uvm_aobj.c revision 1.100 1 /* $NetBSD: uvm_aobj.c,v 1.100 2008/05/05 17:11:17 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.100 2008/05/05 17:11:17 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * uvm_aobj_pool: pool of uvm_aobj structures
171 */
172 POOL_INIT(uvm_aobj_pool, sizeof(struct uvm_aobj), 0, 0, 0, "aobjpl",
173 &pool_allocator_nointr, IPL_NONE);
174
175 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
176
177 /*
178 * local functions
179 */
180
181 static void uao_free(struct uvm_aobj *);
182 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
183 int *, int, vm_prot_t, int, int);
184 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
185
186 #if defined(VMSWAP)
187 static struct uao_swhash_elt *uao_find_swhash_elt
188 (struct uvm_aobj *, int, bool);
189
190 static bool uao_pagein(struct uvm_aobj *, int, int);
191 static bool uao_pagein_page(struct uvm_aobj *, int);
192 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
193 #endif /* defined(VMSWAP) */
194
195 /*
196 * aobj_pager
197 *
198 * note that some functions (e.g. put) are handled elsewhere
199 */
200
201 const struct uvm_pagerops aobj_pager = {
202 .pgo_reference = uao_reference,
203 .pgo_detach = uao_detach,
204 .pgo_get = uao_get,
205 .pgo_put = uao_put,
206 };
207
208 /*
209 * uao_list: global list of active aobjs, locked by uao_list_lock
210 */
211
212 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
213 static kmutex_t uao_list_lock;
214
215 /*
216 * functions
217 */
218
219 /*
220 * hash table/array related functions
221 */
222
223 #if defined(VMSWAP)
224
225 /*
226 * uao_hashinit: limited version of hashinit() that uses malloc(). XXX
227 */
228 static void *
229 uao_hashinit(u_int elements, int mflags, u_long *hashmask)
230 {
231 LIST_HEAD(, generic) *elm, *emx;
232 u_long hashsize;
233 void *p;
234
235 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
236 continue;
237 if ((p = malloc(hashsize * sizeof(*elm), M_UVMAOBJ, mflags)) == NULL)
238 return (NULL);
239 for (elm = p, emx = elm + hashsize; elm < emx; elm++)
240 LIST_INIT(elm);
241 *hashmask = hashsize - 1;
242
243 return (p);
244 }
245
246 /*
247 * uao_find_swhash_elt: find (or create) a hash table entry for a page
248 * offset.
249 *
250 * => the object should be locked by the caller
251 */
252
253 static struct uao_swhash_elt *
254 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
255 {
256 struct uao_swhash *swhash;
257 struct uao_swhash_elt *elt;
258 voff_t page_tag;
259
260 swhash = UAO_SWHASH_HASH(aobj, pageidx);
261 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
262
263 /*
264 * now search the bucket for the requested tag
265 */
266
267 LIST_FOREACH(elt, swhash, list) {
268 if (elt->tag == page_tag) {
269 return elt;
270 }
271 }
272 if (!create) {
273 return NULL;
274 }
275
276 /*
277 * allocate a new entry for the bucket and init/insert it in
278 */
279
280 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
281 if (elt == NULL) {
282 return NULL;
283 }
284 LIST_INSERT_HEAD(swhash, elt, list);
285 elt->tag = page_tag;
286 elt->count = 0;
287 memset(elt->slots, 0, sizeof(elt->slots));
288 return elt;
289 }
290
291 /*
292 * uao_find_swslot: find the swap slot number for an aobj/pageidx
293 *
294 * => object must be locked by caller
295 */
296
297 int
298 uao_find_swslot(struct uvm_object *uobj, int pageidx)
299 {
300 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
301 struct uao_swhash_elt *elt;
302
303 /*
304 * if noswap flag is set, then we never return a slot
305 */
306
307 if (aobj->u_flags & UAO_FLAG_NOSWAP)
308 return(0);
309
310 /*
311 * if hashing, look in hash table.
312 */
313
314 if (UAO_USES_SWHASH(aobj)) {
315 elt = uao_find_swhash_elt(aobj, pageidx, false);
316 if (elt)
317 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
318 else
319 return(0);
320 }
321
322 /*
323 * otherwise, look in the array
324 */
325
326 return(aobj->u_swslots[pageidx]);
327 }
328
329 /*
330 * uao_set_swslot: set the swap slot for a page in an aobj.
331 *
332 * => setting a slot to zero frees the slot
333 * => object must be locked by caller
334 * => we return the old slot number, or -1 if we failed to allocate
335 * memory to record the new slot number
336 */
337
338 int
339 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
340 {
341 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
342 struct uao_swhash_elt *elt;
343 int oldslot;
344 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
345 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
346 aobj, pageidx, slot, 0);
347
348 /*
349 * if noswap flag is set, then we can't set a non-zero slot.
350 */
351
352 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
353 if (slot == 0)
354 return(0);
355
356 printf("uao_set_swslot: uobj = %p\n", uobj);
357 panic("uao_set_swslot: NOSWAP object");
358 }
359
360 /*
361 * are we using a hash table? if so, add it in the hash.
362 */
363
364 if (UAO_USES_SWHASH(aobj)) {
365
366 /*
367 * Avoid allocating an entry just to free it again if
368 * the page had not swap slot in the first place, and
369 * we are freeing.
370 */
371
372 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
373 if (elt == NULL) {
374 return slot ? -1 : 0;
375 }
376
377 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
378 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
379
380 /*
381 * now adjust the elt's reference counter and free it if we've
382 * dropped it to zero.
383 */
384
385 if (slot) {
386 if (oldslot == 0)
387 elt->count++;
388 } else {
389 if (oldslot)
390 elt->count--;
391
392 if (elt->count == 0) {
393 LIST_REMOVE(elt, list);
394 pool_put(&uao_swhash_elt_pool, elt);
395 }
396 }
397 } else {
398 /* we are using an array */
399 oldslot = aobj->u_swslots[pageidx];
400 aobj->u_swslots[pageidx] = slot;
401 }
402 return (oldslot);
403 }
404
405 #endif /* defined(VMSWAP) */
406
407 /*
408 * end of hash/array functions
409 */
410
411 /*
412 * uao_free: free all resources held by an aobj, and then free the aobj
413 *
414 * => the aobj should be dead
415 */
416
417 static void
418 uao_free(struct uvm_aobj *aobj)
419 {
420 int swpgonlydelta = 0;
421
422
423 #if defined(VMSWAP)
424 uao_dropswap_range1(aobj, 0, 0);
425 #endif /* defined(VMSWAP) */
426
427 mutex_exit(&aobj->u_obj.vmobjlock);
428
429 #if defined(VMSWAP)
430 if (UAO_USES_SWHASH(aobj)) {
431
432 /*
433 * free the hash table itself.
434 */
435
436 free(aobj->u_swhash, M_UVMAOBJ);
437 } else {
438
439 /*
440 * free the array itsself.
441 */
442
443 free(aobj->u_swslots, M_UVMAOBJ);
444 }
445 #endif /* defined(VMSWAP) */
446
447 /*
448 * finally free the aobj itself
449 */
450
451 UVM_OBJ_DESTROY(&aobj->u_obj);
452 pool_put(&uvm_aobj_pool, aobj);
453
454 /*
455 * adjust the counter of pages only in swap for all
456 * the swap slots we've freed.
457 */
458
459 if (swpgonlydelta > 0) {
460 mutex_enter(&uvm_swap_data_lock);
461 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
462 uvmexp.swpgonly -= swpgonlydelta;
463 mutex_exit(&uvm_swap_data_lock);
464 }
465 }
466
467 /*
468 * pager functions
469 */
470
471 /*
472 * uao_create: create an aobj of the given size and return its uvm_object.
473 *
474 * => for normal use, flags are always zero
475 * => for the kernel object, the flags are:
476 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
477 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
478 */
479
480 struct uvm_object *
481 uao_create(vsize_t size, int flags)
482 {
483 static struct uvm_aobj kernel_object_store;
484 static int kobj_alloced = 0;
485 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
486 struct uvm_aobj *aobj;
487 int refs;
488
489 /*
490 * malloc a new aobj unless we are asked for the kernel object
491 */
492
493 if (flags & UAO_FLAG_KERNOBJ) {
494 KASSERT(!kobj_alloced);
495 aobj = &kernel_object_store;
496 aobj->u_pages = pages;
497 aobj->u_flags = UAO_FLAG_NOSWAP;
498 refs = UVM_OBJ_KERN;
499 kobj_alloced = UAO_FLAG_KERNOBJ;
500 } else if (flags & UAO_FLAG_KERNSWAP) {
501 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
502 aobj = &kernel_object_store;
503 kobj_alloced = UAO_FLAG_KERNSWAP;
504 refs = 0xdeadbeaf; /* XXX: gcc */
505 } else {
506 aobj = pool_get(&uvm_aobj_pool, PR_WAITOK);
507 aobj->u_pages = pages;
508 aobj->u_flags = 0;
509 refs = 1;
510 }
511
512 /*
513 * allocate hash/array if necessary
514 *
515 * note: in the KERNSWAP case no need to worry about locking since
516 * we are still booting we should be the only thread around.
517 */
518
519 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
520 #if defined(VMSWAP)
521 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
522 M_NOWAIT : M_WAITOK;
523
524 /* allocate hash table or array depending on object size */
525 if (UAO_USES_SWHASH(aobj)) {
526 aobj->u_swhash = uao_hashinit(UAO_SWHASH_BUCKETS(aobj),
527 mflags, &aobj->u_swhashmask);
528 if (aobj->u_swhash == NULL)
529 panic("uao_create: hashinit swhash failed");
530 } else {
531 aobj->u_swslots = malloc(pages * sizeof(int),
532 M_UVMAOBJ, mflags);
533 if (aobj->u_swslots == NULL)
534 panic("uao_create: malloc swslots failed");
535 memset(aobj->u_swslots, 0, pages * sizeof(int));
536 }
537 #endif /* defined(VMSWAP) */
538
539 if (flags) {
540 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
541 return(&aobj->u_obj);
542 }
543 }
544
545 /*
546 * init aobj fields
547 */
548
549 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
550
551 /*
552 * now that aobj is ready, add it to the global list
553 */
554
555 mutex_enter(&uao_list_lock);
556 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
557 mutex_exit(&uao_list_lock);
558 return(&aobj->u_obj);
559 }
560
561
562
563 /*
564 * uao_init: set up aobj pager subsystem
565 *
566 * => called at boot time from uvm_pager_init()
567 */
568
569 void
570 uao_init(void)
571 {
572 static int uao_initialized;
573
574 if (uao_initialized)
575 return;
576 uao_initialized = true;
577 LIST_INIT(&uao_list);
578 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
579 }
580
581 /*
582 * uao_reference: add a ref to an aobj
583 *
584 * => aobj must be unlocked
585 * => just lock it and call the locked version
586 */
587
588 void
589 uao_reference(struct uvm_object *uobj)
590 {
591 mutex_enter(&uobj->vmobjlock);
592 uao_reference_locked(uobj);
593 mutex_exit(&uobj->vmobjlock);
594 }
595
596 /*
597 * uao_reference_locked: add a ref to an aobj that is already locked
598 *
599 * => aobj must be locked
600 * this needs to be separate from the normal routine
601 * since sometimes we need to add a reference to an aobj when
602 * it's already locked.
603 */
604
605 void
606 uao_reference_locked(struct uvm_object *uobj)
607 {
608 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
609
610 /*
611 * kernel_object already has plenty of references, leave it alone.
612 */
613
614 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
615 return;
616
617 uobj->uo_refs++;
618 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
619 uobj, uobj->uo_refs,0,0);
620 }
621
622 /*
623 * uao_detach: drop a reference to an aobj
624 *
625 * => aobj must be unlocked
626 * => just lock it and call the locked version
627 */
628
629 void
630 uao_detach(struct uvm_object *uobj)
631 {
632 mutex_enter(&uobj->vmobjlock);
633 uao_detach_locked(uobj);
634 }
635
636 /*
637 * uao_detach_locked: drop a reference to an aobj
638 *
639 * => aobj must be locked, and is unlocked (or freed) upon return.
640 * this needs to be separate from the normal routine
641 * since sometimes we need to detach from an aobj when
642 * it's already locked.
643 */
644
645 void
646 uao_detach_locked(struct uvm_object *uobj)
647 {
648 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
649 struct vm_page *pg;
650 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
651
652 /*
653 * detaching from kernel_object is a noop.
654 */
655
656 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
657 mutex_exit(&uobj->vmobjlock);
658 return;
659 }
660
661 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
662 uobj->uo_refs--;
663 if (uobj->uo_refs) {
664 mutex_exit(&uobj->vmobjlock);
665 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
666 return;
667 }
668
669 /*
670 * remove the aobj from the global list.
671 */
672
673 mutex_enter(&uao_list_lock);
674 LIST_REMOVE(aobj, u_list);
675 mutex_exit(&uao_list_lock);
676
677 /*
678 * free all the pages left in the aobj. for each page,
679 * when the page is no longer busy (and thus after any disk i/o that
680 * it's involved in is complete), release any swap resources and
681 * free the page itself.
682 */
683
684 mutex_enter(&uvm_pageqlock);
685 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
686 pmap_page_protect(pg, VM_PROT_NONE);
687 if (pg->flags & PG_BUSY) {
688 pg->flags |= PG_WANTED;
689 mutex_exit(&uvm_pageqlock);
690 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
691 "uao_det", 0);
692 mutex_enter(&uobj->vmobjlock);
693 mutex_enter(&uvm_pageqlock);
694 continue;
695 }
696 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
697 uvm_pagefree(pg);
698 }
699 mutex_exit(&uvm_pageqlock);
700
701 /*
702 * finally, free the aobj itself.
703 */
704
705 uao_free(aobj);
706 }
707
708 /*
709 * uao_put: flush pages out of a uvm object
710 *
711 * => object should be locked by caller. we may _unlock_ the object
712 * if (and only if) we need to clean a page (PGO_CLEANIT).
713 * XXXJRT Currently, however, we don't. In the case of cleaning
714 * XXXJRT a page, we simply just deactivate it. Should probably
715 * XXXJRT handle this better, in the future (although "flushing"
716 * XXXJRT anonymous memory isn't terribly important).
717 * => if PGO_CLEANIT is not set, then we will neither unlock the object
718 * or block.
719 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
720 * for flushing.
721 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
722 * that new pages are inserted on the tail end of the list. thus,
723 * we can make a complete pass through the object in one go by starting
724 * at the head and working towards the tail (new pages are put in
725 * front of us).
726 * => NOTE: we are allowed to lock the page queues, so the caller
727 * must not be holding the lock on them [e.g. pagedaemon had
728 * better not call us with the queues locked]
729 * => we return 0 unless we encountered some sort of I/O error
730 * XXXJRT currently never happens, as we never directly initiate
731 * XXXJRT I/O
732 *
733 * note on page traversal:
734 * we can traverse the pages in an object either by going down the
735 * linked list in "uobj->memq", or we can go over the address range
736 * by page doing hash table lookups for each address. depending
737 * on how many pages are in the object it may be cheaper to do one
738 * or the other. we set "by_list" to true if we are using memq.
739 * if the cost of a hash lookup was equal to the cost of the list
740 * traversal we could compare the number of pages in the start->stop
741 * range to the total number of pages in the object. however, it
742 * seems that a hash table lookup is more expensive than the linked
743 * list traversal, so we multiply the number of pages in the
744 * start->stop range by a penalty which we define below.
745 */
746
747 static int
748 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
749 {
750 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
751 struct vm_page *pg, *nextpg, curmp, endmp;
752 bool by_list;
753 voff_t curoff;
754 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
755
756 KASSERT(mutex_owned(&uobj->vmobjlock));
757
758 curoff = 0;
759 if (flags & PGO_ALLPAGES) {
760 start = 0;
761 stop = aobj->u_pages << PAGE_SHIFT;
762 by_list = true; /* always go by the list */
763 } else {
764 start = trunc_page(start);
765 if (stop == 0) {
766 stop = aobj->u_pages << PAGE_SHIFT;
767 } else {
768 stop = round_page(stop);
769 }
770 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
771 printf("uao_flush: strange, got an out of range "
772 "flush (fixed)\n");
773 stop = aobj->u_pages << PAGE_SHIFT;
774 }
775 by_list = (uobj->uo_npages <=
776 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
777 }
778 UVMHIST_LOG(maphist,
779 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
780 start, stop, by_list, flags);
781
782 /*
783 * Don't need to do any work here if we're not freeing
784 * or deactivating pages.
785 */
786
787 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
788 mutex_exit(&uobj->vmobjlock);
789 return 0;
790 }
791
792 /*
793 * Initialize the marker pages. See the comment in
794 * genfs_putpages() also.
795 */
796
797 curmp.uobject = uobj;
798 curmp.offset = (voff_t)-1;
799 curmp.flags = PG_BUSY;
800 endmp.uobject = uobj;
801 endmp.offset = (voff_t)-1;
802 endmp.flags = PG_BUSY;
803
804 /*
805 * now do it. note: we must update nextpg in the body of loop or we
806 * will get stuck. we need to use nextpg if we'll traverse the list
807 * because we may free "pg" before doing the next loop.
808 */
809
810 if (by_list) {
811 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq);
812 nextpg = TAILQ_FIRST(&uobj->memq);
813 uvm_lwp_hold(curlwp);
814 } else {
815 curoff = start;
816 nextpg = NULL; /* Quell compiler warning */
817 }
818
819 /* locked: uobj */
820 for (;;) {
821 if (by_list) {
822 pg = nextpg;
823 if (pg == &endmp)
824 break;
825 nextpg = TAILQ_NEXT(pg, listq);
826 if (pg->offset < start || pg->offset >= stop)
827 continue;
828 } else {
829 if (curoff < stop) {
830 pg = uvm_pagelookup(uobj, curoff);
831 curoff += PAGE_SIZE;
832 } else
833 break;
834 if (pg == NULL)
835 continue;
836 }
837
838 /*
839 * wait and try again if the page is busy.
840 */
841
842 if (pg->flags & PG_BUSY) {
843 if (by_list) {
844 TAILQ_INSERT_BEFORE(pg, &curmp, listq);
845 }
846 pg->flags |= PG_WANTED;
847 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
848 "uao_put", 0);
849 mutex_enter(&uobj->vmobjlock);
850 if (by_list) {
851 nextpg = TAILQ_NEXT(&curmp, listq);
852 TAILQ_REMOVE(&uobj->memq, &curmp,
853 listq);
854 } else
855 curoff -= PAGE_SIZE;
856 continue;
857 }
858
859 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
860
861 /*
862 * XXX In these first 3 cases, we always just
863 * XXX deactivate the page. We may want to
864 * XXX handle the different cases more specifically
865 * XXX in the future.
866 */
867
868 case PGO_CLEANIT|PGO_FREE:
869 case PGO_CLEANIT|PGO_DEACTIVATE:
870 case PGO_DEACTIVATE:
871 deactivate_it:
872 mutex_enter(&uvm_pageqlock);
873 /* skip the page if it's wired */
874 if (pg->wire_count == 0) {
875 uvm_pagedeactivate(pg);
876 }
877 mutex_exit(&uvm_pageqlock);
878 break;
879
880 case PGO_FREE:
881 /*
882 * If there are multiple references to
883 * the object, just deactivate the page.
884 */
885
886 if (uobj->uo_refs > 1)
887 goto deactivate_it;
888
889 /*
890 * free the swap slot and the page.
891 */
892
893 pmap_page_protect(pg, VM_PROT_NONE);
894
895 /*
896 * freeing swapslot here is not strictly necessary.
897 * however, leaving it here doesn't save much
898 * because we need to update swap accounting anyway.
899 */
900
901 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
902 mutex_enter(&uvm_pageqlock);
903 uvm_pagefree(pg);
904 mutex_exit(&uvm_pageqlock);
905 break;
906
907 default:
908 panic("%s: impossible", __func__);
909 }
910 }
911 if (by_list) {
912 TAILQ_REMOVE(&uobj->memq, &endmp, listq);
913 uvm_lwp_rele(curlwp);
914 }
915 mutex_exit(&uobj->vmobjlock);
916 return 0;
917 }
918
919 /*
920 * uao_get: fetch me a page
921 *
922 * we have three cases:
923 * 1: page is resident -> just return the page.
924 * 2: page is zero-fill -> allocate a new page and zero it.
925 * 3: page is swapped out -> fetch the page from swap.
926 *
927 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
928 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
929 * then we will need to return EBUSY.
930 *
931 * => prefer map unlocked (not required)
932 * => object must be locked! we will _unlock_ it before starting any I/O.
933 * => flags: PGO_ALLPAGES: get all of the pages
934 * PGO_LOCKED: fault data structures are locked
935 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
936 * => NOTE: caller must check for released pages!!
937 */
938
939 static int
940 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
941 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
942 {
943 #if defined(VMSWAP)
944 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
945 #endif /* defined(VMSWAP) */
946 voff_t current_offset;
947 struct vm_page *ptmp = NULL; /* Quell compiler warning */
948 int lcv, gotpages, maxpages, swslot, pageidx;
949 bool done;
950 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
951
952 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
953 (struct uvm_aobj *)uobj, offset, flags,0);
954
955 /*
956 * get number of pages
957 */
958
959 maxpages = *npagesp;
960
961 /*
962 * step 1: handled the case where fault data structures are locked.
963 */
964
965 if (flags & PGO_LOCKED) {
966
967 /*
968 * step 1a: get pages that are already resident. only do
969 * this if the data structures are locked (i.e. the first
970 * time through).
971 */
972
973 done = true; /* be optimistic */
974 gotpages = 0; /* # of pages we got so far */
975 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
976 lcv++, current_offset += PAGE_SIZE) {
977 /* do we care about this page? if not, skip it */
978 if (pps[lcv] == PGO_DONTCARE)
979 continue;
980 ptmp = uvm_pagelookup(uobj, current_offset);
981
982 /*
983 * if page is new, attempt to allocate the page,
984 * zero-fill'd.
985 */
986
987 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
988 current_offset >> PAGE_SHIFT) == 0) {
989 ptmp = uvm_pagealloc(uobj, current_offset,
990 NULL, UVM_PGA_ZERO);
991 if (ptmp) {
992 /* new page */
993 ptmp->flags &= ~(PG_FAKE);
994 ptmp->pqflags |= PQ_AOBJ;
995 goto gotpage;
996 }
997 }
998
999 /*
1000 * to be useful must get a non-busy page
1001 */
1002
1003 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1004 if (lcv == centeridx ||
1005 (flags & PGO_ALLPAGES) != 0)
1006 /* need to do a wait or I/O! */
1007 done = false;
1008 continue;
1009 }
1010
1011 /*
1012 * useful page: busy/lock it and plug it in our
1013 * result array
1014 */
1015
1016 /* caller must un-busy this page */
1017 ptmp->flags |= PG_BUSY;
1018 UVM_PAGE_OWN(ptmp, "uao_get1");
1019 gotpage:
1020 pps[lcv] = ptmp;
1021 gotpages++;
1022 }
1023
1024 /*
1025 * step 1b: now we've either done everything needed or we
1026 * to unlock and do some waiting or I/O.
1027 */
1028
1029 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1030 *npagesp = gotpages;
1031 if (done)
1032 return 0;
1033 else
1034 return EBUSY;
1035 }
1036
1037 /*
1038 * step 2: get non-resident or busy pages.
1039 * object is locked. data structures are unlocked.
1040 */
1041
1042 if ((flags & PGO_SYNCIO) == 0) {
1043 goto done;
1044 }
1045
1046 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1047 lcv++, current_offset += PAGE_SIZE) {
1048
1049 /*
1050 * - skip over pages we've already gotten or don't want
1051 * - skip over pages we don't _have_ to get
1052 */
1053
1054 if (pps[lcv] != NULL ||
1055 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1056 continue;
1057
1058 pageidx = current_offset >> PAGE_SHIFT;
1059
1060 /*
1061 * we have yet to locate the current page (pps[lcv]). we
1062 * first look for a page that is already at the current offset.
1063 * if we find a page, we check to see if it is busy or
1064 * released. if that is the case, then we sleep on the page
1065 * until it is no longer busy or released and repeat the lookup.
1066 * if the page we found is neither busy nor released, then we
1067 * busy it (so we own it) and plug it into pps[lcv]. this
1068 * 'break's the following while loop and indicates we are
1069 * ready to move on to the next page in the "lcv" loop above.
1070 *
1071 * if we exit the while loop with pps[lcv] still set to NULL,
1072 * then it means that we allocated a new busy/fake/clean page
1073 * ptmp in the object and we need to do I/O to fill in the data.
1074 */
1075
1076 /* top of "pps" while loop */
1077 while (pps[lcv] == NULL) {
1078 /* look for a resident page */
1079 ptmp = uvm_pagelookup(uobj, current_offset);
1080
1081 /* not resident? allocate one now (if we can) */
1082 if (ptmp == NULL) {
1083
1084 ptmp = uvm_pagealloc(uobj, current_offset,
1085 NULL, 0);
1086
1087 /* out of RAM? */
1088 if (ptmp == NULL) {
1089 mutex_exit(&uobj->vmobjlock);
1090 UVMHIST_LOG(pdhist,
1091 "sleeping, ptmp == NULL\n",0,0,0,0);
1092 uvm_wait("uao_getpage");
1093 mutex_enter(&uobj->vmobjlock);
1094 continue;
1095 }
1096
1097 /*
1098 * safe with PQ's unlocked: because we just
1099 * alloc'd the page
1100 */
1101
1102 ptmp->pqflags |= PQ_AOBJ;
1103
1104 /*
1105 * got new page ready for I/O. break pps while
1106 * loop. pps[lcv] is still NULL.
1107 */
1108
1109 break;
1110 }
1111
1112 /* page is there, see if we need to wait on it */
1113 if ((ptmp->flags & PG_BUSY) != 0) {
1114 ptmp->flags |= PG_WANTED;
1115 UVMHIST_LOG(pdhist,
1116 "sleeping, ptmp->flags 0x%x\n",
1117 ptmp->flags,0,0,0);
1118 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1119 false, "uao_get", 0);
1120 mutex_enter(&uobj->vmobjlock);
1121 continue;
1122 }
1123
1124 /*
1125 * if we get here then the page has become resident and
1126 * unbusy between steps 1 and 2. we busy it now (so we
1127 * own it) and set pps[lcv] (so that we exit the while
1128 * loop).
1129 */
1130
1131 /* we own it, caller must un-busy */
1132 ptmp->flags |= PG_BUSY;
1133 UVM_PAGE_OWN(ptmp, "uao_get2");
1134 pps[lcv] = ptmp;
1135 }
1136
1137 /*
1138 * if we own the valid page at the correct offset, pps[lcv] will
1139 * point to it. nothing more to do except go to the next page.
1140 */
1141
1142 if (pps[lcv])
1143 continue; /* next lcv */
1144
1145 /*
1146 * we have a "fake/busy/clean" page that we just allocated.
1147 * do the needed "i/o", either reading from swap or zeroing.
1148 */
1149
1150 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1151
1152 /*
1153 * just zero the page if there's nothing in swap.
1154 */
1155
1156 if (swslot == 0) {
1157
1158 /*
1159 * page hasn't existed before, just zero it.
1160 */
1161
1162 uvm_pagezero(ptmp);
1163 } else {
1164 #if defined(VMSWAP)
1165 int error;
1166
1167 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1168 swslot, 0,0,0);
1169
1170 /*
1171 * page in the swapped-out page.
1172 * unlock object for i/o, relock when done.
1173 */
1174
1175 mutex_exit(&uobj->vmobjlock);
1176 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1177 mutex_enter(&uobj->vmobjlock);
1178
1179 /*
1180 * I/O done. check for errors.
1181 */
1182
1183 if (error != 0) {
1184 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1185 error,0,0,0);
1186 if (ptmp->flags & PG_WANTED)
1187 wakeup(ptmp);
1188
1189 /*
1190 * remove the swap slot from the aobj
1191 * and mark the aobj as having no real slot.
1192 * don't free the swap slot, thus preventing
1193 * it from being used again.
1194 */
1195
1196 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1197 SWSLOT_BAD);
1198 if (swslot > 0) {
1199 uvm_swap_markbad(swslot, 1);
1200 }
1201
1202 mutex_enter(&uvm_pageqlock);
1203 uvm_pagefree(ptmp);
1204 mutex_exit(&uvm_pageqlock);
1205 mutex_exit(&uobj->vmobjlock);
1206 return error;
1207 }
1208 #else /* defined(VMSWAP) */
1209 panic("%s: pagein", __func__);
1210 #endif /* defined(VMSWAP) */
1211 }
1212
1213 if ((access_type & VM_PROT_WRITE) == 0) {
1214 ptmp->flags |= PG_CLEAN;
1215 pmap_clear_modify(ptmp);
1216 }
1217
1218 /*
1219 * we got the page! clear the fake flag (indicates valid
1220 * data now in page) and plug into our result array. note
1221 * that page is still busy.
1222 *
1223 * it is the callers job to:
1224 * => check if the page is released
1225 * => unbusy the page
1226 * => activate the page
1227 */
1228
1229 ptmp->flags &= ~PG_FAKE;
1230 pps[lcv] = ptmp;
1231 }
1232
1233 /*
1234 * finally, unlock object and return.
1235 */
1236
1237 done:
1238 mutex_exit(&uobj->vmobjlock);
1239 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1240 return 0;
1241 }
1242
1243 #if defined(VMSWAP)
1244
1245 /*
1246 * uao_dropswap: release any swap resources from this aobj page.
1247 *
1248 * => aobj must be locked or have a reference count of 0.
1249 */
1250
1251 void
1252 uao_dropswap(struct uvm_object *uobj, int pageidx)
1253 {
1254 int slot;
1255
1256 slot = uao_set_swslot(uobj, pageidx, 0);
1257 if (slot) {
1258 uvm_swap_free(slot, 1);
1259 }
1260 }
1261
1262 /*
1263 * page in every page in every aobj that is paged-out to a range of swslots.
1264 *
1265 * => nothing should be locked.
1266 * => returns true if pagein was aborted due to lack of memory.
1267 */
1268
1269 bool
1270 uao_swap_off(int startslot, int endslot)
1271 {
1272 struct uvm_aobj *aobj, *nextaobj;
1273 bool rv;
1274
1275 /*
1276 * walk the list of all aobjs.
1277 */
1278
1279 restart:
1280 mutex_enter(&uao_list_lock);
1281 for (aobj = LIST_FIRST(&uao_list);
1282 aobj != NULL;
1283 aobj = nextaobj) {
1284
1285 /*
1286 * try to get the object lock, start all over if we fail.
1287 * most of the time we'll get the aobj lock,
1288 * so this should be a rare case.
1289 */
1290
1291 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1292 mutex_exit(&uao_list_lock);
1293 /* XXX Better than yielding but inadequate. */
1294 kpause("livelock", false, 1, NULL);
1295 goto restart;
1296 }
1297
1298 /*
1299 * add a ref to the aobj so it doesn't disappear
1300 * while we're working.
1301 */
1302
1303 uao_reference_locked(&aobj->u_obj);
1304
1305 /*
1306 * now it's safe to unlock the uao list.
1307 */
1308
1309 mutex_exit(&uao_list_lock);
1310
1311 /*
1312 * page in any pages in the swslot range.
1313 * if there's an error, abort and return the error.
1314 */
1315
1316 rv = uao_pagein(aobj, startslot, endslot);
1317 if (rv) {
1318 uao_detach_locked(&aobj->u_obj);
1319 return rv;
1320 }
1321
1322 /*
1323 * we're done with this aobj.
1324 * relock the list and drop our ref on the aobj.
1325 */
1326
1327 mutex_enter(&uao_list_lock);
1328 nextaobj = LIST_NEXT(aobj, u_list);
1329 uao_detach_locked(&aobj->u_obj);
1330 }
1331
1332 /*
1333 * done with traversal, unlock the list
1334 */
1335 mutex_exit(&uao_list_lock);
1336 return false;
1337 }
1338
1339
1340 /*
1341 * page in any pages from aobj in the given range.
1342 *
1343 * => aobj must be locked and is returned locked.
1344 * => returns true if pagein was aborted due to lack of memory.
1345 */
1346 static bool
1347 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1348 {
1349 bool rv;
1350
1351 if (UAO_USES_SWHASH(aobj)) {
1352 struct uao_swhash_elt *elt;
1353 int buck;
1354
1355 restart:
1356 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1357 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1358 elt != NULL;
1359 elt = LIST_NEXT(elt, list)) {
1360 int i;
1361
1362 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1363 int slot = elt->slots[i];
1364
1365 /*
1366 * if the slot isn't in range, skip it.
1367 */
1368
1369 if (slot < startslot ||
1370 slot >= endslot) {
1371 continue;
1372 }
1373
1374 /*
1375 * process the page,
1376 * the start over on this object
1377 * since the swhash elt
1378 * may have been freed.
1379 */
1380
1381 rv = uao_pagein_page(aobj,
1382 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1383 if (rv) {
1384 return rv;
1385 }
1386 goto restart;
1387 }
1388 }
1389 }
1390 } else {
1391 int i;
1392
1393 for (i = 0; i < aobj->u_pages; i++) {
1394 int slot = aobj->u_swslots[i];
1395
1396 /*
1397 * if the slot isn't in range, skip it
1398 */
1399
1400 if (slot < startslot || slot >= endslot) {
1401 continue;
1402 }
1403
1404 /*
1405 * process the page.
1406 */
1407
1408 rv = uao_pagein_page(aobj, i);
1409 if (rv) {
1410 return rv;
1411 }
1412 }
1413 }
1414
1415 return false;
1416 }
1417
1418 /*
1419 * page in a page from an aobj. used for swap_off.
1420 * returns true if pagein was aborted due to lack of memory.
1421 *
1422 * => aobj must be locked and is returned locked.
1423 */
1424
1425 static bool
1426 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1427 {
1428 struct vm_page *pg;
1429 int rv, npages;
1430
1431 pg = NULL;
1432 npages = 1;
1433 /* locked: aobj */
1434 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1435 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1436 /* unlocked: aobj */
1437
1438 /*
1439 * relock and finish up.
1440 */
1441
1442 mutex_enter(&aobj->u_obj.vmobjlock);
1443 switch (rv) {
1444 case 0:
1445 break;
1446
1447 case EIO:
1448 case ERESTART:
1449
1450 /*
1451 * nothing more to do on errors.
1452 * ERESTART can only mean that the anon was freed,
1453 * so again there's nothing to do.
1454 */
1455
1456 return false;
1457
1458 default:
1459 return true;
1460 }
1461
1462 /*
1463 * ok, we've got the page now.
1464 * mark it as dirty, clear its swslot and un-busy it.
1465 */
1466 uao_dropswap(&aobj->u_obj, pageidx);
1467
1468 /*
1469 * make sure it's on a page queue.
1470 */
1471 mutex_enter(&uvm_pageqlock);
1472 if (pg->wire_count == 0)
1473 uvm_pageenqueue(pg);
1474 mutex_exit(&uvm_pageqlock);
1475
1476 if (pg->flags & PG_WANTED) {
1477 wakeup(pg);
1478 }
1479 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1480 UVM_PAGE_OWN(pg, NULL);
1481
1482 return false;
1483 }
1484
1485 /*
1486 * uao_dropswap_range: drop swapslots in the range.
1487 *
1488 * => aobj must be locked and is returned locked.
1489 * => start is inclusive. end is exclusive.
1490 */
1491
1492 void
1493 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1494 {
1495 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1496
1497 KASSERT(mutex_owned(&uobj->vmobjlock));
1498
1499 uao_dropswap_range1(aobj, start, end);
1500 }
1501
1502 static void
1503 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1504 {
1505 int swpgonlydelta = 0;
1506
1507 if (end == 0) {
1508 end = INT64_MAX;
1509 }
1510
1511 if (UAO_USES_SWHASH(aobj)) {
1512 int i, hashbuckets = aobj->u_swhashmask + 1;
1513 voff_t taghi;
1514 voff_t taglo;
1515
1516 taglo = UAO_SWHASH_ELT_TAG(start);
1517 taghi = UAO_SWHASH_ELT_TAG(end);
1518
1519 for (i = 0; i < hashbuckets; i++) {
1520 struct uao_swhash_elt *elt, *next;
1521
1522 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1523 elt != NULL;
1524 elt = next) {
1525 int startidx, endidx;
1526 int j;
1527
1528 next = LIST_NEXT(elt, list);
1529
1530 if (elt->tag < taglo || taghi < elt->tag) {
1531 continue;
1532 }
1533
1534 if (elt->tag == taglo) {
1535 startidx =
1536 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1537 } else {
1538 startidx = 0;
1539 }
1540
1541 if (elt->tag == taghi) {
1542 endidx =
1543 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1544 } else {
1545 endidx = UAO_SWHASH_CLUSTER_SIZE;
1546 }
1547
1548 for (j = startidx; j < endidx; j++) {
1549 int slot = elt->slots[j];
1550
1551 KASSERT(uvm_pagelookup(&aobj->u_obj,
1552 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1553 + j) << PAGE_SHIFT) == NULL);
1554 if (slot > 0) {
1555 uvm_swap_free(slot, 1);
1556 swpgonlydelta++;
1557 KASSERT(elt->count > 0);
1558 elt->slots[j] = 0;
1559 elt->count--;
1560 }
1561 }
1562
1563 if (elt->count == 0) {
1564 LIST_REMOVE(elt, list);
1565 pool_put(&uao_swhash_elt_pool, elt);
1566 }
1567 }
1568 }
1569 } else {
1570 int i;
1571
1572 if (aobj->u_pages < end) {
1573 end = aobj->u_pages;
1574 }
1575 for (i = start; i < end; i++) {
1576 int slot = aobj->u_swslots[i];
1577
1578 if (slot > 0) {
1579 uvm_swap_free(slot, 1);
1580 swpgonlydelta++;
1581 }
1582 }
1583 }
1584
1585 /*
1586 * adjust the counter of pages only in swap for all
1587 * the swap slots we've freed.
1588 */
1589
1590 if (swpgonlydelta > 0) {
1591 mutex_enter(&uvm_swap_data_lock);
1592 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1593 uvmexp.swpgonly -= swpgonlydelta;
1594 mutex_exit(&uvm_swap_data_lock);
1595 }
1596 }
1597
1598 #endif /* defined(VMSWAP) */
1599