pmap_tlb.c revision 1.14 1 /* $NetBSD: pmap_tlb.c,v 1.14 2016/07/12 15:30:46 skrll Exp $ */
2
3 /*-
4 * Copyright (c) 2010 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Matt Thomas at 3am Software Foundry.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 * POSSIBILITY OF SUCH DAMAGE.
30 */
31
32 #include <sys/cdefs.h>
33
34 __KERNEL_RCSID(0, "$NetBSD: pmap_tlb.c,v 1.14 2016/07/12 15:30:46 skrll Exp $");
35
36 /*
37 * Manages address spaces in a TLB.
38 *
39 * Normally there is a 1:1 mapping between a TLB and a CPU. However, some
40 * implementations may share a TLB between multiple CPUs (really CPU thread
41 * contexts). This requires the TLB abstraction to be separated from the
42 * CPU abstraction. It also requires that the TLB be locked while doing
43 * TLB activities.
44 *
45 * For each TLB, we track the ASIDs in use in a bitmap and a list of pmaps
46 * that have a valid ASID.
47 *
48 * We allocate ASIDs in increasing order until we have exhausted the supply,
49 * then reinitialize the ASID space, and start allocating again at 1. When
50 * allocating from the ASID bitmap, we skip any ASID who has a corresponding
51 * bit set in the ASID bitmap. Eventually this causes the ASID bitmap to fill
52 * and, when completely filled, a reinitialization of the ASID space.
53 *
54 * To reinitialize the ASID space, the ASID bitmap is reset and then the ASIDs
55 * of non-kernel TLB entries get recorded in the ASID bitmap. If the entries
56 * in TLB consume more than half of the ASID space, all ASIDs are invalidated,
57 * the ASID bitmap is recleared, and the list of pmaps is emptied. Otherwise,
58 * (the normal case), any ASID present in the TLB (even those which are no
59 * longer used by a pmap) will remain active (allocated) and all other ASIDs
60 * will be freed. If the size of the TLB is much smaller than the ASID space,
61 * this algorithm completely avoids TLB invalidation.
62 *
63 * For multiprocessors, we also have to deal TLB invalidation requests from
64 * other CPUs, some of which are dealt with the reinitialization of the ASID
65 * space. Whereas above we keep the ASIDs of those pmaps which have active
66 * TLB entries, this type of reinitialization preserves the ASIDs of any
67 * "onproc" user pmap and all other ASIDs will be freed. We must do this
68 * since we can't change the current ASID.
69 *
70 * Each pmap has two bitmaps: pm_active and pm_onproc. Each bit in pm_active
71 * indicates whether that pmap has an allocated ASID for a CPU. Each bit in
72 * pm_onproc indicates that pmap's ASID is active (equal to the ASID in COP 0
73 * register EntryHi) on a CPU. The bit number comes from the CPU's cpu_index().
74 * Even though these bitmaps contain the bits for all CPUs, the bits that
75 * correspond to the bits belonging to the CPUs sharing a TLB can only be
76 * manipulated while holding that TLB's lock. Atomic ops must be used to
77 * update them since multiple CPUs may be changing different sets of bits at
78 * same time but these sets never overlap.
79 *
80 * When a change to the local TLB may require a change in the TLB's of other
81 * CPUs, we try to avoid sending an IPI if at all possible. For instance, if
82 * we are updating a PTE and that PTE previously was invalid and therefore
83 * couldn't support an active mapping, there's no need for an IPI since there
84 * can't be a TLB entry to invalidate. The other case is when we change a PTE
85 * to be modified we just update the local TLB. If another TLB has a stale
86 * entry, a TLB MOD exception will be raised and that will cause the local TLB
87 * to be updated.
88 *
89 * We never need to update a non-local TLB if the pmap doesn't have a valid
90 * ASID for that TLB. If it does have a valid ASID but isn't current "onproc"
91 * we simply reset its ASID for that TLB and then when it goes "onproc" it
92 * will allocate a new ASID and any existing TLB entries will be orphaned.
93 * Only in the case that pmap has an "onproc" ASID do we actually have to send
94 * an IPI.
95 *
96 * Once we determined we must send an IPI to shootdown a TLB, we need to send
97 * it to one of CPUs that share that TLB. We choose the lowest numbered CPU
98 * that has one of the pmap's ASID "onproc". In reality, any CPU sharing that
99 * TLB would do, but interrupting an active CPU seems best.
100 *
101 * A TLB might have multiple shootdowns active concurrently. The shootdown
102 * logic compresses these into a few cases:
103 * 0) nobody needs to have its TLB entries invalidated
104 * 1) one ASID needs to have its TLB entries invalidated
105 * 2) more than one ASID needs to have its TLB entries invalidated
106 * 3) the kernel needs to have its TLB entries invalidated
107 * 4) the kernel and one or more ASID need their TLB entries invalidated.
108 *
109 * And for each case we do:
110 * 0) nothing,
111 * 1) if that ASID is still "onproc", we invalidate the TLB entries for
112 * that single ASID. If not, just reset the pmap's ASID to invalidate
113 * and let it allocate a new ASID the next time it goes "onproc",
114 * 2) we reinitialize the ASID space (preserving any "onproc" ASIDs) and
115 * invalidate all non-wired non-global TLB entries,
116 * 3) we invalidate all of the non-wired global TLB entries,
117 * 4) we reinitialize the ASID space (again preserving any "onproc" ASIDs)
118 * invalidate all non-wired TLB entries.
119 *
120 * As you can see, shootdowns are not concerned with addresses, just address
121 * spaces. Since the number of TLB entries is usually quite small, this avoids
122 * a lot of overhead for not much gain.
123 */
124
125 #define __PMAP_PRIVATE
126
127 #include "opt_multiprocessor.h"
128
129 #include <sys/param.h>
130 #include <sys/systm.h>
131 #include <sys/proc.h>
132 #include <sys/mutex.h>
133 #include <sys/atomic.h>
134 #include <sys/kernel.h> /* for cold */
135 #include <sys/cpu.h>
136
137 #include <uvm/uvm.h>
138
139 static kmutex_t pmap_tlb0_lock __cacheline_aligned;
140
141 #define IFCONSTANT(x) (__builtin_constant_p((x)) ? (x) : 0)
142
143 struct pmap_tlb_info pmap_tlb0_info = {
144 .ti_name = "tlb0",
145 .ti_asid_hint = KERNEL_PID + 1,
146 #ifdef PMAP_TLB_NUM_PIDS
147 .ti_asid_max = IFCONSTANT(PMAP_TLB_NUM_PIDS - 1),
148 .ti_asids_free = IFCONSTANT(PMAP_TLB_NUM_PIDS - (1 + KERNEL_PID)),
149 #endif
150 .ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1,
151 #ifdef PMAP_TLB_WIRED_UPAGES
152 .ti_wired = PMAP_TLB_WIRED_UPAGES,
153 #endif
154 .ti_lock = &pmap_tlb0_lock,
155 .ti_pais = LIST_HEAD_INITIALIZER(pmap_tlb0_info.ti_pais),
156 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
157 .ti_tlbinvop = TLBINV_NOBODY,
158 #endif
159 };
160
161 #undef IFCONSTANT
162
163 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
164 struct pmap_tlb_info *pmap_tlbs[PMAP_TLB_MAX] = {
165 [0] = &pmap_tlb0_info,
166 };
167 u_int pmap_ntlbs = 1;
168 #endif
169
170 #define __BITMAP_SET(bm, n) \
171 ((bm)[(n) / (8*sizeof(bm[0]))] |= 1LU << ((n) % (8*sizeof(bm[0]))))
172 #define __BITMAP_CLR(bm, n) \
173 ((bm)[(n) / (8*sizeof(bm[0]))] &= ~(1LU << ((n) % (8*sizeof(bm[0])))))
174 #define __BITMAP_ISSET_P(bm, n) \
175 (((bm)[(n) / (8*sizeof(bm[0]))] & (1LU << ((n) % (8*sizeof(bm[0]))))) != 0)
176
177 #define TLBINFO_ASID_MARK_UNUSED(ti, asid) \
178 __BITMAP_CLR((ti)->ti_asid_bitmap, (asid))
179 #define TLBINFO_ASID_MARK_USED(ti, asid) \
180 __BITMAP_SET((ti)->ti_asid_bitmap, (asid))
181 #define TLBINFO_ASID_INUSE_P(ti, asid) \
182 __BITMAP_ISSET_P((ti)->ti_asid_bitmap, (asid))
183
184 #ifdef MULTIPROCESSOR
185 __unused static inline bool
186 pmap_tlb_intersecting_active_p(pmap_t pm, struct pmap_tlb_info *ti)
187 {
188 #if PMAP_TLB_MAX == 1
189 return !kcpuset_iszero(pm->pm_active);
190 #else
191 return kcpuset_intersecting_p(pm->pm_active, ti->ti_kcpuset);
192 #endif
193 }
194
195 static inline bool
196 pmap_tlb_intersecting_onproc_p(pmap_t pm, struct pmap_tlb_info *ti)
197 {
198 #if PMAP_TLB_MAX == 1
199 return !kcpuset_iszero(pm->pm_onproc);
200 #else
201 return kcpuset_intersecting_p(pm->pm_onproc, ti->ti_kcpuset);
202 #endif
203 }
204 #endif
205
206 static void
207 pmap_tlb_pai_check(struct pmap_tlb_info *ti)
208 {
209 #ifdef DIAGNOSTIC
210 struct pmap_asid_info *pai;
211 LIST_FOREACH(pai, &ti->ti_pais, pai_link) {
212 KASSERT(pai != NULL);
213 KASSERT(PAI_PMAP(pai, ti) != pmap_kernel());
214 KASSERT(pai->pai_asid > KERNEL_PID);
215 KASSERTMSG(pai->pai_asid <= ti->ti_asid_max,
216 "pm %p asid %#x", PAI_PMAP(pai, ti), pai->pai_asid);
217 KASSERTMSG(TLBINFO_ASID_INUSE_P(ti, pai->pai_asid),
218 "pm %p asid %u", PAI_PMAP(pai, ti), pai->pai_asid);
219 #ifdef MULTIPROCESSOR
220 KASSERT(pmap_tlb_intersecting_active_p(PAI_PMAP(pai, ti), ti));
221 #endif
222 }
223 #endif
224 }
225
226 static void
227 pmap_tlb_pai_reset(struct pmap_tlb_info *ti, struct pmap_asid_info *pai,
228 struct pmap *pm)
229 {
230 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
231 UVMHIST_LOG(maphist, "(ti=%p, pai=%p, pm=%p): asid %u",
232 ti, pai, pm, pai->pai_asid);
233
234 /*
235 * We must have an ASID but it must not be onproc (on a processor).
236 */
237 KASSERT(pai->pai_asid > KERNEL_PID);
238 KASSERT(pai->pai_asid <= ti->ti_asid_max);
239 #if defined(MULTIPROCESSOR)
240 KASSERT(pmap_tlb_intersecting_active_p(pm, ti));
241 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti));
242 #endif
243 LIST_REMOVE(pai, pai_link);
244 #ifdef DIAGNOSTIC
245 pai->pai_link.le_prev = NULL; /* tagged as unlinked */
246 #endif
247 /*
248 * If the platform has a cheap way to flush ASIDs then free the ASID
249 * back into the pool. On multiprocessor systems, we will flush the
250 * ASID from the TLB when it's allocated. That way we know the flush
251 * was always done in the correct TLB space. On uniprocessor systems,
252 * just do the flush now since we know that it has been used. This has
253 * a bit less overhead. Either way, this will mean that we will only
254 * need to flush all ASIDs if all ASIDs are in use and we need to
255 * allocate a new one.
256 */
257 if (PMAP_TLB_FLUSH_ASID_ON_RESET) {
258 #ifndef MULTIPROCESSOR
259 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
260 #endif
261 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
262 TLBINFO_ASID_MARK_UNUSED(ti, pai->pai_asid);
263 ti->ti_asids_free++;
264 }
265 }
266 /*
267 * Note that we don't mark the ASID as not in use in the TLB's ASID
268 * bitmap (thus it can't be allocated until the ASID space is exhausted
269 * and therefore reinitialized). We don't want to flush the TLB for
270 * entries belonging to this ASID so we will let natural TLB entry
271 * replacement flush them out of the TLB. Any new entries for this
272 * pmap will need a new ASID allocated.
273 */
274 pai->pai_asid = 0;
275
276 #if defined(MULTIPROCESSOR)
277 /*
278 * The bits in pm_active belonging to this TLB can only be changed
279 * while this TLB's lock is held.
280 */
281 #if PMAP_TLB_MAX == 1
282 kcpuset_zero(pm->pm_active);
283 #else
284 kcpuset_remove(pm->pm_active, ti->ti_kcpuset);
285 #endif
286 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti));
287 #endif /* MULTIPROCESSOR */
288
289 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
290 }
291
292 void
293 pmap_tlb_info_evcnt_attach(struct pmap_tlb_info *ti)
294 {
295 #if defined(MULTIPROCESSOR)
296 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_desired,
297 EVCNT_TYPE_MISC, NULL,
298 ti->ti_name, "icache syncs desired");
299 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_asts,
300 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
301 ti->ti_name, "icache sync asts");
302 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_all,
303 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
304 ti->ti_name, "icache full syncs");
305 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_pages,
306 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_asts,
307 ti->ti_name, "icache pages synced");
308 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_duplicate,
309 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
310 ti->ti_name, "icache dup pages skipped");
311 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_synci_deferred,
312 EVCNT_TYPE_MISC, &ti->ti_evcnt_synci_desired,
313 ti->ti_name, "icache pages deferred");
314 #endif /* MULTIPROCESSOR */
315 evcnt_attach_dynamic_nozero(&ti->ti_evcnt_asid_reinits,
316 EVCNT_TYPE_MISC, NULL,
317 ti->ti_name, "asid pool reinit");
318 }
319
320 void
321 pmap_tlb_info_init(struct pmap_tlb_info *ti)
322 {
323 #if defined(MULTIPROCESSOR)
324 #if PMAP_TLB_MAX == 1
325 KASSERT(ti == &pmap_tlb0_info);
326 #else
327 if (ti != &pmap_tlb0_info) {
328 KASSERT(pmap_ntlbs < PMAP_TLB_MAX);
329
330 KASSERT(pmap_tlbs[pmap_ntlbs] == NULL);
331
332 ti->ti_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SCHED);
333 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
334 ti->ti_asid_hint = KERNEL_PID + 1;
335 ti->ti_asid_max = pmap_tlbs[0]->ti_asid_max;
336 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
337 ti->ti_tlbinvop = TLBINV_NOBODY,
338 ti->ti_victim = NULL;
339 kcpuset_create(&ti->ti_kcpuset, true);
340 ti->ti_index = pmap_ntlbs++;
341 ti->ti_wired = 0;
342 pmap_tlbs[ti->ti_index] = ti;
343 snprintf(ti->ti_name, sizeof(ti->ti_name), "tlb%u",
344 ti->ti_index);
345 pmap_tlb_info_evcnt_attach(ti);
346 return;
347 }
348 #endif
349 #endif /* MULTIPROCESSOR */
350 KASSERT(ti == &pmap_tlb0_info);
351 KASSERT(ti->ti_lock == &pmap_tlb0_lock);
352 //printf("ti_lock %p ", ti->ti_lock);
353 mutex_init(ti->ti_lock, MUTEX_DEFAULT, IPL_SCHED);
354 #if defined(MULTIPROCESSOR) && PMAP_TLB_MAX > 1
355 kcpuset_create(&ti->ti_kcpuset, true);
356 kcpuset_set(ti->ti_kcpuset, cpu_index(curcpu()));
357 #endif
358 //printf("asid ");
359 if (ti->ti_asid_max == 0) {
360 ti->ti_asid_max = pmap_md_tlb_asid_max();
361 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
362 }
363
364 KASSERT(ti->ti_asid_max < sizeof(ti->ti_asid_bitmap)*8);
365 }
366
367 #if defined(MULTIPROCESSOR)
368 void
369 pmap_tlb_info_attach(struct pmap_tlb_info *ti, struct cpu_info *ci)
370 {
371 KASSERT(!CPU_IS_PRIMARY(ci));
372 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
373 KASSERT(cold);
374
375 TLBINFO_LOCK(ti);
376 #if PMAP_TLB_MAX > 1
377 kcpuset_set(ti->ti_kcpuset, cpu_index(ci));
378 cpu_set_tlb_info(ci, ti);
379 #endif
380
381 /*
382 * Do any MD tlb info init.
383 */
384 pmap_md_tlb_info_attach(ti, ci);
385
386 /*
387 * The kernel pmap uses the kcpuset_running set so it's always
388 * up-to-date.
389 */
390 TLBINFO_UNLOCK(ti);
391 }
392 #endif /* MULTIPROCESSOR */
393
394 #ifdef DIAGNOSTIC
395 static size_t
396 pmap_tlb_asid_count(struct pmap_tlb_info *ti)
397 {
398 size_t count = 0;
399 for (tlb_asid_t asid = 1; asid <= ti->ti_asid_max; asid++) {
400 count += TLBINFO_ASID_INUSE_P(ti, asid);
401 }
402 return count;
403 }
404 #endif
405
406 static void
407 pmap_tlb_asid_reinitialize(struct pmap_tlb_info *ti, enum tlb_invalidate_op op)
408 {
409 const size_t asid_bitmap_words =
410 ti->ti_asid_max / (8 * sizeof(ti->ti_asid_bitmap[0]));
411
412 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
413 UVMHIST_LOG(maphist, "(ti=%p, op=%u)", ti, op, 0, 0);
414
415 pmap_tlb_pai_check(ti);
416
417 ti->ti_evcnt_asid_reinits.ev_count++;
418
419 /*
420 * First, clear the ASID bitmap (except for ASID 0 which belongs
421 * to the kernel).
422 */
423 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
424 ti->ti_asid_hint = KERNEL_PID + 1;
425 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
426 for (size_t word = 1; word <= asid_bitmap_words; word++) {
427 ti->ti_asid_bitmap[word] = 0;
428 }
429
430 switch (op) {
431 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
432 case TLBINV_ALL:
433 tlb_invalidate_all();
434 break;
435 case TLBINV_ALLUSER:
436 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
437 break;
438 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */
439 case TLBINV_NOBODY: {
440 /*
441 * If we are just reclaiming ASIDs in the TLB, let's go find
442 * what ASIDs are in use in the TLB. Since this is a
443 * semi-expensive operation, we don't want to do it too often.
444 * So if more half of the ASIDs are in use, we don't have
445 * enough free ASIDs so invalidate the TLB entries with ASIDs
446 * and clear the ASID bitmap. That will force everyone to
447 * allocate a new ASID.
448 */
449 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN)
450 pmap_tlb_asid_check();
451 const u_int asids_found = tlb_record_asids(ti->ti_asid_bitmap,
452 ti->ti_asid_max);
453 pmap_tlb_asid_check();
454 KASSERT(asids_found == pmap_tlb_asid_count(ti));
455 if (__predict_false(asids_found >= ti->ti_asid_max / 2)) {
456 tlb_invalidate_asids(KERNEL_PID + 1, ti->ti_asid_max);
457 #else /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */
458 /*
459 * For those systems (PowerPC) that don't require
460 * cross cpu TLB shootdowns, we have to invalidate the
461 * entire TLB because we can't record the ASIDs in use
462 * on the other CPUs. This is hopefully cheaper than
463 * than trying to use an IPI to record all the ASIDs
464 * on all the CPUs (which would be a synchronization
465 * nightmare).
466 */
467 tlb_invalidate_all();
468 #endif /* MULTIPROCESSOR && !PMAP_TLB_NEED_SHOOTDOWN */
469 ti->ti_asid_bitmap[0] = (2 << KERNEL_PID) - 1;
470 for (size_t word = 1;
471 word <= asid_bitmap_words;
472 word++) {
473 ti->ti_asid_bitmap[word] = 0;
474 }
475 ti->ti_asids_free = ti->ti_asid_max - KERNEL_PID;
476 #if !defined(MULTIPROCESSOR) || defined(PMAP_TLB_NEED_SHOOTDOWN)
477 } else {
478 ti->ti_asids_free -= asids_found;
479 }
480 #endif /* !MULTIPROCESSOR || PMAP_TLB_NEED_SHOOTDOWN */
481 KASSERTMSG(ti->ti_asids_free <= ti->ti_asid_max, "%u",
482 ti->ti_asids_free);
483 break;
484 }
485 default:
486 panic("%s: unexpected op %d", __func__, op);
487 }
488
489 /*
490 * Now go through the active ASIDs. If the ASID is on a processor or
491 * we aren't invalidating all ASIDs and the TLB has an entry owned by
492 * that ASID, mark it as in use. Otherwise release the ASID.
493 */
494 struct pmap_asid_info *pai, *next;
495 for (pai = LIST_FIRST(&ti->ti_pais); pai != NULL; pai = next) {
496 struct pmap * const pm = PAI_PMAP(pai, ti);
497 next = LIST_NEXT(pai, pai_link);
498 KASSERT(pm != pmap_kernel());
499 KASSERT(pai->pai_asid > KERNEL_PID);
500 #if defined(MULTIPROCESSOR)
501 if (pmap_tlb_intersecting_onproc_p(pm, ti)) {
502 if (!TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
503 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
504 ti->ti_asids_free--;
505 }
506 continue;
507 }
508 #endif /* MULTIPROCESSOR */
509 if (TLBINFO_ASID_INUSE_P(ti, pai->pai_asid)) {
510 KASSERT(op == TLBINV_NOBODY);
511 } else {
512 pmap_tlb_pai_reset(ti, pai, pm);
513 }
514 }
515 #ifdef DIAGNOSTIC
516 size_t free_count __diagused = ti->ti_asid_max - pmap_tlb_asid_count(ti);
517 KASSERTMSG(free_count == ti->ti_asids_free,
518 "bitmap error: %zu != %u", free_count, ti->ti_asids_free);
519 #endif
520 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
521 }
522
523 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
524 #if PMAP_TLB_MAX == 1
525 #error shootdown not required for single TLB systems
526 #endif
527 void
528 pmap_tlb_shootdown_process(void)
529 {
530 struct cpu_info * const ci = curcpu();
531 struct pmap_tlb_info * const ti = cpu_tlb_info(ci);
532 #ifdef DIAGNOSTIC
533 struct pmap * const pm = curlwp->l_proc->p_vmspace->vm_map.pmap;
534 #endif
535
536 KASSERT(cpu_intr_p());
537 KASSERTMSG(ci->ci_cpl >= IPL_SCHED,
538 "%s: cpl (%d) < IPL_SCHED (%d)",
539 __func__, ci->ci_cpl, IPL_SCHED);
540
541 TLBINFO_LOCK(ti);
542
543 switch (ti->ti_tlbinvop) {
544 case TLBINV_ONE: {
545 /*
546 * We only need to invalidate one user ASID.
547 */
548 struct pmap_asid_info * const pai = PMAP_PAI(ti->ti_victim, ti);
549 KASSERT(ti->ti_victim != pmap_kernel());
550 if (!pmap_tlb_intersecting_onproc_p(ti->ti_victim, ti)) {
551 /*
552 * The victim is an active pmap so we will just
553 * invalidate its TLB entries.
554 */
555 KASSERT(pai->pai_asid > KERNEL_PID);
556 pmap_tlb_asid_check();
557 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
558 pmap_tlb_asid_check();
559 } else if (pai->pai_asid) {
560 /*
561 * The victim is no longer an active pmap for this TLB.
562 * So simply clear its ASID and when pmap_activate is
563 * next called for this pmap, it will allocate a new
564 * ASID.
565 */
566 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti));
567 pmap_tlb_pai_reset(ti, pai, PAI_PMAP(pai, ti));
568 }
569 break;
570 }
571 case TLBINV_ALLUSER:
572 /*
573 * Flush all user TLB entries.
574 */
575 pmap_tlb_asid_reinitialize(ti, TLBINV_ALLUSER);
576 break;
577 case TLBINV_ALLKERNEL:
578 /*
579 * We need to invalidate all global TLB entries.
580 */
581 pmap_tlb_asid_check();
582 tlb_invalidate_globals();
583 pmap_tlb_asid_check();
584 break;
585 case TLBINV_ALL:
586 /*
587 * Flush all the TLB entries (user and kernel).
588 */
589 pmap_tlb_asid_reinitialize(ti, TLBINV_ALL);
590 break;
591 case TLBINV_NOBODY:
592 /*
593 * Might be spurious or another SMT CPU sharing this TLB
594 * could have already done the work.
595 */
596 break;
597 }
598
599 /*
600 * Indicate we are done with shutdown event.
601 */
602 ti->ti_victim = NULL;
603 ti->ti_tlbinvop = TLBINV_NOBODY;
604 TLBINFO_UNLOCK(ti);
605 }
606
607 /*
608 * This state machine could be encoded into an array of integers but since all
609 * the values fit in 3 bits, the 5 entry "table" fits in a 16 bit value which
610 * can be loaded in a single instruction.
611 */
612 #define TLBINV_MAP(op, nobody, one, alluser, allkernel, all) \
613 (((( (nobody) << 3*TLBINV_NOBODY) \
614 | ( (one) << 3*TLBINV_ONE) \
615 | ( (alluser) << 3*TLBINV_ALLUSER) \
616 | ((allkernel) << 3*TLBINV_ALLKERNEL) \
617 | ( (all) << 3*TLBINV_ALL)) >> 3*(op)) & 7)
618
619 #define TLBINV_USER_MAP(op) \
620 TLBINV_MAP(op, TLBINV_ONE, TLBINV_ALLUSER, TLBINV_ALLUSER, \
621 TLBINV_ALL, TLBINV_ALL)
622
623 #define TLBINV_KERNEL_MAP(op) \
624 TLBINV_MAP(op, TLBINV_ALLKERNEL, TLBINV_ALL, TLBINV_ALL, \
625 TLBINV_ALLKERNEL, TLBINV_ALL)
626
627 bool
628 pmap_tlb_shootdown_bystanders(pmap_t pm)
629 {
630 /*
631 * We don't need to deal our own TLB.
632 */
633
634 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
635
636 kcpuset_t *pm_active;
637 kcpuset_clone(&pm_active, pm->pm_active);
638 kcpuset_remove(pm_active, cpu_tlb_info(curcpu())->ti_kcpuset);
639 const bool kernel_p = (pm == pmap_kernel());
640 bool ipi_sent = false;
641
642 /*
643 * If pm_active gets more bits set, then it's after all our changes
644 * have been made so they will already be cognizant of them.
645 */
646
647 for (size_t i = 0; !kcpuset_iszero(pm_active); i++) {
648 KASSERT(i < pmap_ntlbs);
649 struct pmap_tlb_info * const ti = pmap_tlbs[i];
650 KASSERT(tlbinfo_index(ti) == i);
651 /*
652 * Skip this TLB if there are no active mappings for it.
653 */
654 if (!kcpuset_intersecting_p(pm_active, ti->ti_kcpuset))
655 continue;
656 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
657 kcpuset_remove(pm_active, ti->ti_kcpuset);
658 TLBINFO_LOCK(ti);
659 cpuid_t j = kcpuset_ffs_intersecting(pm->pm_onproc,
660 ti->ti_kcpuset);
661 // post decrement since ffs returns bit + 1 or 0 if no bit
662 if (j-- > 0) {
663 if (kernel_p) {
664 ti->ti_tlbinvop =
665 TLBINV_KERNEL_MAP(ti->ti_tlbinvop);
666 ti->ti_victim = NULL;
667 } else {
668 KASSERT(pai->pai_asid);
669 if (__predict_false(ti->ti_victim == pm)) {
670 KASSERT(ti->ti_tlbinvop == TLBINV_ONE);
671 /*
672 * We still need to invalidate this one
673 * ASID so there's nothing to change.
674 */
675 } else {
676 ti->ti_tlbinvop =
677 TLBINV_USER_MAP(ti->ti_tlbinvop);
678 if (ti->ti_tlbinvop == TLBINV_ONE)
679 ti->ti_victim = pm;
680 else
681 ti->ti_victim = NULL;
682 }
683 }
684 TLBINFO_UNLOCK(ti);
685 /*
686 * Now we can send out the shootdown IPIs to a CPU
687 * that shares this TLB and is currently using this
688 * pmap. That CPU will process the IPI and do the
689 * all the work. Any other CPUs sharing that TLB
690 * will take advantage of that work. pm_onproc might
691 * change now that we have released the lock but we
692 * can tolerate spurious shootdowns.
693 */
694 cpu_send_ipi(cpu_lookup(j), IPI_SHOOTDOWN);
695 ipi_sent = true;
696 continue;
697 }
698 if (!pmap_tlb_intersecting_active_p(pm, ti)) {
699 /*
700 * If this pmap has an ASID assigned but it's not
701 * currently running, nuke its ASID. Next time the
702 * pmap is activated, it will allocate a new ASID.
703 * And best of all, we avoid an IPI.
704 */
705 KASSERT(!kernel_p);
706 pmap_tlb_pai_reset(ti, pai, pm);
707 //ti->ti_evcnt_lazy_shots.ev_count++;
708 }
709 TLBINFO_UNLOCK(ti);
710 }
711
712 kcpuset_destroy(pm_active);
713
714 UVMHIST_LOG(maphist, " <-- done (ipi_sent=%d)", ipi_sent, 0, 0, 0);
715
716 return ipi_sent;
717 }
718 #endif /* MULTIPROCESSOR && PMAP_TLB_NEED_SHOOTDOWN */
719
720 #ifndef PMAP_TLB_HWPAGEWALKER
721 int
722 pmap_tlb_update_addr(pmap_t pm, vaddr_t va, pt_entry_t pte, u_int flags)
723 {
724 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
725 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
726 int rv = -1;
727
728 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
729 UVMHIST_LOG(maphist,
730 " (pm=%p va=%#"PRIxVADDR", pte=%#"PRIxPTE" flags=%#x)",
731 pm, va, pte_value(pte), flags);
732
733 KASSERT(kpreempt_disabled());
734
735 KASSERTMSG(pte_valid_p(pte), "va %#"PRIxVADDR" %#"PRIxPTE,
736 va, pte_value(pte));
737
738 TLBINFO_LOCK(ti);
739 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
740 pmap_tlb_asid_check();
741 rv = tlb_update_addr(va, pai->pai_asid, pte,
742 (flags & PMAP_TLB_INSERT) != 0);
743 pmap_tlb_asid_check();
744 UVMHIST_LOG(maphist,
745 " %d <-- tlb_update_addr(%#"PRIxVADDR", %#x, %#"PRIxPTE", ...)",
746 rv, va, pai->pai_asid, pte_value(pte));
747 KASSERTMSG((flags & PMAP_TLB_INSERT) == 0 || rv == 1,
748 "pmap %p (asid %u) va %#"PRIxVADDR" pte %#"PRIxPTE" rv %d",
749 pm, pai->pai_asid, va, pte_value(pte), rv);
750 }
751 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
752 if (flags & PMAP_TLB_NEED_IPI)
753 pm->pm_shootdown_pending = 1;
754 #endif
755 TLBINFO_UNLOCK(ti);
756
757 UVMHIST_LOG(maphist, " <-- done (rv=%d)", rv, 0, 0, 0);
758
759 return rv;
760 }
761 #endif /* !PMAP_TLB_HWPAGEWALKER */
762
763 void
764 pmap_tlb_invalidate_addr(pmap_t pm, vaddr_t va)
765 {
766 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
767 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
768
769 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
770 UVMHIST_LOG(maphist, " (pm=%p va=%#"PRIxVADDR") ti=%p asid=%#x",
771 pm, va, ti, pai->pai_asid);
772
773 KASSERT(kpreempt_disabled());
774
775 TLBINFO_LOCK(ti);
776 if (pm == pmap_kernel() || PMAP_PAI_ASIDVALID_P(pai, ti)) {
777 pmap_tlb_asid_check();
778 UVMHIST_LOG(maphist, " invalidating %#"PRIxVADDR" asid %#x",
779 va, pai->pai_asid, 0, 0);
780 tlb_invalidate_addr(va, pai->pai_asid);
781 pmap_tlb_asid_check();
782 }
783 #if defined(MULTIPROCESSOR) && defined(PMAP_TLB_NEED_SHOOTDOWN)
784 pm->pm_shootdown_pending = 1;
785 #endif
786 TLBINFO_UNLOCK(ti);
787 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
788 }
789
790 static inline void
791 pmap_tlb_asid_alloc(struct pmap_tlb_info *ti, pmap_t pm,
792 struct pmap_asid_info *pai)
793 {
794 /*
795 * We shouldn't have an ASID assigned, and thusly must not be onproc
796 * nor active.
797 */
798 KASSERT(pm != pmap_kernel());
799 KASSERT(pai->pai_asid == 0);
800 KASSERT(pai->pai_link.le_prev == NULL);
801 #if defined(MULTIPROCESSOR)
802 KASSERT(!pmap_tlb_intersecting_onproc_p(pm, ti));
803 KASSERT(!pmap_tlb_intersecting_active_p(pm, ti));
804 #endif
805 KASSERT(ti->ti_asids_free > 0);
806 KASSERT(ti->ti_asid_hint > KERNEL_PID);
807
808 /*
809 * If the last ASID allocated was the maximum ASID, then the
810 * hint will be out of range. Reset the hint to first
811 * available ASID.
812 */
813 if (PMAP_TLB_FLUSH_ASID_ON_RESET
814 && ti->ti_asid_hint > ti->ti_asid_max) {
815 ti->ti_asid_hint = KERNEL_PID + 1;
816 }
817 KASSERTMSG(ti->ti_asid_hint <= ti->ti_asid_max, "hint %u",
818 ti->ti_asid_hint);
819
820 /*
821 * Let's see if the hinted ASID is free. If not search for
822 * a new one.
823 */
824 if (__predict_true(TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint))) {
825 const size_t nbpw __diagused = 8*sizeof(ti->ti_asid_bitmap[0]);
826 size_t i;
827 u_long bits;
828 for (i = 0; (bits = ~ti->ti_asid_bitmap[i]) == 0; i++) {
829 KASSERT(i < __arraycount(ti->ti_asid_bitmap) - 1);
830 }
831 /*
832 * ffs wants to find the first bit set while we want
833 * to find the first bit cleared.
834 */
835 const u_int n = __builtin_ffsl(bits) - 1;
836 KASSERTMSG((bits << (nbpw - (n+1))) == (1ul << (nbpw-1)),
837 "n %u bits %#lx", n, bits);
838 KASSERT(n < nbpw);
839 ti->ti_asid_hint = n + i * nbpw;
840 }
841
842 KASSERT(ti->ti_asid_hint > KERNEL_PID);
843 KASSERT(ti->ti_asid_hint <= ti->ti_asid_max);
844 KASSERTMSG(PMAP_TLB_FLUSH_ASID_ON_RESET
845 || TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint - 1),
846 "hint %u bitmap %p", ti->ti_asid_hint, ti->ti_asid_bitmap);
847 KASSERTMSG(!TLBINFO_ASID_INUSE_P(ti, ti->ti_asid_hint),
848 "hint %u bitmap %p", ti->ti_asid_hint, ti->ti_asid_bitmap);
849
850 /*
851 * The hint contains our next ASID so take it and advance the hint.
852 * Mark it as used and insert the pai into the list of active asids.
853 * There is also one less asid free in this TLB.
854 */
855 KASSERT(ti->ti_asid_hint > KERNEL_PID);
856 pai->pai_asid = ti->ti_asid_hint++;
857 #ifdef MULTIPROCESSOR
858 if (PMAP_TLB_FLUSH_ASID_ON_RESET) {
859 /*
860 * Clean the new ASID from the TLB.
861 */
862 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
863 }
864 #endif
865 TLBINFO_ASID_MARK_USED(ti, pai->pai_asid);
866 LIST_INSERT_HEAD(&ti->ti_pais, pai, pai_link);
867 ti->ti_asids_free--;
868
869 #if defined(MULTIPROCESSOR)
870 /*
871 * Mark that we now have an active ASID for all CPUs sharing this TLB.
872 * The bits in pm_active belonging to this TLB can only be changed
873 * while this TLBs lock is held.
874 */
875 #if PMAP_TLB_MAX == 1
876 kcpuset_copy(pm->pm_active, kcpuset_running);
877 #else
878 kcpuset_merge(pm->pm_active, ti->ti_kcpuset);
879 #endif
880 #endif
881 }
882
883 /*
884 * Acquire a TLB address space tag (called ASID or TLBPID) and return it.
885 * ASID might have already been previously acquired.
886 */
887 void
888 pmap_tlb_asid_acquire(pmap_t pm, struct lwp *l)
889 {
890 struct cpu_info * const ci = l->l_cpu;
891 struct pmap_tlb_info * const ti = cpu_tlb_info(ci);
892 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
893
894 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
895 UVMHIST_LOG(maphist, "(pm=%p, l=%p, ti=%p)", pm, l, ti, 0);
896
897 KASSERT(kpreempt_disabled());
898
899 /*
900 * Kernels use a fixed ASID and thus doesn't need to acquire one.
901 */
902 if (pm == pmap_kernel()) {
903 UVMHIST_LOG(maphist, " <-- done (kernel)", 0, 0, 0, 0);
904 return;
905 }
906
907 TLBINFO_LOCK(ti);
908 KASSERT(pai->pai_asid <= KERNEL_PID || pai->pai_link.le_prev != NULL);
909 KASSERT(pai->pai_asid > KERNEL_PID || pai->pai_link.le_prev == NULL);
910 pmap_tlb_pai_check(ti);
911 if (__predict_false(!PMAP_PAI_ASIDVALID_P(pai, ti))) {
912 /*
913 * If we've run out ASIDs, reinitialize the ASID space.
914 */
915 if (__predict_false(tlbinfo_noasids_p(ti))) {
916 KASSERT(l == curlwp);
917 UVMHIST_LOG(maphist, " asid reinit", 0, 0, 0, 0);
918 pmap_tlb_asid_reinitialize(ti, TLBINV_NOBODY);
919 KASSERT(!tlbinfo_noasids_p(ti));
920 }
921
922 /*
923 * Get an ASID.
924 */
925 pmap_tlb_asid_alloc(ti, pm, pai);
926 UVMHIST_LOG(maphist, "allocated asid %#x", pai->pai_asid, 0, 0, 0);
927 }
928 pmap_tlb_pai_check(ti);
929 #if defined(MULTIPROCESSOR)
930 KASSERT(kcpuset_isset(pm->pm_active, cpu_index(ci)));
931 #endif
932
933 if (l == curlwp) {
934 #if defined(MULTIPROCESSOR)
935 /*
936 * The bits in pm_onproc belonging to this TLB can only
937 * be changed while this TLBs lock is held unless atomic
938 * operations are used.
939 */
940 KASSERT(pm != pmap_kernel());
941 kcpuset_atomic_set(pm->pm_onproc, cpu_index(ci));
942 #endif
943 ci->ci_pmap_asid_cur = pai->pai_asid;
944 UVMHIST_LOG(maphist, "setting asid to %#x", pai->pai_asid, 0, 0, 0);
945 tlb_set_asid(pai->pai_asid);
946 pmap_tlb_asid_check();
947 } else {
948 printf("%s: l (%p) != curlwp %p\n", __func__, l, curlwp);
949 }
950 TLBINFO_UNLOCK(ti);
951 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
952 }
953
954 void
955 pmap_tlb_asid_deactivate(pmap_t pm)
956 {
957 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
958
959 KASSERT(kpreempt_disabled());
960 #if defined(MULTIPROCESSOR)
961 /*
962 * The kernel pmap is aways onproc and active and must never have
963 * those bits cleared. If pmap_remove_all was called, it has already
964 * deactivated the pmap and thusly onproc will be 0 so there's nothing
965 * to do.
966 */
967 if (pm != pmap_kernel() && !kcpuset_iszero(pm->pm_onproc)) {
968 struct cpu_info * const ci = curcpu();
969 KASSERT(!cpu_intr_p());
970 KASSERTMSG(kcpuset_isset(pm->pm_onproc, cpu_index(ci)),
971 "%s: pmap %p onproc %p doesn't include cpu %d (%p)",
972 __func__, pm, pm->pm_onproc, cpu_index(ci), ci);
973 /*
974 * The bits in pm_onproc that belong to this TLB can
975 * be changed while this TLBs lock is not held as long
976 * as we use atomic ops.
977 */
978 kcpuset_atomic_clear(pm->pm_onproc, cpu_index(ci));
979 }
980 #endif
981 curcpu()->ci_pmap_asid_cur = 0;
982 UVMHIST_LOG(maphist, " <-- done (pm=%p)", pm, 0, 0, 0);
983 tlb_set_asid(KERNEL_PID);
984 pmap_tlb_pai_check(cpu_tlb_info(curcpu()));
985 #if defined(DEBUG)
986 pmap_tlb_asid_check();
987 #endif
988 }
989
990 void
991 pmap_tlb_asid_release_all(struct pmap *pm)
992 {
993 UVMHIST_FUNC(__func__); UVMHIST_CALLED(maphist);
994 UVMHIST_LOG(maphist, "(pm=%p)", pm, 0, 0, 0);
995
996 KASSERT(pm != pmap_kernel());
997 #if defined(MULTIPROCESSOR)
998 //KASSERT(!kcpuset_iszero(pm->pm_onproc)); // XXX
999 struct cpu_info * const ci __diagused = curcpu();
1000 KASSERT(!kcpuset_isotherset(pm->pm_onproc, cpu_index(ci)));
1001 #if PMAP_TLB_MAX > 1
1002 for (u_int i = 0; !kcpuset_iszero(pm->pm_active); i++) {
1003 KASSERT(i < pmap_ntlbs);
1004 struct pmap_tlb_info * const ti = pmap_tlbs[i];
1005 #else
1006 struct pmap_tlb_info * const ti = &pmap_tlb0_info;
1007 #endif
1008 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
1009 TLBINFO_LOCK(ti);
1010 if (PMAP_PAI_ASIDVALID_P(pai, ti)) {
1011 /*
1012 * This pmap should not be in use by any other cpu so
1013 * we can just reset and be happy.
1014 */
1015 if (ti->ti_victim == pm)
1016 ti->ti_victim = NULL;
1017 pmap_tlb_pai_reset(ti, pai, pm);
1018 }
1019 KASSERT(pai->pai_link.le_prev == NULL);
1020 TLBINFO_UNLOCK(ti);
1021 #if PMAP_TLB_MAX > 1
1022 }
1023 #endif
1024 #ifdef DIAGNOSTIC
1025 for (size_t i = 0; i < (PMAP_TLB_MAX > 1 ? pmap_ntlbs : 1); i++) {
1026 KASSERTMSG(pm->pm_pai[i].pai_asid == 0,
1027 "pm %p i %zu asid %u",
1028 pm, i, pm->pm_pai[i].pai_asid);
1029 }
1030 #endif
1031 #else
1032 /*
1033 * Handle the case of an UP kernel which only has, at most, one ASID.
1034 * If the pmap has an ASID allocated, free it.
1035 */
1036 struct pmap_tlb_info * const ti = &pmap_tlb0_info;
1037 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
1038 TLBINFO_LOCK(ti);
1039 if (pai->pai_asid > KERNEL_PID) {
1040 if (curcpu()->ci_pmap_asid_cur == pai->pai_asid) {
1041 tlb_invalidate_asids(pai->pai_asid, pai->pai_asid);
1042 } else {
1043 pmap_tlb_pai_reset(ti, pai, pm);
1044 }
1045 }
1046 TLBINFO_UNLOCK(ti);
1047 #endif /* MULTIPROCESSOR */
1048 UVMHIST_LOG(maphist, " <-- done", 0, 0, 0, 0);
1049 }
1050
1051 void
1052 pmap_tlb_asid_check(void)
1053 {
1054 #ifdef DEBUG
1055 kpreempt_disable();
1056 const tlb_asid_t asid __debugused = tlb_get_asid();
1057 KDASSERTMSG(asid == curcpu()->ci_pmap_asid_cur,
1058 "%s: asid (%#x) != current asid (%#x)",
1059 __func__, asid, curcpu()->ci_pmap_asid_cur);
1060 kpreempt_enable();
1061 #endif
1062 }
1063
1064 #ifdef DEBUG
1065 void
1066 pmap_tlb_check(pmap_t pm, bool (*func)(void *, vaddr_t, tlb_asid_t, pt_entry_t))
1067 {
1068 struct pmap_tlb_info * const ti = cpu_tlb_info(curcpu());
1069 struct pmap_asid_info * const pai = PMAP_PAI(pm, ti);
1070 TLBINFO_LOCK(ti);
1071 if (pm == pmap_kernel() || pai->pai_asid > KERNEL_PID)
1072 tlb_walk(pm, func);
1073 TLBINFO_UNLOCK(ti);
1074 }
1075 #endif /* DEBUG */
1076