESSOR) && defined(PMAP_NEED_TLB_SHOOTDOWN)
668 1.1 christos pm->pm_shootdown_pending = 1;
669 1.1 christos #endif
670 1.1 christos TLBINFO_UNLOCK(ti);
671 1.1 christos }
672 1.1 christos
673 1.1 christos static inline void
674 1.1 christos pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm,
675 1.1 christos struct pmap_asid_info *pai)
676 1.1 christos {
677 1.1 christos /*
678 1.1 christos * We shouldn't have an ASID assigned, and thusly must not be onproc
679 1.1 christos * nor active.
680 1.1 christos */
681 1.1 christos KASSERT(pm != pmap_kernel());
682 1.1 christos KASSERT(pai->pai_asid == 0);
683 1.1 christos KASSERT(pai->pai_link.le_prev == NULL);
684 1.1 christos #if defined(MULTIPROCESSOR)
685 1.1 christos KASSERT(CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_onproc, ti->ti_cpu_mask)));
686 1.1 christos KASSERT(CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask)));
687 1.1 christos #endif
688 1.1 christos KASSERT(ti->ti_asids_free > 0);
689 1.1 christos KASSERT(ti->ti_asid_hint <= ti->ti_asid_max);
690 1.1 christos
691 1.1 christos /*
692 1.1 christos * Let's see if the hinted ASID is free. If not search for
693 1.1 christos * a new one.
694 1.1 christos */
695 1.1 christos if (__predict_false(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) {
696 1.1 christos #ifdef DIAGNOSTIC
697 1.1 christos const size_t words = __arraycount(ti->ti_asid_bitmap);
698 1.1 christos #endif
699 1.1 christos const size_t nbpw = 8 * sizeof(ti->ti_asid_bitmap[0]);
700 1.1 christos for (size_t i = 0; i < ti->ti_asid_hint / nbpw; i++) {
701 1.1 christos KASSERT(~ti->ti_asid_bitmap[i] == 0);
702 1.1 christos }
703 1.1 christos for (size_t i = ti->ti_asid_hint / nbpw;; i++) {
704 1.1 christos KASSERT(i < words);
705 1.1 christos /*
706 1.1 christos * ffs wants to find the first bit set while we want
707 1.1 christos * to find the first bit cleared.
708 1.1 christos */
709 1.1 christos u_long bits = ~ti->ti_asid_bitmap[i];
710 1.1 christos if (__predict_true(bits)) {
711 1.1 christos u_int n = 0;
712 1.1 christos if ((bits & 0xffffffff) == 0) {
713 1.1 christos bits = (bits >> 31) >> 1;
714 1.1 christos KASSERT(bits);
715 1.1 christos n += 32;
716 1.1 christos }
717 1.1 christos n += ffs(bits) - 1;
718 1.1 christos KASSERT(n < nbpw);
719 1.1 christos ti->ti_asid_hint = n + i * nbpw;
720 1.1 christos break;
721 1.1 christos }
722 1.1 christos }
723 1.1 christos KASSERT(ti->ti_asid_hint > KERNEL_PID);
724 1.1 christos KASSERT(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint-1));
725 1.1 christos KASSERT(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint));
726 1.1 christos }
727 1.1 christos
728 1.1 christos /*
729 1.1 christos * The hint contains our next ASID so take it and advance the hint.
730 1.1 christos * Mark it as used and insert the pai into the list of active asids.
731 1.1 christos * There is also one less asid free in this TLB.
732 1.1 christos */
733 1.1 christos pai->pai_asid = ti->ti_asid_hint++;
734 1.1 christos TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
735 1.1 christos LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link);
736 1.1 christos ti->ti_asids_free--;
737 1.1 christos
738 1.1 christos #if defined(MULTIPROCESSOR)
739 1.1 christos /*
740 1.1 christos * Mark that we now have an active ASID for all CPUs sharing this TLB.
741 1.1 christos * The bits in pm_active belonging to this TLB can only be changed
742 1.1 christos * while this TLBs lock is held.
743 1.1 christos */
744 1.1 christos atomic_or_32(&pm->pm_active, ti->ti_cpu_mask);
745 1.1 christos #endif
746 1.1 christos }
747 1.1 christos
748 1.1 christos /*
749 1.1 christos * Acquire a TLB address space tag (called ASID or TLBPID) and return it.
750 1.1 christos * ASID might have already been previously acquired.
751 1.1 christos */
752 1.1 christos void
753 1.1 christos pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l)
754 1.1 christos {
755 1.1 christos struct cpu_info * const ci = l->l_cpu;
756 1.1 christos struct pmap_tlb_info * const ti = ci->ci_tlb_info;
757 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
758 1.1 christos
759 1.1 christos KASSERT(kpreempt_disabled());
760 1.1 christos
761 1.1 christos /*
762 1.1 christos * Kernels use a fixed ASID and thus doesn't need to acquire one.
763 1.1 christos */
764 1.1 christos if (pm == pmap_kernel())
765 1.1 christos return;
766 1.1 christos
767 1.1 christos TLBINFO_LOCK(ti);
768 1.1 christos KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL);
769 1.1 christos KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL);
770 1.1 christos pmap_pai_check(ti);
771 1.1 christos if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) {
772 1.1 christos /*
773 1.1 christos * If we've run out ASIDs, reinitialize the ASID space.
774 1.1 christos */
775 1.1 christos if (__predict_false(tlbinfo_noasids_p(ti))) {
776 1.1 christos KASSERT(l == curlwp);
777 1.1 christos pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY);
778 1.1 christos }
779 1.1 christos
780 1.1 christos /*
781 1.1 christos * Get an ASID.
782 1.1 christos */
783 1.1 christos pmap_tlb_asid_alloc(ti, pm, pai);
784 1.1 christos }
785 1.1 christos
786 1.1 christos if (l == curlwp) {
787 1.1 christos #if defined(MULTIPROCESSOR)
788 1.1 christos /*
789 1.1 christos * The bits in pm_onproc belonging to this TLB can only
790 1.1 christos * be changed while this TLBs lock is held unless atomic
791 1.1 christos * operations are used.
792 1.1 christos */
793 1.1 christos CPUSET_ADD(pm->pm_onproc, cpu_index(ci));
794 1.1 christos #endif
795 1.1 christos ci->ci_pmap_asid_cur = pai->pai_asid;
796 1.1 christos tlb_set_asid(pai->pai_asid);
797 1.1 christos pmap_tlb_asid_check();
798 1.1 christos } else {
799 1.1 christos printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp);
800 1.1 christos }
801 1.1 christos TLBINFO_UNLOCK(ti);
802 1.1 christos }
803 1.1 christos
804 1.1 christos void
805 1.1 christos pmap_tlb_asid_deactivate(pmap_t pm)
806 1.1 christos {
807 1.1 christos KASSERT(kpreempt_disabled());
808 1.1 christos #if defined(MULTIPROCESSOR)
809 1.1 christos /*
810 1.1 christos * The kernel pmap is aways onproc and active and must never have
811 1.1 christos * those bits cleared. If pmap_remove_all was called, it has already
812 1.1 christos * deactivated the pmap and thusly onproc will be 0 so there's nothing
813 1.1 christos * to do.
814 1.1 christos */
815 1.1 christos if (pm != pmap_kernel() && pm->pm_onproc != 0) {
816 1.1 christos struct cpu_info * const ci = curcpu();
817 1.1 christos KASSERT(!cpu_intr_p());
818 1.1 christos KASSERTMSG(pm->pm_onproc & CPUSET_SINGLE(cpu_index(ci)),
819 1.1 christos "%s: pmap %p onproc %#x doesn't include cpu %d (%p)",
820 1.1 christos __func__, pm, pm->pm_onproc, cpu_index(ci), ci);
821 1.1 christos /*
822 1.1 christos * The bits in pm_onproc that belong to this TLB can
823 1.1 christos * be changed while this TLBs lock is not held as long
824 1.1 christos * as we use atomic ops.
825 1.1 christos */
826 1.1 christos CPUSET_DEL(pm->pm_onproc, cpu_index(ci));
827 1.1 christos }
828 1.1 christos #elif defined(DEBUG)
829 1.1 christos curcpu()->ci_pmap_asid_cur = 0;
830 1.1 christos tlb_set_asid(0);
831 1.1 christos pmap_tlb_asid_check();
832 1.1 christos #endif
833 1.1 christos }
834 1.1 christos
835 1.1 christos void
836 1.1 christos pmap_tlb_asid_release_all(struct pmap *pm)
837 1.1 christos {
838 1.1 christos KASSERT(pm != pmap_kernel());
839 1.1 christos #if defined(MULTIPROCESSOR)
840 1.1 christos KASSERT(CPUSET_EMPTY_P(pm->pm_onproc));
841 1.1 christos for (u_int i = 0; !CPUSET_EMPTY_P(pm->pm_active); i++) {
842 1.1 christos KASSERT(i < pmap_ntlbs);
843 1.1 christos struct pmap_tlb_info * const ti = pmap_tlbs[i];
844 1.1 christos if (!CPUSET_EMPTY_P(CPUSET_SUBSET(pm->pm_active, ti->ti_cpu_mask))) {
845 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
846 1.1 christos TLBINFO_LOCK(ti);
847 1.1 christos KASSERT(ti->ti_victim != pm);
848 1.1 christos pmap_pai_reset(ti, pai, pm);
849 1.1 christos TLBINFO_UNLOCK(ti);
850 1.1 christos }
851 1.1 christos }
852 1.1 christos #else
853 1.1 christos /*
854 1.1 christos * Handle the case of an UP kernel which only has, at most, one ASID.
855 1.1 christos * If the pmap has an ASID allocated, free it.
856 1.1 christos */
857 1.1 christos struct pmap_tlb_info * const ti = &pmap_tlb0_info;
858 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
859 1.1 christos TLBINFO_LOCK(ti);
860 1.1 christos if (pai->pai_asid > KERNEL_PID) {
861 1.1 christos pmap_pai_reset(ti, pai, pm);
862 1.1 christos }
863 1.1 christos TLBINFO_UNLOCK(ti);
864 1.1 christos #endif /* MULTIPROCESSOR */
865 1.1 christos }
866 1.1 christos
867 1.1 christos void
868 1.1 christos pmap_tlb_asid_check(void)
869 1.1 christos {
870 1.1 christos #ifdef DEBUG
871 1.1 christos kpreempt_disable();
872 1.1 christos const tlb_asid_t asid = tlb_get_asid();
873 1.1 christos KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur,
874 1.1 christos "%s: asid (%#x) != current asid (%#x)",
875 1.1 christos __func__, asid, curcpu()->ci_pmap_asid_cur);
876 1.1 christos kpreempt_enable();
877 1.1 christos #endif
878 1.1 christos }
879 1.1 christos
880 1.1 christos #ifdef DEBUG
881 1.1 christos void
882 1.1 christos pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t))
883 1.1 christos {
884 1.1 christos struct pmap_tlb_info * const ti = curcpu()->ci_tlb_info;
885 1.1 christos struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
886 1.1 christos TLBINFO_LOCK(ti);
887 1.1 christos if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID)
888 1.1 christos tlb_walk(pm, func);
889 1.1 christos TLBINFO_UNLOCK(ti);
890 1.1 christos }
891 1.1 christos #endif /* DEBUG */
892