uvm_aobj.c revision 1.103 1 /* $NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/malloc.h>
54 #include <sys/kernel.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121
122 /*
123 * uao_swhash_elt: when a hash table is being used, this structure defines
124 * the format of an entry in the bucket list.
125 */
126
127 struct uao_swhash_elt {
128 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
129 voff_t tag; /* our 'tag' */
130 int count; /* our number of active slots */
131 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
132 };
133
134 /*
135 * uao_swhash: the swap hash table structure
136 */
137
138 LIST_HEAD(uao_swhash, uao_swhash_elt);
139
140 /*
141 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
142 * NOTE: Pages for this pool must not come from a pageable kernel map!
143 */
144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
145 "uaoeltpl", NULL, IPL_VM);
146
147 static struct pool_cache uvm_aobj_cache;
148
149 /*
150 * uvm_aobj: the actual anon-backed uvm_object
151 *
152 * => the uvm_object is at the top of the structure, this allows
153 * (struct uvm_aobj *) == (struct uvm_object *)
154 * => only one of u_swslots and u_swhash is used in any given aobj
155 */
156
157 struct uvm_aobj {
158 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
159 pgoff_t u_pages; /* number of pages in entire object */
160 int u_flags; /* the flags (see uvm_aobj.h) */
161 int *u_swslots; /* array of offset->swapslot mappings */
162 /*
163 * hashtable of offset->swapslot mappings
164 * (u_swhash is an array of bucket heads)
165 */
166 struct uao_swhash *u_swhash;
167 u_long u_swhashmask; /* mask for hashtable */
168 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
169 };
170
171 /*
172 * uvm_aobj_pool: pool of uvm_aobj structures
173 */
174 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
175
176 /*
177 * local functions
178 */
179
180 static void uao_free(struct uvm_aobj *);
181 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
182 int *, int, vm_prot_t, int, int);
183 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
184
185 #if defined(VMSWAP)
186 static struct uao_swhash_elt *uao_find_swhash_elt
187 (struct uvm_aobj *, int, bool);
188
189 static bool uao_pagein(struct uvm_aobj *, int, int);
190 static bool uao_pagein_page(struct uvm_aobj *, int);
191 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
192 #endif /* defined(VMSWAP) */
193
194 /*
195 * aobj_pager
196 *
197 * note that some functions (e.g. put) are handled elsewhere
198 */
199
200 const struct uvm_pagerops aobj_pager = {
201 .pgo_reference = uao_reference,
202 .pgo_detach = uao_detach,
203 .pgo_get = uao_get,
204 .pgo_put = uao_put,
205 };
206
207 /*
208 * uao_list: global list of active aobjs, locked by uao_list_lock
209 */
210
211 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
212 static kmutex_t uao_list_lock;
213
214 /*
215 * functions
216 */
217
218 /*
219 * hash table/array related functions
220 */
221
222 #if defined(VMSWAP)
223
224 /*
225 * uao_hashinit: limited version of hashinit() that uses malloc(). XXX
226 */
227 static void *
228 uao_hashinit(u_int elements, int mflags, u_long *hashmask)
229 {
230 LIST_HEAD(, generic) *elm, *emx;
231 u_long hashsize;
232 void *p;
233
234 for (hashsize = 1; hashsize < elements; hashsize <<= 1)
235 continue;
236 if ((p = malloc(hashsize * sizeof(*elm), M_UVMAOBJ, mflags)) == NULL)
237 return (NULL);
238 for (elm = p, emx = elm + hashsize; elm < emx; elm++)
239 LIST_INIT(elm);
240 *hashmask = hashsize - 1;
241
242 return (p);
243 }
244
245 /*
246 * uao_find_swhash_elt: find (or create) a hash table entry for a page
247 * offset.
248 *
249 * => the object should be locked by the caller
250 */
251
252 static struct uao_swhash_elt *
253 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
254 {
255 struct uao_swhash *swhash;
256 struct uao_swhash_elt *elt;
257 voff_t page_tag;
258
259 swhash = UAO_SWHASH_HASH(aobj, pageidx);
260 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
261
262 /*
263 * now search the bucket for the requested tag
264 */
265
266 LIST_FOREACH(elt, swhash, list) {
267 if (elt->tag == page_tag) {
268 return elt;
269 }
270 }
271 if (!create) {
272 return NULL;
273 }
274
275 /*
276 * allocate a new entry for the bucket and init/insert it in
277 */
278
279 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
280 if (elt == NULL) {
281 return NULL;
282 }
283 LIST_INSERT_HEAD(swhash, elt, list);
284 elt->tag = page_tag;
285 elt->count = 0;
286 memset(elt->slots, 0, sizeof(elt->slots));
287 return elt;
288 }
289
290 /*
291 * uao_find_swslot: find the swap slot number for an aobj/pageidx
292 *
293 * => object must be locked by caller
294 */
295
296 int
297 uao_find_swslot(struct uvm_object *uobj, int pageidx)
298 {
299 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
300 struct uao_swhash_elt *elt;
301
302 /*
303 * if noswap flag is set, then we never return a slot
304 */
305
306 if (aobj->u_flags & UAO_FLAG_NOSWAP)
307 return(0);
308
309 /*
310 * if hashing, look in hash table.
311 */
312
313 if (UAO_USES_SWHASH(aobj)) {
314 elt = uao_find_swhash_elt(aobj, pageidx, false);
315 if (elt)
316 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
317 else
318 return(0);
319 }
320
321 /*
322 * otherwise, look in the array
323 */
324
325 return(aobj->u_swslots[pageidx]);
326 }
327
328 /*
329 * uao_set_swslot: set the swap slot for a page in an aobj.
330 *
331 * => setting a slot to zero frees the slot
332 * => object must be locked by caller
333 * => we return the old slot number, or -1 if we failed to allocate
334 * memory to record the new slot number
335 */
336
337 int
338 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
339 {
340 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
341 struct uao_swhash_elt *elt;
342 int oldslot;
343 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
344 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
345 aobj, pageidx, slot, 0);
346
347 /*
348 * if noswap flag is set, then we can't set a non-zero slot.
349 */
350
351 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
352 if (slot == 0)
353 return(0);
354
355 printf("uao_set_swslot: uobj = %p\n", uobj);
356 panic("uao_set_swslot: NOSWAP object");
357 }
358
359 /*
360 * are we using a hash table? if so, add it in the hash.
361 */
362
363 if (UAO_USES_SWHASH(aobj)) {
364
365 /*
366 * Avoid allocating an entry just to free it again if
367 * the page had not swap slot in the first place, and
368 * we are freeing.
369 */
370
371 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
372 if (elt == NULL) {
373 return slot ? -1 : 0;
374 }
375
376 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
377 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
378
379 /*
380 * now adjust the elt's reference counter and free it if we've
381 * dropped it to zero.
382 */
383
384 if (slot) {
385 if (oldslot == 0)
386 elt->count++;
387 } else {
388 if (oldslot)
389 elt->count--;
390
391 if (elt->count == 0) {
392 LIST_REMOVE(elt, list);
393 pool_put(&uao_swhash_elt_pool, elt);
394 }
395 }
396 } else {
397 /* we are using an array */
398 oldslot = aobj->u_swslots[pageidx];
399 aobj->u_swslots[pageidx] = slot;
400 }
401 return (oldslot);
402 }
403
404 #endif /* defined(VMSWAP) */
405
406 /*
407 * end of hash/array functions
408 */
409
410 /*
411 * uao_free: free all resources held by an aobj, and then free the aobj
412 *
413 * => the aobj should be dead
414 */
415
416 static void
417 uao_free(struct uvm_aobj *aobj)
418 {
419 int swpgonlydelta = 0;
420
421
422 #if defined(VMSWAP)
423 uao_dropswap_range1(aobj, 0, 0);
424 #endif /* defined(VMSWAP) */
425
426 mutex_exit(&aobj->u_obj.vmobjlock);
427
428 #if defined(VMSWAP)
429 if (UAO_USES_SWHASH(aobj)) {
430
431 /*
432 * free the hash table itself.
433 */
434
435 free(aobj->u_swhash, M_UVMAOBJ);
436 } else {
437
438 /*
439 * free the array itsself.
440 */
441
442 free(aobj->u_swslots, M_UVMAOBJ);
443 }
444 #endif /* defined(VMSWAP) */
445
446 /*
447 * finally free the aobj itself
448 */
449
450 UVM_OBJ_DESTROY(&aobj->u_obj);
451 pool_cache_put(&uvm_aobj_cache, aobj);
452
453 /*
454 * adjust the counter of pages only in swap for all
455 * the swap slots we've freed.
456 */
457
458 if (swpgonlydelta > 0) {
459 mutex_enter(&uvm_swap_data_lock);
460 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
461 uvmexp.swpgonly -= swpgonlydelta;
462 mutex_exit(&uvm_swap_data_lock);
463 }
464 }
465
466 /*
467 * pager functions
468 */
469
470 /*
471 * uao_create: create an aobj of the given size and return its uvm_object.
472 *
473 * => for normal use, flags are always zero
474 * => for the kernel object, the flags are:
475 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
476 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
477 */
478
479 struct uvm_object *
480 uao_create(vsize_t size, int flags)
481 {
482 static struct uvm_aobj kernel_object_store;
483 static int kobj_alloced = 0;
484 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
485 struct uvm_aobj *aobj;
486 int refs;
487
488 /*
489 * malloc a new aobj unless we are asked for the kernel object
490 */
491
492 if (flags & UAO_FLAG_KERNOBJ) {
493 KASSERT(!kobj_alloced);
494 aobj = &kernel_object_store;
495 aobj->u_pages = pages;
496 aobj->u_flags = UAO_FLAG_NOSWAP;
497 refs = UVM_OBJ_KERN;
498 kobj_alloced = UAO_FLAG_KERNOBJ;
499 } else if (flags & UAO_FLAG_KERNSWAP) {
500 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
501 aobj = &kernel_object_store;
502 kobj_alloced = UAO_FLAG_KERNSWAP;
503 refs = 0xdeadbeaf; /* XXX: gcc */
504 } else {
505 aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
506 aobj->u_pages = pages;
507 aobj->u_flags = 0;
508 refs = 1;
509 }
510
511 /*
512 * allocate hash/array if necessary
513 *
514 * note: in the KERNSWAP case no need to worry about locking since
515 * we are still booting we should be the only thread around.
516 */
517
518 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
519 #if defined(VMSWAP)
520 int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
521 M_NOWAIT : M_WAITOK;
522
523 /* allocate hash table or array depending on object size */
524 if (UAO_USES_SWHASH(aobj)) {
525 aobj->u_swhash = uao_hashinit(UAO_SWHASH_BUCKETS(aobj),
526 mflags, &aobj->u_swhashmask);
527 if (aobj->u_swhash == NULL)
528 panic("uao_create: hashinit swhash failed");
529 } else {
530 aobj->u_swslots = malloc(pages * sizeof(int),
531 M_UVMAOBJ, mflags);
532 if (aobj->u_swslots == NULL)
533 panic("uao_create: malloc swslots failed");
534 memset(aobj->u_swslots, 0, pages * sizeof(int));
535 }
536 #endif /* defined(VMSWAP) */
537
538 if (flags) {
539 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
540 return(&aobj->u_obj);
541 }
542 }
543
544 /*
545 * init aobj fields
546 */
547
548 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
549
550 /*
551 * now that aobj is ready, add it to the global list
552 */
553
554 mutex_enter(&uao_list_lock);
555 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
556 mutex_exit(&uao_list_lock);
557 return(&aobj->u_obj);
558 }
559
560
561
562 /*
563 * uao_init: set up aobj pager subsystem
564 *
565 * => called at boot time from uvm_pager_init()
566 */
567
568 void
569 uao_init(void)
570 {
571 static int uao_initialized;
572
573 if (uao_initialized)
574 return;
575 uao_initialized = true;
576 LIST_INIT(&uao_list);
577 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
578 pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
579 0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
580 }
581
582 /*
583 * uao_reference: add a ref to an aobj
584 *
585 * => aobj must be unlocked
586 * => just lock it and call the locked version
587 */
588
589 void
590 uao_reference(struct uvm_object *uobj)
591 {
592
593 /*
594 * kernel_object already has plenty of references, leave it alone.
595 */
596
597 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
598 return;
599
600 mutex_enter(&uobj->vmobjlock);
601 uao_reference_locked(uobj);
602 mutex_exit(&uobj->vmobjlock);
603 }
604
605 /*
606 * uao_reference_locked: add a ref to an aobj that is already locked
607 *
608 * => aobj must be locked
609 * this needs to be separate from the normal routine
610 * since sometimes we need to add a reference to an aobj when
611 * it's already locked.
612 */
613
614 void
615 uao_reference_locked(struct uvm_object *uobj)
616 {
617 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
618
619 /*
620 * kernel_object already has plenty of references, leave it alone.
621 */
622
623 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
624 return;
625
626 uobj->uo_refs++;
627 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
628 uobj, uobj->uo_refs,0,0);
629 }
630
631 /*
632 * uao_detach: drop a reference to an aobj
633 *
634 * => aobj must be unlocked
635 * => just lock it and call the locked version
636 */
637
638 void
639 uao_detach(struct uvm_object *uobj)
640 {
641
642 /*
643 * detaching from kernel_object is a noop.
644 */
645
646 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
647 return;
648
649 mutex_enter(&uobj->vmobjlock);
650 uao_detach_locked(uobj);
651 }
652
653 /*
654 * uao_detach_locked: drop a reference to an aobj
655 *
656 * => aobj must be locked, and is unlocked (or freed) upon return.
657 * this needs to be separate from the normal routine
658 * since sometimes we need to detach from an aobj when
659 * it's already locked.
660 */
661
662 void
663 uao_detach_locked(struct uvm_object *uobj)
664 {
665 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
666 struct vm_page *pg;
667 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
668
669 /*
670 * detaching from kernel_object is a noop.
671 */
672
673 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
674 mutex_exit(&uobj->vmobjlock);
675 return;
676 }
677
678 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
679 uobj->uo_refs--;
680 if (uobj->uo_refs) {
681 mutex_exit(&uobj->vmobjlock);
682 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
683 return;
684 }
685
686 /*
687 * remove the aobj from the global list.
688 */
689
690 mutex_enter(&uao_list_lock);
691 LIST_REMOVE(aobj, u_list);
692 mutex_exit(&uao_list_lock);
693
694 /*
695 * free all the pages left in the aobj. for each page,
696 * when the page is no longer busy (and thus after any disk i/o that
697 * it's involved in is complete), release any swap resources and
698 * free the page itself.
699 */
700
701 mutex_enter(&uvm_pageqlock);
702 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
703 pmap_page_protect(pg, VM_PROT_NONE);
704 if (pg->flags & PG_BUSY) {
705 pg->flags |= PG_WANTED;
706 mutex_exit(&uvm_pageqlock);
707 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
708 "uao_det", 0);
709 mutex_enter(&uobj->vmobjlock);
710 mutex_enter(&uvm_pageqlock);
711 continue;
712 }
713 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
714 uvm_pagefree(pg);
715 }
716 mutex_exit(&uvm_pageqlock);
717
718 /*
719 * finally, free the aobj itself.
720 */
721
722 uao_free(aobj);
723 }
724
725 /*
726 * uao_put: flush pages out of a uvm object
727 *
728 * => object should be locked by caller. we may _unlock_ the object
729 * if (and only if) we need to clean a page (PGO_CLEANIT).
730 * XXXJRT Currently, however, we don't. In the case of cleaning
731 * XXXJRT a page, we simply just deactivate it. Should probably
732 * XXXJRT handle this better, in the future (although "flushing"
733 * XXXJRT anonymous memory isn't terribly important).
734 * => if PGO_CLEANIT is not set, then we will neither unlock the object
735 * or block.
736 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
737 * for flushing.
738 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
739 * that new pages are inserted on the tail end of the list. thus,
740 * we can make a complete pass through the object in one go by starting
741 * at the head and working towards the tail (new pages are put in
742 * front of us).
743 * => NOTE: we are allowed to lock the page queues, so the caller
744 * must not be holding the lock on them [e.g. pagedaemon had
745 * better not call us with the queues locked]
746 * => we return 0 unless we encountered some sort of I/O error
747 * XXXJRT currently never happens, as we never directly initiate
748 * XXXJRT I/O
749 *
750 * note on page traversal:
751 * we can traverse the pages in an object either by going down the
752 * linked list in "uobj->memq", or we can go over the address range
753 * by page doing hash table lookups for each address. depending
754 * on how many pages are in the object it may be cheaper to do one
755 * or the other. we set "by_list" to true if we are using memq.
756 * if the cost of a hash lookup was equal to the cost of the list
757 * traversal we could compare the number of pages in the start->stop
758 * range to the total number of pages in the object. however, it
759 * seems that a hash table lookup is more expensive than the linked
760 * list traversal, so we multiply the number of pages in the
761 * start->stop range by a penalty which we define below.
762 */
763
764 static int
765 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
766 {
767 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
768 struct vm_page *pg, *nextpg, curmp, endmp;
769 bool by_list;
770 voff_t curoff;
771 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
772
773 KASSERT(mutex_owned(&uobj->vmobjlock));
774
775 curoff = 0;
776 if (flags & PGO_ALLPAGES) {
777 start = 0;
778 stop = aobj->u_pages << PAGE_SHIFT;
779 by_list = true; /* always go by the list */
780 } else {
781 start = trunc_page(start);
782 if (stop == 0) {
783 stop = aobj->u_pages << PAGE_SHIFT;
784 } else {
785 stop = round_page(stop);
786 }
787 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
788 printf("uao_flush: strange, got an out of range "
789 "flush (fixed)\n");
790 stop = aobj->u_pages << PAGE_SHIFT;
791 }
792 by_list = (uobj->uo_npages <=
793 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
794 }
795 UVMHIST_LOG(maphist,
796 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
797 start, stop, by_list, flags);
798
799 /*
800 * Don't need to do any work here if we're not freeing
801 * or deactivating pages.
802 */
803
804 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
805 mutex_exit(&uobj->vmobjlock);
806 return 0;
807 }
808
809 /*
810 * Initialize the marker pages. See the comment in
811 * genfs_putpages() also.
812 */
813
814 curmp.uobject = uobj;
815 curmp.offset = (voff_t)-1;
816 curmp.flags = PG_BUSY;
817 endmp.uobject = uobj;
818 endmp.offset = (voff_t)-1;
819 endmp.flags = PG_BUSY;
820
821 /*
822 * now do it. note: we must update nextpg in the body of loop or we
823 * will get stuck. we need to use nextpg if we'll traverse the list
824 * because we may free "pg" before doing the next loop.
825 */
826
827 if (by_list) {
828 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
829 nextpg = TAILQ_FIRST(&uobj->memq);
830 uvm_lwp_hold(curlwp);
831 } else {
832 curoff = start;
833 nextpg = NULL; /* Quell compiler warning */
834 }
835
836 /* locked: uobj */
837 for (;;) {
838 if (by_list) {
839 pg = nextpg;
840 if (pg == &endmp)
841 break;
842 nextpg = TAILQ_NEXT(pg, listq.queue);
843 if (pg->offset < start || pg->offset >= stop)
844 continue;
845 } else {
846 if (curoff < stop) {
847 pg = uvm_pagelookup(uobj, curoff);
848 curoff += PAGE_SIZE;
849 } else
850 break;
851 if (pg == NULL)
852 continue;
853 }
854
855 /*
856 * wait and try again if the page is busy.
857 */
858
859 if (pg->flags & PG_BUSY) {
860 if (by_list) {
861 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
862 }
863 pg->flags |= PG_WANTED;
864 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
865 "uao_put", 0);
866 mutex_enter(&uobj->vmobjlock);
867 if (by_list) {
868 nextpg = TAILQ_NEXT(&curmp, listq.queue);
869 TAILQ_REMOVE(&uobj->memq, &curmp,
870 listq.queue);
871 } else
872 curoff -= PAGE_SIZE;
873 continue;
874 }
875
876 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
877
878 /*
879 * XXX In these first 3 cases, we always just
880 * XXX deactivate the page. We may want to
881 * XXX handle the different cases more specifically
882 * XXX in the future.
883 */
884
885 case PGO_CLEANIT|PGO_FREE:
886 case PGO_CLEANIT|PGO_DEACTIVATE:
887 case PGO_DEACTIVATE:
888 deactivate_it:
889 mutex_enter(&uvm_pageqlock);
890 /* skip the page if it's wired */
891 if (pg->wire_count == 0) {
892 uvm_pagedeactivate(pg);
893 }
894 mutex_exit(&uvm_pageqlock);
895 break;
896
897 case PGO_FREE:
898 /*
899 * If there are multiple references to
900 * the object, just deactivate the page.
901 */
902
903 if (uobj->uo_refs > 1)
904 goto deactivate_it;
905
906 /*
907 * free the swap slot and the page.
908 */
909
910 pmap_page_protect(pg, VM_PROT_NONE);
911
912 /*
913 * freeing swapslot here is not strictly necessary.
914 * however, leaving it here doesn't save much
915 * because we need to update swap accounting anyway.
916 */
917
918 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
919 mutex_enter(&uvm_pageqlock);
920 uvm_pagefree(pg);
921 mutex_exit(&uvm_pageqlock);
922 break;
923
924 default:
925 panic("%s: impossible", __func__);
926 }
927 }
928 if (by_list) {
929 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
930 uvm_lwp_rele(curlwp);
931 }
932 mutex_exit(&uobj->vmobjlock);
933 return 0;
934 }
935
936 /*
937 * uao_get: fetch me a page
938 *
939 * we have three cases:
940 * 1: page is resident -> just return the page.
941 * 2: page is zero-fill -> allocate a new page and zero it.
942 * 3: page is swapped out -> fetch the page from swap.
943 *
944 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
945 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
946 * then we will need to return EBUSY.
947 *
948 * => prefer map unlocked (not required)
949 * => object must be locked! we will _unlock_ it before starting any I/O.
950 * => flags: PGO_ALLPAGES: get all of the pages
951 * PGO_LOCKED: fault data structures are locked
952 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
953 * => NOTE: caller must check for released pages!!
954 */
955
956 static int
957 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
958 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
959 {
960 #if defined(VMSWAP)
961 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
962 #endif /* defined(VMSWAP) */
963 voff_t current_offset;
964 struct vm_page *ptmp = NULL; /* Quell compiler warning */
965 int lcv, gotpages, maxpages, swslot, pageidx;
966 bool done;
967 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
968
969 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
970 (struct uvm_aobj *)uobj, offset, flags,0);
971
972 /*
973 * get number of pages
974 */
975
976 maxpages = *npagesp;
977
978 /*
979 * step 1: handled the case where fault data structures are locked.
980 */
981
982 if (flags & PGO_LOCKED) {
983
984 /*
985 * step 1a: get pages that are already resident. only do
986 * this if the data structures are locked (i.e. the first
987 * time through).
988 */
989
990 done = true; /* be optimistic */
991 gotpages = 0; /* # of pages we got so far */
992 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
993 lcv++, current_offset += PAGE_SIZE) {
994 /* do we care about this page? if not, skip it */
995 if (pps[lcv] == PGO_DONTCARE)
996 continue;
997 ptmp = uvm_pagelookup(uobj, current_offset);
998
999 /*
1000 * if page is new, attempt to allocate the page,
1001 * zero-fill'd.
1002 */
1003
1004 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
1005 current_offset >> PAGE_SHIFT) == 0) {
1006 ptmp = uvm_pagealloc(uobj, current_offset,
1007 NULL, UVM_PGA_ZERO);
1008 if (ptmp) {
1009 /* new page */
1010 ptmp->flags &= ~(PG_FAKE);
1011 ptmp->pqflags |= PQ_AOBJ;
1012 goto gotpage;
1013 }
1014 }
1015
1016 /*
1017 * to be useful must get a non-busy page
1018 */
1019
1020 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
1021 if (lcv == centeridx ||
1022 (flags & PGO_ALLPAGES) != 0)
1023 /* need to do a wait or I/O! */
1024 done = false;
1025 continue;
1026 }
1027
1028 /*
1029 * useful page: busy/lock it and plug it in our
1030 * result array
1031 */
1032
1033 /* caller must un-busy this page */
1034 ptmp->flags |= PG_BUSY;
1035 UVM_PAGE_OWN(ptmp, "uao_get1");
1036 gotpage:
1037 pps[lcv] = ptmp;
1038 gotpages++;
1039 }
1040
1041 /*
1042 * step 1b: now we've either done everything needed or we
1043 * to unlock and do some waiting or I/O.
1044 */
1045
1046 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1047 *npagesp = gotpages;
1048 if (done)
1049 return 0;
1050 else
1051 return EBUSY;
1052 }
1053
1054 /*
1055 * step 2: get non-resident or busy pages.
1056 * object is locked. data structures are unlocked.
1057 */
1058
1059 if ((flags & PGO_SYNCIO) == 0) {
1060 goto done;
1061 }
1062
1063 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1064 lcv++, current_offset += PAGE_SIZE) {
1065
1066 /*
1067 * - skip over pages we've already gotten or don't want
1068 * - skip over pages we don't _have_ to get
1069 */
1070
1071 if (pps[lcv] != NULL ||
1072 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1073 continue;
1074
1075 pageidx = current_offset >> PAGE_SHIFT;
1076
1077 /*
1078 * we have yet to locate the current page (pps[lcv]). we
1079 * first look for a page that is already at the current offset.
1080 * if we find a page, we check to see if it is busy or
1081 * released. if that is the case, then we sleep on the page
1082 * until it is no longer busy or released and repeat the lookup.
1083 * if the page we found is neither busy nor released, then we
1084 * busy it (so we own it) and plug it into pps[lcv]. this
1085 * 'break's the following while loop and indicates we are
1086 * ready to move on to the next page in the "lcv" loop above.
1087 *
1088 * if we exit the while loop with pps[lcv] still set to NULL,
1089 * then it means that we allocated a new busy/fake/clean page
1090 * ptmp in the object and we need to do I/O to fill in the data.
1091 */
1092
1093 /* top of "pps" while loop */
1094 while (pps[lcv] == NULL) {
1095 /* look for a resident page */
1096 ptmp = uvm_pagelookup(uobj, current_offset);
1097
1098 /* not resident? allocate one now (if we can) */
1099 if (ptmp == NULL) {
1100
1101 ptmp = uvm_pagealloc(uobj, current_offset,
1102 NULL, 0);
1103
1104 /* out of RAM? */
1105 if (ptmp == NULL) {
1106 mutex_exit(&uobj->vmobjlock);
1107 UVMHIST_LOG(pdhist,
1108 "sleeping, ptmp == NULL\n",0,0,0,0);
1109 uvm_wait("uao_getpage");
1110 mutex_enter(&uobj->vmobjlock);
1111 continue;
1112 }
1113
1114 /*
1115 * safe with PQ's unlocked: because we just
1116 * alloc'd the page
1117 */
1118
1119 ptmp->pqflags |= PQ_AOBJ;
1120
1121 /*
1122 * got new page ready for I/O. break pps while
1123 * loop. pps[lcv] is still NULL.
1124 */
1125
1126 break;
1127 }
1128
1129 /* page is there, see if we need to wait on it */
1130 if ((ptmp->flags & PG_BUSY) != 0) {
1131 ptmp->flags |= PG_WANTED;
1132 UVMHIST_LOG(pdhist,
1133 "sleeping, ptmp->flags 0x%x\n",
1134 ptmp->flags,0,0,0);
1135 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1136 false, "uao_get", 0);
1137 mutex_enter(&uobj->vmobjlock);
1138 continue;
1139 }
1140
1141 /*
1142 * if we get here then the page has become resident and
1143 * unbusy between steps 1 and 2. we busy it now (so we
1144 * own it) and set pps[lcv] (so that we exit the while
1145 * loop).
1146 */
1147
1148 /* we own it, caller must un-busy */
1149 ptmp->flags |= PG_BUSY;
1150 UVM_PAGE_OWN(ptmp, "uao_get2");
1151 pps[lcv] = ptmp;
1152 }
1153
1154 /*
1155 * if we own the valid page at the correct offset, pps[lcv] will
1156 * point to it. nothing more to do except go to the next page.
1157 */
1158
1159 if (pps[lcv])
1160 continue; /* next lcv */
1161
1162 /*
1163 * we have a "fake/busy/clean" page that we just allocated.
1164 * do the needed "i/o", either reading from swap or zeroing.
1165 */
1166
1167 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1168
1169 /*
1170 * just zero the page if there's nothing in swap.
1171 */
1172
1173 if (swslot == 0) {
1174
1175 /*
1176 * page hasn't existed before, just zero it.
1177 */
1178
1179 uvm_pagezero(ptmp);
1180 } else {
1181 #if defined(VMSWAP)
1182 int error;
1183
1184 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1185 swslot, 0,0,0);
1186
1187 /*
1188 * page in the swapped-out page.
1189 * unlock object for i/o, relock when done.
1190 */
1191
1192 mutex_exit(&uobj->vmobjlock);
1193 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1194 mutex_enter(&uobj->vmobjlock);
1195
1196 /*
1197 * I/O done. check for errors.
1198 */
1199
1200 if (error != 0) {
1201 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1202 error,0,0,0);
1203 if (ptmp->flags & PG_WANTED)
1204 wakeup(ptmp);
1205
1206 /*
1207 * remove the swap slot from the aobj
1208 * and mark the aobj as having no real slot.
1209 * don't free the swap slot, thus preventing
1210 * it from being used again.
1211 */
1212
1213 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1214 SWSLOT_BAD);
1215 if (swslot > 0) {
1216 uvm_swap_markbad(swslot, 1);
1217 }
1218
1219 mutex_enter(&uvm_pageqlock);
1220 uvm_pagefree(ptmp);
1221 mutex_exit(&uvm_pageqlock);
1222 mutex_exit(&uobj->vmobjlock);
1223 return error;
1224 }
1225 #else /* defined(VMSWAP) */
1226 panic("%s: pagein", __func__);
1227 #endif /* defined(VMSWAP) */
1228 }
1229
1230 if ((access_type & VM_PROT_WRITE) == 0) {
1231 ptmp->flags |= PG_CLEAN;
1232 pmap_clear_modify(ptmp);
1233 }
1234
1235 /*
1236 * we got the page! clear the fake flag (indicates valid
1237 * data now in page) and plug into our result array. note
1238 * that page is still busy.
1239 *
1240 * it is the callers job to:
1241 * => check if the page is released
1242 * => unbusy the page
1243 * => activate the page
1244 */
1245
1246 ptmp->flags &= ~PG_FAKE;
1247 pps[lcv] = ptmp;
1248 }
1249
1250 /*
1251 * finally, unlock object and return.
1252 */
1253
1254 done:
1255 mutex_exit(&uobj->vmobjlock);
1256 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1257 return 0;
1258 }
1259
1260 #if defined(VMSWAP)
1261
1262 /*
1263 * uao_dropswap: release any swap resources from this aobj page.
1264 *
1265 * => aobj must be locked or have a reference count of 0.
1266 */
1267
1268 void
1269 uao_dropswap(struct uvm_object *uobj, int pageidx)
1270 {
1271 int slot;
1272
1273 slot = uao_set_swslot(uobj, pageidx, 0);
1274 if (slot) {
1275 uvm_swap_free(slot, 1);
1276 }
1277 }
1278
1279 /*
1280 * page in every page in every aobj that is paged-out to a range of swslots.
1281 *
1282 * => nothing should be locked.
1283 * => returns true if pagein was aborted due to lack of memory.
1284 */
1285
1286 bool
1287 uao_swap_off(int startslot, int endslot)
1288 {
1289 struct uvm_aobj *aobj, *nextaobj;
1290 bool rv;
1291
1292 /*
1293 * walk the list of all aobjs.
1294 */
1295
1296 restart:
1297 mutex_enter(&uao_list_lock);
1298 for (aobj = LIST_FIRST(&uao_list);
1299 aobj != NULL;
1300 aobj = nextaobj) {
1301
1302 /*
1303 * try to get the object lock, start all over if we fail.
1304 * most of the time we'll get the aobj lock,
1305 * so this should be a rare case.
1306 */
1307
1308 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1309 mutex_exit(&uao_list_lock);
1310 /* XXX Better than yielding but inadequate. */
1311 kpause("livelock", false, 1, NULL);
1312 goto restart;
1313 }
1314
1315 /*
1316 * add a ref to the aobj so it doesn't disappear
1317 * while we're working.
1318 */
1319
1320 uao_reference_locked(&aobj->u_obj);
1321
1322 /*
1323 * now it's safe to unlock the uao list.
1324 */
1325
1326 mutex_exit(&uao_list_lock);
1327
1328 /*
1329 * page in any pages in the swslot range.
1330 * if there's an error, abort and return the error.
1331 */
1332
1333 rv = uao_pagein(aobj, startslot, endslot);
1334 if (rv) {
1335 uao_detach_locked(&aobj->u_obj);
1336 return rv;
1337 }
1338
1339 /*
1340 * we're done with this aobj.
1341 * relock the list and drop our ref on the aobj.
1342 */
1343
1344 mutex_enter(&uao_list_lock);
1345 nextaobj = LIST_NEXT(aobj, u_list);
1346 uao_detach_locked(&aobj->u_obj);
1347 }
1348
1349 /*
1350 * done with traversal, unlock the list
1351 */
1352 mutex_exit(&uao_list_lock);
1353 return false;
1354 }
1355
1356
1357 /*
1358 * page in any pages from aobj in the given range.
1359 *
1360 * => aobj must be locked and is returned locked.
1361 * => returns true if pagein was aborted due to lack of memory.
1362 */
1363 static bool
1364 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1365 {
1366 bool rv;
1367
1368 if (UAO_USES_SWHASH(aobj)) {
1369 struct uao_swhash_elt *elt;
1370 int buck;
1371
1372 restart:
1373 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1374 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1375 elt != NULL;
1376 elt = LIST_NEXT(elt, list)) {
1377 int i;
1378
1379 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1380 int slot = elt->slots[i];
1381
1382 /*
1383 * if the slot isn't in range, skip it.
1384 */
1385
1386 if (slot < startslot ||
1387 slot >= endslot) {
1388 continue;
1389 }
1390
1391 /*
1392 * process the page,
1393 * the start over on this object
1394 * since the swhash elt
1395 * may have been freed.
1396 */
1397
1398 rv = uao_pagein_page(aobj,
1399 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1400 if (rv) {
1401 return rv;
1402 }
1403 goto restart;
1404 }
1405 }
1406 }
1407 } else {
1408 int i;
1409
1410 for (i = 0; i < aobj->u_pages; i++) {
1411 int slot = aobj->u_swslots[i];
1412
1413 /*
1414 * if the slot isn't in range, skip it
1415 */
1416
1417 if (slot < startslot || slot >= endslot) {
1418 continue;
1419 }
1420
1421 /*
1422 * process the page.
1423 */
1424
1425 rv = uao_pagein_page(aobj, i);
1426 if (rv) {
1427 return rv;
1428 }
1429 }
1430 }
1431
1432 return false;
1433 }
1434
1435 /*
1436 * page in a page from an aobj. used for swap_off.
1437 * returns true if pagein was aborted due to lack of memory.
1438 *
1439 * => aobj must be locked and is returned locked.
1440 */
1441
1442 static bool
1443 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1444 {
1445 struct vm_page *pg;
1446 int rv, npages;
1447
1448 pg = NULL;
1449 npages = 1;
1450 /* locked: aobj */
1451 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1452 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1453 /* unlocked: aobj */
1454
1455 /*
1456 * relock and finish up.
1457 */
1458
1459 mutex_enter(&aobj->u_obj.vmobjlock);
1460 switch (rv) {
1461 case 0:
1462 break;
1463
1464 case EIO:
1465 case ERESTART:
1466
1467 /*
1468 * nothing more to do on errors.
1469 * ERESTART can only mean that the anon was freed,
1470 * so again there's nothing to do.
1471 */
1472
1473 return false;
1474
1475 default:
1476 return true;
1477 }
1478
1479 /*
1480 * ok, we've got the page now.
1481 * mark it as dirty, clear its swslot and un-busy it.
1482 */
1483 uao_dropswap(&aobj->u_obj, pageidx);
1484
1485 /*
1486 * make sure it's on a page queue.
1487 */
1488 mutex_enter(&uvm_pageqlock);
1489 if (pg->wire_count == 0)
1490 uvm_pageenqueue(pg);
1491 mutex_exit(&uvm_pageqlock);
1492
1493 if (pg->flags & PG_WANTED) {
1494 wakeup(pg);
1495 }
1496 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1497 UVM_PAGE_OWN(pg, NULL);
1498
1499 return false;
1500 }
1501
1502 /*
1503 * uao_dropswap_range: drop swapslots in the range.
1504 *
1505 * => aobj must be locked and is returned locked.
1506 * => start is inclusive. end is exclusive.
1507 */
1508
1509 void
1510 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1511 {
1512 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1513
1514 KASSERT(mutex_owned(&uobj->vmobjlock));
1515
1516 uao_dropswap_range1(aobj, start, end);
1517 }
1518
1519 static void
1520 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1521 {
1522 int swpgonlydelta = 0;
1523
1524 if (end == 0) {
1525 end = INT64_MAX;
1526 }
1527
1528 if (UAO_USES_SWHASH(aobj)) {
1529 int i, hashbuckets = aobj->u_swhashmask + 1;
1530 voff_t taghi;
1531 voff_t taglo;
1532
1533 taglo = UAO_SWHASH_ELT_TAG(start);
1534 taghi = UAO_SWHASH_ELT_TAG(end);
1535
1536 for (i = 0; i < hashbuckets; i++) {
1537 struct uao_swhash_elt *elt, *next;
1538
1539 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1540 elt != NULL;
1541 elt = next) {
1542 int startidx, endidx;
1543 int j;
1544
1545 next = LIST_NEXT(elt, list);
1546
1547 if (elt->tag < taglo || taghi < elt->tag) {
1548 continue;
1549 }
1550
1551 if (elt->tag == taglo) {
1552 startidx =
1553 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1554 } else {
1555 startidx = 0;
1556 }
1557
1558 if (elt->tag == taghi) {
1559 endidx =
1560 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1561 } else {
1562 endidx = UAO_SWHASH_CLUSTER_SIZE;
1563 }
1564
1565 for (j = startidx; j < endidx; j++) {
1566 int slot = elt->slots[j];
1567
1568 KASSERT(uvm_pagelookup(&aobj->u_obj,
1569 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1570 + j) << PAGE_SHIFT) == NULL);
1571 if (slot > 0) {
1572 uvm_swap_free(slot, 1);
1573 swpgonlydelta++;
1574 KASSERT(elt->count > 0);
1575 elt->slots[j] = 0;
1576 elt->count--;
1577 }
1578 }
1579
1580 if (elt->count == 0) {
1581 LIST_REMOVE(elt, list);
1582 pool_put(&uao_swhash_elt_pool, elt);
1583 }
1584 }
1585 }
1586 } else {
1587 int i;
1588
1589 if (aobj->u_pages < end) {
1590 end = aobj->u_pages;
1591 }
1592 for (i = start; i < end; i++) {
1593 int slot = aobj->u_swslots[i];
1594
1595 if (slot > 0) {
1596 uvm_swap_free(slot, 1);
1597 swpgonlydelta++;
1598 }
1599 }
1600 }
1601
1602 /*
1603 * adjust the counter of pages only in swap for all
1604 * the swap slots we've freed.
1605 */
1606
1607 if (swpgonlydelta > 0) {
1608 mutex_enter(&uvm_swap_data_lock);
1609 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1610 uvmexp.swpgonly -= swpgonlydelta;
1611 mutex_exit(&uvm_swap_data_lock);
1612 }
1613 }
1614
1615 #endif /* defined(VMSWAP) */
1616