uvm_aobj.c revision 1.5 1 1.5 mrg /* $NetBSD: uvm_aobj.c,v 1.5 1998/02/09 14:35:48 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /* copyright here */
4 1.4 mrg /*
5 1.4 mrg * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
6 1.4 mrg */
7 1.1 mrg
8 1.1 mrg #include <sys/param.h>
9 1.1 mrg #include <sys/systm.h>
10 1.1 mrg #include <sys/proc.h>
11 1.1 mrg #include <sys/malloc.h>
12 1.1 mrg
13 1.1 mrg #include <vm/vm.h>
14 1.1 mrg #include <vm/vm_page.h>
15 1.1 mrg #include <vm/vm_kern.h>
16 1.1 mrg
17 1.1 mrg #include <uvm/uvm.h>
18 1.1 mrg
19 1.1 mrg /*
20 1.1 mrg * uvm_aobj.c: anonymous-memory backed uvm_object
21 1.1 mrg */
22 1.1 mrg
23 1.1 mrg /*
24 1.1 mrg * an aobj manages anonymous-memory backed uvm_objects. in addition
25 1.1 mrg * to keeping the list of resident pages, it also keeps a list of
26 1.1 mrg * allocated swap blocks. depending on the size of the aobj this list
27 1.1 mrg * of allocated swap blocks is either stored in an array (small objects)
28 1.1 mrg * or in a hash table (large objects).
29 1.1 mrg */
30 1.1 mrg
31 1.1 mrg /*
32 1.1 mrg * local structures
33 1.1 mrg */
34 1.1 mrg
35 1.1 mrg /*
36 1.1 mrg * for hash tables, we break the address space of the aobj into blocks
37 1.1 mrg * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
38 1.1 mrg * be a power of two.
39 1.1 mrg */
40 1.1 mrg
41 1.1 mrg #define UAO_SWHASH_CLUSTER_SHIFT 4
42 1.1 mrg #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
43 1.1 mrg
44 1.1 mrg /* get the "tag" for this page index */
45 1.1 mrg #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
46 1.1 mrg ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
47 1.1 mrg
48 1.1 mrg /* given an ELT and a page index, find the swap slot */
49 1.1 mrg #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
50 1.1 mrg ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
51 1.1 mrg
52 1.1 mrg /* given an ELT, return its pageidx base */
53 1.1 mrg #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
54 1.1 mrg ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
55 1.1 mrg
56 1.1 mrg /*
57 1.1 mrg * the swhash hash function
58 1.1 mrg */
59 1.1 mrg #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
60 1.1 mrg (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
61 1.1 mrg & (AOBJ)->u_swhashmask)])
62 1.1 mrg
63 1.1 mrg /*
64 1.1 mrg * the swhash threshhold determines if we will use an array or a
65 1.1 mrg * hash table to store the list of allocated swap blocks.
66 1.1 mrg */
67 1.1 mrg
68 1.1 mrg #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
69 1.1 mrg #define UAO_USES_SWHASH(AOBJ) \
70 1.1 mrg ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
71 1.1 mrg
72 1.1 mrg /*
73 1.3 chs * the number of buckets in a swhash, with an upper bound
74 1.1 mrg */
75 1.1 mrg #define UAO_SWHASH_MAXBUCKETS 256
76 1.1 mrg #define UAO_SWHASH_BUCKETS(AOBJ) \
77 1.1 mrg (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
78 1.1 mrg UAO_SWHASH_MAXBUCKETS))
79 1.1 mrg
80 1.1 mrg
81 1.1 mrg /*
82 1.1 mrg * uao_swhash_elt: when a hash table is being used, this structure defines
83 1.1 mrg * the format of an entry in the bucket list.
84 1.1 mrg */
85 1.1 mrg
86 1.1 mrg struct uao_swhash_elt {
87 1.5 mrg LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
88 1.5 mrg vm_offset_t tag; /* our 'tag' */
89 1.5 mrg int count; /* our number of active slots */
90 1.5 mrg int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
91 1.1 mrg };
92 1.1 mrg
93 1.1 mrg /*
94 1.1 mrg * uao_swhash: the swap hash table structure
95 1.1 mrg */
96 1.1 mrg
97 1.1 mrg LIST_HEAD(uao_swhash, uao_swhash_elt);
98 1.1 mrg
99 1.1 mrg
100 1.1 mrg /*
101 1.1 mrg * uvm_aobj: the actual anon-backed uvm_object
102 1.1 mrg *
103 1.1 mrg * => the uvm_object is at the top of the structure, this allows
104 1.1 mrg * (struct uvm_device *) == (struct uvm_object *)
105 1.1 mrg * => only one of u_swslots and u_swhash is used in any given aobj
106 1.1 mrg */
107 1.1 mrg
108 1.1 mrg struct uvm_aobj {
109 1.5 mrg struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
110 1.5 mrg vm_size_t u_pages; /* number of pages in entire object */
111 1.5 mrg int u_flags; /* the flags (see uvm_aobj.h) */
112 1.5 mrg int *u_swslots; /* array of offset->swapslot mappings */
113 1.5 mrg /*
114 1.5 mrg * hashtable of offset->swapslot mappings
115 1.5 mrg * (u_swhash is an array of bucket heads)
116 1.5 mrg */
117 1.5 mrg struct uao_swhash *u_swhash;
118 1.5 mrg u_long u_swhashmask; /* mask for hashtable */
119 1.5 mrg LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
120 1.1 mrg };
121 1.1 mrg
122 1.1 mrg /*
123 1.1 mrg * local functions
124 1.1 mrg */
125 1.1 mrg
126 1.1 mrg static void uao_init __P((void));
127 1.1 mrg static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
128 1.1 mrg int, boolean_t));
129 1.1 mrg static int uao_find_swslot __P((struct uvm_aobj *,
130 1.1 mrg vm_offset_t));
131 1.1 mrg static boolean_t uao_flush __P((struct uvm_object *,
132 1.1 mrg vm_offset_t, vm_offset_t,
133 1.1 mrg int));
134 1.1 mrg static void uao_free __P((struct uvm_aobj *));
135 1.1 mrg static int uao_get __P((struct uvm_object *, vm_offset_t,
136 1.1 mrg vm_page_t *, int *, int,
137 1.1 mrg vm_prot_t, int, int));
138 1.1 mrg static boolean_t uao_releasepg __P((struct vm_page *,
139 1.1 mrg struct vm_page **));
140 1.1 mrg
141 1.1 mrg
142 1.1 mrg
143 1.1 mrg /*
144 1.1 mrg * aobj_pager
145 1.1 mrg *
146 1.1 mrg * note that some functions (e.g. put) are handled elsewhere
147 1.1 mrg */
148 1.1 mrg
149 1.1 mrg struct uvm_pagerops aobj_pager = {
150 1.5 mrg uao_init, /* init */
151 1.5 mrg NULL, /* attach */
152 1.5 mrg uao_reference, /* reference */
153 1.5 mrg uao_detach, /* detach */
154 1.5 mrg NULL, /* fault */
155 1.5 mrg uao_flush, /* flush */
156 1.5 mrg uao_get, /* get */
157 1.5 mrg NULL, /* asyncget */
158 1.5 mrg NULL, /* put (done by pagedaemon) */
159 1.5 mrg NULL, /* cluster */
160 1.5 mrg NULL, /* mk_pcluster */
161 1.5 mrg uvm_shareprot, /* shareprot */
162 1.5 mrg NULL, /* aiodone */
163 1.5 mrg uao_releasepg /* releasepg */
164 1.1 mrg };
165 1.1 mrg
166 1.1 mrg /*
167 1.1 mrg * uao_list: global list of active aobjs, locked by uao_list_lock
168 1.1 mrg */
169 1.1 mrg
170 1.1 mrg static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
171 1.1 mrg #if NCPU > 1
172 1.1 mrg static simple_lock_data_t uao_list_lock;
173 1.1 mrg #endif
174 1.1 mrg
175 1.1 mrg
176 1.1 mrg /*
177 1.1 mrg * functions
178 1.1 mrg */
179 1.1 mrg
180 1.1 mrg /*
181 1.1 mrg * hash table/array related functions
182 1.1 mrg */
183 1.1 mrg
184 1.1 mrg /*
185 1.1 mrg * uao_find_swhash_elt: find (or create) a hash table entry for a page
186 1.1 mrg * offset.
187 1.1 mrg *
188 1.1 mrg * => the object should be locked by the caller
189 1.1 mrg */
190 1.1 mrg
191 1.5 mrg static struct uao_swhash_elt *
192 1.5 mrg uao_find_swhash_elt(aobj, pageidx, create)
193 1.5 mrg struct uvm_aobj *aobj;
194 1.5 mrg int pageidx;
195 1.5 mrg boolean_t create;
196 1.5 mrg {
197 1.5 mrg struct uao_swhash *swhash;
198 1.5 mrg struct uao_swhash_elt *elt;
199 1.5 mrg int page_tag;
200 1.1 mrg
201 1.5 mrg swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
202 1.5 mrg page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
203 1.1 mrg
204 1.5 mrg /*
205 1.5 mrg * now search the bucket for the requested tag
206 1.5 mrg */
207 1.5 mrg for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
208 1.5 mrg if (elt->tag == page_tag)
209 1.5 mrg return(elt);
210 1.5 mrg }
211 1.5 mrg
212 1.5 mrg /* fail now if we are not allowed to create a new entry in the bucket */
213 1.5 mrg if (!create)
214 1.5 mrg return NULL;
215 1.5 mrg
216 1.5 mrg
217 1.5 mrg /*
218 1.5 mrg * malloc a new entry for the bucket and init/insert it in
219 1.5 mrg */
220 1.5 mrg MALLOC(elt, struct uao_swhash_elt *, sizeof(*elt), M_UVMAOBJ, M_WAITOK);
221 1.5 mrg LIST_INSERT_HEAD(swhash, elt, list);
222 1.5 mrg elt->tag = page_tag;
223 1.5 mrg elt->count = 0;
224 1.5 mrg bzero(elt->slots, sizeof(elt->slots));
225 1.5 mrg
226 1.5 mrg return(elt);
227 1.1 mrg }
228 1.1 mrg
229 1.1 mrg /*
230 1.1 mrg * uao_find_swslot: find the swap slot number for an aobj/pageidx
231 1.1 mrg *
232 1.1 mrg * => object must be locked by caller
233 1.1 mrg */
234 1.5 mrg __inline static int
235 1.5 mrg uao_find_swslot(aobj, pageidx)
236 1.5 mrg struct uvm_aobj *aobj;
237 1.5 mrg vm_offset_t pageidx;
238 1.1 mrg {
239 1.1 mrg
240 1.5 mrg /*
241 1.5 mrg * if noswap flag is set, then we never return a slot
242 1.5 mrg */
243 1.1 mrg
244 1.5 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP)
245 1.5 mrg return(0);
246 1.1 mrg
247 1.5 mrg /*
248 1.5 mrg * if hashing, look in hash table.
249 1.5 mrg */
250 1.1 mrg
251 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
252 1.5 mrg struct uao_swhash_elt *elt =
253 1.5 mrg uao_find_swhash_elt(aobj, pageidx, FALSE);
254 1.5 mrg
255 1.5 mrg if (elt)
256 1.5 mrg return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
257 1.5 mrg else
258 1.5 mrg return(NULL);
259 1.5 mrg }
260 1.1 mrg
261 1.5 mrg /*
262 1.5 mrg * otherwise, look in the array
263 1.5 mrg */
264 1.5 mrg return(aobj->u_swslots[pageidx]);
265 1.1 mrg }
266 1.1 mrg
267 1.1 mrg /*
268 1.1 mrg * uao_set_swslot: set the swap slot for a page in an aobj.
269 1.1 mrg *
270 1.1 mrg * => setting a slot to zero frees the slot
271 1.1 mrg * => object must be locked by caller
272 1.1 mrg */
273 1.5 mrg int
274 1.5 mrg uao_set_swslot(uobj, pageidx, slot)
275 1.5 mrg struct uvm_object *uobj;
276 1.5 mrg int pageidx, slot;
277 1.5 mrg {
278 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
279 1.5 mrg int oldslot;
280 1.5 mrg UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
281 1.5 mrg UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
282 1.5 mrg aobj, pageidx, slot, 0);
283 1.1 mrg
284 1.5 mrg /*
285 1.5 mrg * if noswap flag is set, then we can't set a slot
286 1.5 mrg */
287 1.1 mrg
288 1.5 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP) {
289 1.1 mrg
290 1.5 mrg if (slot == 0)
291 1.5 mrg return(0); /* a clear is ok */
292 1.1 mrg
293 1.5 mrg /* but a set is not */
294 1.5 mrg printf("uao_set_swslot: uobj = %p\n", uobj);
295 1.5 mrg panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
296 1.5 mrg }
297 1.1 mrg
298 1.5 mrg /*
299 1.5 mrg * are we using a hash table? if so, add it in the hash.
300 1.5 mrg */
301 1.1 mrg
302 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
303 1.5 mrg struct uao_swhash_elt *elt =
304 1.5 mrg uao_find_swhash_elt(aobj, pageidx, TRUE);
305 1.5 mrg
306 1.5 mrg oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
307 1.5 mrg UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
308 1.5 mrg
309 1.5 mrg /*
310 1.5 mrg * now adjust the elt's reference counter and free it if we've
311 1.5 mrg * dropped it to zero.
312 1.5 mrg */
313 1.5 mrg
314 1.5 mrg /* an allocation? */
315 1.5 mrg if (slot) {
316 1.5 mrg if (oldslot == 0)
317 1.5 mrg elt->count++;
318 1.5 mrg } else { /* freeing slot ... */
319 1.5 mrg if (oldslot) /* to be safe */
320 1.5 mrg elt->count--;
321 1.5 mrg
322 1.5 mrg if (elt->count == 0) {
323 1.5 mrg LIST_REMOVE(elt, list);
324 1.5 mrg FREE(elt, M_UVMAOBJ);
325 1.5 mrg }
326 1.5 mrg }
327 1.5 mrg
328 1.5 mrg } else {
329 1.5 mrg /* we are using an array */
330 1.5 mrg oldslot = aobj->u_swslots[pageidx];
331 1.5 mrg aobj->u_swslots[pageidx] = slot;
332 1.5 mrg }
333 1.5 mrg return (oldslot);
334 1.1 mrg }
335 1.1 mrg
336 1.1 mrg /*
337 1.1 mrg * end of hash/array functions
338 1.1 mrg */
339 1.1 mrg
340 1.1 mrg /*
341 1.1 mrg * uao_free: free all resources held by an aobj, and then free the aobj
342 1.1 mrg *
343 1.1 mrg * => the aobj should be dead
344 1.1 mrg */
345 1.1 mrg static void
346 1.1 mrg uao_free(aobj)
347 1.5 mrg struct uvm_aobj *aobj;
348 1.1 mrg {
349 1.1 mrg
350 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
351 1.5 mrg int i, hashbuckets = aobj->u_swhashmask + 1;
352 1.1 mrg
353 1.5 mrg /*
354 1.5 mrg * free the swslots from each hash bucket,
355 1.5 mrg * then the hash bucket, and finally the hash table itself.
356 1.5 mrg */
357 1.5 mrg for (i = 0; i < hashbuckets; i++) {
358 1.5 mrg struct uao_swhash_elt *elt, *next;
359 1.5 mrg
360 1.5 mrg for (elt = aobj->u_swhash[i].lh_first; elt != NULL;
361 1.5 mrg elt = next) {
362 1.5 mrg int j;
363 1.5 mrg
364 1.5 mrg for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
365 1.5 mrg {
366 1.5 mrg int slot = elt->slots[j];
367 1.5 mrg
368 1.5 mrg if (slot)
369 1.5 mrg uvm_swap_free(slot, 1);
370 1.5 mrg }
371 1.5 mrg
372 1.5 mrg next = elt->list.le_next;
373 1.5 mrg FREE(elt, M_UVMAOBJ);
374 1.5 mrg }
375 1.5 mrg }
376 1.5 mrg FREE(aobj->u_swhash, M_UVMAOBJ);
377 1.5 mrg } else {
378 1.5 mrg int i;
379 1.5 mrg
380 1.5 mrg /*
381 1.5 mrg * free the array
382 1.5 mrg */
383 1.5 mrg
384 1.5 mrg for (i = 0; i < aobj->u_pages; i++)
385 1.5 mrg {
386 1.5 mrg int slot = aobj->u_swslots[i];
387 1.5 mrg
388 1.5 mrg if (slot)
389 1.5 mrg uvm_swap_free(slot, 1);
390 1.5 mrg }
391 1.5 mrg FREE(aobj->u_swslots, M_UVMAOBJ);
392 1.1 mrg }
393 1.1 mrg
394 1.5 mrg /*
395 1.5 mrg * finally free the aobj itself
396 1.5 mrg */
397 1.5 mrg FREE(aobj, M_UVMAOBJ);
398 1.1 mrg }
399 1.1 mrg
400 1.1 mrg /*
401 1.1 mrg * pager functions
402 1.1 mrg */
403 1.1 mrg
404 1.1 mrg /*
405 1.1 mrg * uao_create: create an aobj of the given size and return its uvm_object.
406 1.1 mrg *
407 1.1 mrg * => for normal use, flags are always zero
408 1.1 mrg * => for the kernel object, the flags are:
409 1.1 mrg * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
410 1.1 mrg * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
411 1.1 mrg */
412 1.5 mrg struct uvm_object *
413 1.5 mrg uao_create(size, flags)
414 1.5 mrg vm_size_t size;
415 1.5 mrg int flags;
416 1.5 mrg {
417 1.5 mrg static struct uvm_aobj kernel_object_store; /* home of kernel_object */
418 1.5 mrg static int kobj_alloced = 0; /* not allocated yet */
419 1.5 mrg int pages = round_page(size) / PAGE_SIZE;
420 1.5 mrg struct uvm_aobj *aobj;
421 1.1 mrg
422 1.5 mrg /*
423 1.5 mrg * malloc a new aobj unless we are asked for the kernel object
424 1.5 mrg */
425 1.5 mrg if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
426 1.5 mrg if (kobj_alloced)
427 1.5 mrg panic("uao_create: kernel object already allocated");
428 1.5 mrg
429 1.5 mrg aobj = &kernel_object_store;
430 1.5 mrg aobj->u_pages = pages;
431 1.5 mrg aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
432 1.5 mrg /* we are special, we never die */
433 1.5 mrg aobj->u_obj.uo_refs = UVM_OBJ_KERN;
434 1.5 mrg kobj_alloced = UAO_FLAG_KERNOBJ;
435 1.5 mrg } else if (flags & UAO_FLAG_KERNSWAP) {
436 1.5 mrg aobj = &kernel_object_store;
437 1.5 mrg if (kobj_alloced != UAO_FLAG_KERNOBJ)
438 1.5 mrg panic("uao_create: asked to enable swap on kernel object");
439 1.5 mrg kobj_alloced = UAO_FLAG_KERNSWAP;
440 1.5 mrg } else { /* normal object */
441 1.5 mrg MALLOC(aobj, struct uvm_aobj *, sizeof(*aobj), M_UVMAOBJ,
442 1.5 mrg M_WAITOK);
443 1.5 mrg aobj->u_pages = pages;
444 1.5 mrg aobj->u_flags = 0; /* normal object */
445 1.5 mrg aobj->u_obj.uo_refs = 1; /* start with 1 reference */
446 1.5 mrg }
447 1.1 mrg
448 1.5 mrg /*
449 1.5 mrg * allocate hash/array if necessary
450 1.5 mrg *
451 1.5 mrg * note: in the KERNSWAP case no need to worry about locking since
452 1.5 mrg * we are still booting we should be the only thread around.
453 1.5 mrg */
454 1.5 mrg if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
455 1.5 mrg int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
456 1.5 mrg M_NOWAIT : M_WAITOK;
457 1.5 mrg
458 1.5 mrg /* allocate hash table or array depending on object size */
459 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
460 1.5 mrg aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
461 1.5 mrg M_UVMAOBJ, mflags, &aobj->u_swhashmask);
462 1.5 mrg if (aobj->u_swhash == NULL)
463 1.5 mrg panic("uao_create: hashinit swhash failed");
464 1.5 mrg } else {
465 1.5 mrg MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
466 1.5 mrg M_UVMAOBJ, mflags);
467 1.5 mrg if (aobj->u_swslots == NULL)
468 1.5 mrg panic("uao_create: malloc swslots failed");
469 1.5 mrg bzero(aobj->u_swslots, pages * sizeof(int));
470 1.5 mrg }
471 1.5 mrg
472 1.5 mrg if (flags) {
473 1.5 mrg aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
474 1.5 mrg return(&aobj->u_obj);
475 1.5 mrg /* done! */
476 1.5 mrg }
477 1.5 mrg }
478 1.5 mrg
479 1.5 mrg /*
480 1.5 mrg * init aobj fields
481 1.5 mrg */
482 1.5 mrg simple_lock_init(&aobj->u_obj.vmobjlock);
483 1.5 mrg aobj->u_obj.pgops = &aobj_pager;
484 1.5 mrg TAILQ_INIT(&aobj->u_obj.memq);
485 1.5 mrg aobj->u_obj.uo_npages = 0;
486 1.1 mrg
487 1.5 mrg /*
488 1.5 mrg * now that aobj is ready, add it to the global list
489 1.5 mrg * XXXCHS: uao_init hasn't been called'd in the KERNOBJ case,
490 1.5 mrg * do we really need the kernel object on this list anyway?
491 1.5 mrg */
492 1.5 mrg simple_lock(&uao_list_lock);
493 1.5 mrg LIST_INSERT_HEAD(&uao_list, aobj, u_list);
494 1.5 mrg simple_unlock(&uao_list_lock);
495 1.5 mrg
496 1.5 mrg /*
497 1.5 mrg * done!
498 1.5 mrg */
499 1.5 mrg return(&aobj->u_obj);
500 1.1 mrg }
501 1.1 mrg
502 1.1 mrg
503 1.1 mrg
504 1.1 mrg /*
505 1.1 mrg * uao_init: set up aobj pager subsystem
506 1.1 mrg *
507 1.1 mrg * => called at boot time from uvm_pager_init()
508 1.1 mrg */
509 1.5 mrg static void
510 1.5 mrg uao_init()
511 1.5 mrg {
512 1.1 mrg
513 1.5 mrg LIST_INIT(&uao_list);
514 1.5 mrg simple_lock_init(&uao_list_lock);
515 1.1 mrg }
516 1.1 mrg
517 1.1 mrg /*
518 1.1 mrg * uao_reference: add a ref to an aobj
519 1.1 mrg *
520 1.1 mrg * => aobj must be unlocked (we will lock it)
521 1.1 mrg */
522 1.5 mrg void
523 1.5 mrg uao_reference(uobj)
524 1.5 mrg struct uvm_object *uobj;
525 1.1 mrg {
526 1.5 mrg UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
527 1.1 mrg
528 1.5 mrg /*
529 1.5 mrg * kernel_object already has plenty of references, leave it alone.
530 1.5 mrg */
531 1.1 mrg
532 1.5 mrg if (uobj->uo_refs == UVM_OBJ_KERN)
533 1.5 mrg return;
534 1.1 mrg
535 1.5 mrg simple_lock(&uobj->vmobjlock);
536 1.5 mrg uobj->uo_refs++; /* bump! */
537 1.5 mrg UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
538 1.1 mrg uobj, uobj->uo_refs,0,0);
539 1.5 mrg simple_unlock(&uobj->vmobjlock);
540 1.1 mrg }
541 1.1 mrg
542 1.1 mrg /*
543 1.1 mrg * uao_detach: drop a reference to an aobj
544 1.1 mrg *
545 1.1 mrg * => aobj must be unlocked, we will lock it
546 1.1 mrg */
547 1.5 mrg void
548 1.5 mrg uao_detach(uobj)
549 1.5 mrg struct uvm_object *uobj;
550 1.5 mrg {
551 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
552 1.5 mrg struct vm_page *pg;
553 1.5 mrg boolean_t busybody;
554 1.5 mrg UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
555 1.1 mrg
556 1.5 mrg /*
557 1.5 mrg * detaching from kernel_object is a noop.
558 1.5 mrg */
559 1.5 mrg if (uobj->uo_refs == UVM_OBJ_KERN)
560 1.5 mrg return;
561 1.1 mrg
562 1.5 mrg simple_lock(&uobj->vmobjlock);
563 1.5 mrg
564 1.5 mrg UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
565 1.5 mrg uobj->uo_refs--; /* drop ref! */
566 1.5 mrg if (uobj->uo_refs) { /* still more refs? */
567 1.5 mrg simple_unlock(&uobj->vmobjlock);
568 1.5 mrg UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
569 1.5 mrg return;
570 1.5 mrg }
571 1.5 mrg
572 1.5 mrg /*
573 1.5 mrg * remove the aobj from the global list.
574 1.5 mrg */
575 1.5 mrg simple_lock(&uao_list_lock);
576 1.5 mrg LIST_REMOVE(aobj, u_list);
577 1.5 mrg simple_unlock(&uao_list_lock);
578 1.5 mrg
579 1.5 mrg /*
580 1.5 mrg * free all the pages that aren't PG_BUSY, mark for release any that are.
581 1.5 mrg */
582 1.1 mrg
583 1.5 mrg busybody = FALSE;
584 1.5 mrg for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
585 1.5 mrg int swslot;
586 1.5 mrg
587 1.5 mrg if (pg->flags & PG_BUSY) {
588 1.5 mrg pg->flags |= PG_RELEASED;
589 1.5 mrg busybody = TRUE;
590 1.5 mrg continue;
591 1.5 mrg }
592 1.5 mrg
593 1.5 mrg
594 1.5 mrg /* zap the mappings, free the swap slot, free the page */
595 1.5 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
596 1.5 mrg
597 1.5 mrg swslot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
598 1.5 mrg if (swslot) {
599 1.5 mrg uvm_swap_free(swslot, 1);
600 1.5 mrg }
601 1.5 mrg
602 1.5 mrg uvm_lock_pageq();
603 1.5 mrg uvm_pagefree(pg);
604 1.5 mrg uvm_unlock_pageq();
605 1.5 mrg }
606 1.1 mrg
607 1.5 mrg /*
608 1.5 mrg * if we found any busy pages, we're done for now.
609 1.5 mrg * mark the aobj for death, releasepg will finish up for us.
610 1.5 mrg */
611 1.5 mrg if (busybody) {
612 1.5 mrg aobj->u_flags |= UAO_FLAG_KILLME;
613 1.5 mrg simple_unlock(&aobj->u_obj.vmobjlock);
614 1.5 mrg return;
615 1.5 mrg }
616 1.1 mrg
617 1.5 mrg /*
618 1.5 mrg * finally, free the rest.
619 1.5 mrg */
620 1.5 mrg uao_free(aobj);
621 1.5 mrg }
622 1.1 mrg
623 1.1 mrg /*
624 1.1 mrg * uao_flush: uh, yea, sure it's flushed. really!
625 1.1 mrg */
626 1.5 mrg boolean_t
627 1.5 mrg uao_flush(uobj, start, end, flags)
628 1.5 mrg struct uvm_object *uobj;
629 1.5 mrg vm_offset_t start, end;
630 1.5 mrg int flags;
631 1.5 mrg {
632 1.1 mrg
633 1.5 mrg /*
634 1.5 mrg * anonymous memory doesn't "flush"
635 1.5 mrg */
636 1.5 mrg /*
637 1.5 mrg * XXX
638 1.5 mrg * deal with PGO_DEACTIVATE (for madvise(MADV_SEQUENTIAL))
639 1.5 mrg * and PGO_FREE (for msync(MSINVALIDATE))
640 1.5 mrg */
641 1.5 mrg return TRUE;
642 1.1 mrg }
643 1.1 mrg
644 1.1 mrg /*
645 1.1 mrg * uao_get: fetch me a page
646 1.1 mrg *
647 1.1 mrg * we have three cases:
648 1.1 mrg * 1: page is resident -> just return the page.
649 1.1 mrg * 2: page is zero-fill -> allocate a new page and zero it.
650 1.1 mrg * 3: page is swapped out -> fetch the page from swap.
651 1.1 mrg *
652 1.1 mrg * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
653 1.1 mrg * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
654 1.1 mrg * then we will need to return VM_PAGER_UNLOCK.
655 1.1 mrg *
656 1.1 mrg * => prefer map unlocked (not required)
657 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
658 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
659 1.1 mrg * PGO_LOCKED: fault data structures are locked
660 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
661 1.1 mrg * => NOTE: caller must check for released pages!!
662 1.1 mrg */
663 1.5 mrg static int
664 1.5 mrg uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
665 1.5 mrg struct uvm_object *uobj;
666 1.5 mrg vm_offset_t offset;
667 1.5 mrg struct vm_page **pps;
668 1.5 mrg int *npagesp;
669 1.5 mrg int centeridx, advice, flags;
670 1.5 mrg vm_prot_t access_type;
671 1.5 mrg {
672 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
673 1.5 mrg vm_offset_t current_offset;
674 1.5 mrg vm_page_t ptmp;
675 1.5 mrg int lcv, gotpages, maxpages, swslot, rv;
676 1.5 mrg boolean_t done;
677 1.5 mrg UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
678 1.5 mrg
679 1.5 mrg UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", aobj, offset, flags,0);
680 1.5 mrg
681 1.5 mrg /*
682 1.5 mrg * get number of pages
683 1.5 mrg */
684 1.5 mrg
685 1.5 mrg maxpages = *npagesp;
686 1.5 mrg
687 1.5 mrg /*
688 1.5 mrg * step 1: handled the case where fault data structures are locked.
689 1.5 mrg */
690 1.1 mrg
691 1.5 mrg if (flags & PGO_LOCKED) {
692 1.1 mrg
693 1.5 mrg /*
694 1.5 mrg * step 1a: get pages that are already resident. only do
695 1.5 mrg * this if the data structures are locked (i.e. the first
696 1.5 mrg * time through).
697 1.5 mrg */
698 1.5 mrg
699 1.5 mrg done = TRUE; /* be optimistic */
700 1.5 mrg gotpages = 0; /* # of pages we got so far */
701 1.5 mrg
702 1.5 mrg for (lcv = 0, current_offset = offset ; lcv < maxpages ;
703 1.5 mrg lcv++, current_offset += PAGE_SIZE) {
704 1.5 mrg /* do we care about this page? if not, skip it */
705 1.5 mrg if (pps[lcv] == PGO_DONTCARE)
706 1.5 mrg continue;
707 1.5 mrg
708 1.5 mrg ptmp = uvm_pagelookup(uobj, current_offset);
709 1.5 mrg
710 1.5 mrg /*
711 1.5 mrg * if page is new, attempt to allocate the page, then
712 1.5 mrg * zero-fill it.
713 1.5 mrg */
714 1.5 mrg if (ptmp == NULL && uao_find_swslot(aobj,
715 1.5 mrg current_offset / PAGE_SIZE) == 0) {
716 1.5 mrg ptmp = uvm_pagealloc(uobj, current_offset,
717 1.5 mrg NULL);
718 1.5 mrg if (ptmp) {
719 1.5 mrg /* new page */
720 1.5 mrg ptmp->flags &= ~(PG_BUSY|PG_FAKE);
721 1.5 mrg ptmp->pqflags |= PQ_AOBJ;
722 1.5 mrg UVM_PAGE_OWN(ptmp, NULL);
723 1.5 mrg uvm_pagezero(ptmp);
724 1.5 mrg }
725 1.5 mrg }
726 1.5 mrg
727 1.5 mrg /*
728 1.5 mrg * to be useful must get a non-busy, non-released page
729 1.5 mrg */
730 1.5 mrg if (ptmp == NULL ||
731 1.5 mrg (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
732 1.5 mrg if (lcv == centeridx ||
733 1.5 mrg (flags & PGO_ALLPAGES) != 0)
734 1.5 mrg /* need to do a wait or I/O! */
735 1.5 mrg done = FALSE;
736 1.5 mrg continue;
737 1.5 mrg }
738 1.5 mrg
739 1.5 mrg /*
740 1.5 mrg * useful page: busy/lock it and plug it in our
741 1.5 mrg * result array
742 1.5 mrg */
743 1.5 mrg /* caller must un-busy this page */
744 1.5 mrg ptmp->flags |= PG_BUSY;
745 1.5 mrg UVM_PAGE_OWN(ptmp, "uao_get1");
746 1.5 mrg pps[lcv] = ptmp;
747 1.5 mrg gotpages++;
748 1.5 mrg
749 1.5 mrg } /* "for" lcv loop */
750 1.5 mrg
751 1.5 mrg /*
752 1.5 mrg * step 1b: now we've either done everything needed or we
753 1.5 mrg * to unlock and do some waiting or I/O.
754 1.5 mrg */
755 1.5 mrg
756 1.5 mrg UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
757 1.5 mrg
758 1.5 mrg *npagesp = gotpages;
759 1.5 mrg if (done)
760 1.5 mrg /* bingo! */
761 1.5 mrg return(VM_PAGER_OK);
762 1.5 mrg else
763 1.5 mrg /* EEK! Need to unlock and I/O */
764 1.5 mrg return(VM_PAGER_UNLOCK);
765 1.1 mrg }
766 1.1 mrg
767 1.5 mrg /*
768 1.5 mrg * step 2: get non-resident or busy pages.
769 1.5 mrg * object is locked. data structures are unlocked.
770 1.5 mrg */
771 1.5 mrg
772 1.5 mrg for (lcv = 0, current_offset = offset ; lcv < maxpages ;
773 1.5 mrg lcv++, current_offset += PAGE_SIZE) {
774 1.5 mrg /*
775 1.5 mrg * - skip over pages we've already gotten or don't want
776 1.5 mrg * - skip over pages we don't _have_ to get
777 1.5 mrg */
778 1.5 mrg if (pps[lcv] != NULL ||
779 1.5 mrg (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
780 1.5 mrg continue;
781 1.5 mrg
782 1.5 mrg /*
783 1.5 mrg * we have yet to locate the current page (pps[lcv]). we
784 1.5 mrg * first look for a page that is already at the current offset.
785 1.5 mrg * if we find a page, we check to see if it is busy or
786 1.5 mrg * released. if that is the case, then we sleep on the page
787 1.5 mrg * until it is no longer busy or released and repeat the lookup.
788 1.5 mrg * if the page we found is neither busy nor released, then we
789 1.5 mrg * busy it (so we own it) and plug it into pps[lcv]. this
790 1.5 mrg * 'break's the following while loop and indicates we are
791 1.5 mrg * ready to move on to the next page in the "lcv" loop above.
792 1.5 mrg *
793 1.5 mrg * if we exit the while loop with pps[lcv] still set to NULL,
794 1.5 mrg * then it means that we allocated a new busy/fake/clean page
795 1.5 mrg * ptmp in the object and we need to do I/O to fill in the data.
796 1.5 mrg */
797 1.5 mrg
798 1.5 mrg /* top of "pps" while loop */
799 1.5 mrg while (pps[lcv] == NULL) {
800 1.5 mrg /* look for a resident page */
801 1.5 mrg ptmp = uvm_pagelookup(uobj, current_offset);
802 1.5 mrg
803 1.5 mrg /* not resident? allocate one now (if we can) */
804 1.5 mrg if (ptmp == NULL) {
805 1.5 mrg
806 1.5 mrg ptmp = uvm_pagealloc(uobj, current_offset,
807 1.5 mrg NULL); /* alloc */
808 1.5 mrg
809 1.5 mrg /* out of RAM? */
810 1.5 mrg if (ptmp == NULL) {
811 1.5 mrg simple_unlock(&uobj->vmobjlock);
812 1.5 mrg UVMHIST_LOG(pdhist,
813 1.5 mrg "sleeping, ptmp == NULL\n",0,0,0,0);
814 1.5 mrg uvm_wait("uao_getpage");
815 1.5 mrg simple_lock(&uobj->vmobjlock);
816 1.5 mrg /* goto top of pps while loop */
817 1.5 mrg continue;
818 1.5 mrg }
819 1.5 mrg
820 1.5 mrg /*
821 1.5 mrg * safe with PQ's unlocked: because we just
822 1.5 mrg * alloc'd the page
823 1.5 mrg */
824 1.5 mrg ptmp->pqflags |= PQ_AOBJ;
825 1.5 mrg
826 1.5 mrg /*
827 1.5 mrg * got new page ready for I/O. break pps while
828 1.5 mrg * loop. pps[lcv] is still NULL.
829 1.5 mrg */
830 1.5 mrg break;
831 1.5 mrg }
832 1.5 mrg
833 1.5 mrg /* page is there, see if we need to wait on it */
834 1.5 mrg if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
835 1.5 mrg ptmp->flags |= PG_WANTED;
836 1.5 mrg UVMHIST_LOG(pdhist,
837 1.5 mrg "sleeping, ptmp->flags 0x%x\n",
838 1.5 mrg ptmp->flags,0,0,0);
839 1.5 mrg UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 0,
840 1.5 mrg "uao_get", 0);
841 1.5 mrg simple_lock(&uobj->vmobjlock);
842 1.5 mrg continue; /* goto top of pps while loop */
843 1.5 mrg }
844 1.5 mrg
845 1.5 mrg /*
846 1.5 mrg * if we get here then the page has become resident and
847 1.5 mrg * unbusy between steps 1 and 2. we busy it now (so we
848 1.5 mrg * own it) and set pps[lcv] (so that we exit the while
849 1.5 mrg * loop).
850 1.5 mrg */
851 1.5 mrg /* we own it, caller must un-busy */
852 1.5 mrg ptmp->flags |= PG_BUSY;
853 1.5 mrg UVM_PAGE_OWN(ptmp, "uao_get2");
854 1.5 mrg pps[lcv] = ptmp;
855 1.5 mrg }
856 1.5 mrg
857 1.5 mrg /*
858 1.5 mrg * if we own the valid page at the correct offset, pps[lcv] will
859 1.5 mrg * point to it. nothing more to do except go to the next page.
860 1.5 mrg */
861 1.5 mrg if (pps[lcv])
862 1.5 mrg continue; /* next lcv */
863 1.5 mrg
864 1.5 mrg /*
865 1.5 mrg * we have a "fake/busy/clean" page that we just allocated.
866 1.5 mrg * do the needed "i/o", either reading from swap or zeroing.
867 1.5 mrg */
868 1.5 mrg swslot = uao_find_swslot(aobj, current_offset / PAGE_SIZE);
869 1.5 mrg
870 1.5 mrg /*
871 1.5 mrg * just zero the page if there's nothing in swap.
872 1.5 mrg */
873 1.5 mrg if (swslot == 0)
874 1.5 mrg {
875 1.5 mrg /*
876 1.5 mrg * page hasn't existed before, just zero it.
877 1.5 mrg */
878 1.5 mrg uvm_pagezero(ptmp);
879 1.5 mrg }
880 1.5 mrg else
881 1.5 mrg {
882 1.5 mrg UVMHIST_LOG(pdhist, "pagein from swslot %d",
883 1.5 mrg swslot, 0,0,0);
884 1.5 mrg
885 1.5 mrg /*
886 1.5 mrg * page in the swapped-out page.
887 1.5 mrg * unlock object for i/o, relock when done.
888 1.5 mrg */
889 1.5 mrg simple_unlock(&uobj->vmobjlock);
890 1.5 mrg rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
891 1.5 mrg simple_lock(&uobj->vmobjlock);
892 1.5 mrg
893 1.5 mrg /*
894 1.5 mrg * I/O done. check for errors.
895 1.5 mrg */
896 1.5 mrg if (rv != VM_PAGER_OK)
897 1.5 mrg {
898 1.5 mrg UVMHIST_LOG(pdhist, "<- done (error=%d)",
899 1.5 mrg rv,0,0,0);
900 1.5 mrg if (ptmp->flags & PG_WANTED)
901 1.5 mrg /* object lock still held */
902 1.5 mrg thread_wakeup(ptmp);
903 1.5 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
904 1.5 mrg UVM_PAGE_OWN(ptmp, NULL);
905 1.5 mrg uvm_lock_pageq();
906 1.5 mrg uvm_pagefree(ptmp);
907 1.5 mrg uvm_unlock_pageq();
908 1.5 mrg simple_unlock(&uobj->vmobjlock);
909 1.5 mrg return (rv);
910 1.5 mrg }
911 1.5 mrg }
912 1.5 mrg
913 1.5 mrg /*
914 1.5 mrg * we got the page! clear the fake flag (indicates valid
915 1.5 mrg * data now in page) and plug into our result array. note
916 1.5 mrg * that page is still busy.
917 1.5 mrg *
918 1.5 mrg * it is the callers job to:
919 1.5 mrg * => check if the page is released
920 1.5 mrg * => unbusy the page
921 1.5 mrg * => activate the page
922 1.5 mrg */
923 1.5 mrg
924 1.5 mrg ptmp->flags &= ~PG_FAKE; /* data is valid ... */
925 1.5 mrg pmap_clear_modify(PMAP_PGARG(ptmp)); /* ... and clean */
926 1.5 mrg pps[lcv] = ptmp;
927 1.1 mrg
928 1.5 mrg } /* lcv loop */
929 1.1 mrg
930 1.1 mrg /*
931 1.5 mrg * finally, unlock object and return.
932 1.5 mrg */
933 1.1 mrg
934 1.1 mrg simple_unlock(&uobj->vmobjlock);
935 1.5 mrg UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
936 1.5 mrg return(VM_PAGER_OK);
937 1.1 mrg }
938 1.1 mrg
939 1.1 mrg /*
940 1.1 mrg * uao_releasepg: handle released page in an aobj
941 1.1 mrg *
942 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
943 1.1 mrg * to dispose of.
944 1.1 mrg * => caller must handle PG_WANTED case
945 1.1 mrg * => called with page's object locked, pageq's unlocked
946 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
947 1.1 mrg * killed the page's object. if we return TRUE, then we
948 1.1 mrg * return with the object locked.
949 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
950 1.1 mrg * with the page queues locked [for pagedaemon]
951 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
952 1.1 mrg * => we kill the aobj if it is not referenced and we are suppose to
953 1.1 mrg * kill it ("KILLME").
954 1.1 mrg */
955 1.1 mrg static boolean_t uao_releasepg(pg, nextpgp)
956 1.5 mrg struct vm_page *pg;
957 1.5 mrg struct vm_page **nextpgp; /* OUT */
958 1.1 mrg {
959 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
960 1.5 mrg int slot;
961 1.1 mrg
962 1.1 mrg #ifdef DIAGNOSTIC
963 1.5 mrg if ((pg->flags & PG_RELEASED) == 0)
964 1.5 mrg panic("uao_releasepg: page not released!");
965 1.1 mrg #endif
966 1.5 mrg
967 1.5 mrg /*
968 1.5 mrg * dispose of the page [caller handles PG_WANTED] and swap slot.
969 1.5 mrg */
970 1.5 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
971 1.5 mrg slot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
972 1.5 mrg if (slot)
973 1.5 mrg uvm_swap_free(slot, 1);
974 1.5 mrg uvm_lock_pageq();
975 1.5 mrg if (nextpgp)
976 1.5 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
977 1.5 mrg uvm_pagefree(pg);
978 1.5 mrg if (!nextpgp)
979 1.5 mrg uvm_unlock_pageq(); /* keep locked for daemon */
980 1.5 mrg
981 1.5 mrg /*
982 1.5 mrg * if we're not killing the object, we're done.
983 1.5 mrg */
984 1.5 mrg if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
985 1.5 mrg return TRUE;
986 1.1 mrg
987 1.1 mrg #ifdef DIAGNOSTIC
988 1.5 mrg if (aobj->u_obj.uo_refs)
989 1.5 mrg panic("uvm_km_releasepg: kill flag set on referenced object!");
990 1.1 mrg #endif
991 1.1 mrg
992 1.5 mrg /*
993 1.5 mrg * if there are still pages in the object, we're done for now.
994 1.5 mrg */
995 1.5 mrg if (aobj->u_obj.uo_npages != 0)
996 1.5 mrg return TRUE;
997 1.1 mrg
998 1.1 mrg #ifdef DIAGNOSTIC
999 1.5 mrg if (aobj->u_obj.memq.tqh_first)
1000 1.5 mrg panic("uvn_releasepg: pages in object with npages == 0");
1001 1.1 mrg #endif
1002 1.1 mrg
1003 1.5 mrg /*
1004 1.5 mrg * finally, free the rest.
1005 1.5 mrg */
1006 1.5 mrg uao_free(aobj);
1007 1.1 mrg
1008 1.5 mrg return FALSE;
1009 1.1 mrg }
1010