Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.103
      1 /*	$NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.103 2008/06/25 13:21:04 ad Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/malloc.h>
     54 #include <sys/kernel.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 
    122 /*
    123  * uao_swhash_elt: when a hash table is being used, this structure defines
    124  * the format of an entry in the bucket list.
    125  */
    126 
    127 struct uao_swhash_elt {
    128 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    129 	voff_t tag;				/* our 'tag' */
    130 	int count;				/* our number of active slots */
    131 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    132 };
    133 
    134 /*
    135  * uao_swhash: the swap hash table structure
    136  */
    137 
    138 LIST_HEAD(uao_swhash, uao_swhash_elt);
    139 
    140 /*
    141  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    142  * NOTE: Pages for this pool must not come from a pageable kernel map!
    143  */
    144 POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    145     "uaoeltpl", NULL, IPL_VM);
    146 
    147 static struct pool_cache uvm_aobj_cache;
    148 
    149 /*
    150  * uvm_aobj: the actual anon-backed uvm_object
    151  *
    152  * => the uvm_object is at the top of the structure, this allows
    153  *   (struct uvm_aobj *) == (struct uvm_object *)
    154  * => only one of u_swslots and u_swhash is used in any given aobj
    155  */
    156 
    157 struct uvm_aobj {
    158 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    159 	pgoff_t u_pages;	 /* number of pages in entire object */
    160 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    161 	int *u_swslots;		 /* array of offset->swapslot mappings */
    162 				 /*
    163 				  * hashtable of offset->swapslot mappings
    164 				  * (u_swhash is an array of bucket heads)
    165 				  */
    166 	struct uao_swhash *u_swhash;
    167 	u_long u_swhashmask;		/* mask for hashtable */
    168 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    169 };
    170 
    171 /*
    172  * uvm_aobj_pool: pool of uvm_aobj structures
    173  */
    174 MALLOC_DEFINE(M_UVMAOBJ, "UVM aobj", "UVM aobj and related structures");
    175 
    176 /*
    177  * local functions
    178  */
    179 
    180 static void	uao_free(struct uvm_aobj *);
    181 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    182 		    int *, int, vm_prot_t, int, int);
    183 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    184 
    185 #if defined(VMSWAP)
    186 static struct uao_swhash_elt *uao_find_swhash_elt
    187     (struct uvm_aobj *, int, bool);
    188 
    189 static bool uao_pagein(struct uvm_aobj *, int, int);
    190 static bool uao_pagein_page(struct uvm_aobj *, int);
    191 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    192 #endif /* defined(VMSWAP) */
    193 
    194 /*
    195  * aobj_pager
    196  *
    197  * note that some functions (e.g. put) are handled elsewhere
    198  */
    199 
    200 const struct uvm_pagerops aobj_pager = {
    201 	.pgo_reference = uao_reference,
    202 	.pgo_detach = uao_detach,
    203 	.pgo_get = uao_get,
    204 	.pgo_put = uao_put,
    205 };
    206 
    207 /*
    208  * uao_list: global list of active aobjs, locked by uao_list_lock
    209  */
    210 
    211 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    212 static kmutex_t uao_list_lock;
    213 
    214 /*
    215  * functions
    216  */
    217 
    218 /*
    219  * hash table/array related functions
    220  */
    221 
    222 #if defined(VMSWAP)
    223 
    224 /*
    225  * uao_hashinit: limited version of hashinit() that uses malloc(). XXX
    226  */
    227 static void *
    228 uao_hashinit(u_int elements, int mflags, u_long *hashmask)
    229 {
    230 	LIST_HEAD(, generic) *elm, *emx;
    231 	u_long hashsize;
    232 	void *p;
    233 
    234 	for (hashsize = 1; hashsize < elements; hashsize <<= 1)
    235 		continue;
    236 	if ((p = malloc(hashsize * sizeof(*elm), M_UVMAOBJ, mflags)) == NULL)
    237 		return (NULL);
    238 	for (elm = p, emx = elm + hashsize; elm < emx; elm++)
    239 		LIST_INIT(elm);
    240 	*hashmask = hashsize - 1;
    241 
    242 	return (p);
    243 }
    244 
    245 /*
    246  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    247  * offset.
    248  *
    249  * => the object should be locked by the caller
    250  */
    251 
    252 static struct uao_swhash_elt *
    253 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    254 {
    255 	struct uao_swhash *swhash;
    256 	struct uao_swhash_elt *elt;
    257 	voff_t page_tag;
    258 
    259 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    260 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    261 
    262 	/*
    263 	 * now search the bucket for the requested tag
    264 	 */
    265 
    266 	LIST_FOREACH(elt, swhash, list) {
    267 		if (elt->tag == page_tag) {
    268 			return elt;
    269 		}
    270 	}
    271 	if (!create) {
    272 		return NULL;
    273 	}
    274 
    275 	/*
    276 	 * allocate a new entry for the bucket and init/insert it in
    277 	 */
    278 
    279 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    280 	if (elt == NULL) {
    281 		return NULL;
    282 	}
    283 	LIST_INSERT_HEAD(swhash, elt, list);
    284 	elt->tag = page_tag;
    285 	elt->count = 0;
    286 	memset(elt->slots, 0, sizeof(elt->slots));
    287 	return elt;
    288 }
    289 
    290 /*
    291  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    292  *
    293  * => object must be locked by caller
    294  */
    295 
    296 int
    297 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    298 {
    299 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    300 	struct uao_swhash_elt *elt;
    301 
    302 	/*
    303 	 * if noswap flag is set, then we never return a slot
    304 	 */
    305 
    306 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    307 		return(0);
    308 
    309 	/*
    310 	 * if hashing, look in hash table.
    311 	 */
    312 
    313 	if (UAO_USES_SWHASH(aobj)) {
    314 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    315 		if (elt)
    316 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    317 		else
    318 			return(0);
    319 	}
    320 
    321 	/*
    322 	 * otherwise, look in the array
    323 	 */
    324 
    325 	return(aobj->u_swslots[pageidx]);
    326 }
    327 
    328 /*
    329  * uao_set_swslot: set the swap slot for a page in an aobj.
    330  *
    331  * => setting a slot to zero frees the slot
    332  * => object must be locked by caller
    333  * => we return the old slot number, or -1 if we failed to allocate
    334  *    memory to record the new slot number
    335  */
    336 
    337 int
    338 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    339 {
    340 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    341 	struct uao_swhash_elt *elt;
    342 	int oldslot;
    343 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    344 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    345 	    aobj, pageidx, slot, 0);
    346 
    347 	/*
    348 	 * if noswap flag is set, then we can't set a non-zero slot.
    349 	 */
    350 
    351 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    352 		if (slot == 0)
    353 			return(0);
    354 
    355 		printf("uao_set_swslot: uobj = %p\n", uobj);
    356 		panic("uao_set_swslot: NOSWAP object");
    357 	}
    358 
    359 	/*
    360 	 * are we using a hash table?  if so, add it in the hash.
    361 	 */
    362 
    363 	if (UAO_USES_SWHASH(aobj)) {
    364 
    365 		/*
    366 		 * Avoid allocating an entry just to free it again if
    367 		 * the page had not swap slot in the first place, and
    368 		 * we are freeing.
    369 		 */
    370 
    371 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    372 		if (elt == NULL) {
    373 			return slot ? -1 : 0;
    374 		}
    375 
    376 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    377 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    378 
    379 		/*
    380 		 * now adjust the elt's reference counter and free it if we've
    381 		 * dropped it to zero.
    382 		 */
    383 
    384 		if (slot) {
    385 			if (oldslot == 0)
    386 				elt->count++;
    387 		} else {
    388 			if (oldslot)
    389 				elt->count--;
    390 
    391 			if (elt->count == 0) {
    392 				LIST_REMOVE(elt, list);
    393 				pool_put(&uao_swhash_elt_pool, elt);
    394 			}
    395 		}
    396 	} else {
    397 		/* we are using an array */
    398 		oldslot = aobj->u_swslots[pageidx];
    399 		aobj->u_swslots[pageidx] = slot;
    400 	}
    401 	return (oldslot);
    402 }
    403 
    404 #endif /* defined(VMSWAP) */
    405 
    406 /*
    407  * end of hash/array functions
    408  */
    409 
    410 /*
    411  * uao_free: free all resources held by an aobj, and then free the aobj
    412  *
    413  * => the aobj should be dead
    414  */
    415 
    416 static void
    417 uao_free(struct uvm_aobj *aobj)
    418 {
    419 	int swpgonlydelta = 0;
    420 
    421 
    422 #if defined(VMSWAP)
    423 	uao_dropswap_range1(aobj, 0, 0);
    424 #endif /* defined(VMSWAP) */
    425 
    426 	mutex_exit(&aobj->u_obj.vmobjlock);
    427 
    428 #if defined(VMSWAP)
    429 	if (UAO_USES_SWHASH(aobj)) {
    430 
    431 		/*
    432 		 * free the hash table itself.
    433 		 */
    434 
    435 		free(aobj->u_swhash, M_UVMAOBJ);
    436 	} else {
    437 
    438 		/*
    439 		 * free the array itsself.
    440 		 */
    441 
    442 		free(aobj->u_swslots, M_UVMAOBJ);
    443 	}
    444 #endif /* defined(VMSWAP) */
    445 
    446 	/*
    447 	 * finally free the aobj itself
    448 	 */
    449 
    450 	UVM_OBJ_DESTROY(&aobj->u_obj);
    451 	pool_cache_put(&uvm_aobj_cache, aobj);
    452 
    453 	/*
    454 	 * adjust the counter of pages only in swap for all
    455 	 * the swap slots we've freed.
    456 	 */
    457 
    458 	if (swpgonlydelta > 0) {
    459 		mutex_enter(&uvm_swap_data_lock);
    460 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    461 		uvmexp.swpgonly -= swpgonlydelta;
    462 		mutex_exit(&uvm_swap_data_lock);
    463 	}
    464 }
    465 
    466 /*
    467  * pager functions
    468  */
    469 
    470 /*
    471  * uao_create: create an aobj of the given size and return its uvm_object.
    472  *
    473  * => for normal use, flags are always zero
    474  * => for the kernel object, the flags are:
    475  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    476  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    477  */
    478 
    479 struct uvm_object *
    480 uao_create(vsize_t size, int flags)
    481 {
    482 	static struct uvm_aobj kernel_object_store;
    483 	static int kobj_alloced = 0;
    484 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    485 	struct uvm_aobj *aobj;
    486 	int refs;
    487 
    488 	/*
    489 	 * malloc a new aobj unless we are asked for the kernel object
    490 	 */
    491 
    492 	if (flags & UAO_FLAG_KERNOBJ) {
    493 		KASSERT(!kobj_alloced);
    494 		aobj = &kernel_object_store;
    495 		aobj->u_pages = pages;
    496 		aobj->u_flags = UAO_FLAG_NOSWAP;
    497 		refs = UVM_OBJ_KERN;
    498 		kobj_alloced = UAO_FLAG_KERNOBJ;
    499 	} else if (flags & UAO_FLAG_KERNSWAP) {
    500 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    501 		aobj = &kernel_object_store;
    502 		kobj_alloced = UAO_FLAG_KERNSWAP;
    503 		refs = 0xdeadbeaf; /* XXX: gcc */
    504 	} else {
    505 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
    506 		aobj->u_pages = pages;
    507 		aobj->u_flags = 0;
    508 		refs = 1;
    509 	}
    510 
    511 	/*
    512  	 * allocate hash/array if necessary
    513  	 *
    514  	 * note: in the KERNSWAP case no need to worry about locking since
    515  	 * we are still booting we should be the only thread around.
    516  	 */
    517 
    518 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    519 #if defined(VMSWAP)
    520 		int mflags = (flags & UAO_FLAG_KERNSWAP) != 0 ?
    521 		    M_NOWAIT : M_WAITOK;
    522 
    523 		/* allocate hash table or array depending on object size */
    524 		if (UAO_USES_SWHASH(aobj)) {
    525 			aobj->u_swhash = uao_hashinit(UAO_SWHASH_BUCKETS(aobj),
    526 			    mflags, &aobj->u_swhashmask);
    527 			if (aobj->u_swhash == NULL)
    528 				panic("uao_create: hashinit swhash failed");
    529 		} else {
    530 			aobj->u_swslots = malloc(pages * sizeof(int),
    531 			    M_UVMAOBJ, mflags);
    532 			if (aobj->u_swslots == NULL)
    533 				panic("uao_create: malloc swslots failed");
    534 			memset(aobj->u_swslots, 0, pages * sizeof(int));
    535 		}
    536 #endif /* defined(VMSWAP) */
    537 
    538 		if (flags) {
    539 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    540 			return(&aobj->u_obj);
    541 		}
    542 	}
    543 
    544 	/*
    545  	 * init aobj fields
    546  	 */
    547 
    548 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    549 
    550 	/*
    551  	 * now that aobj is ready, add it to the global list
    552  	 */
    553 
    554 	mutex_enter(&uao_list_lock);
    555 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    556 	mutex_exit(&uao_list_lock);
    557 	return(&aobj->u_obj);
    558 }
    559 
    560 
    561 
    562 /*
    563  * uao_init: set up aobj pager subsystem
    564  *
    565  * => called at boot time from uvm_pager_init()
    566  */
    567 
    568 void
    569 uao_init(void)
    570 {
    571 	static int uao_initialized;
    572 
    573 	if (uao_initialized)
    574 		return;
    575 	uao_initialized = true;
    576 	LIST_INIT(&uao_list);
    577 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    578 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
    579 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
    580 }
    581 
    582 /*
    583  * uao_reference: add a ref to an aobj
    584  *
    585  * => aobj must be unlocked
    586  * => just lock it and call the locked version
    587  */
    588 
    589 void
    590 uao_reference(struct uvm_object *uobj)
    591 {
    592 
    593 	/*
    594  	 * kernel_object already has plenty of references, leave it alone.
    595  	 */
    596 
    597 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    598 		return;
    599 
    600 	mutex_enter(&uobj->vmobjlock);
    601 	uao_reference_locked(uobj);
    602 	mutex_exit(&uobj->vmobjlock);
    603 }
    604 
    605 /*
    606  * uao_reference_locked: add a ref to an aobj that is already locked
    607  *
    608  * => aobj must be locked
    609  * this needs to be separate from the normal routine
    610  * since sometimes we need to add a reference to an aobj when
    611  * it's already locked.
    612  */
    613 
    614 void
    615 uao_reference_locked(struct uvm_object *uobj)
    616 {
    617 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    618 
    619 	/*
    620  	 * kernel_object already has plenty of references, leave it alone.
    621  	 */
    622 
    623 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    624 		return;
    625 
    626 	uobj->uo_refs++;
    627 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    628 		    uobj, uobj->uo_refs,0,0);
    629 }
    630 
    631 /*
    632  * uao_detach: drop a reference to an aobj
    633  *
    634  * => aobj must be unlocked
    635  * => just lock it and call the locked version
    636  */
    637 
    638 void
    639 uao_detach(struct uvm_object *uobj)
    640 {
    641 
    642 	/*
    643  	 * detaching from kernel_object is a noop.
    644  	 */
    645 
    646 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    647 		return;
    648 
    649 	mutex_enter(&uobj->vmobjlock);
    650 	uao_detach_locked(uobj);
    651 }
    652 
    653 /*
    654  * uao_detach_locked: drop a reference to an aobj
    655  *
    656  * => aobj must be locked, and is unlocked (or freed) upon return.
    657  * this needs to be separate from the normal routine
    658  * since sometimes we need to detach from an aobj when
    659  * it's already locked.
    660  */
    661 
    662 void
    663 uao_detach_locked(struct uvm_object *uobj)
    664 {
    665 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    666 	struct vm_page *pg;
    667 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    668 
    669 	/*
    670  	 * detaching from kernel_object is a noop.
    671  	 */
    672 
    673 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    674 		mutex_exit(&uobj->vmobjlock);
    675 		return;
    676 	}
    677 
    678 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    679 	uobj->uo_refs--;
    680 	if (uobj->uo_refs) {
    681 		mutex_exit(&uobj->vmobjlock);
    682 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    683 		return;
    684 	}
    685 
    686 	/*
    687  	 * remove the aobj from the global list.
    688  	 */
    689 
    690 	mutex_enter(&uao_list_lock);
    691 	LIST_REMOVE(aobj, u_list);
    692 	mutex_exit(&uao_list_lock);
    693 
    694 	/*
    695  	 * free all the pages left in the aobj.  for each page,
    696 	 * when the page is no longer busy (and thus after any disk i/o that
    697 	 * it's involved in is complete), release any swap resources and
    698 	 * free the page itself.
    699  	 */
    700 
    701 	mutex_enter(&uvm_pageqlock);
    702 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    703 		pmap_page_protect(pg, VM_PROT_NONE);
    704 		if (pg->flags & PG_BUSY) {
    705 			pg->flags |= PG_WANTED;
    706 			mutex_exit(&uvm_pageqlock);
    707 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    708 			    "uao_det", 0);
    709 			mutex_enter(&uobj->vmobjlock);
    710 			mutex_enter(&uvm_pageqlock);
    711 			continue;
    712 		}
    713 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    714 		uvm_pagefree(pg);
    715 	}
    716 	mutex_exit(&uvm_pageqlock);
    717 
    718 	/*
    719  	 * finally, free the aobj itself.
    720  	 */
    721 
    722 	uao_free(aobj);
    723 }
    724 
    725 /*
    726  * uao_put: flush pages out of a uvm object
    727  *
    728  * => object should be locked by caller.  we may _unlock_ the object
    729  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    730  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    731  *	XXXJRT a page, we simply just deactivate it.  Should probably
    732  *	XXXJRT handle this better, in the future (although "flushing"
    733  *	XXXJRT anonymous memory isn't terribly important).
    734  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    735  *	or block.
    736  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    737  *	for flushing.
    738  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    739  *	that new pages are inserted on the tail end of the list.  thus,
    740  *	we can make a complete pass through the object in one go by starting
    741  *	at the head and working towards the tail (new pages are put in
    742  *	front of us).
    743  * => NOTE: we are allowed to lock the page queues, so the caller
    744  *	must not be holding the lock on them [e.g. pagedaemon had
    745  *	better not call us with the queues locked]
    746  * => we return 0 unless we encountered some sort of I/O error
    747  *	XXXJRT currently never happens, as we never directly initiate
    748  *	XXXJRT I/O
    749  *
    750  * note on page traversal:
    751  *	we can traverse the pages in an object either by going down the
    752  *	linked list in "uobj->memq", or we can go over the address range
    753  *	by page doing hash table lookups for each address.  depending
    754  *	on how many pages are in the object it may be cheaper to do one
    755  *	or the other.  we set "by_list" to true if we are using memq.
    756  *	if the cost of a hash lookup was equal to the cost of the list
    757  *	traversal we could compare the number of pages in the start->stop
    758  *	range to the total number of pages in the object.  however, it
    759  *	seems that a hash table lookup is more expensive than the linked
    760  *	list traversal, so we multiply the number of pages in the
    761  *	start->stop range by a penalty which we define below.
    762  */
    763 
    764 static int
    765 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    766 {
    767 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    768 	struct vm_page *pg, *nextpg, curmp, endmp;
    769 	bool by_list;
    770 	voff_t curoff;
    771 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    772 
    773 	KASSERT(mutex_owned(&uobj->vmobjlock));
    774 
    775 	curoff = 0;
    776 	if (flags & PGO_ALLPAGES) {
    777 		start = 0;
    778 		stop = aobj->u_pages << PAGE_SHIFT;
    779 		by_list = true;		/* always go by the list */
    780 	} else {
    781 		start = trunc_page(start);
    782 		if (stop == 0) {
    783 			stop = aobj->u_pages << PAGE_SHIFT;
    784 		} else {
    785 			stop = round_page(stop);
    786 		}
    787 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    788 			printf("uao_flush: strange, got an out of range "
    789 			    "flush (fixed)\n");
    790 			stop = aobj->u_pages << PAGE_SHIFT;
    791 		}
    792 		by_list = (uobj->uo_npages <=
    793 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    794 	}
    795 	UVMHIST_LOG(maphist,
    796 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    797 	    start, stop, by_list, flags);
    798 
    799 	/*
    800 	 * Don't need to do any work here if we're not freeing
    801 	 * or deactivating pages.
    802 	 */
    803 
    804 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    805 		mutex_exit(&uobj->vmobjlock);
    806 		return 0;
    807 	}
    808 
    809 	/*
    810 	 * Initialize the marker pages.  See the comment in
    811 	 * genfs_putpages() also.
    812 	 */
    813 
    814 	curmp.uobject = uobj;
    815 	curmp.offset = (voff_t)-1;
    816 	curmp.flags = PG_BUSY;
    817 	endmp.uobject = uobj;
    818 	endmp.offset = (voff_t)-1;
    819 	endmp.flags = PG_BUSY;
    820 
    821 	/*
    822 	 * now do it.  note: we must update nextpg in the body of loop or we
    823 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    824 	 * because we may free "pg" before doing the next loop.
    825 	 */
    826 
    827 	if (by_list) {
    828 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    829 		nextpg = TAILQ_FIRST(&uobj->memq);
    830 		uvm_lwp_hold(curlwp);
    831 	} else {
    832 		curoff = start;
    833 		nextpg = NULL;	/* Quell compiler warning */
    834 	}
    835 
    836 	/* locked: uobj */
    837 	for (;;) {
    838 		if (by_list) {
    839 			pg = nextpg;
    840 			if (pg == &endmp)
    841 				break;
    842 			nextpg = TAILQ_NEXT(pg, listq.queue);
    843 			if (pg->offset < start || pg->offset >= stop)
    844 				continue;
    845 		} else {
    846 			if (curoff < stop) {
    847 				pg = uvm_pagelookup(uobj, curoff);
    848 				curoff += PAGE_SIZE;
    849 			} else
    850 				break;
    851 			if (pg == NULL)
    852 				continue;
    853 		}
    854 
    855 		/*
    856 		 * wait and try again if the page is busy.
    857 		 */
    858 
    859 		if (pg->flags & PG_BUSY) {
    860 			if (by_list) {
    861 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    862 			}
    863 			pg->flags |= PG_WANTED;
    864 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    865 			    "uao_put", 0);
    866 			mutex_enter(&uobj->vmobjlock);
    867 			if (by_list) {
    868 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    869 				TAILQ_REMOVE(&uobj->memq, &curmp,
    870 				    listq.queue);
    871 			} else
    872 				curoff -= PAGE_SIZE;
    873 			continue;
    874 		}
    875 
    876 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    877 
    878 		/*
    879 		 * XXX In these first 3 cases, we always just
    880 		 * XXX deactivate the page.  We may want to
    881 		 * XXX handle the different cases more specifically
    882 		 * XXX in the future.
    883 		 */
    884 
    885 		case PGO_CLEANIT|PGO_FREE:
    886 		case PGO_CLEANIT|PGO_DEACTIVATE:
    887 		case PGO_DEACTIVATE:
    888  deactivate_it:
    889 			mutex_enter(&uvm_pageqlock);
    890 			/* skip the page if it's wired */
    891 			if (pg->wire_count == 0) {
    892 				uvm_pagedeactivate(pg);
    893 			}
    894 			mutex_exit(&uvm_pageqlock);
    895 			break;
    896 
    897 		case PGO_FREE:
    898 			/*
    899 			 * If there are multiple references to
    900 			 * the object, just deactivate the page.
    901 			 */
    902 
    903 			if (uobj->uo_refs > 1)
    904 				goto deactivate_it;
    905 
    906 			/*
    907 			 * free the swap slot and the page.
    908 			 */
    909 
    910 			pmap_page_protect(pg, VM_PROT_NONE);
    911 
    912 			/*
    913 			 * freeing swapslot here is not strictly necessary.
    914 			 * however, leaving it here doesn't save much
    915 			 * because we need to update swap accounting anyway.
    916 			 */
    917 
    918 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    919 			mutex_enter(&uvm_pageqlock);
    920 			uvm_pagefree(pg);
    921 			mutex_exit(&uvm_pageqlock);
    922 			break;
    923 
    924 		default:
    925 			panic("%s: impossible", __func__);
    926 		}
    927 	}
    928 	if (by_list) {
    929 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    930 		uvm_lwp_rele(curlwp);
    931 	}
    932 	mutex_exit(&uobj->vmobjlock);
    933 	return 0;
    934 }
    935 
    936 /*
    937  * uao_get: fetch me a page
    938  *
    939  * we have three cases:
    940  * 1: page is resident     -> just return the page.
    941  * 2: page is zero-fill    -> allocate a new page and zero it.
    942  * 3: page is swapped out  -> fetch the page from swap.
    943  *
    944  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    945  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    946  * then we will need to return EBUSY.
    947  *
    948  * => prefer map unlocked (not required)
    949  * => object must be locked!  we will _unlock_ it before starting any I/O.
    950  * => flags: PGO_ALLPAGES: get all of the pages
    951  *           PGO_LOCKED: fault data structures are locked
    952  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    953  * => NOTE: caller must check for released pages!!
    954  */
    955 
    956 static int
    957 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    958     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    959 {
    960 #if defined(VMSWAP)
    961 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    962 #endif /* defined(VMSWAP) */
    963 	voff_t current_offset;
    964 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    965 	int lcv, gotpages, maxpages, swslot, pageidx;
    966 	bool done;
    967 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    968 
    969 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    970 		    (struct uvm_aobj *)uobj, offset, flags,0);
    971 
    972 	/*
    973  	 * get number of pages
    974  	 */
    975 
    976 	maxpages = *npagesp;
    977 
    978 	/*
    979  	 * step 1: handled the case where fault data structures are locked.
    980  	 */
    981 
    982 	if (flags & PGO_LOCKED) {
    983 
    984 		/*
    985  		 * step 1a: get pages that are already resident.   only do
    986 		 * this if the data structures are locked (i.e. the first
    987 		 * time through).
    988  		 */
    989 
    990 		done = true;	/* be optimistic */
    991 		gotpages = 0;	/* # of pages we got so far */
    992 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    993 		    lcv++, current_offset += PAGE_SIZE) {
    994 			/* do we care about this page?  if not, skip it */
    995 			if (pps[lcv] == PGO_DONTCARE)
    996 				continue;
    997 			ptmp = uvm_pagelookup(uobj, current_offset);
    998 
    999 			/*
   1000  			 * if page is new, attempt to allocate the page,
   1001 			 * zero-fill'd.
   1002  			 */
   1003 
   1004 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
   1005 			    current_offset >> PAGE_SHIFT) == 0) {
   1006 				ptmp = uvm_pagealloc(uobj, current_offset,
   1007 				    NULL, UVM_PGA_ZERO);
   1008 				if (ptmp) {
   1009 					/* new page */
   1010 					ptmp->flags &= ~(PG_FAKE);
   1011 					ptmp->pqflags |= PQ_AOBJ;
   1012 					goto gotpage;
   1013 				}
   1014 			}
   1015 
   1016 			/*
   1017 			 * to be useful must get a non-busy page
   1018 			 */
   1019 
   1020 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
   1021 				if (lcv == centeridx ||
   1022 				    (flags & PGO_ALLPAGES) != 0)
   1023 					/* need to do a wait or I/O! */
   1024 					done = false;
   1025 					continue;
   1026 			}
   1027 
   1028 			/*
   1029 			 * useful page: busy/lock it and plug it in our
   1030 			 * result array
   1031 			 */
   1032 
   1033 			/* caller must un-busy this page */
   1034 			ptmp->flags |= PG_BUSY;
   1035 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1036 gotpage:
   1037 			pps[lcv] = ptmp;
   1038 			gotpages++;
   1039 		}
   1040 
   1041 		/*
   1042  		 * step 1b: now we've either done everything needed or we
   1043 		 * to unlock and do some waiting or I/O.
   1044  		 */
   1045 
   1046 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1047 		*npagesp = gotpages;
   1048 		if (done)
   1049 			return 0;
   1050 		else
   1051 			return EBUSY;
   1052 	}
   1053 
   1054 	/*
   1055  	 * step 2: get non-resident or busy pages.
   1056  	 * object is locked.   data structures are unlocked.
   1057  	 */
   1058 
   1059 	if ((flags & PGO_SYNCIO) == 0) {
   1060 		goto done;
   1061 	}
   1062 
   1063 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1064 	    lcv++, current_offset += PAGE_SIZE) {
   1065 
   1066 		/*
   1067 		 * - skip over pages we've already gotten or don't want
   1068 		 * - skip over pages we don't _have_ to get
   1069 		 */
   1070 
   1071 		if (pps[lcv] != NULL ||
   1072 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1073 			continue;
   1074 
   1075 		pageidx = current_offset >> PAGE_SHIFT;
   1076 
   1077 		/*
   1078  		 * we have yet to locate the current page (pps[lcv]).   we
   1079 		 * first look for a page that is already at the current offset.
   1080 		 * if we find a page, we check to see if it is busy or
   1081 		 * released.  if that is the case, then we sleep on the page
   1082 		 * until it is no longer busy or released and repeat the lookup.
   1083 		 * if the page we found is neither busy nor released, then we
   1084 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1085 		 * 'break's the following while loop and indicates we are
   1086 		 * ready to move on to the next page in the "lcv" loop above.
   1087  		 *
   1088  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1089 		 * then it means that we allocated a new busy/fake/clean page
   1090 		 * ptmp in the object and we need to do I/O to fill in the data.
   1091  		 */
   1092 
   1093 		/* top of "pps" while loop */
   1094 		while (pps[lcv] == NULL) {
   1095 			/* look for a resident page */
   1096 			ptmp = uvm_pagelookup(uobj, current_offset);
   1097 
   1098 			/* not resident?   allocate one now (if we can) */
   1099 			if (ptmp == NULL) {
   1100 
   1101 				ptmp = uvm_pagealloc(uobj, current_offset,
   1102 				    NULL, 0);
   1103 
   1104 				/* out of RAM? */
   1105 				if (ptmp == NULL) {
   1106 					mutex_exit(&uobj->vmobjlock);
   1107 					UVMHIST_LOG(pdhist,
   1108 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1109 					uvm_wait("uao_getpage");
   1110 					mutex_enter(&uobj->vmobjlock);
   1111 					continue;
   1112 				}
   1113 
   1114 				/*
   1115 				 * safe with PQ's unlocked: because we just
   1116 				 * alloc'd the page
   1117 				 */
   1118 
   1119 				ptmp->pqflags |= PQ_AOBJ;
   1120 
   1121 				/*
   1122 				 * got new page ready for I/O.  break pps while
   1123 				 * loop.  pps[lcv] is still NULL.
   1124 				 */
   1125 
   1126 				break;
   1127 			}
   1128 
   1129 			/* page is there, see if we need to wait on it */
   1130 			if ((ptmp->flags & PG_BUSY) != 0) {
   1131 				ptmp->flags |= PG_WANTED;
   1132 				UVMHIST_LOG(pdhist,
   1133 				    "sleeping, ptmp->flags 0x%x\n",
   1134 				    ptmp->flags,0,0,0);
   1135 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1136 				    false, "uao_get", 0);
   1137 				mutex_enter(&uobj->vmobjlock);
   1138 				continue;
   1139 			}
   1140 
   1141 			/*
   1142  			 * if we get here then the page has become resident and
   1143 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1144 			 * own it) and set pps[lcv] (so that we exit the while
   1145 			 * loop).
   1146  			 */
   1147 
   1148 			/* we own it, caller must un-busy */
   1149 			ptmp->flags |= PG_BUSY;
   1150 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1151 			pps[lcv] = ptmp;
   1152 		}
   1153 
   1154 		/*
   1155  		 * if we own the valid page at the correct offset, pps[lcv] will
   1156  		 * point to it.   nothing more to do except go to the next page.
   1157  		 */
   1158 
   1159 		if (pps[lcv])
   1160 			continue;			/* next lcv */
   1161 
   1162 		/*
   1163  		 * we have a "fake/busy/clean" page that we just allocated.
   1164  		 * do the needed "i/o", either reading from swap or zeroing.
   1165  		 */
   1166 
   1167 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1168 
   1169 		/*
   1170  		 * just zero the page if there's nothing in swap.
   1171  		 */
   1172 
   1173 		if (swslot == 0) {
   1174 
   1175 			/*
   1176 			 * page hasn't existed before, just zero it.
   1177 			 */
   1178 
   1179 			uvm_pagezero(ptmp);
   1180 		} else {
   1181 #if defined(VMSWAP)
   1182 			int error;
   1183 
   1184 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1185 			     swslot, 0,0,0);
   1186 
   1187 			/*
   1188 			 * page in the swapped-out page.
   1189 			 * unlock object for i/o, relock when done.
   1190 			 */
   1191 
   1192 			mutex_exit(&uobj->vmobjlock);
   1193 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1194 			mutex_enter(&uobj->vmobjlock);
   1195 
   1196 			/*
   1197 			 * I/O done.  check for errors.
   1198 			 */
   1199 
   1200 			if (error != 0) {
   1201 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1202 				    error,0,0,0);
   1203 				if (ptmp->flags & PG_WANTED)
   1204 					wakeup(ptmp);
   1205 
   1206 				/*
   1207 				 * remove the swap slot from the aobj
   1208 				 * and mark the aobj as having no real slot.
   1209 				 * don't free the swap slot, thus preventing
   1210 				 * it from being used again.
   1211 				 */
   1212 
   1213 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1214 							SWSLOT_BAD);
   1215 				if (swslot > 0) {
   1216 					uvm_swap_markbad(swslot, 1);
   1217 				}
   1218 
   1219 				mutex_enter(&uvm_pageqlock);
   1220 				uvm_pagefree(ptmp);
   1221 				mutex_exit(&uvm_pageqlock);
   1222 				mutex_exit(&uobj->vmobjlock);
   1223 				return error;
   1224 			}
   1225 #else /* defined(VMSWAP) */
   1226 			panic("%s: pagein", __func__);
   1227 #endif /* defined(VMSWAP) */
   1228 		}
   1229 
   1230 		if ((access_type & VM_PROT_WRITE) == 0) {
   1231 			ptmp->flags |= PG_CLEAN;
   1232 			pmap_clear_modify(ptmp);
   1233 		}
   1234 
   1235 		/*
   1236  		 * we got the page!   clear the fake flag (indicates valid
   1237 		 * data now in page) and plug into our result array.   note
   1238 		 * that page is still busy.
   1239  		 *
   1240  		 * it is the callers job to:
   1241  		 * => check if the page is released
   1242  		 * => unbusy the page
   1243  		 * => activate the page
   1244  		 */
   1245 
   1246 		ptmp->flags &= ~PG_FAKE;
   1247 		pps[lcv] = ptmp;
   1248 	}
   1249 
   1250 	/*
   1251  	 * finally, unlock object and return.
   1252  	 */
   1253 
   1254 done:
   1255 	mutex_exit(&uobj->vmobjlock);
   1256 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1257 	return 0;
   1258 }
   1259 
   1260 #if defined(VMSWAP)
   1261 
   1262 /*
   1263  * uao_dropswap:  release any swap resources from this aobj page.
   1264  *
   1265  * => aobj must be locked or have a reference count of 0.
   1266  */
   1267 
   1268 void
   1269 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1270 {
   1271 	int slot;
   1272 
   1273 	slot = uao_set_swslot(uobj, pageidx, 0);
   1274 	if (slot) {
   1275 		uvm_swap_free(slot, 1);
   1276 	}
   1277 }
   1278 
   1279 /*
   1280  * page in every page in every aobj that is paged-out to a range of swslots.
   1281  *
   1282  * => nothing should be locked.
   1283  * => returns true if pagein was aborted due to lack of memory.
   1284  */
   1285 
   1286 bool
   1287 uao_swap_off(int startslot, int endslot)
   1288 {
   1289 	struct uvm_aobj *aobj, *nextaobj;
   1290 	bool rv;
   1291 
   1292 	/*
   1293 	 * walk the list of all aobjs.
   1294 	 */
   1295 
   1296 restart:
   1297 	mutex_enter(&uao_list_lock);
   1298 	for (aobj = LIST_FIRST(&uao_list);
   1299 	     aobj != NULL;
   1300 	     aobj = nextaobj) {
   1301 
   1302 		/*
   1303 		 * try to get the object lock, start all over if we fail.
   1304 		 * most of the time we'll get the aobj lock,
   1305 		 * so this should be a rare case.
   1306 		 */
   1307 
   1308 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1309 			mutex_exit(&uao_list_lock);
   1310 			/* XXX Better than yielding but inadequate. */
   1311 			kpause("livelock", false, 1, NULL);
   1312 			goto restart;
   1313 		}
   1314 
   1315 		/*
   1316 		 * add a ref to the aobj so it doesn't disappear
   1317 		 * while we're working.
   1318 		 */
   1319 
   1320 		uao_reference_locked(&aobj->u_obj);
   1321 
   1322 		/*
   1323 		 * now it's safe to unlock the uao list.
   1324 		 */
   1325 
   1326 		mutex_exit(&uao_list_lock);
   1327 
   1328 		/*
   1329 		 * page in any pages in the swslot range.
   1330 		 * if there's an error, abort and return the error.
   1331 		 */
   1332 
   1333 		rv = uao_pagein(aobj, startslot, endslot);
   1334 		if (rv) {
   1335 			uao_detach_locked(&aobj->u_obj);
   1336 			return rv;
   1337 		}
   1338 
   1339 		/*
   1340 		 * we're done with this aobj.
   1341 		 * relock the list and drop our ref on the aobj.
   1342 		 */
   1343 
   1344 		mutex_enter(&uao_list_lock);
   1345 		nextaobj = LIST_NEXT(aobj, u_list);
   1346 		uao_detach_locked(&aobj->u_obj);
   1347 	}
   1348 
   1349 	/*
   1350 	 * done with traversal, unlock the list
   1351 	 */
   1352 	mutex_exit(&uao_list_lock);
   1353 	return false;
   1354 }
   1355 
   1356 
   1357 /*
   1358  * page in any pages from aobj in the given range.
   1359  *
   1360  * => aobj must be locked and is returned locked.
   1361  * => returns true if pagein was aborted due to lack of memory.
   1362  */
   1363 static bool
   1364 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1365 {
   1366 	bool rv;
   1367 
   1368 	if (UAO_USES_SWHASH(aobj)) {
   1369 		struct uao_swhash_elt *elt;
   1370 		int buck;
   1371 
   1372 restart:
   1373 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1374 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1375 			     elt != NULL;
   1376 			     elt = LIST_NEXT(elt, list)) {
   1377 				int i;
   1378 
   1379 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1380 					int slot = elt->slots[i];
   1381 
   1382 					/*
   1383 					 * if the slot isn't in range, skip it.
   1384 					 */
   1385 
   1386 					if (slot < startslot ||
   1387 					    slot >= endslot) {
   1388 						continue;
   1389 					}
   1390 
   1391 					/*
   1392 					 * process the page,
   1393 					 * the start over on this object
   1394 					 * since the swhash elt
   1395 					 * may have been freed.
   1396 					 */
   1397 
   1398 					rv = uao_pagein_page(aobj,
   1399 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1400 					if (rv) {
   1401 						return rv;
   1402 					}
   1403 					goto restart;
   1404 				}
   1405 			}
   1406 		}
   1407 	} else {
   1408 		int i;
   1409 
   1410 		for (i = 0; i < aobj->u_pages; i++) {
   1411 			int slot = aobj->u_swslots[i];
   1412 
   1413 			/*
   1414 			 * if the slot isn't in range, skip it
   1415 			 */
   1416 
   1417 			if (slot < startslot || slot >= endslot) {
   1418 				continue;
   1419 			}
   1420 
   1421 			/*
   1422 			 * process the page.
   1423 			 */
   1424 
   1425 			rv = uao_pagein_page(aobj, i);
   1426 			if (rv) {
   1427 				return rv;
   1428 			}
   1429 		}
   1430 	}
   1431 
   1432 	return false;
   1433 }
   1434 
   1435 /*
   1436  * page in a page from an aobj.  used for swap_off.
   1437  * returns true if pagein was aborted due to lack of memory.
   1438  *
   1439  * => aobj must be locked and is returned locked.
   1440  */
   1441 
   1442 static bool
   1443 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1444 {
   1445 	struct vm_page *pg;
   1446 	int rv, npages;
   1447 
   1448 	pg = NULL;
   1449 	npages = 1;
   1450 	/* locked: aobj */
   1451 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1452 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1453 	/* unlocked: aobj */
   1454 
   1455 	/*
   1456 	 * relock and finish up.
   1457 	 */
   1458 
   1459 	mutex_enter(&aobj->u_obj.vmobjlock);
   1460 	switch (rv) {
   1461 	case 0:
   1462 		break;
   1463 
   1464 	case EIO:
   1465 	case ERESTART:
   1466 
   1467 		/*
   1468 		 * nothing more to do on errors.
   1469 		 * ERESTART can only mean that the anon was freed,
   1470 		 * so again there's nothing to do.
   1471 		 */
   1472 
   1473 		return false;
   1474 
   1475 	default:
   1476 		return true;
   1477 	}
   1478 
   1479 	/*
   1480 	 * ok, we've got the page now.
   1481 	 * mark it as dirty, clear its swslot and un-busy it.
   1482 	 */
   1483 	uao_dropswap(&aobj->u_obj, pageidx);
   1484 
   1485 	/*
   1486 	 * make sure it's on a page queue.
   1487 	 */
   1488 	mutex_enter(&uvm_pageqlock);
   1489 	if (pg->wire_count == 0)
   1490 		uvm_pageenqueue(pg);
   1491 	mutex_exit(&uvm_pageqlock);
   1492 
   1493 	if (pg->flags & PG_WANTED) {
   1494 		wakeup(pg);
   1495 	}
   1496 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1497 	UVM_PAGE_OWN(pg, NULL);
   1498 
   1499 	return false;
   1500 }
   1501 
   1502 /*
   1503  * uao_dropswap_range: drop swapslots in the range.
   1504  *
   1505  * => aobj must be locked and is returned locked.
   1506  * => start is inclusive.  end is exclusive.
   1507  */
   1508 
   1509 void
   1510 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1511 {
   1512 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1513 
   1514 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1515 
   1516 	uao_dropswap_range1(aobj, start, end);
   1517 }
   1518 
   1519 static void
   1520 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1521 {
   1522 	int swpgonlydelta = 0;
   1523 
   1524 	if (end == 0) {
   1525 		end = INT64_MAX;
   1526 	}
   1527 
   1528 	if (UAO_USES_SWHASH(aobj)) {
   1529 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1530 		voff_t taghi;
   1531 		voff_t taglo;
   1532 
   1533 		taglo = UAO_SWHASH_ELT_TAG(start);
   1534 		taghi = UAO_SWHASH_ELT_TAG(end);
   1535 
   1536 		for (i = 0; i < hashbuckets; i++) {
   1537 			struct uao_swhash_elt *elt, *next;
   1538 
   1539 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1540 			     elt != NULL;
   1541 			     elt = next) {
   1542 				int startidx, endidx;
   1543 				int j;
   1544 
   1545 				next = LIST_NEXT(elt, list);
   1546 
   1547 				if (elt->tag < taglo || taghi < elt->tag) {
   1548 					continue;
   1549 				}
   1550 
   1551 				if (elt->tag == taglo) {
   1552 					startidx =
   1553 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1554 				} else {
   1555 					startidx = 0;
   1556 				}
   1557 
   1558 				if (elt->tag == taghi) {
   1559 					endidx =
   1560 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1561 				} else {
   1562 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1563 				}
   1564 
   1565 				for (j = startidx; j < endidx; j++) {
   1566 					int slot = elt->slots[j];
   1567 
   1568 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1569 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1570 					    + j) << PAGE_SHIFT) == NULL);
   1571 					if (slot > 0) {
   1572 						uvm_swap_free(slot, 1);
   1573 						swpgonlydelta++;
   1574 						KASSERT(elt->count > 0);
   1575 						elt->slots[j] = 0;
   1576 						elt->count--;
   1577 					}
   1578 				}
   1579 
   1580 				if (elt->count == 0) {
   1581 					LIST_REMOVE(elt, list);
   1582 					pool_put(&uao_swhash_elt_pool, elt);
   1583 				}
   1584 			}
   1585 		}
   1586 	} else {
   1587 		int i;
   1588 
   1589 		if (aobj->u_pages < end) {
   1590 			end = aobj->u_pages;
   1591 		}
   1592 		for (i = start; i < end; i++) {
   1593 			int slot = aobj->u_swslots[i];
   1594 
   1595 			if (slot > 0) {
   1596 				uvm_swap_free(slot, 1);
   1597 				swpgonlydelta++;
   1598 			}
   1599 		}
   1600 	}
   1601 
   1602 	/*
   1603 	 * adjust the counter of pages only in swap for all
   1604 	 * the swap slots we've freed.
   1605 	 */
   1606 
   1607 	if (swpgonlydelta > 0) {
   1608 		mutex_enter(&uvm_swap_data_lock);
   1609 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1610 		uvmexp.swpgonly -= swpgonlydelta;
   1611 		mutex_exit(&uvm_swap_data_lock);
   1612 	}
   1613 }
   1614 
   1615 #endif /* defined(VMSWAP) */
   1616