Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.104
      1 /*	$NetBSD: uvm_aobj.c,v 1.104 2008/10/18 03:46:22 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.104 2008/10/18 03:46:22 rmind Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/kmem.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 /*
    122  * uao_swhash_elt: when a hash table is being used, this structure defines
    123  * the format of an entry in the bucket list.
    124  */
    125 
    126 struct uao_swhash_elt {
    127 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    128 	voff_t tag;				/* our 'tag' */
    129 	int count;				/* our number of active slots */
    130 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    131 };
    132 
    133 /*
    134  * uao_swhash: the swap hash table structure
    135  */
    136 
    137 LIST_HEAD(uao_swhash, uao_swhash_elt);
    138 
    139 /*
    140  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    141  * NOTE: Pages for this pool must not come from a pageable kernel map!
    142  */
    143 static POOL_INIT(uao_swhash_elt_pool, sizeof(struct uao_swhash_elt), 0, 0, 0,
    144     "uaoeltpl", NULL, IPL_VM);
    145 
    146 static struct pool_cache uvm_aobj_cache;
    147 
    148 /*
    149  * uvm_aobj: the actual anon-backed uvm_object
    150  *
    151  * => the uvm_object is at the top of the structure, this allows
    152  *   (struct uvm_aobj *) == (struct uvm_object *)
    153  * => only one of u_swslots and u_swhash is used in any given aobj
    154  */
    155 
    156 struct uvm_aobj {
    157 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    158 	pgoff_t u_pages;	 /* number of pages in entire object */
    159 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    160 	int *u_swslots;		 /* array of offset->swapslot mappings */
    161 				 /*
    162 				  * hashtable of offset->swapslot mappings
    163 				  * (u_swhash is an array of bucket heads)
    164 				  */
    165 	struct uao_swhash *u_swhash;
    166 	u_long u_swhashmask;		/* mask for hashtable */
    167 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    168 };
    169 
    170 /*
    171  * local functions
    172  */
    173 
    174 static void	uao_free(struct uvm_aobj *);
    175 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    176 		    int *, int, vm_prot_t, int, int);
    177 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    178 
    179 #if defined(VMSWAP)
    180 static struct uao_swhash_elt *uao_find_swhash_elt
    181     (struct uvm_aobj *, int, bool);
    182 
    183 static bool uao_pagein(struct uvm_aobj *, int, int);
    184 static bool uao_pagein_page(struct uvm_aobj *, int);
    185 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    186 #endif /* defined(VMSWAP) */
    187 
    188 /*
    189  * aobj_pager
    190  *
    191  * note that some functions (e.g. put) are handled elsewhere
    192  */
    193 
    194 const struct uvm_pagerops aobj_pager = {
    195 	.pgo_reference = uao_reference,
    196 	.pgo_detach = uao_detach,
    197 	.pgo_get = uao_get,
    198 	.pgo_put = uao_put,
    199 };
    200 
    201 /*
    202  * uao_list: global list of active aobjs, locked by uao_list_lock
    203  */
    204 
    205 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    206 static kmutex_t uao_list_lock;
    207 
    208 /*
    209  * functions
    210  */
    211 
    212 /*
    213  * hash table/array related functions
    214  */
    215 
    216 #if defined(VMSWAP)
    217 
    218 /*
    219  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    220  * offset.
    221  *
    222  * => the object should be locked by the caller
    223  */
    224 
    225 static struct uao_swhash_elt *
    226 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    227 {
    228 	struct uao_swhash *swhash;
    229 	struct uao_swhash_elt *elt;
    230 	voff_t page_tag;
    231 
    232 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    233 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    234 
    235 	/*
    236 	 * now search the bucket for the requested tag
    237 	 */
    238 
    239 	LIST_FOREACH(elt, swhash, list) {
    240 		if (elt->tag == page_tag) {
    241 			return elt;
    242 		}
    243 	}
    244 	if (!create) {
    245 		return NULL;
    246 	}
    247 
    248 	/*
    249 	 * allocate a new entry for the bucket and init/insert it in
    250 	 */
    251 
    252 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    253 	if (elt == NULL) {
    254 		return NULL;
    255 	}
    256 	LIST_INSERT_HEAD(swhash, elt, list);
    257 	elt->tag = page_tag;
    258 	elt->count = 0;
    259 	memset(elt->slots, 0, sizeof(elt->slots));
    260 	return elt;
    261 }
    262 
    263 /*
    264  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    265  *
    266  * => object must be locked by caller
    267  */
    268 
    269 int
    270 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    271 {
    272 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    273 	struct uao_swhash_elt *elt;
    274 
    275 	/*
    276 	 * if noswap flag is set, then we never return a slot
    277 	 */
    278 
    279 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    280 		return(0);
    281 
    282 	/*
    283 	 * if hashing, look in hash table.
    284 	 */
    285 
    286 	if (UAO_USES_SWHASH(aobj)) {
    287 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    288 		if (elt)
    289 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    290 		else
    291 			return(0);
    292 	}
    293 
    294 	/*
    295 	 * otherwise, look in the array
    296 	 */
    297 
    298 	return(aobj->u_swslots[pageidx]);
    299 }
    300 
    301 /*
    302  * uao_set_swslot: set the swap slot for a page in an aobj.
    303  *
    304  * => setting a slot to zero frees the slot
    305  * => object must be locked by caller
    306  * => we return the old slot number, or -1 if we failed to allocate
    307  *    memory to record the new slot number
    308  */
    309 
    310 int
    311 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    312 {
    313 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    314 	struct uao_swhash_elt *elt;
    315 	int oldslot;
    316 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    317 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    318 	    aobj, pageidx, slot, 0);
    319 
    320 	/*
    321 	 * if noswap flag is set, then we can't set a non-zero slot.
    322 	 */
    323 
    324 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    325 		if (slot == 0)
    326 			return(0);
    327 
    328 		printf("uao_set_swslot: uobj = %p\n", uobj);
    329 		panic("uao_set_swslot: NOSWAP object");
    330 	}
    331 
    332 	/*
    333 	 * are we using a hash table?  if so, add it in the hash.
    334 	 */
    335 
    336 	if (UAO_USES_SWHASH(aobj)) {
    337 
    338 		/*
    339 		 * Avoid allocating an entry just to free it again if
    340 		 * the page had not swap slot in the first place, and
    341 		 * we are freeing.
    342 		 */
    343 
    344 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    345 		if (elt == NULL) {
    346 			return slot ? -1 : 0;
    347 		}
    348 
    349 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    350 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    351 
    352 		/*
    353 		 * now adjust the elt's reference counter and free it if we've
    354 		 * dropped it to zero.
    355 		 */
    356 
    357 		if (slot) {
    358 			if (oldslot == 0)
    359 				elt->count++;
    360 		} else {
    361 			if (oldslot)
    362 				elt->count--;
    363 
    364 			if (elt->count == 0) {
    365 				LIST_REMOVE(elt, list);
    366 				pool_put(&uao_swhash_elt_pool, elt);
    367 			}
    368 		}
    369 	} else {
    370 		/* we are using an array */
    371 		oldslot = aobj->u_swslots[pageidx];
    372 		aobj->u_swslots[pageidx] = slot;
    373 	}
    374 	return (oldslot);
    375 }
    376 
    377 #endif /* defined(VMSWAP) */
    378 
    379 /*
    380  * end of hash/array functions
    381  */
    382 
    383 /*
    384  * uao_free: free all resources held by an aobj, and then free the aobj
    385  *
    386  * => the aobj should be dead
    387  */
    388 
    389 static void
    390 uao_free(struct uvm_aobj *aobj)
    391 {
    392 	int swpgonlydelta = 0;
    393 
    394 
    395 #if defined(VMSWAP)
    396 	uao_dropswap_range1(aobj, 0, 0);
    397 #endif /* defined(VMSWAP) */
    398 
    399 	mutex_exit(&aobj->u_obj.vmobjlock);
    400 
    401 #if defined(VMSWAP)
    402 	if (UAO_USES_SWHASH(aobj)) {
    403 
    404 		/*
    405 		 * free the hash table itself.
    406 		 */
    407 
    408 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    409 	} else {
    410 
    411 		/*
    412 		 * free the array itsself.
    413 		 */
    414 
    415 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    416 	}
    417 #endif /* defined(VMSWAP) */
    418 
    419 	/*
    420 	 * finally free the aobj itself
    421 	 */
    422 
    423 	UVM_OBJ_DESTROY(&aobj->u_obj);
    424 	pool_cache_put(&uvm_aobj_cache, aobj);
    425 
    426 	/*
    427 	 * adjust the counter of pages only in swap for all
    428 	 * the swap slots we've freed.
    429 	 */
    430 
    431 	if (swpgonlydelta > 0) {
    432 		mutex_enter(&uvm_swap_data_lock);
    433 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    434 		uvmexp.swpgonly -= swpgonlydelta;
    435 		mutex_exit(&uvm_swap_data_lock);
    436 	}
    437 }
    438 
    439 /*
    440  * pager functions
    441  */
    442 
    443 /*
    444  * uao_create: create an aobj of the given size and return its uvm_object.
    445  *
    446  * => for normal use, flags are always zero
    447  * => for the kernel object, the flags are:
    448  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    449  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    450  */
    451 
    452 struct uvm_object *
    453 uao_create(vsize_t size, int flags)
    454 {
    455 	static struct uvm_aobj kernel_object_store;
    456 	static int kobj_alloced = 0;
    457 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    458 	struct uvm_aobj *aobj;
    459 	int refs;
    460 
    461 	/*
    462 	 * malloc a new aobj unless we are asked for the kernel object
    463 	 */
    464 
    465 	if (flags & UAO_FLAG_KERNOBJ) {
    466 		KASSERT(!kobj_alloced);
    467 		aobj = &kernel_object_store;
    468 		aobj->u_pages = pages;
    469 		aobj->u_flags = UAO_FLAG_NOSWAP;
    470 		refs = UVM_OBJ_KERN;
    471 		kobj_alloced = UAO_FLAG_KERNOBJ;
    472 	} else if (flags & UAO_FLAG_KERNSWAP) {
    473 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    474 		aobj = &kernel_object_store;
    475 		kobj_alloced = UAO_FLAG_KERNSWAP;
    476 		refs = 0xdeadbeaf; /* XXX: gcc */
    477 	} else {
    478 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
    479 		aobj->u_pages = pages;
    480 		aobj->u_flags = 0;
    481 		refs = 1;
    482 	}
    483 
    484 	/*
    485  	 * allocate hash/array if necessary
    486  	 *
    487  	 * note: in the KERNSWAP case no need to worry about locking since
    488  	 * we are still booting we should be the only thread around.
    489  	 */
    490 
    491 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    492 #if defined(VMSWAP)
    493 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    494 
    495 		/* allocate hash table or array depending on object size */
    496 		if (UAO_USES_SWHASH(aobj)) {
    497 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    498 			    HASH_LIST, kernswap ? false : true,
    499 			    &aobj->u_swhashmask);
    500 			if (aobj->u_swhash == NULL)
    501 				panic("uao_create: hashinit swhash failed");
    502 		} else {
    503 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    504 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    505 			if (aobj->u_swslots == NULL)
    506 				panic("uao_create: malloc swslots failed");
    507 		}
    508 #endif /* defined(VMSWAP) */
    509 
    510 		if (flags) {
    511 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    512 			return(&aobj->u_obj);
    513 		}
    514 	}
    515 
    516 	/*
    517  	 * init aobj fields
    518  	 */
    519 
    520 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    521 
    522 	/*
    523  	 * now that aobj is ready, add it to the global list
    524  	 */
    525 
    526 	mutex_enter(&uao_list_lock);
    527 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    528 	mutex_exit(&uao_list_lock);
    529 	return(&aobj->u_obj);
    530 }
    531 
    532 
    533 
    534 /*
    535  * uao_init: set up aobj pager subsystem
    536  *
    537  * => called at boot time from uvm_pager_init()
    538  */
    539 
    540 void
    541 uao_init(void)
    542 {
    543 	static int uao_initialized;
    544 
    545 	if (uao_initialized)
    546 		return;
    547 	uao_initialized = true;
    548 	LIST_INIT(&uao_list);
    549 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    550 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
    551 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
    552 }
    553 
    554 /*
    555  * uao_reference: add a ref to an aobj
    556  *
    557  * => aobj must be unlocked
    558  * => just lock it and call the locked version
    559  */
    560 
    561 void
    562 uao_reference(struct uvm_object *uobj)
    563 {
    564 
    565 	/*
    566  	 * kernel_object already has plenty of references, leave it alone.
    567  	 */
    568 
    569 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    570 		return;
    571 
    572 	mutex_enter(&uobj->vmobjlock);
    573 	uao_reference_locked(uobj);
    574 	mutex_exit(&uobj->vmobjlock);
    575 }
    576 
    577 /*
    578  * uao_reference_locked: add a ref to an aobj that is already locked
    579  *
    580  * => aobj must be locked
    581  * this needs to be separate from the normal routine
    582  * since sometimes we need to add a reference to an aobj when
    583  * it's already locked.
    584  */
    585 
    586 void
    587 uao_reference_locked(struct uvm_object *uobj)
    588 {
    589 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    590 
    591 	/*
    592  	 * kernel_object already has plenty of references, leave it alone.
    593  	 */
    594 
    595 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    596 		return;
    597 
    598 	uobj->uo_refs++;
    599 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    600 		    uobj, uobj->uo_refs,0,0);
    601 }
    602 
    603 /*
    604  * uao_detach: drop a reference to an aobj
    605  *
    606  * => aobj must be unlocked
    607  * => just lock it and call the locked version
    608  */
    609 
    610 void
    611 uao_detach(struct uvm_object *uobj)
    612 {
    613 
    614 	/*
    615  	 * detaching from kernel_object is a noop.
    616  	 */
    617 
    618 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    619 		return;
    620 
    621 	mutex_enter(&uobj->vmobjlock);
    622 	uao_detach_locked(uobj);
    623 }
    624 
    625 /*
    626  * uao_detach_locked: drop a reference to an aobj
    627  *
    628  * => aobj must be locked, and is unlocked (or freed) upon return.
    629  * this needs to be separate from the normal routine
    630  * since sometimes we need to detach from an aobj when
    631  * it's already locked.
    632  */
    633 
    634 void
    635 uao_detach_locked(struct uvm_object *uobj)
    636 {
    637 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    638 	struct vm_page *pg;
    639 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    640 
    641 	/*
    642  	 * detaching from kernel_object is a noop.
    643  	 */
    644 
    645 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    646 		mutex_exit(&uobj->vmobjlock);
    647 		return;
    648 	}
    649 
    650 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    651 	uobj->uo_refs--;
    652 	if (uobj->uo_refs) {
    653 		mutex_exit(&uobj->vmobjlock);
    654 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    655 		return;
    656 	}
    657 
    658 	/*
    659  	 * remove the aobj from the global list.
    660  	 */
    661 
    662 	mutex_enter(&uao_list_lock);
    663 	LIST_REMOVE(aobj, u_list);
    664 	mutex_exit(&uao_list_lock);
    665 
    666 	/*
    667  	 * free all the pages left in the aobj.  for each page,
    668 	 * when the page is no longer busy (and thus after any disk i/o that
    669 	 * it's involved in is complete), release any swap resources and
    670 	 * free the page itself.
    671  	 */
    672 
    673 	mutex_enter(&uvm_pageqlock);
    674 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    675 		pmap_page_protect(pg, VM_PROT_NONE);
    676 		if (pg->flags & PG_BUSY) {
    677 			pg->flags |= PG_WANTED;
    678 			mutex_exit(&uvm_pageqlock);
    679 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    680 			    "uao_det", 0);
    681 			mutex_enter(&uobj->vmobjlock);
    682 			mutex_enter(&uvm_pageqlock);
    683 			continue;
    684 		}
    685 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    686 		uvm_pagefree(pg);
    687 	}
    688 	mutex_exit(&uvm_pageqlock);
    689 
    690 	/*
    691  	 * finally, free the aobj itself.
    692  	 */
    693 
    694 	uao_free(aobj);
    695 }
    696 
    697 /*
    698  * uao_put: flush pages out of a uvm object
    699  *
    700  * => object should be locked by caller.  we may _unlock_ the object
    701  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    702  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    703  *	XXXJRT a page, we simply just deactivate it.  Should probably
    704  *	XXXJRT handle this better, in the future (although "flushing"
    705  *	XXXJRT anonymous memory isn't terribly important).
    706  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    707  *	or block.
    708  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    709  *	for flushing.
    710  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    711  *	that new pages are inserted on the tail end of the list.  thus,
    712  *	we can make a complete pass through the object in one go by starting
    713  *	at the head and working towards the tail (new pages are put in
    714  *	front of us).
    715  * => NOTE: we are allowed to lock the page queues, so the caller
    716  *	must not be holding the lock on them [e.g. pagedaemon had
    717  *	better not call us with the queues locked]
    718  * => we return 0 unless we encountered some sort of I/O error
    719  *	XXXJRT currently never happens, as we never directly initiate
    720  *	XXXJRT I/O
    721  *
    722  * note on page traversal:
    723  *	we can traverse the pages in an object either by going down the
    724  *	linked list in "uobj->memq", or we can go over the address range
    725  *	by page doing hash table lookups for each address.  depending
    726  *	on how many pages are in the object it may be cheaper to do one
    727  *	or the other.  we set "by_list" to true if we are using memq.
    728  *	if the cost of a hash lookup was equal to the cost of the list
    729  *	traversal we could compare the number of pages in the start->stop
    730  *	range to the total number of pages in the object.  however, it
    731  *	seems that a hash table lookup is more expensive than the linked
    732  *	list traversal, so we multiply the number of pages in the
    733  *	start->stop range by a penalty which we define below.
    734  */
    735 
    736 static int
    737 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    738 {
    739 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    740 	struct vm_page *pg, *nextpg, curmp, endmp;
    741 	bool by_list;
    742 	voff_t curoff;
    743 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    744 
    745 	KASSERT(mutex_owned(&uobj->vmobjlock));
    746 
    747 	curoff = 0;
    748 	if (flags & PGO_ALLPAGES) {
    749 		start = 0;
    750 		stop = aobj->u_pages << PAGE_SHIFT;
    751 		by_list = true;		/* always go by the list */
    752 	} else {
    753 		start = trunc_page(start);
    754 		if (stop == 0) {
    755 			stop = aobj->u_pages << PAGE_SHIFT;
    756 		} else {
    757 			stop = round_page(stop);
    758 		}
    759 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    760 			printf("uao_flush: strange, got an out of range "
    761 			    "flush (fixed)\n");
    762 			stop = aobj->u_pages << PAGE_SHIFT;
    763 		}
    764 		by_list = (uobj->uo_npages <=
    765 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_HASH_PENALTY);
    766 	}
    767 	UVMHIST_LOG(maphist,
    768 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    769 	    start, stop, by_list, flags);
    770 
    771 	/*
    772 	 * Don't need to do any work here if we're not freeing
    773 	 * or deactivating pages.
    774 	 */
    775 
    776 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    777 		mutex_exit(&uobj->vmobjlock);
    778 		return 0;
    779 	}
    780 
    781 	/*
    782 	 * Initialize the marker pages.  See the comment in
    783 	 * genfs_putpages() also.
    784 	 */
    785 
    786 	curmp.uobject = uobj;
    787 	curmp.offset = (voff_t)-1;
    788 	curmp.flags = PG_BUSY;
    789 	endmp.uobject = uobj;
    790 	endmp.offset = (voff_t)-1;
    791 	endmp.flags = PG_BUSY;
    792 
    793 	/*
    794 	 * now do it.  note: we must update nextpg in the body of loop or we
    795 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    796 	 * because we may free "pg" before doing the next loop.
    797 	 */
    798 
    799 	if (by_list) {
    800 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    801 		nextpg = TAILQ_FIRST(&uobj->memq);
    802 		uvm_lwp_hold(curlwp);
    803 	} else {
    804 		curoff = start;
    805 		nextpg = NULL;	/* Quell compiler warning */
    806 	}
    807 
    808 	/* locked: uobj */
    809 	for (;;) {
    810 		if (by_list) {
    811 			pg = nextpg;
    812 			if (pg == &endmp)
    813 				break;
    814 			nextpg = TAILQ_NEXT(pg, listq.queue);
    815 			if (pg->offset < start || pg->offset >= stop)
    816 				continue;
    817 		} else {
    818 			if (curoff < stop) {
    819 				pg = uvm_pagelookup(uobj, curoff);
    820 				curoff += PAGE_SIZE;
    821 			} else
    822 				break;
    823 			if (pg == NULL)
    824 				continue;
    825 		}
    826 
    827 		/*
    828 		 * wait and try again if the page is busy.
    829 		 */
    830 
    831 		if (pg->flags & PG_BUSY) {
    832 			if (by_list) {
    833 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    834 			}
    835 			pg->flags |= PG_WANTED;
    836 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    837 			    "uao_put", 0);
    838 			mutex_enter(&uobj->vmobjlock);
    839 			if (by_list) {
    840 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    841 				TAILQ_REMOVE(&uobj->memq, &curmp,
    842 				    listq.queue);
    843 			} else
    844 				curoff -= PAGE_SIZE;
    845 			continue;
    846 		}
    847 
    848 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    849 
    850 		/*
    851 		 * XXX In these first 3 cases, we always just
    852 		 * XXX deactivate the page.  We may want to
    853 		 * XXX handle the different cases more specifically
    854 		 * XXX in the future.
    855 		 */
    856 
    857 		case PGO_CLEANIT|PGO_FREE:
    858 		case PGO_CLEANIT|PGO_DEACTIVATE:
    859 		case PGO_DEACTIVATE:
    860  deactivate_it:
    861 			mutex_enter(&uvm_pageqlock);
    862 			/* skip the page if it's wired */
    863 			if (pg->wire_count == 0) {
    864 				uvm_pagedeactivate(pg);
    865 			}
    866 			mutex_exit(&uvm_pageqlock);
    867 			break;
    868 
    869 		case PGO_FREE:
    870 			/*
    871 			 * If there are multiple references to
    872 			 * the object, just deactivate the page.
    873 			 */
    874 
    875 			if (uobj->uo_refs > 1)
    876 				goto deactivate_it;
    877 
    878 			/*
    879 			 * free the swap slot and the page.
    880 			 */
    881 
    882 			pmap_page_protect(pg, VM_PROT_NONE);
    883 
    884 			/*
    885 			 * freeing swapslot here is not strictly necessary.
    886 			 * however, leaving it here doesn't save much
    887 			 * because we need to update swap accounting anyway.
    888 			 */
    889 
    890 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    891 			mutex_enter(&uvm_pageqlock);
    892 			uvm_pagefree(pg);
    893 			mutex_exit(&uvm_pageqlock);
    894 			break;
    895 
    896 		default:
    897 			panic("%s: impossible", __func__);
    898 		}
    899 	}
    900 	if (by_list) {
    901 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    902 		uvm_lwp_rele(curlwp);
    903 	}
    904 	mutex_exit(&uobj->vmobjlock);
    905 	return 0;
    906 }
    907 
    908 /*
    909  * uao_get: fetch me a page
    910  *
    911  * we have three cases:
    912  * 1: page is resident     -> just return the page.
    913  * 2: page is zero-fill    -> allocate a new page and zero it.
    914  * 3: page is swapped out  -> fetch the page from swap.
    915  *
    916  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    917  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    918  * then we will need to return EBUSY.
    919  *
    920  * => prefer map unlocked (not required)
    921  * => object must be locked!  we will _unlock_ it before starting any I/O.
    922  * => flags: PGO_ALLPAGES: get all of the pages
    923  *           PGO_LOCKED: fault data structures are locked
    924  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    925  * => NOTE: caller must check for released pages!!
    926  */
    927 
    928 static int
    929 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    930     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    931 {
    932 #if defined(VMSWAP)
    933 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    934 #endif /* defined(VMSWAP) */
    935 	voff_t current_offset;
    936 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    937 	int lcv, gotpages, maxpages, swslot, pageidx;
    938 	bool done;
    939 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    940 
    941 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    942 		    (struct uvm_aobj *)uobj, offset, flags,0);
    943 
    944 	/*
    945  	 * get number of pages
    946  	 */
    947 
    948 	maxpages = *npagesp;
    949 
    950 	/*
    951  	 * step 1: handled the case where fault data structures are locked.
    952  	 */
    953 
    954 	if (flags & PGO_LOCKED) {
    955 
    956 		/*
    957  		 * step 1a: get pages that are already resident.   only do
    958 		 * this if the data structures are locked (i.e. the first
    959 		 * time through).
    960  		 */
    961 
    962 		done = true;	/* be optimistic */
    963 		gotpages = 0;	/* # of pages we got so far */
    964 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    965 		    lcv++, current_offset += PAGE_SIZE) {
    966 			/* do we care about this page?  if not, skip it */
    967 			if (pps[lcv] == PGO_DONTCARE)
    968 				continue;
    969 			ptmp = uvm_pagelookup(uobj, current_offset);
    970 
    971 			/*
    972  			 * if page is new, attempt to allocate the page,
    973 			 * zero-fill'd.
    974  			 */
    975 
    976 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    977 			    current_offset >> PAGE_SHIFT) == 0) {
    978 				ptmp = uvm_pagealloc(uobj, current_offset,
    979 				    NULL, UVM_PGA_ZERO);
    980 				if (ptmp) {
    981 					/* new page */
    982 					ptmp->flags &= ~(PG_FAKE);
    983 					ptmp->pqflags |= PQ_AOBJ;
    984 					goto gotpage;
    985 				}
    986 			}
    987 
    988 			/*
    989 			 * to be useful must get a non-busy page
    990 			 */
    991 
    992 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    993 				if (lcv == centeridx ||
    994 				    (flags & PGO_ALLPAGES) != 0)
    995 					/* need to do a wait or I/O! */
    996 					done = false;
    997 					continue;
    998 			}
    999 
   1000 			/*
   1001 			 * useful page: busy/lock it and plug it in our
   1002 			 * result array
   1003 			 */
   1004 
   1005 			/* caller must un-busy this page */
   1006 			ptmp->flags |= PG_BUSY;
   1007 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1008 gotpage:
   1009 			pps[lcv] = ptmp;
   1010 			gotpages++;
   1011 		}
   1012 
   1013 		/*
   1014  		 * step 1b: now we've either done everything needed or we
   1015 		 * to unlock and do some waiting or I/O.
   1016  		 */
   1017 
   1018 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1019 		*npagesp = gotpages;
   1020 		if (done)
   1021 			return 0;
   1022 		else
   1023 			return EBUSY;
   1024 	}
   1025 
   1026 	/*
   1027  	 * step 2: get non-resident or busy pages.
   1028  	 * object is locked.   data structures are unlocked.
   1029  	 */
   1030 
   1031 	if ((flags & PGO_SYNCIO) == 0) {
   1032 		goto done;
   1033 	}
   1034 
   1035 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1036 	    lcv++, current_offset += PAGE_SIZE) {
   1037 
   1038 		/*
   1039 		 * - skip over pages we've already gotten or don't want
   1040 		 * - skip over pages we don't _have_ to get
   1041 		 */
   1042 
   1043 		if (pps[lcv] != NULL ||
   1044 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1045 			continue;
   1046 
   1047 		pageidx = current_offset >> PAGE_SHIFT;
   1048 
   1049 		/*
   1050  		 * we have yet to locate the current page (pps[lcv]).   we
   1051 		 * first look for a page that is already at the current offset.
   1052 		 * if we find a page, we check to see if it is busy or
   1053 		 * released.  if that is the case, then we sleep on the page
   1054 		 * until it is no longer busy or released and repeat the lookup.
   1055 		 * if the page we found is neither busy nor released, then we
   1056 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1057 		 * 'break's the following while loop and indicates we are
   1058 		 * ready to move on to the next page in the "lcv" loop above.
   1059  		 *
   1060  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1061 		 * then it means that we allocated a new busy/fake/clean page
   1062 		 * ptmp in the object and we need to do I/O to fill in the data.
   1063  		 */
   1064 
   1065 		/* top of "pps" while loop */
   1066 		while (pps[lcv] == NULL) {
   1067 			/* look for a resident page */
   1068 			ptmp = uvm_pagelookup(uobj, current_offset);
   1069 
   1070 			/* not resident?   allocate one now (if we can) */
   1071 			if (ptmp == NULL) {
   1072 
   1073 				ptmp = uvm_pagealloc(uobj, current_offset,
   1074 				    NULL, 0);
   1075 
   1076 				/* out of RAM? */
   1077 				if (ptmp == NULL) {
   1078 					mutex_exit(&uobj->vmobjlock);
   1079 					UVMHIST_LOG(pdhist,
   1080 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1081 					uvm_wait("uao_getpage");
   1082 					mutex_enter(&uobj->vmobjlock);
   1083 					continue;
   1084 				}
   1085 
   1086 				/*
   1087 				 * safe with PQ's unlocked: because we just
   1088 				 * alloc'd the page
   1089 				 */
   1090 
   1091 				ptmp->pqflags |= PQ_AOBJ;
   1092 
   1093 				/*
   1094 				 * got new page ready for I/O.  break pps while
   1095 				 * loop.  pps[lcv] is still NULL.
   1096 				 */
   1097 
   1098 				break;
   1099 			}
   1100 
   1101 			/* page is there, see if we need to wait on it */
   1102 			if ((ptmp->flags & PG_BUSY) != 0) {
   1103 				ptmp->flags |= PG_WANTED;
   1104 				UVMHIST_LOG(pdhist,
   1105 				    "sleeping, ptmp->flags 0x%x\n",
   1106 				    ptmp->flags,0,0,0);
   1107 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1108 				    false, "uao_get", 0);
   1109 				mutex_enter(&uobj->vmobjlock);
   1110 				continue;
   1111 			}
   1112 
   1113 			/*
   1114  			 * if we get here then the page has become resident and
   1115 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1116 			 * own it) and set pps[lcv] (so that we exit the while
   1117 			 * loop).
   1118  			 */
   1119 
   1120 			/* we own it, caller must un-busy */
   1121 			ptmp->flags |= PG_BUSY;
   1122 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1123 			pps[lcv] = ptmp;
   1124 		}
   1125 
   1126 		/*
   1127  		 * if we own the valid page at the correct offset, pps[lcv] will
   1128  		 * point to it.   nothing more to do except go to the next page.
   1129  		 */
   1130 
   1131 		if (pps[lcv])
   1132 			continue;			/* next lcv */
   1133 
   1134 		/*
   1135  		 * we have a "fake/busy/clean" page that we just allocated.
   1136  		 * do the needed "i/o", either reading from swap or zeroing.
   1137  		 */
   1138 
   1139 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1140 
   1141 		/*
   1142  		 * just zero the page if there's nothing in swap.
   1143  		 */
   1144 
   1145 		if (swslot == 0) {
   1146 
   1147 			/*
   1148 			 * page hasn't existed before, just zero it.
   1149 			 */
   1150 
   1151 			uvm_pagezero(ptmp);
   1152 		} else {
   1153 #if defined(VMSWAP)
   1154 			int error;
   1155 
   1156 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1157 			     swslot, 0,0,0);
   1158 
   1159 			/*
   1160 			 * page in the swapped-out page.
   1161 			 * unlock object for i/o, relock when done.
   1162 			 */
   1163 
   1164 			mutex_exit(&uobj->vmobjlock);
   1165 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1166 			mutex_enter(&uobj->vmobjlock);
   1167 
   1168 			/*
   1169 			 * I/O done.  check for errors.
   1170 			 */
   1171 
   1172 			if (error != 0) {
   1173 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1174 				    error,0,0,0);
   1175 				if (ptmp->flags & PG_WANTED)
   1176 					wakeup(ptmp);
   1177 
   1178 				/*
   1179 				 * remove the swap slot from the aobj
   1180 				 * and mark the aobj as having no real slot.
   1181 				 * don't free the swap slot, thus preventing
   1182 				 * it from being used again.
   1183 				 */
   1184 
   1185 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1186 							SWSLOT_BAD);
   1187 				if (swslot > 0) {
   1188 					uvm_swap_markbad(swslot, 1);
   1189 				}
   1190 
   1191 				mutex_enter(&uvm_pageqlock);
   1192 				uvm_pagefree(ptmp);
   1193 				mutex_exit(&uvm_pageqlock);
   1194 				mutex_exit(&uobj->vmobjlock);
   1195 				return error;
   1196 			}
   1197 #else /* defined(VMSWAP) */
   1198 			panic("%s: pagein", __func__);
   1199 #endif /* defined(VMSWAP) */
   1200 		}
   1201 
   1202 		if ((access_type & VM_PROT_WRITE) == 0) {
   1203 			ptmp->flags |= PG_CLEAN;
   1204 			pmap_clear_modify(ptmp);
   1205 		}
   1206 
   1207 		/*
   1208  		 * we got the page!   clear the fake flag (indicates valid
   1209 		 * data now in page) and plug into our result array.   note
   1210 		 * that page is still busy.
   1211  		 *
   1212  		 * it is the callers job to:
   1213  		 * => check if the page is released
   1214  		 * => unbusy the page
   1215  		 * => activate the page
   1216  		 */
   1217 
   1218 		ptmp->flags &= ~PG_FAKE;
   1219 		pps[lcv] = ptmp;
   1220 	}
   1221 
   1222 	/*
   1223  	 * finally, unlock object and return.
   1224  	 */
   1225 
   1226 done:
   1227 	mutex_exit(&uobj->vmobjlock);
   1228 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1229 	return 0;
   1230 }
   1231 
   1232 #if defined(VMSWAP)
   1233 
   1234 /*
   1235  * uao_dropswap:  release any swap resources from this aobj page.
   1236  *
   1237  * => aobj must be locked or have a reference count of 0.
   1238  */
   1239 
   1240 void
   1241 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1242 {
   1243 	int slot;
   1244 
   1245 	slot = uao_set_swslot(uobj, pageidx, 0);
   1246 	if (slot) {
   1247 		uvm_swap_free(slot, 1);
   1248 	}
   1249 }
   1250 
   1251 /*
   1252  * page in every page in every aobj that is paged-out to a range of swslots.
   1253  *
   1254  * => nothing should be locked.
   1255  * => returns true if pagein was aborted due to lack of memory.
   1256  */
   1257 
   1258 bool
   1259 uao_swap_off(int startslot, int endslot)
   1260 {
   1261 	struct uvm_aobj *aobj, *nextaobj;
   1262 	bool rv;
   1263 
   1264 	/*
   1265 	 * walk the list of all aobjs.
   1266 	 */
   1267 
   1268 restart:
   1269 	mutex_enter(&uao_list_lock);
   1270 	for (aobj = LIST_FIRST(&uao_list);
   1271 	     aobj != NULL;
   1272 	     aobj = nextaobj) {
   1273 
   1274 		/*
   1275 		 * try to get the object lock, start all over if we fail.
   1276 		 * most of the time we'll get the aobj lock,
   1277 		 * so this should be a rare case.
   1278 		 */
   1279 
   1280 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1281 			mutex_exit(&uao_list_lock);
   1282 			/* XXX Better than yielding but inadequate. */
   1283 			kpause("livelock", false, 1, NULL);
   1284 			goto restart;
   1285 		}
   1286 
   1287 		/*
   1288 		 * add a ref to the aobj so it doesn't disappear
   1289 		 * while we're working.
   1290 		 */
   1291 
   1292 		uao_reference_locked(&aobj->u_obj);
   1293 
   1294 		/*
   1295 		 * now it's safe to unlock the uao list.
   1296 		 */
   1297 
   1298 		mutex_exit(&uao_list_lock);
   1299 
   1300 		/*
   1301 		 * page in any pages in the swslot range.
   1302 		 * if there's an error, abort and return the error.
   1303 		 */
   1304 
   1305 		rv = uao_pagein(aobj, startslot, endslot);
   1306 		if (rv) {
   1307 			uao_detach_locked(&aobj->u_obj);
   1308 			return rv;
   1309 		}
   1310 
   1311 		/*
   1312 		 * we're done with this aobj.
   1313 		 * relock the list and drop our ref on the aobj.
   1314 		 */
   1315 
   1316 		mutex_enter(&uao_list_lock);
   1317 		nextaobj = LIST_NEXT(aobj, u_list);
   1318 		uao_detach_locked(&aobj->u_obj);
   1319 	}
   1320 
   1321 	/*
   1322 	 * done with traversal, unlock the list
   1323 	 */
   1324 	mutex_exit(&uao_list_lock);
   1325 	return false;
   1326 }
   1327 
   1328 
   1329 /*
   1330  * page in any pages from aobj in the given range.
   1331  *
   1332  * => aobj must be locked and is returned locked.
   1333  * => returns true if pagein was aborted due to lack of memory.
   1334  */
   1335 static bool
   1336 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1337 {
   1338 	bool rv;
   1339 
   1340 	if (UAO_USES_SWHASH(aobj)) {
   1341 		struct uao_swhash_elt *elt;
   1342 		int buck;
   1343 
   1344 restart:
   1345 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1346 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1347 			     elt != NULL;
   1348 			     elt = LIST_NEXT(elt, list)) {
   1349 				int i;
   1350 
   1351 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1352 					int slot = elt->slots[i];
   1353 
   1354 					/*
   1355 					 * if the slot isn't in range, skip it.
   1356 					 */
   1357 
   1358 					if (slot < startslot ||
   1359 					    slot >= endslot) {
   1360 						continue;
   1361 					}
   1362 
   1363 					/*
   1364 					 * process the page,
   1365 					 * the start over on this object
   1366 					 * since the swhash elt
   1367 					 * may have been freed.
   1368 					 */
   1369 
   1370 					rv = uao_pagein_page(aobj,
   1371 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1372 					if (rv) {
   1373 						return rv;
   1374 					}
   1375 					goto restart;
   1376 				}
   1377 			}
   1378 		}
   1379 	} else {
   1380 		int i;
   1381 
   1382 		for (i = 0; i < aobj->u_pages; i++) {
   1383 			int slot = aobj->u_swslots[i];
   1384 
   1385 			/*
   1386 			 * if the slot isn't in range, skip it
   1387 			 */
   1388 
   1389 			if (slot < startslot || slot >= endslot) {
   1390 				continue;
   1391 			}
   1392 
   1393 			/*
   1394 			 * process the page.
   1395 			 */
   1396 
   1397 			rv = uao_pagein_page(aobj, i);
   1398 			if (rv) {
   1399 				return rv;
   1400 			}
   1401 		}
   1402 	}
   1403 
   1404 	return false;
   1405 }
   1406 
   1407 /*
   1408  * page in a page from an aobj.  used for swap_off.
   1409  * returns true if pagein was aborted due to lack of memory.
   1410  *
   1411  * => aobj must be locked and is returned locked.
   1412  */
   1413 
   1414 static bool
   1415 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1416 {
   1417 	struct vm_page *pg;
   1418 	int rv, npages;
   1419 
   1420 	pg = NULL;
   1421 	npages = 1;
   1422 	/* locked: aobj */
   1423 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1424 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1425 	/* unlocked: aobj */
   1426 
   1427 	/*
   1428 	 * relock and finish up.
   1429 	 */
   1430 
   1431 	mutex_enter(&aobj->u_obj.vmobjlock);
   1432 	switch (rv) {
   1433 	case 0:
   1434 		break;
   1435 
   1436 	case EIO:
   1437 	case ERESTART:
   1438 
   1439 		/*
   1440 		 * nothing more to do on errors.
   1441 		 * ERESTART can only mean that the anon was freed,
   1442 		 * so again there's nothing to do.
   1443 		 */
   1444 
   1445 		return false;
   1446 
   1447 	default:
   1448 		return true;
   1449 	}
   1450 
   1451 	/*
   1452 	 * ok, we've got the page now.
   1453 	 * mark it as dirty, clear its swslot and un-busy it.
   1454 	 */
   1455 	uao_dropswap(&aobj->u_obj, pageidx);
   1456 
   1457 	/*
   1458 	 * make sure it's on a page queue.
   1459 	 */
   1460 	mutex_enter(&uvm_pageqlock);
   1461 	if (pg->wire_count == 0)
   1462 		uvm_pageenqueue(pg);
   1463 	mutex_exit(&uvm_pageqlock);
   1464 
   1465 	if (pg->flags & PG_WANTED) {
   1466 		wakeup(pg);
   1467 	}
   1468 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1469 	UVM_PAGE_OWN(pg, NULL);
   1470 
   1471 	return false;
   1472 }
   1473 
   1474 /*
   1475  * uao_dropswap_range: drop swapslots in the range.
   1476  *
   1477  * => aobj must be locked and is returned locked.
   1478  * => start is inclusive.  end is exclusive.
   1479  */
   1480 
   1481 void
   1482 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1483 {
   1484 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1485 
   1486 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1487 
   1488 	uao_dropswap_range1(aobj, start, end);
   1489 }
   1490 
   1491 static void
   1492 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1493 {
   1494 	int swpgonlydelta = 0;
   1495 
   1496 	if (end == 0) {
   1497 		end = INT64_MAX;
   1498 	}
   1499 
   1500 	if (UAO_USES_SWHASH(aobj)) {
   1501 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1502 		voff_t taghi;
   1503 		voff_t taglo;
   1504 
   1505 		taglo = UAO_SWHASH_ELT_TAG(start);
   1506 		taghi = UAO_SWHASH_ELT_TAG(end);
   1507 
   1508 		for (i = 0; i < hashbuckets; i++) {
   1509 			struct uao_swhash_elt *elt, *next;
   1510 
   1511 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1512 			     elt != NULL;
   1513 			     elt = next) {
   1514 				int startidx, endidx;
   1515 				int j;
   1516 
   1517 				next = LIST_NEXT(elt, list);
   1518 
   1519 				if (elt->tag < taglo || taghi < elt->tag) {
   1520 					continue;
   1521 				}
   1522 
   1523 				if (elt->tag == taglo) {
   1524 					startidx =
   1525 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1526 				} else {
   1527 					startidx = 0;
   1528 				}
   1529 
   1530 				if (elt->tag == taghi) {
   1531 					endidx =
   1532 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1533 				} else {
   1534 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1535 				}
   1536 
   1537 				for (j = startidx; j < endidx; j++) {
   1538 					int slot = elt->slots[j];
   1539 
   1540 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1541 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1542 					    + j) << PAGE_SHIFT) == NULL);
   1543 					if (slot > 0) {
   1544 						uvm_swap_free(slot, 1);
   1545 						swpgonlydelta++;
   1546 						KASSERT(elt->count > 0);
   1547 						elt->slots[j] = 0;
   1548 						elt->count--;
   1549 					}
   1550 				}
   1551 
   1552 				if (elt->count == 0) {
   1553 					LIST_REMOVE(elt, list);
   1554 					pool_put(&uao_swhash_elt_pool, elt);
   1555 				}
   1556 			}
   1557 		}
   1558 	} else {
   1559 		int i;
   1560 
   1561 		if (aobj->u_pages < end) {
   1562 			end = aobj->u_pages;
   1563 		}
   1564 		for (i = start; i < end; i++) {
   1565 			int slot = aobj->u_swslots[i];
   1566 
   1567 			if (slot > 0) {
   1568 				uvm_swap_free(slot, 1);
   1569 				swpgonlydelta++;
   1570 			}
   1571 		}
   1572 	}
   1573 
   1574 	/*
   1575 	 * adjust the counter of pages only in swap for all
   1576 	 * the swap slots we've freed.
   1577 	 */
   1578 
   1579 	if (swpgonlydelta > 0) {
   1580 		mutex_enter(&uvm_swap_data_lock);
   1581 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1582 		uvmexp.swpgonly -= swpgonlydelta;
   1583 		mutex_exit(&uvm_swap_data_lock);
   1584 	}
   1585 }
   1586 
   1587 #endif /* defined(VMSWAP) */
   1588