uvm_aobj.c revision 1.6 1 1.6 mrg /* $NetBSD: uvm_aobj.c,v 1.6 1998/02/10 14:12:06 mrg Exp $ */
2 1.1 mrg
3 1.1 mrg /* copyright here */
4 1.6 mrg
5 1.6 mrg #include "opt_uvmhist.h"
6 1.6 mrg
7 1.4 mrg /*
8 1.4 mrg * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
9 1.4 mrg */
10 1.1 mrg
11 1.1 mrg #include <sys/param.h>
12 1.1 mrg #include <sys/systm.h>
13 1.1 mrg #include <sys/proc.h>
14 1.1 mrg #include <sys/malloc.h>
15 1.1 mrg
16 1.1 mrg #include <vm/vm.h>
17 1.1 mrg #include <vm/vm_page.h>
18 1.1 mrg #include <vm/vm_kern.h>
19 1.1 mrg
20 1.1 mrg #include <uvm/uvm.h>
21 1.1 mrg
22 1.1 mrg /*
23 1.1 mrg * uvm_aobj.c: anonymous-memory backed uvm_object
24 1.1 mrg */
25 1.1 mrg
26 1.1 mrg /*
27 1.1 mrg * an aobj manages anonymous-memory backed uvm_objects. in addition
28 1.1 mrg * to keeping the list of resident pages, it also keeps a list of
29 1.1 mrg * allocated swap blocks. depending on the size of the aobj this list
30 1.1 mrg * of allocated swap blocks is either stored in an array (small objects)
31 1.1 mrg * or in a hash table (large objects).
32 1.1 mrg */
33 1.1 mrg
34 1.1 mrg /*
35 1.1 mrg * local structures
36 1.1 mrg */
37 1.1 mrg
38 1.1 mrg /*
39 1.1 mrg * for hash tables, we break the address space of the aobj into blocks
40 1.1 mrg * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
41 1.1 mrg * be a power of two.
42 1.1 mrg */
43 1.1 mrg
44 1.1 mrg #define UAO_SWHASH_CLUSTER_SHIFT 4
45 1.1 mrg #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
46 1.1 mrg
47 1.1 mrg /* get the "tag" for this page index */
48 1.1 mrg #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
49 1.1 mrg ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
50 1.1 mrg
51 1.1 mrg /* given an ELT and a page index, find the swap slot */
52 1.1 mrg #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
53 1.1 mrg ((ELT)->slots[(PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1)])
54 1.1 mrg
55 1.1 mrg /* given an ELT, return its pageidx base */
56 1.1 mrg #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
57 1.1 mrg ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
58 1.1 mrg
59 1.1 mrg /*
60 1.1 mrg * the swhash hash function
61 1.1 mrg */
62 1.1 mrg #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
63 1.1 mrg (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
64 1.1 mrg & (AOBJ)->u_swhashmask)])
65 1.1 mrg
66 1.1 mrg /*
67 1.1 mrg * the swhash threshhold determines if we will use an array or a
68 1.1 mrg * hash table to store the list of allocated swap blocks.
69 1.1 mrg */
70 1.1 mrg
71 1.1 mrg #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
72 1.1 mrg #define UAO_USES_SWHASH(AOBJ) \
73 1.1 mrg ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
74 1.1 mrg
75 1.1 mrg /*
76 1.3 chs * the number of buckets in a swhash, with an upper bound
77 1.1 mrg */
78 1.1 mrg #define UAO_SWHASH_MAXBUCKETS 256
79 1.1 mrg #define UAO_SWHASH_BUCKETS(AOBJ) \
80 1.1 mrg (min((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
81 1.1 mrg UAO_SWHASH_MAXBUCKETS))
82 1.1 mrg
83 1.1 mrg
84 1.1 mrg /*
85 1.1 mrg * uao_swhash_elt: when a hash table is being used, this structure defines
86 1.1 mrg * the format of an entry in the bucket list.
87 1.1 mrg */
88 1.1 mrg
89 1.1 mrg struct uao_swhash_elt {
90 1.5 mrg LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
91 1.5 mrg vm_offset_t tag; /* our 'tag' */
92 1.5 mrg int count; /* our number of active slots */
93 1.5 mrg int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
94 1.1 mrg };
95 1.1 mrg
96 1.1 mrg /*
97 1.1 mrg * uao_swhash: the swap hash table structure
98 1.1 mrg */
99 1.1 mrg
100 1.1 mrg LIST_HEAD(uao_swhash, uao_swhash_elt);
101 1.1 mrg
102 1.1 mrg
103 1.1 mrg /*
104 1.1 mrg * uvm_aobj: the actual anon-backed uvm_object
105 1.1 mrg *
106 1.1 mrg * => the uvm_object is at the top of the structure, this allows
107 1.1 mrg * (struct uvm_device *) == (struct uvm_object *)
108 1.1 mrg * => only one of u_swslots and u_swhash is used in any given aobj
109 1.1 mrg */
110 1.1 mrg
111 1.1 mrg struct uvm_aobj {
112 1.5 mrg struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
113 1.5 mrg vm_size_t u_pages; /* number of pages in entire object */
114 1.5 mrg int u_flags; /* the flags (see uvm_aobj.h) */
115 1.5 mrg int *u_swslots; /* array of offset->swapslot mappings */
116 1.5 mrg /*
117 1.5 mrg * hashtable of offset->swapslot mappings
118 1.5 mrg * (u_swhash is an array of bucket heads)
119 1.5 mrg */
120 1.5 mrg struct uao_swhash *u_swhash;
121 1.5 mrg u_long u_swhashmask; /* mask for hashtable */
122 1.5 mrg LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
123 1.1 mrg };
124 1.1 mrg
125 1.1 mrg /*
126 1.1 mrg * local functions
127 1.1 mrg */
128 1.1 mrg
129 1.1 mrg static void uao_init __P((void));
130 1.1 mrg static struct uao_swhash_elt *uao_find_swhash_elt __P((struct uvm_aobj *,
131 1.1 mrg int, boolean_t));
132 1.1 mrg static int uao_find_swslot __P((struct uvm_aobj *,
133 1.1 mrg vm_offset_t));
134 1.1 mrg static boolean_t uao_flush __P((struct uvm_object *,
135 1.1 mrg vm_offset_t, vm_offset_t,
136 1.1 mrg int));
137 1.1 mrg static void uao_free __P((struct uvm_aobj *));
138 1.1 mrg static int uao_get __P((struct uvm_object *, vm_offset_t,
139 1.1 mrg vm_page_t *, int *, int,
140 1.1 mrg vm_prot_t, int, int));
141 1.1 mrg static boolean_t uao_releasepg __P((struct vm_page *,
142 1.1 mrg struct vm_page **));
143 1.1 mrg
144 1.1 mrg
145 1.1 mrg
146 1.1 mrg /*
147 1.1 mrg * aobj_pager
148 1.1 mrg *
149 1.1 mrg * note that some functions (e.g. put) are handled elsewhere
150 1.1 mrg */
151 1.1 mrg
152 1.1 mrg struct uvm_pagerops aobj_pager = {
153 1.5 mrg uao_init, /* init */
154 1.5 mrg NULL, /* attach */
155 1.5 mrg uao_reference, /* reference */
156 1.5 mrg uao_detach, /* detach */
157 1.5 mrg NULL, /* fault */
158 1.5 mrg uao_flush, /* flush */
159 1.5 mrg uao_get, /* get */
160 1.5 mrg NULL, /* asyncget */
161 1.5 mrg NULL, /* put (done by pagedaemon) */
162 1.5 mrg NULL, /* cluster */
163 1.5 mrg NULL, /* mk_pcluster */
164 1.5 mrg uvm_shareprot, /* shareprot */
165 1.5 mrg NULL, /* aiodone */
166 1.5 mrg uao_releasepg /* releasepg */
167 1.1 mrg };
168 1.1 mrg
169 1.1 mrg /*
170 1.1 mrg * uao_list: global list of active aobjs, locked by uao_list_lock
171 1.1 mrg */
172 1.1 mrg
173 1.1 mrg static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
174 1.1 mrg #if NCPU > 1
175 1.1 mrg static simple_lock_data_t uao_list_lock;
176 1.1 mrg #endif
177 1.1 mrg
178 1.1 mrg
179 1.1 mrg /*
180 1.1 mrg * functions
181 1.1 mrg */
182 1.1 mrg
183 1.1 mrg /*
184 1.1 mrg * hash table/array related functions
185 1.1 mrg */
186 1.1 mrg
187 1.1 mrg /*
188 1.1 mrg * uao_find_swhash_elt: find (or create) a hash table entry for a page
189 1.1 mrg * offset.
190 1.1 mrg *
191 1.1 mrg * => the object should be locked by the caller
192 1.1 mrg */
193 1.1 mrg
194 1.5 mrg static struct uao_swhash_elt *
195 1.5 mrg uao_find_swhash_elt(aobj, pageidx, create)
196 1.5 mrg struct uvm_aobj *aobj;
197 1.5 mrg int pageidx;
198 1.5 mrg boolean_t create;
199 1.5 mrg {
200 1.5 mrg struct uao_swhash *swhash;
201 1.5 mrg struct uao_swhash_elt *elt;
202 1.5 mrg int page_tag;
203 1.1 mrg
204 1.5 mrg swhash = UAO_SWHASH_HASH(aobj, pageidx); /* first hash to get bucket */
205 1.5 mrg page_tag = UAO_SWHASH_ELT_TAG(pageidx); /* tag to search for */
206 1.1 mrg
207 1.5 mrg /*
208 1.5 mrg * now search the bucket for the requested tag
209 1.5 mrg */
210 1.5 mrg for (elt = swhash->lh_first; elt != NULL; elt = elt->list.le_next) {
211 1.5 mrg if (elt->tag == page_tag)
212 1.5 mrg return(elt);
213 1.5 mrg }
214 1.5 mrg
215 1.5 mrg /* fail now if we are not allowed to create a new entry in the bucket */
216 1.5 mrg if (!create)
217 1.5 mrg return NULL;
218 1.5 mrg
219 1.5 mrg
220 1.5 mrg /*
221 1.5 mrg * malloc a new entry for the bucket and init/insert it in
222 1.5 mrg */
223 1.5 mrg MALLOC(elt, struct uao_swhash_elt *, sizeof(*elt), M_UVMAOBJ, M_WAITOK);
224 1.5 mrg LIST_INSERT_HEAD(swhash, elt, list);
225 1.5 mrg elt->tag = page_tag;
226 1.5 mrg elt->count = 0;
227 1.5 mrg bzero(elt->slots, sizeof(elt->slots));
228 1.5 mrg
229 1.5 mrg return(elt);
230 1.1 mrg }
231 1.1 mrg
232 1.1 mrg /*
233 1.1 mrg * uao_find_swslot: find the swap slot number for an aobj/pageidx
234 1.1 mrg *
235 1.1 mrg * => object must be locked by caller
236 1.1 mrg */
237 1.5 mrg __inline static int
238 1.5 mrg uao_find_swslot(aobj, pageidx)
239 1.5 mrg struct uvm_aobj *aobj;
240 1.5 mrg vm_offset_t pageidx;
241 1.1 mrg {
242 1.1 mrg
243 1.5 mrg /*
244 1.5 mrg * if noswap flag is set, then we never return a slot
245 1.5 mrg */
246 1.1 mrg
247 1.5 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP)
248 1.5 mrg return(0);
249 1.1 mrg
250 1.5 mrg /*
251 1.5 mrg * if hashing, look in hash table.
252 1.5 mrg */
253 1.1 mrg
254 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
255 1.5 mrg struct uao_swhash_elt *elt =
256 1.5 mrg uao_find_swhash_elt(aobj, pageidx, FALSE);
257 1.5 mrg
258 1.5 mrg if (elt)
259 1.5 mrg return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
260 1.5 mrg else
261 1.5 mrg return(NULL);
262 1.5 mrg }
263 1.1 mrg
264 1.5 mrg /*
265 1.5 mrg * otherwise, look in the array
266 1.5 mrg */
267 1.5 mrg return(aobj->u_swslots[pageidx]);
268 1.1 mrg }
269 1.1 mrg
270 1.1 mrg /*
271 1.1 mrg * uao_set_swslot: set the swap slot for a page in an aobj.
272 1.1 mrg *
273 1.1 mrg * => setting a slot to zero frees the slot
274 1.1 mrg * => object must be locked by caller
275 1.1 mrg */
276 1.5 mrg int
277 1.5 mrg uao_set_swslot(uobj, pageidx, slot)
278 1.5 mrg struct uvm_object *uobj;
279 1.5 mrg int pageidx, slot;
280 1.5 mrg {
281 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
282 1.5 mrg int oldslot;
283 1.5 mrg UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
284 1.5 mrg UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
285 1.5 mrg aobj, pageidx, slot, 0);
286 1.1 mrg
287 1.5 mrg /*
288 1.5 mrg * if noswap flag is set, then we can't set a slot
289 1.5 mrg */
290 1.1 mrg
291 1.5 mrg if (aobj->u_flags & UAO_FLAG_NOSWAP) {
292 1.1 mrg
293 1.5 mrg if (slot == 0)
294 1.5 mrg return(0); /* a clear is ok */
295 1.1 mrg
296 1.5 mrg /* but a set is not */
297 1.5 mrg printf("uao_set_swslot: uobj = %p\n", uobj);
298 1.5 mrg panic("uao_set_swslot: attempt to set a slot on a NOSWAP object");
299 1.5 mrg }
300 1.1 mrg
301 1.5 mrg /*
302 1.5 mrg * are we using a hash table? if so, add it in the hash.
303 1.5 mrg */
304 1.1 mrg
305 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
306 1.5 mrg struct uao_swhash_elt *elt =
307 1.5 mrg uao_find_swhash_elt(aobj, pageidx, TRUE);
308 1.5 mrg
309 1.5 mrg oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
310 1.5 mrg UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
311 1.5 mrg
312 1.5 mrg /*
313 1.5 mrg * now adjust the elt's reference counter and free it if we've
314 1.5 mrg * dropped it to zero.
315 1.5 mrg */
316 1.5 mrg
317 1.5 mrg /* an allocation? */
318 1.5 mrg if (slot) {
319 1.5 mrg if (oldslot == 0)
320 1.5 mrg elt->count++;
321 1.5 mrg } else { /* freeing slot ... */
322 1.5 mrg if (oldslot) /* to be safe */
323 1.5 mrg elt->count--;
324 1.5 mrg
325 1.5 mrg if (elt->count == 0) {
326 1.5 mrg LIST_REMOVE(elt, list);
327 1.5 mrg FREE(elt, M_UVMAOBJ);
328 1.5 mrg }
329 1.5 mrg }
330 1.5 mrg
331 1.5 mrg } else {
332 1.5 mrg /* we are using an array */
333 1.5 mrg oldslot = aobj->u_swslots[pageidx];
334 1.5 mrg aobj->u_swslots[pageidx] = slot;
335 1.5 mrg }
336 1.5 mrg return (oldslot);
337 1.1 mrg }
338 1.1 mrg
339 1.1 mrg /*
340 1.1 mrg * end of hash/array functions
341 1.1 mrg */
342 1.1 mrg
343 1.1 mrg /*
344 1.1 mrg * uao_free: free all resources held by an aobj, and then free the aobj
345 1.1 mrg *
346 1.1 mrg * => the aobj should be dead
347 1.1 mrg */
348 1.1 mrg static void
349 1.1 mrg uao_free(aobj)
350 1.5 mrg struct uvm_aobj *aobj;
351 1.1 mrg {
352 1.1 mrg
353 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
354 1.5 mrg int i, hashbuckets = aobj->u_swhashmask + 1;
355 1.1 mrg
356 1.5 mrg /*
357 1.5 mrg * free the swslots from each hash bucket,
358 1.5 mrg * then the hash bucket, and finally the hash table itself.
359 1.5 mrg */
360 1.5 mrg for (i = 0; i < hashbuckets; i++) {
361 1.5 mrg struct uao_swhash_elt *elt, *next;
362 1.5 mrg
363 1.5 mrg for (elt = aobj->u_swhash[i].lh_first; elt != NULL;
364 1.5 mrg elt = next) {
365 1.5 mrg int j;
366 1.5 mrg
367 1.5 mrg for (j = 0; j < UAO_SWHASH_CLUSTER_SIZE; j++)
368 1.5 mrg {
369 1.5 mrg int slot = elt->slots[j];
370 1.5 mrg
371 1.5 mrg if (slot)
372 1.5 mrg uvm_swap_free(slot, 1);
373 1.5 mrg }
374 1.5 mrg
375 1.5 mrg next = elt->list.le_next;
376 1.5 mrg FREE(elt, M_UVMAOBJ);
377 1.5 mrg }
378 1.5 mrg }
379 1.5 mrg FREE(aobj->u_swhash, M_UVMAOBJ);
380 1.5 mrg } else {
381 1.5 mrg int i;
382 1.5 mrg
383 1.5 mrg /*
384 1.5 mrg * free the array
385 1.5 mrg */
386 1.5 mrg
387 1.5 mrg for (i = 0; i < aobj->u_pages; i++)
388 1.5 mrg {
389 1.5 mrg int slot = aobj->u_swslots[i];
390 1.5 mrg
391 1.5 mrg if (slot)
392 1.5 mrg uvm_swap_free(slot, 1);
393 1.5 mrg }
394 1.5 mrg FREE(aobj->u_swslots, M_UVMAOBJ);
395 1.1 mrg }
396 1.1 mrg
397 1.5 mrg /*
398 1.5 mrg * finally free the aobj itself
399 1.5 mrg */
400 1.5 mrg FREE(aobj, M_UVMAOBJ);
401 1.1 mrg }
402 1.1 mrg
403 1.1 mrg /*
404 1.1 mrg * pager functions
405 1.1 mrg */
406 1.1 mrg
407 1.1 mrg /*
408 1.1 mrg * uao_create: create an aobj of the given size and return its uvm_object.
409 1.1 mrg *
410 1.1 mrg * => for normal use, flags are always zero
411 1.1 mrg * => for the kernel object, the flags are:
412 1.1 mrg * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
413 1.1 mrg * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
414 1.1 mrg */
415 1.5 mrg struct uvm_object *
416 1.5 mrg uao_create(size, flags)
417 1.5 mrg vm_size_t size;
418 1.5 mrg int flags;
419 1.5 mrg {
420 1.5 mrg static struct uvm_aobj kernel_object_store; /* home of kernel_object */
421 1.5 mrg static int kobj_alloced = 0; /* not allocated yet */
422 1.5 mrg int pages = round_page(size) / PAGE_SIZE;
423 1.5 mrg struct uvm_aobj *aobj;
424 1.1 mrg
425 1.5 mrg /*
426 1.5 mrg * malloc a new aobj unless we are asked for the kernel object
427 1.5 mrg */
428 1.5 mrg if (flags & UAO_FLAG_KERNOBJ) { /* want kernel object? */
429 1.5 mrg if (kobj_alloced)
430 1.5 mrg panic("uao_create: kernel object already allocated");
431 1.5 mrg
432 1.5 mrg aobj = &kernel_object_store;
433 1.5 mrg aobj->u_pages = pages;
434 1.5 mrg aobj->u_flags = UAO_FLAG_NOSWAP; /* no swap to start */
435 1.5 mrg /* we are special, we never die */
436 1.5 mrg aobj->u_obj.uo_refs = UVM_OBJ_KERN;
437 1.5 mrg kobj_alloced = UAO_FLAG_KERNOBJ;
438 1.5 mrg } else if (flags & UAO_FLAG_KERNSWAP) {
439 1.5 mrg aobj = &kernel_object_store;
440 1.5 mrg if (kobj_alloced != UAO_FLAG_KERNOBJ)
441 1.5 mrg panic("uao_create: asked to enable swap on kernel object");
442 1.5 mrg kobj_alloced = UAO_FLAG_KERNSWAP;
443 1.5 mrg } else { /* normal object */
444 1.5 mrg MALLOC(aobj, struct uvm_aobj *, sizeof(*aobj), M_UVMAOBJ,
445 1.5 mrg M_WAITOK);
446 1.5 mrg aobj->u_pages = pages;
447 1.5 mrg aobj->u_flags = 0; /* normal object */
448 1.5 mrg aobj->u_obj.uo_refs = 1; /* start with 1 reference */
449 1.5 mrg }
450 1.1 mrg
451 1.5 mrg /*
452 1.5 mrg * allocate hash/array if necessary
453 1.5 mrg *
454 1.5 mrg * note: in the KERNSWAP case no need to worry about locking since
455 1.5 mrg * we are still booting we should be the only thread around.
456 1.5 mrg */
457 1.5 mrg if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
458 1.5 mrg int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
459 1.5 mrg M_NOWAIT : M_WAITOK;
460 1.5 mrg
461 1.5 mrg /* allocate hash table or array depending on object size */
462 1.5 mrg if (UAO_USES_SWHASH(aobj)) {
463 1.5 mrg aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
464 1.5 mrg M_UVMAOBJ, mflags, &aobj->u_swhashmask);
465 1.5 mrg if (aobj->u_swhash == NULL)
466 1.5 mrg panic("uao_create: hashinit swhash failed");
467 1.5 mrg } else {
468 1.5 mrg MALLOC(aobj->u_swslots, int *, pages * sizeof(int),
469 1.5 mrg M_UVMAOBJ, mflags);
470 1.5 mrg if (aobj->u_swslots == NULL)
471 1.5 mrg panic("uao_create: malloc swslots failed");
472 1.5 mrg bzero(aobj->u_swslots, pages * sizeof(int));
473 1.5 mrg }
474 1.5 mrg
475 1.5 mrg if (flags) {
476 1.5 mrg aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
477 1.5 mrg return(&aobj->u_obj);
478 1.5 mrg /* done! */
479 1.5 mrg }
480 1.5 mrg }
481 1.5 mrg
482 1.5 mrg /*
483 1.5 mrg * init aobj fields
484 1.5 mrg */
485 1.5 mrg simple_lock_init(&aobj->u_obj.vmobjlock);
486 1.5 mrg aobj->u_obj.pgops = &aobj_pager;
487 1.5 mrg TAILQ_INIT(&aobj->u_obj.memq);
488 1.5 mrg aobj->u_obj.uo_npages = 0;
489 1.1 mrg
490 1.5 mrg /*
491 1.5 mrg * now that aobj is ready, add it to the global list
492 1.5 mrg * XXXCHS: uao_init hasn't been called'd in the KERNOBJ case,
493 1.5 mrg * do we really need the kernel object on this list anyway?
494 1.5 mrg */
495 1.5 mrg simple_lock(&uao_list_lock);
496 1.5 mrg LIST_INSERT_HEAD(&uao_list, aobj, u_list);
497 1.5 mrg simple_unlock(&uao_list_lock);
498 1.5 mrg
499 1.5 mrg /*
500 1.5 mrg * done!
501 1.5 mrg */
502 1.5 mrg return(&aobj->u_obj);
503 1.1 mrg }
504 1.1 mrg
505 1.1 mrg
506 1.1 mrg
507 1.1 mrg /*
508 1.1 mrg * uao_init: set up aobj pager subsystem
509 1.1 mrg *
510 1.1 mrg * => called at boot time from uvm_pager_init()
511 1.1 mrg */
512 1.5 mrg static void
513 1.5 mrg uao_init()
514 1.5 mrg {
515 1.1 mrg
516 1.5 mrg LIST_INIT(&uao_list);
517 1.5 mrg simple_lock_init(&uao_list_lock);
518 1.1 mrg }
519 1.1 mrg
520 1.1 mrg /*
521 1.1 mrg * uao_reference: add a ref to an aobj
522 1.1 mrg *
523 1.1 mrg * => aobj must be unlocked (we will lock it)
524 1.1 mrg */
525 1.5 mrg void
526 1.5 mrg uao_reference(uobj)
527 1.5 mrg struct uvm_object *uobj;
528 1.1 mrg {
529 1.5 mrg UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
530 1.1 mrg
531 1.5 mrg /*
532 1.5 mrg * kernel_object already has plenty of references, leave it alone.
533 1.5 mrg */
534 1.1 mrg
535 1.5 mrg if (uobj->uo_refs == UVM_OBJ_KERN)
536 1.5 mrg return;
537 1.1 mrg
538 1.5 mrg simple_lock(&uobj->vmobjlock);
539 1.5 mrg uobj->uo_refs++; /* bump! */
540 1.5 mrg UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
541 1.1 mrg uobj, uobj->uo_refs,0,0);
542 1.5 mrg simple_unlock(&uobj->vmobjlock);
543 1.1 mrg }
544 1.1 mrg
545 1.1 mrg /*
546 1.1 mrg * uao_detach: drop a reference to an aobj
547 1.1 mrg *
548 1.1 mrg * => aobj must be unlocked, we will lock it
549 1.1 mrg */
550 1.5 mrg void
551 1.5 mrg uao_detach(uobj)
552 1.5 mrg struct uvm_object *uobj;
553 1.5 mrg {
554 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
555 1.5 mrg struct vm_page *pg;
556 1.5 mrg boolean_t busybody;
557 1.5 mrg UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
558 1.1 mrg
559 1.5 mrg /*
560 1.5 mrg * detaching from kernel_object is a noop.
561 1.5 mrg */
562 1.5 mrg if (uobj->uo_refs == UVM_OBJ_KERN)
563 1.5 mrg return;
564 1.1 mrg
565 1.5 mrg simple_lock(&uobj->vmobjlock);
566 1.5 mrg
567 1.5 mrg UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
568 1.5 mrg uobj->uo_refs--; /* drop ref! */
569 1.5 mrg if (uobj->uo_refs) { /* still more refs? */
570 1.5 mrg simple_unlock(&uobj->vmobjlock);
571 1.5 mrg UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
572 1.5 mrg return;
573 1.5 mrg }
574 1.5 mrg
575 1.5 mrg /*
576 1.5 mrg * remove the aobj from the global list.
577 1.5 mrg */
578 1.5 mrg simple_lock(&uao_list_lock);
579 1.5 mrg LIST_REMOVE(aobj, u_list);
580 1.5 mrg simple_unlock(&uao_list_lock);
581 1.5 mrg
582 1.5 mrg /*
583 1.5 mrg * free all the pages that aren't PG_BUSY, mark for release any that are.
584 1.5 mrg */
585 1.1 mrg
586 1.5 mrg busybody = FALSE;
587 1.5 mrg for (pg = uobj->memq.tqh_first ; pg != NULL ; pg = pg->listq.tqe_next) {
588 1.5 mrg int swslot;
589 1.5 mrg
590 1.5 mrg if (pg->flags & PG_BUSY) {
591 1.5 mrg pg->flags |= PG_RELEASED;
592 1.5 mrg busybody = TRUE;
593 1.5 mrg continue;
594 1.5 mrg }
595 1.5 mrg
596 1.5 mrg
597 1.5 mrg /* zap the mappings, free the swap slot, free the page */
598 1.5 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
599 1.5 mrg
600 1.5 mrg swslot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
601 1.5 mrg if (swslot) {
602 1.5 mrg uvm_swap_free(swslot, 1);
603 1.5 mrg }
604 1.5 mrg
605 1.5 mrg uvm_lock_pageq();
606 1.5 mrg uvm_pagefree(pg);
607 1.5 mrg uvm_unlock_pageq();
608 1.5 mrg }
609 1.1 mrg
610 1.5 mrg /*
611 1.5 mrg * if we found any busy pages, we're done for now.
612 1.5 mrg * mark the aobj for death, releasepg will finish up for us.
613 1.5 mrg */
614 1.5 mrg if (busybody) {
615 1.5 mrg aobj->u_flags |= UAO_FLAG_KILLME;
616 1.5 mrg simple_unlock(&aobj->u_obj.vmobjlock);
617 1.5 mrg return;
618 1.5 mrg }
619 1.1 mrg
620 1.5 mrg /*
621 1.5 mrg * finally, free the rest.
622 1.5 mrg */
623 1.5 mrg uao_free(aobj);
624 1.5 mrg }
625 1.1 mrg
626 1.1 mrg /*
627 1.1 mrg * uao_flush: uh, yea, sure it's flushed. really!
628 1.1 mrg */
629 1.5 mrg boolean_t
630 1.5 mrg uao_flush(uobj, start, end, flags)
631 1.5 mrg struct uvm_object *uobj;
632 1.5 mrg vm_offset_t start, end;
633 1.5 mrg int flags;
634 1.5 mrg {
635 1.1 mrg
636 1.5 mrg /*
637 1.5 mrg * anonymous memory doesn't "flush"
638 1.5 mrg */
639 1.5 mrg /*
640 1.5 mrg * XXX
641 1.5 mrg * deal with PGO_DEACTIVATE (for madvise(MADV_SEQUENTIAL))
642 1.5 mrg * and PGO_FREE (for msync(MSINVALIDATE))
643 1.5 mrg */
644 1.5 mrg return TRUE;
645 1.1 mrg }
646 1.1 mrg
647 1.1 mrg /*
648 1.1 mrg * uao_get: fetch me a page
649 1.1 mrg *
650 1.1 mrg * we have three cases:
651 1.1 mrg * 1: page is resident -> just return the page.
652 1.1 mrg * 2: page is zero-fill -> allocate a new page and zero it.
653 1.1 mrg * 3: page is swapped out -> fetch the page from swap.
654 1.1 mrg *
655 1.1 mrg * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
656 1.1 mrg * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
657 1.1 mrg * then we will need to return VM_PAGER_UNLOCK.
658 1.1 mrg *
659 1.1 mrg * => prefer map unlocked (not required)
660 1.1 mrg * => object must be locked! we will _unlock_ it before starting any I/O.
661 1.1 mrg * => flags: PGO_ALLPAGES: get all of the pages
662 1.1 mrg * PGO_LOCKED: fault data structures are locked
663 1.1 mrg * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
664 1.1 mrg * => NOTE: caller must check for released pages!!
665 1.1 mrg */
666 1.5 mrg static int
667 1.5 mrg uao_get(uobj, offset, pps, npagesp, centeridx, access_type, advice, flags)
668 1.5 mrg struct uvm_object *uobj;
669 1.5 mrg vm_offset_t offset;
670 1.5 mrg struct vm_page **pps;
671 1.5 mrg int *npagesp;
672 1.5 mrg int centeridx, advice, flags;
673 1.5 mrg vm_prot_t access_type;
674 1.5 mrg {
675 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
676 1.5 mrg vm_offset_t current_offset;
677 1.5 mrg vm_page_t ptmp;
678 1.5 mrg int lcv, gotpages, maxpages, swslot, rv;
679 1.5 mrg boolean_t done;
680 1.5 mrg UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
681 1.5 mrg
682 1.5 mrg UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d", aobj, offset, flags,0);
683 1.5 mrg
684 1.5 mrg /*
685 1.5 mrg * get number of pages
686 1.5 mrg */
687 1.5 mrg
688 1.5 mrg maxpages = *npagesp;
689 1.5 mrg
690 1.5 mrg /*
691 1.5 mrg * step 1: handled the case where fault data structures are locked.
692 1.5 mrg */
693 1.1 mrg
694 1.5 mrg if (flags & PGO_LOCKED) {
695 1.1 mrg
696 1.5 mrg /*
697 1.5 mrg * step 1a: get pages that are already resident. only do
698 1.5 mrg * this if the data structures are locked (i.e. the first
699 1.5 mrg * time through).
700 1.5 mrg */
701 1.5 mrg
702 1.5 mrg done = TRUE; /* be optimistic */
703 1.5 mrg gotpages = 0; /* # of pages we got so far */
704 1.5 mrg
705 1.5 mrg for (lcv = 0, current_offset = offset ; lcv < maxpages ;
706 1.5 mrg lcv++, current_offset += PAGE_SIZE) {
707 1.5 mrg /* do we care about this page? if not, skip it */
708 1.5 mrg if (pps[lcv] == PGO_DONTCARE)
709 1.5 mrg continue;
710 1.5 mrg
711 1.5 mrg ptmp = uvm_pagelookup(uobj, current_offset);
712 1.5 mrg
713 1.5 mrg /*
714 1.5 mrg * if page is new, attempt to allocate the page, then
715 1.5 mrg * zero-fill it.
716 1.5 mrg */
717 1.5 mrg if (ptmp == NULL && uao_find_swslot(aobj,
718 1.5 mrg current_offset / PAGE_SIZE) == 0) {
719 1.5 mrg ptmp = uvm_pagealloc(uobj, current_offset,
720 1.5 mrg NULL);
721 1.5 mrg if (ptmp) {
722 1.5 mrg /* new page */
723 1.5 mrg ptmp->flags &= ~(PG_BUSY|PG_FAKE);
724 1.5 mrg ptmp->pqflags |= PQ_AOBJ;
725 1.5 mrg UVM_PAGE_OWN(ptmp, NULL);
726 1.5 mrg uvm_pagezero(ptmp);
727 1.5 mrg }
728 1.5 mrg }
729 1.5 mrg
730 1.5 mrg /*
731 1.5 mrg * to be useful must get a non-busy, non-released page
732 1.5 mrg */
733 1.5 mrg if (ptmp == NULL ||
734 1.5 mrg (ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
735 1.5 mrg if (lcv == centeridx ||
736 1.5 mrg (flags & PGO_ALLPAGES) != 0)
737 1.5 mrg /* need to do a wait or I/O! */
738 1.5 mrg done = FALSE;
739 1.5 mrg continue;
740 1.5 mrg }
741 1.5 mrg
742 1.5 mrg /*
743 1.5 mrg * useful page: busy/lock it and plug it in our
744 1.5 mrg * result array
745 1.5 mrg */
746 1.5 mrg /* caller must un-busy this page */
747 1.5 mrg ptmp->flags |= PG_BUSY;
748 1.5 mrg UVM_PAGE_OWN(ptmp, "uao_get1");
749 1.5 mrg pps[lcv] = ptmp;
750 1.5 mrg gotpages++;
751 1.5 mrg
752 1.5 mrg } /* "for" lcv loop */
753 1.5 mrg
754 1.5 mrg /*
755 1.5 mrg * step 1b: now we've either done everything needed or we
756 1.5 mrg * to unlock and do some waiting or I/O.
757 1.5 mrg */
758 1.5 mrg
759 1.5 mrg UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
760 1.5 mrg
761 1.5 mrg *npagesp = gotpages;
762 1.5 mrg if (done)
763 1.5 mrg /* bingo! */
764 1.5 mrg return(VM_PAGER_OK);
765 1.5 mrg else
766 1.5 mrg /* EEK! Need to unlock and I/O */
767 1.5 mrg return(VM_PAGER_UNLOCK);
768 1.1 mrg }
769 1.1 mrg
770 1.5 mrg /*
771 1.5 mrg * step 2: get non-resident or busy pages.
772 1.5 mrg * object is locked. data structures are unlocked.
773 1.5 mrg */
774 1.5 mrg
775 1.5 mrg for (lcv = 0, current_offset = offset ; lcv < maxpages ;
776 1.5 mrg lcv++, current_offset += PAGE_SIZE) {
777 1.5 mrg /*
778 1.5 mrg * - skip over pages we've already gotten or don't want
779 1.5 mrg * - skip over pages we don't _have_ to get
780 1.5 mrg */
781 1.5 mrg if (pps[lcv] != NULL ||
782 1.5 mrg (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
783 1.5 mrg continue;
784 1.5 mrg
785 1.5 mrg /*
786 1.5 mrg * we have yet to locate the current page (pps[lcv]). we
787 1.5 mrg * first look for a page that is already at the current offset.
788 1.5 mrg * if we find a page, we check to see if it is busy or
789 1.5 mrg * released. if that is the case, then we sleep on the page
790 1.5 mrg * until it is no longer busy or released and repeat the lookup.
791 1.5 mrg * if the page we found is neither busy nor released, then we
792 1.5 mrg * busy it (so we own it) and plug it into pps[lcv]. this
793 1.5 mrg * 'break's the following while loop and indicates we are
794 1.5 mrg * ready to move on to the next page in the "lcv" loop above.
795 1.5 mrg *
796 1.5 mrg * if we exit the while loop with pps[lcv] still set to NULL,
797 1.5 mrg * then it means that we allocated a new busy/fake/clean page
798 1.5 mrg * ptmp in the object and we need to do I/O to fill in the data.
799 1.5 mrg */
800 1.5 mrg
801 1.5 mrg /* top of "pps" while loop */
802 1.5 mrg while (pps[lcv] == NULL) {
803 1.5 mrg /* look for a resident page */
804 1.5 mrg ptmp = uvm_pagelookup(uobj, current_offset);
805 1.5 mrg
806 1.5 mrg /* not resident? allocate one now (if we can) */
807 1.5 mrg if (ptmp == NULL) {
808 1.5 mrg
809 1.5 mrg ptmp = uvm_pagealloc(uobj, current_offset,
810 1.5 mrg NULL); /* alloc */
811 1.5 mrg
812 1.5 mrg /* out of RAM? */
813 1.5 mrg if (ptmp == NULL) {
814 1.5 mrg simple_unlock(&uobj->vmobjlock);
815 1.5 mrg UVMHIST_LOG(pdhist,
816 1.5 mrg "sleeping, ptmp == NULL\n",0,0,0,0);
817 1.5 mrg uvm_wait("uao_getpage");
818 1.5 mrg simple_lock(&uobj->vmobjlock);
819 1.5 mrg /* goto top of pps while loop */
820 1.5 mrg continue;
821 1.5 mrg }
822 1.5 mrg
823 1.5 mrg /*
824 1.5 mrg * safe with PQ's unlocked: because we just
825 1.5 mrg * alloc'd the page
826 1.5 mrg */
827 1.5 mrg ptmp->pqflags |= PQ_AOBJ;
828 1.5 mrg
829 1.5 mrg /*
830 1.5 mrg * got new page ready for I/O. break pps while
831 1.5 mrg * loop. pps[lcv] is still NULL.
832 1.5 mrg */
833 1.5 mrg break;
834 1.5 mrg }
835 1.5 mrg
836 1.5 mrg /* page is there, see if we need to wait on it */
837 1.5 mrg if ((ptmp->flags & (PG_BUSY|PG_RELEASED)) != 0) {
838 1.5 mrg ptmp->flags |= PG_WANTED;
839 1.5 mrg UVMHIST_LOG(pdhist,
840 1.5 mrg "sleeping, ptmp->flags 0x%x\n",
841 1.5 mrg ptmp->flags,0,0,0);
842 1.5 mrg UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock, 0,
843 1.5 mrg "uao_get", 0);
844 1.5 mrg simple_lock(&uobj->vmobjlock);
845 1.5 mrg continue; /* goto top of pps while loop */
846 1.5 mrg }
847 1.5 mrg
848 1.5 mrg /*
849 1.5 mrg * if we get here then the page has become resident and
850 1.5 mrg * unbusy between steps 1 and 2. we busy it now (so we
851 1.5 mrg * own it) and set pps[lcv] (so that we exit the while
852 1.5 mrg * loop).
853 1.5 mrg */
854 1.5 mrg /* we own it, caller must un-busy */
855 1.5 mrg ptmp->flags |= PG_BUSY;
856 1.5 mrg UVM_PAGE_OWN(ptmp, "uao_get2");
857 1.5 mrg pps[lcv] = ptmp;
858 1.5 mrg }
859 1.5 mrg
860 1.5 mrg /*
861 1.5 mrg * if we own the valid page at the correct offset, pps[lcv] will
862 1.5 mrg * point to it. nothing more to do except go to the next page.
863 1.5 mrg */
864 1.5 mrg if (pps[lcv])
865 1.5 mrg continue; /* next lcv */
866 1.5 mrg
867 1.5 mrg /*
868 1.5 mrg * we have a "fake/busy/clean" page that we just allocated.
869 1.5 mrg * do the needed "i/o", either reading from swap or zeroing.
870 1.5 mrg */
871 1.5 mrg swslot = uao_find_swslot(aobj, current_offset / PAGE_SIZE);
872 1.5 mrg
873 1.5 mrg /*
874 1.5 mrg * just zero the page if there's nothing in swap.
875 1.5 mrg */
876 1.5 mrg if (swslot == 0)
877 1.5 mrg {
878 1.5 mrg /*
879 1.5 mrg * page hasn't existed before, just zero it.
880 1.5 mrg */
881 1.5 mrg uvm_pagezero(ptmp);
882 1.5 mrg }
883 1.5 mrg else
884 1.5 mrg {
885 1.5 mrg UVMHIST_LOG(pdhist, "pagein from swslot %d",
886 1.5 mrg swslot, 0,0,0);
887 1.5 mrg
888 1.5 mrg /*
889 1.5 mrg * page in the swapped-out page.
890 1.5 mrg * unlock object for i/o, relock when done.
891 1.5 mrg */
892 1.5 mrg simple_unlock(&uobj->vmobjlock);
893 1.5 mrg rv = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
894 1.5 mrg simple_lock(&uobj->vmobjlock);
895 1.5 mrg
896 1.5 mrg /*
897 1.5 mrg * I/O done. check for errors.
898 1.5 mrg */
899 1.5 mrg if (rv != VM_PAGER_OK)
900 1.5 mrg {
901 1.5 mrg UVMHIST_LOG(pdhist, "<- done (error=%d)",
902 1.5 mrg rv,0,0,0);
903 1.5 mrg if (ptmp->flags & PG_WANTED)
904 1.5 mrg /* object lock still held */
905 1.5 mrg thread_wakeup(ptmp);
906 1.5 mrg ptmp->flags &= ~(PG_WANTED|PG_BUSY);
907 1.5 mrg UVM_PAGE_OWN(ptmp, NULL);
908 1.5 mrg uvm_lock_pageq();
909 1.5 mrg uvm_pagefree(ptmp);
910 1.5 mrg uvm_unlock_pageq();
911 1.5 mrg simple_unlock(&uobj->vmobjlock);
912 1.5 mrg return (rv);
913 1.5 mrg }
914 1.5 mrg }
915 1.5 mrg
916 1.5 mrg /*
917 1.5 mrg * we got the page! clear the fake flag (indicates valid
918 1.5 mrg * data now in page) and plug into our result array. note
919 1.5 mrg * that page is still busy.
920 1.5 mrg *
921 1.5 mrg * it is the callers job to:
922 1.5 mrg * => check if the page is released
923 1.5 mrg * => unbusy the page
924 1.5 mrg * => activate the page
925 1.5 mrg */
926 1.5 mrg
927 1.5 mrg ptmp->flags &= ~PG_FAKE; /* data is valid ... */
928 1.5 mrg pmap_clear_modify(PMAP_PGARG(ptmp)); /* ... and clean */
929 1.5 mrg pps[lcv] = ptmp;
930 1.1 mrg
931 1.5 mrg } /* lcv loop */
932 1.1 mrg
933 1.1 mrg /*
934 1.5 mrg * finally, unlock object and return.
935 1.5 mrg */
936 1.1 mrg
937 1.1 mrg simple_unlock(&uobj->vmobjlock);
938 1.5 mrg UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
939 1.5 mrg return(VM_PAGER_OK);
940 1.1 mrg }
941 1.1 mrg
942 1.1 mrg /*
943 1.1 mrg * uao_releasepg: handle released page in an aobj
944 1.1 mrg *
945 1.1 mrg * => "pg" is a PG_BUSY [caller owns it], PG_RELEASED page that we need
946 1.1 mrg * to dispose of.
947 1.1 mrg * => caller must handle PG_WANTED case
948 1.1 mrg * => called with page's object locked, pageq's unlocked
949 1.1 mrg * => returns TRUE if page's object is still alive, FALSE if we
950 1.1 mrg * killed the page's object. if we return TRUE, then we
951 1.1 mrg * return with the object locked.
952 1.1 mrg * => if (nextpgp != NULL) => we return pageq.tqe_next here, and return
953 1.1 mrg * with the page queues locked [for pagedaemon]
954 1.1 mrg * => if (nextpgp == NULL) => we return with page queues unlocked [normal case]
955 1.1 mrg * => we kill the aobj if it is not referenced and we are suppose to
956 1.1 mrg * kill it ("KILLME").
957 1.1 mrg */
958 1.1 mrg static boolean_t uao_releasepg(pg, nextpgp)
959 1.5 mrg struct vm_page *pg;
960 1.5 mrg struct vm_page **nextpgp; /* OUT */
961 1.1 mrg {
962 1.5 mrg struct uvm_aobj *aobj = (struct uvm_aobj *) pg->uobject;
963 1.5 mrg int slot;
964 1.1 mrg
965 1.1 mrg #ifdef DIAGNOSTIC
966 1.5 mrg if ((pg->flags & PG_RELEASED) == 0)
967 1.5 mrg panic("uao_releasepg: page not released!");
968 1.1 mrg #endif
969 1.5 mrg
970 1.5 mrg /*
971 1.5 mrg * dispose of the page [caller handles PG_WANTED] and swap slot.
972 1.5 mrg */
973 1.5 mrg pmap_page_protect(PMAP_PGARG(pg), VM_PROT_NONE);
974 1.5 mrg slot = uao_set_swslot(&aobj->u_obj, pg->offset / PAGE_SIZE, 0);
975 1.5 mrg if (slot)
976 1.5 mrg uvm_swap_free(slot, 1);
977 1.5 mrg uvm_lock_pageq();
978 1.5 mrg if (nextpgp)
979 1.5 mrg *nextpgp = pg->pageq.tqe_next; /* next page for daemon */
980 1.5 mrg uvm_pagefree(pg);
981 1.5 mrg if (!nextpgp)
982 1.5 mrg uvm_unlock_pageq(); /* keep locked for daemon */
983 1.5 mrg
984 1.5 mrg /*
985 1.5 mrg * if we're not killing the object, we're done.
986 1.5 mrg */
987 1.5 mrg if ((aobj->u_flags & UAO_FLAG_KILLME) == 0)
988 1.5 mrg return TRUE;
989 1.1 mrg
990 1.1 mrg #ifdef DIAGNOSTIC
991 1.5 mrg if (aobj->u_obj.uo_refs)
992 1.5 mrg panic("uvm_km_releasepg: kill flag set on referenced object!");
993 1.1 mrg #endif
994 1.1 mrg
995 1.5 mrg /*
996 1.5 mrg * if there are still pages in the object, we're done for now.
997 1.5 mrg */
998 1.5 mrg if (aobj->u_obj.uo_npages != 0)
999 1.5 mrg return TRUE;
1000 1.1 mrg
1001 1.1 mrg #ifdef DIAGNOSTIC
1002 1.5 mrg if (aobj->u_obj.memq.tqh_first)
1003 1.5 mrg panic("uvn_releasepg: pages in object with npages == 0");
1004 1.1 mrg #endif
1005 1.1 mrg
1006 1.5 mrg /*
1007 1.5 mrg * finally, free the rest.
1008 1.5 mrg */
1009 1.5 mrg uao_free(aobj);
1010 1.1 mrg
1011 1.5 mrg return FALSE;
1012 1.1 mrg }
1013