uvm_aobj.c revision 1.4 1 1.4 mrg /* $NetBSD: uvm_aobj.c,v 1.4 1998/02/07 11:08:08 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /* copyright here */
4 1.4 mrg /*
5 1.4 mrg * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
6 1.4 mrg */
7 1.1 mrg
8 1.1 mrg #include <sys/param.h>
9 1.1 mrg #include <sys/systm.h>
10 1.1 mrg #include <sys/proc.h>
11 1.1 mrg #include <sys/malloc.h>
12 1.1 mrg
13 1.1 mrg #include <vm/vm.h>
14 1.1 mrg #include <vm/vm_page.h>
15 1.1 mrg #include <vm/vm_kern.h>
16 1.1 mrg
17 1.1 mrg #include <uvm/uvm.h>
18 1.1 mrg
19 1.1 mrg /*
20 1.1 mrg * uvm_aobj.c: anonymous-memory backed uvm_object
21 1.1 mrg */
22 1.1 mrg
23 1.1 mrg /*
24 1.1 mrg * an aobj manages anonymous-memory backed uvm_objects. in addition
25 1.1 mrg * to keeping the list of resident pages, it also keeps a list of
26 1.1 mrg * allocated swap blocks. depending on the size of the aobj this list
27 1.1 mrg * of allocated swap blocks is either stored in an array (small objects)
28 1.1 mrg * or in a hash table (large objects).
29 1.1 mrg */
30 1.1 mrg
31 1.1 mrg /*
32 1.1 mrg * local structures
33 1.1 mrg */
34 1.1 mrg
35 1.1 mrg /*
36 1.1 mrg * for hash tables, we break the address space of the aobj into blocks
37 1.1 mrg * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
38 1.1 mrg * be a power of two.
39 1.1 mrg */
40 1.1 mrg
41 1.1 mrg #define UAO_SWHASH_CLUSTER_SHIFT 4
42 1.1 mrg #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
43 1.1 mrg
44 1.1 mrg /* get the "tag" for this page index */
45 1.1 mrg #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
46 1.1 mrg ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
47 1.1 mrg
48 1.1 mrg /* given an ELT and a page index, find the swap slot */
49 1.1 mrg #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
50 1.1 mrg ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
51 1.1 mrg
52 1.1 mrg /* given an ELT, return its pageidx base */
53 1.1 mrg #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
54 1.1 mrg ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
55 1.1 mrg
56 1.1 mrg /*
57 1.1 mrg * the swhash hash function
58 1.1 mrg */
59 1.1 mrg #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
60 1.1 mrg (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
61 1.1 mrg & (AOBJ)->u_swhashmask)])
62 1.1 mrg
63 1.1 mrg /*
64 1.1 mrg * the swhash threshhold determines if we will use an array or a
65 1.1 mrg * hash table to store the list of allocated swap blocks.
66 1.1 mrg */
67 1.1 mrg
68 1.1 mrg #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
69 1.1 mrg #define UAO_USES_SWHASH(AOBJ) \
70 1.1 mrg ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
71 1.1 mrg
72 1.1 mrg /*
73 1.3 chs * the number of buckets in a swhash, with an upper bound
74 1.1 mrg */
75 1.1 mrg #define UAO_SWHASH_MAXBUCKETS 256
76 1.1 mrg #define UAO_SWHASH_BUCKETS(AOBJ) \
77 1.1 mrg (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
78 1.1 mrg UAO_SWHASH_MAXBUCKETS))
79 1.1 mrg
80 1.1 mrg
81 1.1 mrg /*
82 1.1 mrg * uao_swhash_elt: when a hash table is being used, this structure defines
83 1.1 mrg * the format of an entry in the bucket list.
84 1.1 mrg */
85 1.1 mrg
86 1.1 mrg struct uao_swhash_elt {
87 1.1 mrg LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
88 1.1 mrg vm_offset_t tag; /* our 'tag' */
89 1.1 mrg int count; /* our number of active slots */
90 1.1 mrg int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
91 1.1 mrg };
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * uao_swhash: the swap hash table structure
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg LIST_HEAD(uao_swhash, uao_swhash_elt);
98 1.1 mrg
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * uvm_aobj: the actual anon-backed uvm_object
102 1.1 mrg *
103 1.1 mrg * => the uvm_object is at the top of the structure, this allows
104 1.1 mrg * (struct uvm_device *) == (struct uvm_object *)
105 1.1 mrg * => only one of u_swslots and u_swhash is used in any given aobj
106 1.1 mrg */
107 1.1 mrg
108 1.1 mrg struct uvm_aobj {
109 1.1 mrg struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
110 1.1 mrg vm_size_t u_pages; /* number of pages in entire object */
111 1.1 mrg int u_flags; /* the flags (see uvm_aobj.h) */
112 1.1 mrg int *u_swslots; /* array of offset->swapslot mappings */
113 1.1 mrg struct uao_swhash *u_swhash; /* hashtable of offset->swapslot mappings */
114 1.1 mrg /* (u_swhash is an array of bucket heads) */
115 1.1 mrg u_long u_swhashmask; /* mask for hashtable */
116 1.1 mrg LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
117 1.1 mrg };
118 1.1 mrg
119 1.1 mrg /*
120 1.1 mrg * local functions
121 1.1 mrg */
122 1.1 mrg
123 1.1 mrg static void uao_init __P((void));
124 1.1 mrg static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
125 1.1 mrg int, boolean_t));
126 1.1 mrg static int uao_find_swslot __P((struct uvm_aobj *,
127 1.1 mrg vm_offset_t));
128 1.1 mrg static boolean_t uao_flush __P((struct uvm_object *,
129 1.1 mrg vm_offset_t, vm_offset_t,
130 1.1 mrg int));
131 1.1 mrg static void uao_free __P((struct uvm_aobj *));
132 1.1 mrg static int uao_get __P((struct uvm_object *, vm_offset_t,
133 1.1 mrg vm_page_t *, int *, int,
134 1.1 mrg vm_prot_t, int, int));
135 1.1 mrg static boolean_t uao_releasepg __P((struct vm_page *,
136 1.1 mrg struct vm_page **));
137 1.1 mrg
138 1.1 mrg
139 1.1 mrg
140 1.1 mrg /*
141 1.1 mrg * aobj_pager
142 1.1 mrg *
143 1.1 mrg * note that some functions (e.g. put) are handled elsewhere
144 1.1 mrg */
145 1.1 mrg
146 1.1 mrg struct uvm_pagerops aobj_pager = {
147 1.1 mrg uao_init, /* init */
148 1.1 mrg NULL, /* attach */
149 1.1 mrg uao_reference, /* reference */
150 1.1 mrg uao_detach, /* detach */
151 1.1 mrg NULL, /* fault */
152 1.1 mrg uao_flush, /* flush */
153 1.1 mrg uao_get, /* get */
154 1.1 mrg NULL, /* asyncget */
155 1.1 mrg NULL, /* put (done by pagedaemon) */
156 1.1 mrg NULL, /* cluster */
157 1.1 mrg NULL, /* mk_pcluster */
158 1.1 mrg uvm_shareprot, /* shareprot */
159 1.1 mrg NULL, /* aiodone */
160 1.1 mrg uao_releasepg /* releasepg */
161 1.1 mrg };
162 1.1 mrg
163 1.1 mrg /*
164 1.1 mrg * uao_list: global list of active aobjs, locked by uao_list_lock
165 1.1 mrg */
166 1.1 mrg
167 1.1 mrg static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
168 1.1 mrg #if NCPU > 1
169 1.1 mrg static simple_lock_data_t uao_list_lock;
170 1.1 mrg #endif
171 1.1 mrg
172 1.1 mrg
173 1.1 mrg /*
174 1.1 mrg * functions
175 1.1 mrg */
176 1.1 mrg
177 1.1 mrg /*
178 1.1 mrg * hash table/array related functions
179 1.1 mrg */
180 1.1 mrg
181 1.1 mrg /*
182 1.1 mrg * uao_find_swhash_elt: find (or create) a hash table entry for a page
183 1.1 mrg * offset.
184 1.1 mrg *
185 1.1 mrg * => the object should be locked by the caller
186 1.1 mrg */
187 1.1 mrg
188 1.1 mrg static struct uao_swhash_elt *uao_find_swhash_elt(aobj, pageidx, create)
189 1.1 mrg
190 1.1 mrg struct uvm_aobj *aobj;
191 1.1 mrg int pageidx;
192 1.1 mrg boolean_t create;
193 1.1 mrg
194 1.1 mrg {
195 1.1 mrg struct uao_swhash *swhash;
196 1.1 mrg struct uao_swhash_elt *elt;
197 1.1 mrg int page_tag;
198 1.1 mrg
199 1.1 mrg swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
200 1.1 mrg page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
201 1.1 mrg
202 1.1 mrg /*
203 1.1 mrg * now search the bucket for the requested tag
204 1.1 mrg */
205 1.1 mrg for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
206 1.1 mrg if (elt->tag == page_tag)
207 1.1 mrg return(elt);
208 1.1 mrg }
209 1.1 mrg
210 1.1 mrg /* fail now if we are not allowed to create a new entry in the bucket */
211 1.1 mrg if (!create)
212 1.1 mrg return NULL;
213 1.1 mrg
214 1.1 mrg
215 1.1 mrg /*
216 1.1 mrg * malloc a new entry for the bucket and init/insert it in
217 1.1 mrg */
218 1.1 mrg MALLOC(elt, struct uao_swhash_elt *, sizeof(*elt), M_UVMAOBJ, M_WAITOK);
219 1.3 chs LIST_INSERT_HEAD(swhash, elt, list);
220 1.1 mrg elt->tag = page_tag;
221 1.3 chs elt->count = 0;
222 1.1 mrg bzero(elt->slots, sizeof(elt->slots));
223 1.1 mrg
224 1.1 mrg return(elt);
225 1.1 mrg }
226 1.1 mrg
227 1.1 mrg /*
228 1.1 mrg * uao_find_swslot: find the swap slot number for an aobj/pageidx
229 1.1 mrg *
230 1.1 mrg * => object must be locked by caller
231 1.1 mrg */
232 1.1 mrg
233 1.1 mrg __inline static int uao_find_swslot(aobj, pageidx)
234 1.1 mrg
235 1.1 mrg struct uvm_aobj *aobj;
236 1.1 mrg vm_offset_t pageidx;
237 1.1 mrg
238 1.1 mrg {
239 1.1 mrg /*
240 1.1 mrg * if noswap flag is set, then we never return a slot
241 1.1 mrg */
242 1.1 mrg
243 1.1 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP)
244 1.1 mrg return(0);
245 1.1 mrg
246 1.1 mrg /*
247 1.1 mrg * if hashing, look in hash table.
248 1.1 mrg */
249 1.1 mrg
250 1.1 mrg if (UAO_USES_SWHASH(aobj)) {
251 1.1 mrg struct uao_swhash_elt *elt = uao_find_swhash_elt(aobj, pageidx, FALSE);
252 1.1 mrg
253 1.1 mrg if (elt)
254 1.1 mrg return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
255 1.1 mrg else
256 1.1 mrg return(NULL);
257 1.1 mrg }
258 1.1 mrg
259 1.1 mrg /*
260 1.1 mrg * otherwise, look in the array
261 1.1 mrg */
262 1.1 mrg return(aobj->u_swslots[pageidx]);
263 1.1 mrg }
264 1.1 mrg
265 1.1 mrg /*
266 1.1 mrg * uao_set_swslot: set the swap slot for a page in an aobj.
267 1.1 mrg *
268 1.1 mrg * => setting a slot to zero frees the slot
269 1.1 mrg * => object must be locked by caller
270 1.1 mrg */
271 1.1 mrg
272 1.1 mrg int uao_set_swslot(uobj, pageidx, slot)
273 1.1 mrg
274 1.1 mrg struct uvm_object *uobj;
275 1.1 mrg int pageidx, slot;
276 1.1 mrg
277 1.1 mrg {
278 1.1 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
279 1.1 mrg int oldslot;
280 1.1 mrg UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
281 1.1 mrg UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d", aobj, pageidx, slot, 0);
282 1.1 mrg
283 1.1 mrg /*
284 1.1 mrg * if noswap flag is set, then we can't set a slot
285 1.1 mrg */
286 1.1 mrg
287 1.1 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP) {
288 1.1 mrg
289 1.1 mrg if (slot == 0)
290 1.1 mrg return(0); /* a clear is ok */
291 1.1 mrg
292 1.1 mrg /* but a set is not */
293 1.1 mrg printf("uao_set_swslot: uobj = %p\n", uobj);
294 1.1 mrg panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
295 1.1 mrg }
296 1.1 mrg
297 1.1 mrg /*
298 1.1 mrg * are we using a hash table? if so, add it in the hash.
299 1.1 mrg */
300 1.1 mrg
301 1.1 mrg if (UAO_USES_SWHASH(aobj)) {
302 1.1 mrg struct uao_swhash_elt *elt = uao_find_swhash_elt(aobj, pageidx, TRUE);
303 1.1 mrg
304 1.1 mrg oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
305 1.1 mrg UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
306 1.1 mrg
307 1.1 mrg /*
308 1.1 mrg * now adjust the elt's reference counter and free it if we've dropped
309 1.1 mrg * it to zero.
310 1.1 mrg */
311 1.1 mrg
312 1.1 mrg if (slot) { /* an allocation? */
313 1.1 mrg
314 1.1 mrg if (oldslot == 0)
315 1.1 mrg elt->count++;
316 1.1 mrg
317 1.1 mrg } else { /* freeing slot ... */
318 1.1 mrg
319 1.1 mrg if (oldslot) /* to be safe (who would replace zero with zero?) */
320 1.1 mrg elt->count--;
321 1.1 mrg
322 1.1 mrg if (elt->count == 0) {
323 1.1 mrg LIST_REMOVE(elt, list);
324 1.1 mrg FREE(elt, M_UVMAOBJ);
325 1.1 mrg }
326 1.1 mrg }
327 1.1 mrg
328 1.1 mrg } else {
329 1.1 mrg
330 1.1 mrg /* we are using an array */
331 1.1 mrg oldslot = aobj->u_swslots[pageidx];
332 1.1 mrg aobj->u_swslots[pageidx] = slot;
333 1.1 mrg
334 1.1 mrg }
335 1.1 mrg
336 1.1 mrg return(oldslot);
337 1.1 mrg }
338 1.1 mrg
339 1.1 mrg /*
340 1.1 mrg * end of hash/array functions
341 1.1 mrg */
342 1.1 mrg
343 1.1 mrg /*
344 1.1 mrg * uao_free: free all resources held by an aobj, and then free the aobj
345 1.1 mrg *
346 1.1 mrg * => the aobj should be dead
347 1.1 mrg */
348 1.1 mrg
349 1.1 mrg static void
350 1.1 mrg uao_free(aobj)
351 1.1 mrg struct uvm_aobj *aobj;
352 1.1 mrg {
353 1.1 mrg
354 1.1 mrg
355 1.1 mrg if (UAO_USES_SWHASH(aobj)) {
356 1.1 mrg int i, hashbuckets = aobj->u_swhashmask + 1;
357 1.1 mrg
358 1.1 mrg /*
359 1.1 mrg * free the swslots from each hash bucket,
360 1.1 mrg * then the hash bucket, and finally the hash table itself.
361 1.1 mrg */
362 1.1 mrg for (i = 0; i < hashbuckets; i++) {
363 1.1 mrg struct uao_swhash_elt *elt, *next;
364 1.1 mrg
365 1.1 mrg for (elt = aobj->u_swhash[i].lh_first; elt != NULL; elt = next) {
366 1.1 mrg int j;
367 1.1 mrg
368 1.1 mrg for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
369 1.1 mrg {
370 1.1 mrg int slot = elt->slots[j];
371 1.1 mrg
372 1.1 mrg if (slot)
373 1.1 mrg {
374 1.1 mrg uvm_swap_free(slot, 1);
375 1.1 mrg }
376 1.1 mrg }
377 1.1 mrg
378 1.1 mrg next = elt->list.le_next;
379 1.1 mrg FREE(elt, M_UVMAOBJ);
380 1.1 mrg }
381 1.1 mrg }
382 1.1 mrg FREE(aobj->u_swhash, M_UVMAOBJ);
383 1.1 mrg } else {
384 1.1 mrg int i;
385 1.1 mrg
386 1.1 mrg /*
387 1.1 mrg * free the array
388 1.1 mrg */
389 1.1 mrg
390 1.1 mrg for (i = 0; i < aobj->u_pages; i++)
391 1.1 mrg {
392 1.1 mrg int slot = aobj->u_swslots[i];
393 1.1 mrg
394 1.1 mrg if (slot)
395 1.1 mrg {
396 1.1 mrg uvm_swap_free(slot, 1);
397 1.1 mrg }
398 1.1 mrg }
399 1.1 mrg
400 1.1 mrg FREE(aobj->u_swslots, M_UVMAOBJ);
401 1.1 mrg }
402 1.1 mrg
403 1.1 mrg /*
404 1.1 mrg * finally free the aobj itself
405 1.1 mrg */
406 1.1 mrg FREE(aobj, M_UVMAOBJ);
407 1.1 mrg }
408 1.1 mrg
409 1.1 mrg
410 1.1 mrg /*
411 1.1 mrg * pager functions
412 1.1 mrg */
413 1.1 mrg
414 1.1 mrg /*
415 1.1 mrg * uao_create: create an aobj of the given size and return its uvm_object.
416 1.1 mrg *
417 1.1 mrg * => for normal use, flags are always zero
418 1.1 mrg * => for the kernel object, the flags are:
419 1.1 mrg * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
420 1.1 mrg * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
421 1.1 mrg */
422 1.1 mrg
423 1.1 mrg struct uvm_object *uao_create(size, flags)
424 1.1 mrg
425 1.1 mrg vm_size_t size;
426 1.1 mrg int flags;
427 1.1 mrg
428 1.1 mrg {
429 1.1 mrg static struct uvm_aobj kernel_object_store; /* home of kernel_object */
430 1.1 mrg static int kobj_alloced = 0; /* not allocated yet */
431 1.1 mrg int pages = round_page(size) / PAGE_SIZE;
432 1.1 mrg struct uvm_aobj *aobj;
433 1.1 mrg
434 1.1 mrg /*
435 1.1 mrg * malloc a new aobj unless we are asked for the kernel object
436 1.1 mrg */
437 1.1 mrg if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
438 1.1 mrg if (kobj_alloced)
439 1.1 mrg panic("uao_create: kernel object already allocated");
440 1.1 mrg
441 1.1 mrg aobj = &kernel_object_store;
442 1.1 mrg aobj->u_pages = pages;
443 1.1 mrg aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
444 1.1 mrg aobj->u_obj.uo_refs = UVM_OBJ_KERN; /* we are special, we never die */
445 1.1 mrg kobj_alloced = UAO_FLAG_KERNOBJ;
446 1.1 mrg
447 1.1 mrg } else if (flags & UAO_FLAG_KERNSWAP) {
448 1.1 mrg
449 1.1 mrg aobj = &kernel_object_store;
450 1.1 mrg if (kobj_alloced != UAO_FLAG_KERNOBJ)
451 1.1 mrg panic("uao_create: asked to enable swap on kernel object");
452 1.1 mrg kobj_alloced = UAO_FLAG_KERNSWAP;
453 1.1 mrg
454 1.1 mrg } else { /* normal object */
455 1.1 mrg
456 1.1 mrg MALLOC(aobj, struct uvm_aobj *, sizeof(*aobj), M_UVMAOBJ, M_WAITOK);
457 1.1 mrg aobj->u_pages = pages;
458 1.1 mrg aobj->u_flags = 0; /* normal object */
459 1.1 mrg aobj->u_obj.uo_refs = 1; /* start with 1 reference */
460 1.1 mrg
461 1.1 mrg }
462 1.1 mrg
463 1.1 mrg /*
464 1.1 mrg * allocate hash/array if necessary
465 1.1 mrg *
466 1.1 mrg * note: in the KERNSWAP case no need to worry about locking since
467 1.1 mrg * we are still booting we should be the only thread around.
468 1.1 mrg */
469 1.1 mrg
470 1.1 mrg if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
471 1.1 mrg
472 1.3 chs int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ? M_NOWAIT : M_WAITOK;
473 1.3 chs
474 1.1 mrg /* allocate hash table or array depending on object size */
475 1.3 chs if (UAO_USES_SWHASH(aobj)) {
476 1.3 chs aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj), M_UVMAOBJ, mflags,
477 1.1 mrg &aobj->u_swhashmask);
478 1.3 chs if (aobj->u_swhash == NULL)
479 1.3 chs panic("uao_create: hashinit swhash failed");
480 1.1 mrg } else {
481 1.3 chs MALLOC(aobj->u_swslots, int *, pages * sizeof(int), M_UVMAOBJ, mflags);
482 1.3 chs if (aobj->u_swslots == NULL)
483 1.3 chs panic("uao_create: malloc swslots failed");
484 1.1 mrg bzero(aobj->u_swslots, pages * sizeof(int));
485 1.1 mrg }
486 1.1 mrg
487 1.1 mrg if (flags) {
488 1.1 mrg aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
489 1.1 mrg return(&aobj->u_obj);
490 1.1 mrg /* done! */
491 1.1 mrg }
492 1.1 mrg }
493 1.1 mrg
494 1.1 mrg /*
495 1.1 mrg * init aobj fields
496 1.1 mrg */
497 1.1 mrg simple_lock_init(&aobj->u_obj.vmobjlock);
498 1.1 mrg aobj->u_obj.pgops = &aobj_pager;
499 1.1 mrg TAILQ_INIT(&aobj->u_obj.memq);
500 1.1 mrg aobj->u_obj.uo_npages = 0;
501 1.1 mrg
502 1.1 mrg /*
503 1.1 mrg * now that aobj is ready, add it to the global list
504 1.1 mrg * XXXCHS: uao_init hasn't been called'd in the KERNOBJ case, do we really
505 1.1 mrg * need the kernel object on this list anyway?
506 1.1 mrg */
507 1.1 mrg simple_lock(&uao_list_lock);
508 1.1 mrg LIST_INSERT_HEAD(&uao_list, aobj, u_list);
509 1.1 mrg simple_unlock(&uao_list_lock);
510 1.1 mrg
511 1.1 mrg /*
512 1.1 mrg * done!
513 1.1 mrg */
514 1.1 mrg return(&aobj->u_obj);
515 1.1 mrg }
516 1.1 mrg
517 1.1 mrg
518 1.1 mrg
519 1.1 mrg /*
520 1.1 mrg * uao_init: set up aobj pager subsystem
521 1.1 mrg *
522 1.1 mrg * => called at boot time from uvm_pager_init()
523 1.1 mrg */
524 1.1 mrg
525 1.1 mrg static void uao_init()
526 1.1 mrg
527 1.1 mrg {
528 1.1 mrg LIST_INIT(&uao_list);
529 1.1 mrg simple_lock_init(&uao_list_lock);
530 1.1 mrg }
531 1.1 mrg
532 1.1 mrg /*
533 1.1 mrg * uao_reference: add a ref to an aobj
534 1.1 mrg *
535 1.1 mrg * => aobj must be unlocked (we will lock it)
536 1.1 mrg */
537 1.1 mrg
538 1.1 mrg void uao_reference(uobj)
539 1.1 mrg
540 1.1 mrg struct uvm_object *uobj;
541 1.1 mrg
542 1.1 mrg {
543 1.1 mrg UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
544 1.1 mrg
545 1.1 mrg /*
546 1.1 mrg * kernel_object already has plenty of references, leave it alone.
547 1.1 mrg */
548 1.1 mrg
549 1.1 mrg if (uobj->uo_refs == UVM_OBJ_KERN) {
550 1.1 mrg return;
551 1.1 mrg }
552 1.1 mrg
553 1.1 mrg simple_lock(&uobj->vmobjlock);
554 1.1 mrg uobj->uo_refs++; /* bump! */
555 1.1 mrg UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
556 1.1 mrg uobj, uobj->uo_refs,0,0);
557 1.1 mrg simple_unlock(&uobj->vmobjlock);
558 1.1 mrg }
559 1.1 mrg
560 1.1 mrg /*
561 1.1 mrg * uao_detach: drop a reference to an aobj
562 1.1 mrg *
563 1.1 mrg * => aobj must be unlocked, we will lock it
564 1.1 mrg */
565 1.1 mrg
566 1.1 mrg void uao_detach(uobj)
567 1.1 mrg
568 1.1 mrg struct uvm_object *uobj;
569 1.1 mrg
570 1.1 mrg {
571 1.1 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
572 1.1 mrg struct vm_page *pg;
573 1.1 mrg boolean_t busybody;
574 1.1 mrg UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
575 1.1 mrg
576 1.1 mrg /*
577 1.1 mrg * detaching from kernel_object is a noop.
578 1.1 mrg */
579 1.1 mrg
580 1.1 mrg if (uobj->uo_refs == UVM_OBJ_KERN) {
581 1.1 mrg return;
582 1.1 mrg }
583 1.1 mrg
584 1.1 mrg simple_lock(&uobj->vmobjlock);
585 1.1 mrg
586 1.1 mrg UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
587 1.1 mrg uobj->uo_refs--; /* drop ref! */
588 1.1 mrg if (uobj->uo_refs) { /* still more refs? */
589 1.1 mrg simple_unlock(&uobj->vmobjlock);
590 1.1 mrg UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
591 1.1 mrg return;
592 1.1 mrg }
593 1.1 mrg
594 1.1 mrg /*
595 1.1 mrg * remove the aobj from the global list.
596 1.1 mrg */
597 1.1 mrg simple_lock(&uao_list_lock);
598 1.1 mrg LIST_REMOVE(aobj, u_list);
599 1.1 mrg simple_unlock(&uao_list_lock);
600 1.1 mrg
601 1.1 mrg /*
602 1.1 mrg * free all the pages that aren't PG_BUSY, mark for release any that are.
603 1.1 mrg */
604 1.1 mrg
605 1.1 mrg busybody = FALSE;
606 1.1 mrg for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
607 1.1 mrg int swslot;
608 1.1 mrg
609 1.1 mrg if (pg->flags & PG_BUSY) {
610 1.1 mrg pg->flags |= PG_RELEASED;
611 1.1 mrg busybody = TRUE;
612 1.1 mrg continue;
613 1.1 mrg }
614 1.1 mrg
615 1.3 chs
616 1.3 chs /* zap the mappings, free the swap slot, free the page */
617 1.1 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
618 1.1 mrg
619 1.1 mrg swslot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
620 1.1 mrg if (swslot) {
621 1.1 mrg uvm_swap_free(swslot, 1);
622 1.1 mrg }
623 1.3 chs
624 1.3 chs uvm_lock_pageq();
625 1.3 chs uvm_pagefree(pg);
626 1.3 chs uvm_unlock_pageq();
627 1.1 mrg }
628 1.1 mrg
629 1.1 mrg /*
630 1.1 mrg * if we found any busy pages, we're done for now.
631 1.1 mrg * mark the aobj for death, releasepg will finish up for us.
632 1.1 mrg */
633 1.1 mrg if (busybody) {
634 1.1 mrg aobj->u_flags |= UAO_FLAG_KILLME;
635 1.1 mrg simple_unlock(&aobj->u_obj.vmobjlock);
636 1.1 mrg return;
637 1.1 mrg }
638 1.1 mrg
639 1.1 mrg /*
640 1.1 mrg * finally, free the rest.
641 1.1 mrg */
642 1.1 mrg uao_free(aobj);
643 1.1 mrg }
644 1.1 mrg
645 1.1 mrg
646 1.1 mrg
647 1.1 mrg /*
648 1.1 mrg * uao_flush: uh, yea, sure it's flushed. really!
649 1.1 mrg */
650 1.1 mrg boolean_t uao_flush(uobj, start, end, flags)
651 1.1 mrg
652 1.1 mrg struct uvm_object *uobj;
653 1.1 mrg vm_offset_t start, end;
654 1.1 mrg int flags;
655 1.1 mrg
656 1.1 mrg {
657 1.1 mrg /*
658 1.1 mrg * anonymous memory doesn't "flush"
659 1.1 mrg */
660 1.1 mrg /*
661 1.1 mrg * XXX
662 1.1 mrg * deal with PGO_DEACTIVATE (for madvise(MADV_SEQUENTIAL))
663 1.1 mrg * and PGO_FREE (for msync(MSINVALIDATE))
664 1.1 mrg */
665 1.1 mrg return TRUE;
666 1.1 mrg }
667 1.1 mrg
668 1.1 mrg /*
669 1.1 mrg * uao_get: fetch me a page
670 1.1 mrg *
671 1.1 mrg * we have three cases:
672 1.1 mrg * 1: page is resident -> just return the page.
673 1.1 mrg * 2: page is zero-fill -> allocate a new page and zero it.
674 1.1 mrg * 3: page is swapped out -> fetch the page from swap.
675 1.1 mrg *
676 1.1 mrg * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
677 1.1 mrg * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
678 1.1 mrg * then we will need to return VM_PAGER_UNLOCK.
679 1.1 mrg *
680 1.1 mrg * => prefer map unlocked (not required)
681 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
682 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
683 1.1 mrg * PGO_LOCKED: fault data structures are locked
684 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
685 1.1 mrg * => NOTE: caller must check for released pages!!
686 1.1 mrg */
687 1.1 mrg
688 1.1 mrg static int uao_get(uobj, offset, pps, npagesp, centeridx, access_type,
689 1.1 mrg advice, flags)
690 1.1 mrg
691 1.1 mrg struct uvm_object *uobj;
692 1.1 mrg vm_offset_t offset;
693 1.1 mrg struct vm_page **pps;
694 1.1 mrg int *npagesp;
695 1.1 mrg int centeridx, advice, flags;
696 1.1 mrg vm_prot_t access_type;
697 1.1 mrg
698 1.1 mrg {
699 1.1 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
700 1.1 mrg vm_offset_t current_offset;
701 1.1 mrg vm_page_t ptmp;
702 1.1 mrg int lcv, gotpages, maxpages, swslot, rv;
703 1.1 mrg boolean_t done;
704 1.1 mrg UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
705 1.1 mrg
706 1.3 chs UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", aobj, offset, flags,0);
707 1.1 mrg
708 1.1 mrg /*
709 1.1 mrg * get number of pages
710 1.1 mrg */
711 1.1 mrg
712 1.1 mrg maxpages = *npagesp;
713 1.1 mrg
714 1.1 mrg /*
715 1.1 mrg * step 1: handled the case where fault data structures are locked.
716 1.1 mrg */
717 1.1 mrg
718 1.1 mrg if (flags & PGO_LOCKED) {
719 1.1 mrg
720 1.1 mrg /*
721 1.1 mrg * step 1a: get pages that are already resident. only do this
722 1.1 mrg * if the data structures are locked (i.e. the first time through).
723 1.1 mrg */
724 1.1 mrg
725 1.1 mrg done = TRUE; /* be optimistic */
726 1.1 mrg gotpages = 0; /* # of pages we got so far */
727 1.1 mrg
728 1.1 mrg for (lcv = 0, current_offset = offset ;
729 1.1 mrg lcv < maxpages ; lcv++, current_offset += PAGE_SIZE) {
730 1.1 mrg
731 1.1 mrg /* do we care about this page? if not, skip it */
732 1.1 mrg if (pps[lcv] == PGO_DONTCARE)
733 1.1 mrg continue;
734 1.1 mrg
735 1.1 mrg ptmp = uvm_pagelookup(uobj, current_offset);
736 1.1 mrg
737 1.1 mrg /*
738 1.1 mrg * if page is new, attempt to allocate the page, then zero-fill it.
739 1.1 mrg */
740 1.1 mrg if (ptmp == NULL &&
741 1.1 mrg uao_find_swslot(aobj, current_offset / PAGE_SIZE) == 0) {
742 1.1 mrg
743 1.1 mrg ptmp = uvm_pagealloc(uobj, current_offset, NULL);
744 1.1 mrg if (ptmp) {
745 1.1 mrg ptmp->flags &= ~(PG_BUSY|PG_FAKE); /* new page */
746 1.1 mrg ptmp->pqflags |= PQ_AOBJ;
747 1.1 mrg UVM_PAGE_OWN(ptmp, NULL);
748 1.1 mrg uvm_pagezero(ptmp);
749 1.1 mrg }
750 1.1 mrg }
751 1.1 mrg
752 1.1 mrg /* to be useful must get a non-busy, non-released page */
753 1.1 mrg if (ptmp == NULL || (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
754 1.1 mrg if (lcv == centeridx || (flags & PGO_ALLPAGES) != 0)
755 1.1 mrg done = FALSE; /* need to do a wait or I/O! */
756 1.1 mrg continue;
757 1.1 mrg }
758 1.1 mrg
759 1.1 mrg /* useful page: busy/lock it and plug it in our result array */
760 1.1 mrg ptmp->flags |= PG_BUSY; /* caller must un-busy this page */
761 1.1 mrg UVM_PAGE_OWN(ptmp, "uao_get1");
762 1.1 mrg pps[lcv] = ptmp;
763 1.1 mrg gotpages++;
764 1.1 mrg
765 1.1 mrg } /* "for" lcv loop */
766 1.1 mrg
767 1.1 mrg /*
768 1.1 mrg * step 1b: now we've either done everything needed or we to unlock
769 1.1 mrg * and do some waiting or I/O.
770 1.1 mrg */
771 1.1 mrg
772 1.1 mrg UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
773 1.1 mrg
774 1.1 mrg *npagesp = gotpages;
775 1.1 mrg if (done)
776 1.1 mrg return(VM_PAGER_OK); /* bingo! */
777 1.1 mrg else
778 1.1 mrg return(VM_PAGER_UNLOCK); /* EEK! Need to unlock and I/O */
779 1.1 mrg }
780 1.1 mrg
781 1.1 mrg /*
782 1.1 mrg * step 2: get non-resident or busy pages.
783 1.1 mrg * object is locked. data structures are unlocked.
784 1.1 mrg */
785 1.1 mrg
786 1.1 mrg for (lcv = 0, current_offset = offset ;
787 1.1 mrg lcv < maxpages ;
788 1.1 mrg lcv++, current_offset += PAGE_SIZE) {
789 1.1 mrg
790 1.1 mrg /* skip over pages we've already gotten or don't want */
791 1.1 mrg /* skip over pages we don't _have_ to get */
792 1.1 mrg if (pps[lcv] != NULL ||
793 1.1 mrg (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
794 1.1 mrg continue;
795 1.1 mrg
796 1.1 mrg /*
797 1.1 mrg * we have yet to locate the current page (pps[lcv]). we first
798 1.1 mrg * look for a page that is already at the current offset. if we
799 1.1 mrg * find a page, we check to see if it is busy or released. if that
800 1.1 mrg * is the case, then we sleep on the page until it is no longer busy
801 1.1 mrg * or released and repeat the lookup. if the page we found is
802 1.1 mrg * neither busy nor released, then we busy it (so we own it) and
803 1.1 mrg * plug it into pps[lcv]. this 'break's the following while loop
804 1.1 mrg * and indicates we are ready to move on to the next page in the
805 1.1 mrg * "lcv" loop above.
806 1.1 mrg *
807 1.1 mrg * if we exit the while loop with pps[lcv] still set to NULL, then
808 1.1 mrg * it means that we allocated a new busy/fake/clean page ptmp in the
809 1.1 mrg * object and we need to do I/O to fill in the data.
810 1.1 mrg */
811 1.1 mrg
812 1.1 mrg while (pps[lcv] == NULL) { /* top of "pps" while loop */
813 1.1 mrg
814 1.1 mrg /* look for a resident page */
815 1.1 mrg ptmp = uvm_pagelookup(uobj, current_offset);
816 1.1 mrg
817 1.1 mrg /* not resident? allocate one now (if we can) */
818 1.1 mrg if (ptmp == NULL) {
819 1.1 mrg
820 1.1 mrg ptmp = uvm_pagealloc(uobj, current_offset, NULL); /* alloc */
821 1.1 mrg
822 1.1 mrg /* out of RAM? */
823 1.1 mrg if (ptmp == NULL) {
824 1.1 mrg simple_unlock(&uobj->vmobjlock);
825 1.1 mrg UVMHIST_LOG(pdhist, "sleeping, ptmp == NULL\n",0,0,0,0);
826 1.1 mrg uvm_wait("uao_getpage");
827 1.1 mrg simple_lock(&uobj->vmobjlock);
828 1.1 mrg continue; /* goto top of pps while loop */
829 1.1 mrg }
830 1.1 mrg
831 1.1 mrg /* safe with PQ's unlocked: because we just alloc'd the page */
832 1.1 mrg ptmp->pqflags |= PQ_AOBJ;
833 1.1 mrg
834 1.1 mrg /*
835 1.1 mrg * got new page ready for I/O. break pps while loop. pps[lcv] is
836 1.1 mrg * still NULL.
837 1.1 mrg */
838 1.1 mrg break;
839 1.1 mrg }
840 1.1 mrg
841 1.1 mrg /* page is there, see if we need to wait on it */
842 1.1 mrg if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
843 1.1 mrg ptmp->flags |= PG_WANTED;
844 1.1 mrg UVMHIST_LOG(pdhist, "sleeping, ptmp->flags 0x%x\n",ptmp->flags,0,0,0);
845 1.1 mrg UVM_UNLOCK_AND_WAIT(ptmp,&uobj->vmobjlock,0,"uao_get",0);
846 1.1 mrg simple_lock(&uobj->vmobjlock);
847 1.1 mrg continue; /* goto top of pps while loop */
848 1.1 mrg }
849 1.1 mrg
850 1.1 mrg /*
851 1.1 mrg * if we get here then the page has become resident and unbusy
852 1.1 mrg * between steps 1 and 2. we busy it now (so we own it) and set
853 1.1 mrg * pps[lcv] (so that we exit the while loop).
854 1.1 mrg */
855 1.1 mrg ptmp->flags |= PG_BUSY; /* we own it, caller must un-busy */
856 1.1 mrg UVM_PAGE_OWN(ptmp, "uao_get2");
857 1.1 mrg pps[lcv] = ptmp;
858 1.1 mrg }
859 1.1 mrg
860 1.1 mrg /*
861 1.1 mrg * if we own the valid page at the correct offset, pps[lcv] will
862 1.1 mrg * point to it. nothing more to do except go to the next page.
863 1.1 mrg */
864 1.1 mrg
865 1.1 mrg if (pps[lcv])
866 1.1 mrg continue; /* next lcv */
867 1.1 mrg
868 1.1 mrg /*
869 1.1 mrg * we have a "fake/busy/clean" page that we just allocated.
870 1.1 mrg * do the needed "i/o", either reading from swap or zeroing.
871 1.1 mrg */
872 1.1 mrg
873 1.1 mrg swslot = uao_find_swslot(aobj, current_offset / PAGE_SIZE);
874 1.1 mrg
875 1.1 mrg /*
876 1.1 mrg * just zero the page if there's nothing in swap.
877 1.1 mrg */
878 1.1 mrg if (swslot == 0)
879 1.1 mrg {
880 1.1 mrg /*
881 1.1 mrg * page hasn't existed before, just zero it.
882 1.1 mrg */
883 1.1 mrg uvm_pagezero(ptmp);
884 1.1 mrg }
885 1.1 mrg else
886 1.1 mrg {
887 1.1 mrg UVMHIST_LOG(pdhist, "pagein from swslot %d", swslot, 0,0,0);
888 1.1 mrg
889 1.1 mrg /*
890 1.1 mrg * page in the swapped-out page.
891 1.1 mrg * unlock object for i/o, relock when done.
892 1.1 mrg */
893 1.1 mrg simple_unlock(&uobj->vmobjlock);
894 1.1 mrg rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
895 1.1 mrg simple_lock(&uobj->vmobjlock);
896 1.1 mrg
897 1.1 mrg /*
898 1.1 mrg * I/O done. check for errors.
899 1.1 mrg */
900 1.1 mrg if (rv != VM_PAGER_OK)
901 1.1 mrg {
902 1.1 mrg UVMHIST_LOG(pdhist, "<- done (error=%d)",rv,0,0,0);
903 1.1 mrg if (ptmp->flags & PG_WANTED)
904 1.1 mrg thread_wakeup(ptmp); /* object lock still held */
905 1.1 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
906 1.1 mrg UVM_PAGE_OWN(ptmp, NULL);
907 1.1 mrg uvm_lock_pageq();
908 1.1 mrg uvm_pagefree(ptmp);
909 1.1 mrg uvm_unlock_pageq();
910 1.1 mrg simple_unlock(&uobj->vmobjlock);
911 1.1 mrg return rv;
912 1.1 mrg }
913 1.1 mrg }
914 1.1 mrg
915 1.1 mrg /*
916 1.1 mrg * we got the page! clear the fake flag (indicates valid data now
917 1.1 mrg * in page) and plug into our result array. note that page is still
918 1.1 mrg * busy.
919 1.1 mrg *
920 1.1 mrg * it is the callers job to:
921 1.1 mrg * => check if the page is released
922 1.1 mrg * => unbusy the page
923 1.1 mrg * => activate the page
924 1.1 mrg */
925 1.1 mrg
926 1.1 mrg ptmp->flags &= ~PG_FAKE; /* data is valid ... */
927 1.1 mrg pmap_clear_modify(PMAP_PGARG(ptmp)); /* ... and clean */
928 1.1 mrg pps[lcv] = ptmp;
929 1.1 mrg
930 1.1 mrg } /* lcv loop */
931 1.1 mrg
932 1.1 mrg /*
933 1.1 mrg * finally, unlock object and return.
934 1.1 mrg */
935 1.1 mrg
936 1.1 mrg simple_unlock(&uobj->vmobjlock);
937 1.1 mrg UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
938 1.1 mrg return(VM_PAGER_OK);
939 1.1 mrg }
940 1.1 mrg
941 1.1 mrg /*
942 1.1 mrg * uao_releasepg: handle released page in an aobj
943 1.1 mrg *
944 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
945 1.1 mrg * to dispose of.
946 1.1 mrg * => caller must handle PG_WANTED case
947 1.1 mrg * => called with page's object locked, pageq's unlocked
948 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
949 1.1 mrg * killed the page's object. if we return TRUE, then we
950 1.1 mrg * return with the object locked.
951 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
952 1.1 mrg * with the page queues locked [for pagedaemon]
953 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
954 1.1 mrg * => we kill the aobj if it is not referenced and we are suppose to
955 1.1 mrg * kill it ("KILLME").
956 1.1 mrg */
957 1.1 mrg
958 1.1 mrg static boolean_t uao_releasepg(pg, nextpgp)
959 1.1 mrg
960 1.1 mrg struct vm_page *pg;
961 1.1 mrg struct vm_page **nextpgp; /* OUT */
962 1.1 mrg
963 1.1 mrg {
964 1.1 mrg struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
965 1.1 mrg int slot;
966 1.1 mrg
967 1.1 mrg #ifdef DIAGNOSTIC
968 1.1 mrg if ((pg->flags & PG_RELEASED) == 0)
969 1.1 mrg panic("uao_releasepg: page not released!");
970 1.1 mrg #endif
971 1.1 mrg
972 1.1 mrg /*
973 1.3 chs * dispose of the page [caller handles PG_WANTED] and swap slot.
974 1.1 mrg */
975 1.1 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
976 1.3 chs slot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
977 1.3 chs if (slot)
978 1.3 chs uvm_swap_free(slot, 1);
979 1.1 mrg uvm_lock_pageq();
980 1.1 mrg if (nextpgp)
981 1.1 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
982 1.1 mrg uvm_pagefree(pg);
983 1.1 mrg if (!nextpgp)
984 1.1 mrg uvm_unlock_pageq(); /* keep locked for daemon */
985 1.1 mrg
986 1.1 mrg /*
987 1.1 mrg * if we're not killing the object, we're done.
988 1.1 mrg */
989 1.1 mrg if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
990 1.1 mrg return TRUE;
991 1.1 mrg
992 1.1 mrg #ifdef DIAGNOSTIC
993 1.1 mrg if (aobj->u_obj.uo_refs)
994 1.1 mrg panic("uvm_km_releasepg: kill flag set on referenced object!");
995 1.1 mrg #endif
996 1.1 mrg
997 1.1 mrg /*
998 1.1 mrg * if there are still pages in the object, we're done for now.
999 1.1 mrg */
1000 1.1 mrg if (aobj->u_obj.uo_npages != 0)
1001 1.1 mrg return TRUE;
1002 1.1 mrg
1003 1.1 mrg #ifdef DIAGNOSTIC
1004 1.1 mrg if (aobj->u_obj.memq.tqh_first)
1005 1.1 mrg panic("uvn_releasepg: pages in object with npages == 0");
1006 1.1 mrg #endif
1007 1.1 mrg
1008 1.1 mrg /*
1009 1.1 mrg * finally, free the rest.
1010 1.1 mrg */
1011 1.1 mrg uao_free(aobj);
1012 1.1 mrg
1013 1.1 mrg return FALSE;
1014 1.1 mrg }
1015