Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.107
      1 /*	$NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  * 3. All advertising materials mentioning features or use of this software
     17  *    must display the following acknowledgement:
     18  *      This product includes software developed by Charles D. Cranor and
     19  *      Washington University.
     20  * 4. The name of the author may not be used to endorse or promote products
     21  *    derived from this software without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     24  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     25  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     26  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     28  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     29  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     30  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     31  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     32  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     33  *
     34  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     35  */
     36 /*
     37  * uvm_aobj.c: anonymous memory uvm_object pager
     38  *
     39  * author: Chuck Silvers <chuq (at) chuq.com>
     40  * started: Jan-1998
     41  *
     42  * - design mostly from Chuck Cranor
     43  */
     44 
     45 #include <sys/cdefs.h>
     46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $");
     47 
     48 #include "opt_uvmhist.h"
     49 
     50 #include <sys/param.h>
     51 #include <sys/systm.h>
     52 #include <sys/proc.h>
     53 #include <sys/kernel.h>
     54 #include <sys/kmem.h>
     55 #include <sys/pool.h>
     56 
     57 #include <uvm/uvm.h>
     58 
     59 /*
     60  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     61  * to keeping the list of resident pages, it also keeps a list of
     62  * allocated swap blocks.  depending on the size of the aobj this list
     63  * of allocated swap blocks is either stored in an array (small objects)
     64  * or in a hash table (large objects).
     65  */
     66 
     67 /*
     68  * local structures
     69  */
     70 
     71 /*
     72  * for hash tables, we break the address space of the aobj into blocks
     73  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     74  * be a power of two.
     75  */
     76 
     77 #define UAO_SWHASH_CLUSTER_SHIFT 4
     78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     79 
     80 /* get the "tag" for this page index */
     81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     82 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     83 
     84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     85 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     86 
     87 /* given an ELT and a page index, find the swap slot */
     88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     89 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     90 
     91 /* given an ELT, return its pageidx base */
     92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     93 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     94 
     95 /*
     96  * the swhash hash function
     97  */
     98 
     99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
    100 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
    101 			    & (AOBJ)->u_swhashmask)])
    102 
    103 /*
    104  * the swhash threshhold determines if we will use an array or a
    105  * hash table to store the list of allocated swap blocks.
    106  */
    107 
    108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    109 #define UAO_USES_SWHASH(AOBJ) \
    110 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    111 
    112 /*
    113  * the number of buckets in a swhash, with an upper bound
    114  */
    115 
    116 #define UAO_SWHASH_MAXBUCKETS 256
    117 #define UAO_SWHASH_BUCKETS(AOBJ) \
    118 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    119 	     UAO_SWHASH_MAXBUCKETS))
    120 
    121 /*
    122  * uao_swhash_elt: when a hash table is being used, this structure defines
    123  * the format of an entry in the bucket list.
    124  */
    125 
    126 struct uao_swhash_elt {
    127 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    128 	voff_t tag;				/* our 'tag' */
    129 	int count;				/* our number of active slots */
    130 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    131 };
    132 
    133 /*
    134  * uao_swhash: the swap hash table structure
    135  */
    136 
    137 LIST_HEAD(uao_swhash, uao_swhash_elt);
    138 
    139 /*
    140  * uao_swhash_elt_pool: pool of uao_swhash_elt structures
    141  * NOTE: Pages for this pool must not come from a pageable kernel map!
    142  */
    143 static struct pool uao_swhash_elt_pool;
    144 
    145 static struct pool_cache uvm_aobj_cache;
    146 
    147 /*
    148  * uvm_aobj: the actual anon-backed uvm_object
    149  *
    150  * => the uvm_object is at the top of the structure, this allows
    151  *   (struct uvm_aobj *) == (struct uvm_object *)
    152  * => only one of u_swslots and u_swhash is used in any given aobj
    153  */
    154 
    155 struct uvm_aobj {
    156 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    157 	pgoff_t u_pages;	 /* number of pages in entire object */
    158 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    159 	int *u_swslots;		 /* array of offset->swapslot mappings */
    160 				 /*
    161 				  * hashtable of offset->swapslot mappings
    162 				  * (u_swhash is an array of bucket heads)
    163 				  */
    164 	struct uao_swhash *u_swhash;
    165 	u_long u_swhashmask;		/* mask for hashtable */
    166 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    167 };
    168 
    169 /*
    170  * local functions
    171  */
    172 
    173 static void	uao_free(struct uvm_aobj *);
    174 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    175 		    int *, int, vm_prot_t, int, int);
    176 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    177 
    178 static void uao_detach_locked(struct uvm_object *);
    179 static void uao_reference_locked(struct uvm_object *);
    180 
    181 #if defined(VMSWAP)
    182 static struct uao_swhash_elt *uao_find_swhash_elt
    183     (struct uvm_aobj *, int, bool);
    184 
    185 static bool uao_pagein(struct uvm_aobj *, int, int);
    186 static bool uao_pagein_page(struct uvm_aobj *, int);
    187 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    188 #endif /* defined(VMSWAP) */
    189 
    190 /*
    191  * aobj_pager
    192  *
    193  * note that some functions (e.g. put) are handled elsewhere
    194  */
    195 
    196 const struct uvm_pagerops aobj_pager = {
    197 	.pgo_reference = uao_reference,
    198 	.pgo_detach = uao_detach,
    199 	.pgo_get = uao_get,
    200 	.pgo_put = uao_put,
    201 };
    202 
    203 /*
    204  * uao_list: global list of active aobjs, locked by uao_list_lock
    205  */
    206 
    207 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    208 static kmutex_t uao_list_lock;
    209 
    210 /*
    211  * functions
    212  */
    213 
    214 /*
    215  * hash table/array related functions
    216  */
    217 
    218 #if defined(VMSWAP)
    219 
    220 /*
    221  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    222  * offset.
    223  *
    224  * => the object should be locked by the caller
    225  */
    226 
    227 static struct uao_swhash_elt *
    228 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    229 {
    230 	struct uao_swhash *swhash;
    231 	struct uao_swhash_elt *elt;
    232 	voff_t page_tag;
    233 
    234 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    235 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    236 
    237 	/*
    238 	 * now search the bucket for the requested tag
    239 	 */
    240 
    241 	LIST_FOREACH(elt, swhash, list) {
    242 		if (elt->tag == page_tag) {
    243 			return elt;
    244 		}
    245 	}
    246 	if (!create) {
    247 		return NULL;
    248 	}
    249 
    250 	/*
    251 	 * allocate a new entry for the bucket and init/insert it in
    252 	 */
    253 
    254 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    255 	if (elt == NULL) {
    256 		return NULL;
    257 	}
    258 	LIST_INSERT_HEAD(swhash, elt, list);
    259 	elt->tag = page_tag;
    260 	elt->count = 0;
    261 	memset(elt->slots, 0, sizeof(elt->slots));
    262 	return elt;
    263 }
    264 
    265 /*
    266  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    267  *
    268  * => object must be locked by caller
    269  */
    270 
    271 int
    272 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    273 {
    274 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    275 	struct uao_swhash_elt *elt;
    276 
    277 	/*
    278 	 * if noswap flag is set, then we never return a slot
    279 	 */
    280 
    281 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    282 		return(0);
    283 
    284 	/*
    285 	 * if hashing, look in hash table.
    286 	 */
    287 
    288 	if (UAO_USES_SWHASH(aobj)) {
    289 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    290 		if (elt)
    291 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    292 		else
    293 			return(0);
    294 	}
    295 
    296 	/*
    297 	 * otherwise, look in the array
    298 	 */
    299 
    300 	return(aobj->u_swslots[pageidx]);
    301 }
    302 
    303 /*
    304  * uao_set_swslot: set the swap slot for a page in an aobj.
    305  *
    306  * => setting a slot to zero frees the slot
    307  * => object must be locked by caller
    308  * => we return the old slot number, or -1 if we failed to allocate
    309  *    memory to record the new slot number
    310  */
    311 
    312 int
    313 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    314 {
    315 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    316 	struct uao_swhash_elt *elt;
    317 	int oldslot;
    318 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    319 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    320 	    aobj, pageidx, slot, 0);
    321 
    322 	/*
    323 	 * if noswap flag is set, then we can't set a non-zero slot.
    324 	 */
    325 
    326 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    327 		if (slot == 0)
    328 			return(0);
    329 
    330 		printf("uao_set_swslot: uobj = %p\n", uobj);
    331 		panic("uao_set_swslot: NOSWAP object");
    332 	}
    333 
    334 	/*
    335 	 * are we using a hash table?  if so, add it in the hash.
    336 	 */
    337 
    338 	if (UAO_USES_SWHASH(aobj)) {
    339 
    340 		/*
    341 		 * Avoid allocating an entry just to free it again if
    342 		 * the page had not swap slot in the first place, and
    343 		 * we are freeing.
    344 		 */
    345 
    346 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    347 		if (elt == NULL) {
    348 			return slot ? -1 : 0;
    349 		}
    350 
    351 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    352 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    353 
    354 		/*
    355 		 * now adjust the elt's reference counter and free it if we've
    356 		 * dropped it to zero.
    357 		 */
    358 
    359 		if (slot) {
    360 			if (oldslot == 0)
    361 				elt->count++;
    362 		} else {
    363 			if (oldslot)
    364 				elt->count--;
    365 
    366 			if (elt->count == 0) {
    367 				LIST_REMOVE(elt, list);
    368 				pool_put(&uao_swhash_elt_pool, elt);
    369 			}
    370 		}
    371 	} else {
    372 		/* we are using an array */
    373 		oldslot = aobj->u_swslots[pageidx];
    374 		aobj->u_swslots[pageidx] = slot;
    375 	}
    376 	return (oldslot);
    377 }
    378 
    379 #endif /* defined(VMSWAP) */
    380 
    381 /*
    382  * end of hash/array functions
    383  */
    384 
    385 /*
    386  * uao_free: free all resources held by an aobj, and then free the aobj
    387  *
    388  * => the aobj should be dead
    389  */
    390 
    391 static void
    392 uao_free(struct uvm_aobj *aobj)
    393 {
    394 	int swpgonlydelta = 0;
    395 
    396 
    397 #if defined(VMSWAP)
    398 	uao_dropswap_range1(aobj, 0, 0);
    399 #endif /* defined(VMSWAP) */
    400 
    401 	mutex_exit(&aobj->u_obj.vmobjlock);
    402 
    403 #if defined(VMSWAP)
    404 	if (UAO_USES_SWHASH(aobj)) {
    405 
    406 		/*
    407 		 * free the hash table itself.
    408 		 */
    409 
    410 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    411 	} else {
    412 
    413 		/*
    414 		 * free the array itsself.
    415 		 */
    416 
    417 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    418 	}
    419 #endif /* defined(VMSWAP) */
    420 
    421 	/*
    422 	 * finally free the aobj itself
    423 	 */
    424 
    425 	UVM_OBJ_DESTROY(&aobj->u_obj);
    426 	pool_cache_put(&uvm_aobj_cache, aobj);
    427 
    428 	/*
    429 	 * adjust the counter of pages only in swap for all
    430 	 * the swap slots we've freed.
    431 	 */
    432 
    433 	if (swpgonlydelta > 0) {
    434 		mutex_enter(&uvm_swap_data_lock);
    435 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
    436 		uvmexp.swpgonly -= swpgonlydelta;
    437 		mutex_exit(&uvm_swap_data_lock);
    438 	}
    439 }
    440 
    441 /*
    442  * pager functions
    443  */
    444 
    445 /*
    446  * uao_create: create an aobj of the given size and return its uvm_object.
    447  *
    448  * => for normal use, flags are always zero
    449  * => for the kernel object, the flags are:
    450  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    451  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    452  */
    453 
    454 struct uvm_object *
    455 uao_create(vsize_t size, int flags)
    456 {
    457 	static struct uvm_aobj kernel_object_store;
    458 	static int kobj_alloced = 0;
    459 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    460 	struct uvm_aobj *aobj;
    461 	int refs;
    462 
    463 	/*
    464 	 * malloc a new aobj unless we are asked for the kernel object
    465 	 */
    466 
    467 	if (flags & UAO_FLAG_KERNOBJ) {
    468 		KASSERT(!kobj_alloced);
    469 		aobj = &kernel_object_store;
    470 		aobj->u_pages = pages;
    471 		aobj->u_flags = UAO_FLAG_NOSWAP;
    472 		refs = UVM_OBJ_KERN;
    473 		kobj_alloced = UAO_FLAG_KERNOBJ;
    474 	} else if (flags & UAO_FLAG_KERNSWAP) {
    475 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    476 		aobj = &kernel_object_store;
    477 		kobj_alloced = UAO_FLAG_KERNSWAP;
    478 		refs = 0xdeadbeaf; /* XXX: gcc */
    479 	} else {
    480 		aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
    481 		aobj->u_pages = pages;
    482 		aobj->u_flags = 0;
    483 		refs = 1;
    484 	}
    485 
    486 	/*
    487  	 * allocate hash/array if necessary
    488  	 *
    489  	 * note: in the KERNSWAP case no need to worry about locking since
    490  	 * we are still booting we should be the only thread around.
    491  	 */
    492 
    493 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    494 #if defined(VMSWAP)
    495 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    496 
    497 		/* allocate hash table or array depending on object size */
    498 		if (UAO_USES_SWHASH(aobj)) {
    499 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    500 			    HASH_LIST, kernswap ? false : true,
    501 			    &aobj->u_swhashmask);
    502 			if (aobj->u_swhash == NULL)
    503 				panic("uao_create: hashinit swhash failed");
    504 		} else {
    505 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    506 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    507 			if (aobj->u_swslots == NULL)
    508 				panic("uao_create: malloc swslots failed");
    509 		}
    510 #endif /* defined(VMSWAP) */
    511 
    512 		if (flags) {
    513 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    514 			return(&aobj->u_obj);
    515 		}
    516 	}
    517 
    518 	/*
    519  	 * init aobj fields
    520  	 */
    521 
    522 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    523 
    524 	/*
    525  	 * now that aobj is ready, add it to the global list
    526  	 */
    527 
    528 	mutex_enter(&uao_list_lock);
    529 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    530 	mutex_exit(&uao_list_lock);
    531 	return(&aobj->u_obj);
    532 }
    533 
    534 
    535 
    536 /*
    537  * uao_init: set up aobj pager subsystem
    538  *
    539  * => called at boot time from uvm_pager_init()
    540  */
    541 
    542 void
    543 uao_init(void)
    544 {
    545 	static int uao_initialized;
    546 
    547 	if (uao_initialized)
    548 		return;
    549 	uao_initialized = true;
    550 	LIST_INIT(&uao_list);
    551 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    552 	pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
    553 	    0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
    554 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    555 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    556 }
    557 
    558 /*
    559  * uao_reference: add a ref to an aobj
    560  *
    561  * => aobj must be unlocked
    562  * => just lock it and call the locked version
    563  */
    564 
    565 void
    566 uao_reference(struct uvm_object *uobj)
    567 {
    568 
    569 	/*
    570  	 * kernel_object already has plenty of references, leave it alone.
    571  	 */
    572 
    573 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    574 		return;
    575 
    576 	mutex_enter(&uobj->vmobjlock);
    577 	uao_reference_locked(uobj);
    578 	mutex_exit(&uobj->vmobjlock);
    579 }
    580 
    581 /*
    582  * uao_reference_locked: add a ref to an aobj that is already locked
    583  *
    584  * => aobj must be locked
    585  * this needs to be separate from the normal routine
    586  * since sometimes we need to add a reference to an aobj when
    587  * it's already locked.
    588  */
    589 
    590 static void
    591 uao_reference_locked(struct uvm_object *uobj)
    592 {
    593 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    594 
    595 	/*
    596  	 * kernel_object already has plenty of references, leave it alone.
    597  	 */
    598 
    599 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    600 		return;
    601 
    602 	uobj->uo_refs++;
    603 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    604 		    uobj, uobj->uo_refs,0,0);
    605 }
    606 
    607 /*
    608  * uao_detach: drop a reference to an aobj
    609  *
    610  * => aobj must be unlocked
    611  * => just lock it and call the locked version
    612  */
    613 
    614 void
    615 uao_detach(struct uvm_object *uobj)
    616 {
    617 
    618 	/*
    619  	 * detaching from kernel_object is a noop.
    620  	 */
    621 
    622 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    623 		return;
    624 
    625 	mutex_enter(&uobj->vmobjlock);
    626 	uao_detach_locked(uobj);
    627 }
    628 
    629 /*
    630  * uao_detach_locked: drop a reference to an aobj
    631  *
    632  * => aobj must be locked, and is unlocked (or freed) upon return.
    633  * this needs to be separate from the normal routine
    634  * since sometimes we need to detach from an aobj when
    635  * it's already locked.
    636  */
    637 
    638 static void
    639 uao_detach_locked(struct uvm_object *uobj)
    640 {
    641 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    642 	struct vm_page *pg;
    643 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    644 
    645 	/*
    646  	 * detaching from kernel_object is a noop.
    647  	 */
    648 
    649 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    650 		mutex_exit(&uobj->vmobjlock);
    651 		return;
    652 	}
    653 
    654 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    655 	uobj->uo_refs--;
    656 	if (uobj->uo_refs) {
    657 		mutex_exit(&uobj->vmobjlock);
    658 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    659 		return;
    660 	}
    661 
    662 	/*
    663  	 * remove the aobj from the global list.
    664  	 */
    665 
    666 	mutex_enter(&uao_list_lock);
    667 	LIST_REMOVE(aobj, u_list);
    668 	mutex_exit(&uao_list_lock);
    669 
    670 	/*
    671  	 * free all the pages left in the aobj.  for each page,
    672 	 * when the page is no longer busy (and thus after any disk i/o that
    673 	 * it's involved in is complete), release any swap resources and
    674 	 * free the page itself.
    675  	 */
    676 
    677 	mutex_enter(&uvm_pageqlock);
    678 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    679 		pmap_page_protect(pg, VM_PROT_NONE);
    680 		if (pg->flags & PG_BUSY) {
    681 			pg->flags |= PG_WANTED;
    682 			mutex_exit(&uvm_pageqlock);
    683 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    684 			    "uao_det", 0);
    685 			mutex_enter(&uobj->vmobjlock);
    686 			mutex_enter(&uvm_pageqlock);
    687 			continue;
    688 		}
    689 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    690 		uvm_pagefree(pg);
    691 	}
    692 	mutex_exit(&uvm_pageqlock);
    693 
    694 	/*
    695  	 * finally, free the aobj itself.
    696  	 */
    697 
    698 	uao_free(aobj);
    699 }
    700 
    701 /*
    702  * uao_put: flush pages out of a uvm object
    703  *
    704  * => object should be locked by caller.  we may _unlock_ the object
    705  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    706  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    707  *	XXXJRT a page, we simply just deactivate it.  Should probably
    708  *	XXXJRT handle this better, in the future (although "flushing"
    709  *	XXXJRT anonymous memory isn't terribly important).
    710  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    711  *	or block.
    712  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    713  *	for flushing.
    714  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    715  *	that new pages are inserted on the tail end of the list.  thus,
    716  *	we can make a complete pass through the object in one go by starting
    717  *	at the head and working towards the tail (new pages are put in
    718  *	front of us).
    719  * => NOTE: we are allowed to lock the page queues, so the caller
    720  *	must not be holding the lock on them [e.g. pagedaemon had
    721  *	better not call us with the queues locked]
    722  * => we return 0 unless we encountered some sort of I/O error
    723  *	XXXJRT currently never happens, as we never directly initiate
    724  *	XXXJRT I/O
    725  *
    726  * note on page traversal:
    727  *	we can traverse the pages in an object either by going down the
    728  *	linked list in "uobj->memq", or we can go over the address range
    729  *	by page doing hash table lookups for each address.  depending
    730  *	on how many pages are in the object it may be cheaper to do one
    731  *	or the other.  we set "by_list" to true if we are using memq.
    732  *	if the cost of a hash lookup was equal to the cost of the list
    733  *	traversal we could compare the number of pages in the start->stop
    734  *	range to the total number of pages in the object.  however, it
    735  *	seems that a hash table lookup is more expensive than the linked
    736  *	list traversal, so we multiply the number of pages in the
    737  *	start->stop range by a penalty which we define below.
    738  */
    739 
    740 static int
    741 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    742 {
    743 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    744 	struct vm_page *pg, *nextpg, curmp, endmp;
    745 	bool by_list;
    746 	voff_t curoff;
    747 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    748 
    749 	KASSERT(mutex_owned(&uobj->vmobjlock));
    750 
    751 	curoff = 0;
    752 	if (flags & PGO_ALLPAGES) {
    753 		start = 0;
    754 		stop = aobj->u_pages << PAGE_SHIFT;
    755 		by_list = true;		/* always go by the list */
    756 	} else {
    757 		start = trunc_page(start);
    758 		if (stop == 0) {
    759 			stop = aobj->u_pages << PAGE_SHIFT;
    760 		} else {
    761 			stop = round_page(stop);
    762 		}
    763 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    764 			printf("uao_flush: strange, got an out of range "
    765 			    "flush (fixed)\n");
    766 			stop = aobj->u_pages << PAGE_SHIFT;
    767 		}
    768 		by_list = (uobj->uo_npages <=
    769 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    770 	}
    771 	UVMHIST_LOG(maphist,
    772 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    773 	    start, stop, by_list, flags);
    774 
    775 	/*
    776 	 * Don't need to do any work here if we're not freeing
    777 	 * or deactivating pages.
    778 	 */
    779 
    780 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    781 		mutex_exit(&uobj->vmobjlock);
    782 		return 0;
    783 	}
    784 
    785 	/*
    786 	 * Initialize the marker pages.  See the comment in
    787 	 * genfs_putpages() also.
    788 	 */
    789 
    790 	curmp.uobject = uobj;
    791 	curmp.offset = (voff_t)-1;
    792 	curmp.flags = PG_BUSY;
    793 	endmp.uobject = uobj;
    794 	endmp.offset = (voff_t)-1;
    795 	endmp.flags = PG_BUSY;
    796 
    797 	/*
    798 	 * now do it.  note: we must update nextpg in the body of loop or we
    799 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    800 	 * because we may free "pg" before doing the next loop.
    801 	 */
    802 
    803 	if (by_list) {
    804 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    805 		nextpg = TAILQ_FIRST(&uobj->memq);
    806 		uvm_lwp_hold(curlwp);
    807 	} else {
    808 		curoff = start;
    809 		nextpg = NULL;	/* Quell compiler warning */
    810 	}
    811 
    812 	/* locked: uobj */
    813 	for (;;) {
    814 		if (by_list) {
    815 			pg = nextpg;
    816 			if (pg == &endmp)
    817 				break;
    818 			nextpg = TAILQ_NEXT(pg, listq.queue);
    819 			if (pg->offset < start || pg->offset >= stop)
    820 				continue;
    821 		} else {
    822 			if (curoff < stop) {
    823 				pg = uvm_pagelookup(uobj, curoff);
    824 				curoff += PAGE_SIZE;
    825 			} else
    826 				break;
    827 			if (pg == NULL)
    828 				continue;
    829 		}
    830 
    831 		/*
    832 		 * wait and try again if the page is busy.
    833 		 */
    834 
    835 		if (pg->flags & PG_BUSY) {
    836 			if (by_list) {
    837 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    838 			}
    839 			pg->flags |= PG_WANTED;
    840 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    841 			    "uao_put", 0);
    842 			mutex_enter(&uobj->vmobjlock);
    843 			if (by_list) {
    844 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    845 				TAILQ_REMOVE(&uobj->memq, &curmp,
    846 				    listq.queue);
    847 			} else
    848 				curoff -= PAGE_SIZE;
    849 			continue;
    850 		}
    851 
    852 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    853 
    854 		/*
    855 		 * XXX In these first 3 cases, we always just
    856 		 * XXX deactivate the page.  We may want to
    857 		 * XXX handle the different cases more specifically
    858 		 * XXX in the future.
    859 		 */
    860 
    861 		case PGO_CLEANIT|PGO_FREE:
    862 		case PGO_CLEANIT|PGO_DEACTIVATE:
    863 		case PGO_DEACTIVATE:
    864  deactivate_it:
    865 			mutex_enter(&uvm_pageqlock);
    866 			/* skip the page if it's wired */
    867 			if (pg->wire_count == 0) {
    868 				uvm_pagedeactivate(pg);
    869 			}
    870 			mutex_exit(&uvm_pageqlock);
    871 			break;
    872 
    873 		case PGO_FREE:
    874 			/*
    875 			 * If there are multiple references to
    876 			 * the object, just deactivate the page.
    877 			 */
    878 
    879 			if (uobj->uo_refs > 1)
    880 				goto deactivate_it;
    881 
    882 			/*
    883 			 * free the swap slot and the page.
    884 			 */
    885 
    886 			pmap_page_protect(pg, VM_PROT_NONE);
    887 
    888 			/*
    889 			 * freeing swapslot here is not strictly necessary.
    890 			 * however, leaving it here doesn't save much
    891 			 * because we need to update swap accounting anyway.
    892 			 */
    893 
    894 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    895 			mutex_enter(&uvm_pageqlock);
    896 			uvm_pagefree(pg);
    897 			mutex_exit(&uvm_pageqlock);
    898 			break;
    899 
    900 		default:
    901 			panic("%s: impossible", __func__);
    902 		}
    903 	}
    904 	if (by_list) {
    905 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    906 		uvm_lwp_rele(curlwp);
    907 	}
    908 	mutex_exit(&uobj->vmobjlock);
    909 	return 0;
    910 }
    911 
    912 /*
    913  * uao_get: fetch me a page
    914  *
    915  * we have three cases:
    916  * 1: page is resident     -> just return the page.
    917  * 2: page is zero-fill    -> allocate a new page and zero it.
    918  * 3: page is swapped out  -> fetch the page from swap.
    919  *
    920  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    921  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    922  * then we will need to return EBUSY.
    923  *
    924  * => prefer map unlocked (not required)
    925  * => object must be locked!  we will _unlock_ it before starting any I/O.
    926  * => flags: PGO_ALLPAGES: get all of the pages
    927  *           PGO_LOCKED: fault data structures are locked
    928  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    929  * => NOTE: caller must check for released pages!!
    930  */
    931 
    932 static int
    933 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    934     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    935 {
    936 #if defined(VMSWAP)
    937 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    938 #endif /* defined(VMSWAP) */
    939 	voff_t current_offset;
    940 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    941 	int lcv, gotpages, maxpages, swslot, pageidx;
    942 	bool done;
    943 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    944 
    945 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    946 		    (struct uvm_aobj *)uobj, offset, flags,0);
    947 
    948 	/*
    949  	 * get number of pages
    950  	 */
    951 
    952 	maxpages = *npagesp;
    953 
    954 	/*
    955  	 * step 1: handled the case where fault data structures are locked.
    956  	 */
    957 
    958 	if (flags & PGO_LOCKED) {
    959 
    960 		/*
    961  		 * step 1a: get pages that are already resident.   only do
    962 		 * this if the data structures are locked (i.e. the first
    963 		 * time through).
    964  		 */
    965 
    966 		done = true;	/* be optimistic */
    967 		gotpages = 0;	/* # of pages we got so far */
    968 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    969 		    lcv++, current_offset += PAGE_SIZE) {
    970 			/* do we care about this page?  if not, skip it */
    971 			if (pps[lcv] == PGO_DONTCARE)
    972 				continue;
    973 			ptmp = uvm_pagelookup(uobj, current_offset);
    974 
    975 			/*
    976  			 * if page is new, attempt to allocate the page,
    977 			 * zero-fill'd.
    978  			 */
    979 
    980 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    981 			    current_offset >> PAGE_SHIFT) == 0) {
    982 				ptmp = uvm_pagealloc(uobj, current_offset,
    983 				    NULL, UVM_PGA_ZERO);
    984 				if (ptmp) {
    985 					/* new page */
    986 					ptmp->flags &= ~(PG_FAKE);
    987 					ptmp->pqflags |= PQ_AOBJ;
    988 					goto gotpage;
    989 				}
    990 			}
    991 
    992 			/*
    993 			 * to be useful must get a non-busy page
    994 			 */
    995 
    996 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    997 				if (lcv == centeridx ||
    998 				    (flags & PGO_ALLPAGES) != 0)
    999 					/* need to do a wait or I/O! */
   1000 					done = false;
   1001 					continue;
   1002 			}
   1003 
   1004 			/*
   1005 			 * useful page: busy/lock it and plug it in our
   1006 			 * result array
   1007 			 */
   1008 
   1009 			/* caller must un-busy this page */
   1010 			ptmp->flags |= PG_BUSY;
   1011 			UVM_PAGE_OWN(ptmp, "uao_get1");
   1012 gotpage:
   1013 			pps[lcv] = ptmp;
   1014 			gotpages++;
   1015 		}
   1016 
   1017 		/*
   1018  		 * step 1b: now we've either done everything needed or we
   1019 		 * to unlock and do some waiting or I/O.
   1020  		 */
   1021 
   1022 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
   1023 		*npagesp = gotpages;
   1024 		if (done)
   1025 			return 0;
   1026 		else
   1027 			return EBUSY;
   1028 	}
   1029 
   1030 	/*
   1031  	 * step 2: get non-resident or busy pages.
   1032  	 * object is locked.   data structures are unlocked.
   1033  	 */
   1034 
   1035 	if ((flags & PGO_SYNCIO) == 0) {
   1036 		goto done;
   1037 	}
   1038 
   1039 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1040 	    lcv++, current_offset += PAGE_SIZE) {
   1041 
   1042 		/*
   1043 		 * - skip over pages we've already gotten or don't want
   1044 		 * - skip over pages we don't _have_ to get
   1045 		 */
   1046 
   1047 		if (pps[lcv] != NULL ||
   1048 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1049 			continue;
   1050 
   1051 		pageidx = current_offset >> PAGE_SHIFT;
   1052 
   1053 		/*
   1054  		 * we have yet to locate the current page (pps[lcv]).   we
   1055 		 * first look for a page that is already at the current offset.
   1056 		 * if we find a page, we check to see if it is busy or
   1057 		 * released.  if that is the case, then we sleep on the page
   1058 		 * until it is no longer busy or released and repeat the lookup.
   1059 		 * if the page we found is neither busy nor released, then we
   1060 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1061 		 * 'break's the following while loop and indicates we are
   1062 		 * ready to move on to the next page in the "lcv" loop above.
   1063  		 *
   1064  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1065 		 * then it means that we allocated a new busy/fake/clean page
   1066 		 * ptmp in the object and we need to do I/O to fill in the data.
   1067  		 */
   1068 
   1069 		/* top of "pps" while loop */
   1070 		while (pps[lcv] == NULL) {
   1071 			/* look for a resident page */
   1072 			ptmp = uvm_pagelookup(uobj, current_offset);
   1073 
   1074 			/* not resident?   allocate one now (if we can) */
   1075 			if (ptmp == NULL) {
   1076 
   1077 				ptmp = uvm_pagealloc(uobj, current_offset,
   1078 				    NULL, 0);
   1079 
   1080 				/* out of RAM? */
   1081 				if (ptmp == NULL) {
   1082 					mutex_exit(&uobj->vmobjlock);
   1083 					UVMHIST_LOG(pdhist,
   1084 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1085 					uvm_wait("uao_getpage");
   1086 					mutex_enter(&uobj->vmobjlock);
   1087 					continue;
   1088 				}
   1089 
   1090 				/*
   1091 				 * safe with PQ's unlocked: because we just
   1092 				 * alloc'd the page
   1093 				 */
   1094 
   1095 				ptmp->pqflags |= PQ_AOBJ;
   1096 
   1097 				/*
   1098 				 * got new page ready for I/O.  break pps while
   1099 				 * loop.  pps[lcv] is still NULL.
   1100 				 */
   1101 
   1102 				break;
   1103 			}
   1104 
   1105 			/* page is there, see if we need to wait on it */
   1106 			if ((ptmp->flags & PG_BUSY) != 0) {
   1107 				ptmp->flags |= PG_WANTED;
   1108 				UVMHIST_LOG(pdhist,
   1109 				    "sleeping, ptmp->flags 0x%x\n",
   1110 				    ptmp->flags,0,0,0);
   1111 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1112 				    false, "uao_get", 0);
   1113 				mutex_enter(&uobj->vmobjlock);
   1114 				continue;
   1115 			}
   1116 
   1117 			/*
   1118  			 * if we get here then the page has become resident and
   1119 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1120 			 * own it) and set pps[lcv] (so that we exit the while
   1121 			 * loop).
   1122  			 */
   1123 
   1124 			/* we own it, caller must un-busy */
   1125 			ptmp->flags |= PG_BUSY;
   1126 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1127 			pps[lcv] = ptmp;
   1128 		}
   1129 
   1130 		/*
   1131  		 * if we own the valid page at the correct offset, pps[lcv] will
   1132  		 * point to it.   nothing more to do except go to the next page.
   1133  		 */
   1134 
   1135 		if (pps[lcv])
   1136 			continue;			/* next lcv */
   1137 
   1138 		/*
   1139  		 * we have a "fake/busy/clean" page that we just allocated.
   1140  		 * do the needed "i/o", either reading from swap or zeroing.
   1141  		 */
   1142 
   1143 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1144 
   1145 		/*
   1146  		 * just zero the page if there's nothing in swap.
   1147  		 */
   1148 
   1149 		if (swslot == 0) {
   1150 
   1151 			/*
   1152 			 * page hasn't existed before, just zero it.
   1153 			 */
   1154 
   1155 			uvm_pagezero(ptmp);
   1156 		} else {
   1157 #if defined(VMSWAP)
   1158 			int error;
   1159 
   1160 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1161 			     swslot, 0,0,0);
   1162 
   1163 			/*
   1164 			 * page in the swapped-out page.
   1165 			 * unlock object for i/o, relock when done.
   1166 			 */
   1167 
   1168 			mutex_exit(&uobj->vmobjlock);
   1169 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1170 			mutex_enter(&uobj->vmobjlock);
   1171 
   1172 			/*
   1173 			 * I/O done.  check for errors.
   1174 			 */
   1175 
   1176 			if (error != 0) {
   1177 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1178 				    error,0,0,0);
   1179 				if (ptmp->flags & PG_WANTED)
   1180 					wakeup(ptmp);
   1181 
   1182 				/*
   1183 				 * remove the swap slot from the aobj
   1184 				 * and mark the aobj as having no real slot.
   1185 				 * don't free the swap slot, thus preventing
   1186 				 * it from being used again.
   1187 				 */
   1188 
   1189 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1190 							SWSLOT_BAD);
   1191 				if (swslot > 0) {
   1192 					uvm_swap_markbad(swslot, 1);
   1193 				}
   1194 
   1195 				mutex_enter(&uvm_pageqlock);
   1196 				uvm_pagefree(ptmp);
   1197 				mutex_exit(&uvm_pageqlock);
   1198 				mutex_exit(&uobj->vmobjlock);
   1199 				return error;
   1200 			}
   1201 #else /* defined(VMSWAP) */
   1202 			panic("%s: pagein", __func__);
   1203 #endif /* defined(VMSWAP) */
   1204 		}
   1205 
   1206 		if ((access_type & VM_PROT_WRITE) == 0) {
   1207 			ptmp->flags |= PG_CLEAN;
   1208 			pmap_clear_modify(ptmp);
   1209 		}
   1210 
   1211 		/*
   1212  		 * we got the page!   clear the fake flag (indicates valid
   1213 		 * data now in page) and plug into our result array.   note
   1214 		 * that page is still busy.
   1215  		 *
   1216  		 * it is the callers job to:
   1217  		 * => check if the page is released
   1218  		 * => unbusy the page
   1219  		 * => activate the page
   1220  		 */
   1221 
   1222 		ptmp->flags &= ~PG_FAKE;
   1223 		pps[lcv] = ptmp;
   1224 	}
   1225 
   1226 	/*
   1227  	 * finally, unlock object and return.
   1228  	 */
   1229 
   1230 done:
   1231 	mutex_exit(&uobj->vmobjlock);
   1232 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1233 	return 0;
   1234 }
   1235 
   1236 #if defined(VMSWAP)
   1237 
   1238 /*
   1239  * uao_dropswap:  release any swap resources from this aobj page.
   1240  *
   1241  * => aobj must be locked or have a reference count of 0.
   1242  */
   1243 
   1244 void
   1245 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1246 {
   1247 	int slot;
   1248 
   1249 	slot = uao_set_swslot(uobj, pageidx, 0);
   1250 	if (slot) {
   1251 		uvm_swap_free(slot, 1);
   1252 	}
   1253 }
   1254 
   1255 /*
   1256  * page in every page in every aobj that is paged-out to a range of swslots.
   1257  *
   1258  * => nothing should be locked.
   1259  * => returns true if pagein was aborted due to lack of memory.
   1260  */
   1261 
   1262 bool
   1263 uao_swap_off(int startslot, int endslot)
   1264 {
   1265 	struct uvm_aobj *aobj, *nextaobj;
   1266 	bool rv;
   1267 
   1268 	/*
   1269 	 * walk the list of all aobjs.
   1270 	 */
   1271 
   1272 restart:
   1273 	mutex_enter(&uao_list_lock);
   1274 	for (aobj = LIST_FIRST(&uao_list);
   1275 	     aobj != NULL;
   1276 	     aobj = nextaobj) {
   1277 
   1278 		/*
   1279 		 * try to get the object lock, start all over if we fail.
   1280 		 * most of the time we'll get the aobj lock,
   1281 		 * so this should be a rare case.
   1282 		 */
   1283 
   1284 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1285 			mutex_exit(&uao_list_lock);
   1286 			/* XXX Better than yielding but inadequate. */
   1287 			kpause("livelock", false, 1, NULL);
   1288 			goto restart;
   1289 		}
   1290 
   1291 		/*
   1292 		 * add a ref to the aobj so it doesn't disappear
   1293 		 * while we're working.
   1294 		 */
   1295 
   1296 		uao_reference_locked(&aobj->u_obj);
   1297 
   1298 		/*
   1299 		 * now it's safe to unlock the uao list.
   1300 		 */
   1301 
   1302 		mutex_exit(&uao_list_lock);
   1303 
   1304 		/*
   1305 		 * page in any pages in the swslot range.
   1306 		 * if there's an error, abort and return the error.
   1307 		 */
   1308 
   1309 		rv = uao_pagein(aobj, startslot, endslot);
   1310 		if (rv) {
   1311 			uao_detach_locked(&aobj->u_obj);
   1312 			return rv;
   1313 		}
   1314 
   1315 		/*
   1316 		 * we're done with this aobj.
   1317 		 * relock the list and drop our ref on the aobj.
   1318 		 */
   1319 
   1320 		mutex_enter(&uao_list_lock);
   1321 		nextaobj = LIST_NEXT(aobj, u_list);
   1322 		uao_detach_locked(&aobj->u_obj);
   1323 	}
   1324 
   1325 	/*
   1326 	 * done with traversal, unlock the list
   1327 	 */
   1328 	mutex_exit(&uao_list_lock);
   1329 	return false;
   1330 }
   1331 
   1332 
   1333 /*
   1334  * page in any pages from aobj in the given range.
   1335  *
   1336  * => aobj must be locked and is returned locked.
   1337  * => returns true if pagein was aborted due to lack of memory.
   1338  */
   1339 static bool
   1340 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1341 {
   1342 	bool rv;
   1343 
   1344 	if (UAO_USES_SWHASH(aobj)) {
   1345 		struct uao_swhash_elt *elt;
   1346 		int buck;
   1347 
   1348 restart:
   1349 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1350 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1351 			     elt != NULL;
   1352 			     elt = LIST_NEXT(elt, list)) {
   1353 				int i;
   1354 
   1355 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1356 					int slot = elt->slots[i];
   1357 
   1358 					/*
   1359 					 * if the slot isn't in range, skip it.
   1360 					 */
   1361 
   1362 					if (slot < startslot ||
   1363 					    slot >= endslot) {
   1364 						continue;
   1365 					}
   1366 
   1367 					/*
   1368 					 * process the page,
   1369 					 * the start over on this object
   1370 					 * since the swhash elt
   1371 					 * may have been freed.
   1372 					 */
   1373 
   1374 					rv = uao_pagein_page(aobj,
   1375 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1376 					if (rv) {
   1377 						return rv;
   1378 					}
   1379 					goto restart;
   1380 				}
   1381 			}
   1382 		}
   1383 	} else {
   1384 		int i;
   1385 
   1386 		for (i = 0; i < aobj->u_pages; i++) {
   1387 			int slot = aobj->u_swslots[i];
   1388 
   1389 			/*
   1390 			 * if the slot isn't in range, skip it
   1391 			 */
   1392 
   1393 			if (slot < startslot || slot >= endslot) {
   1394 				continue;
   1395 			}
   1396 
   1397 			/*
   1398 			 * process the page.
   1399 			 */
   1400 
   1401 			rv = uao_pagein_page(aobj, i);
   1402 			if (rv) {
   1403 				return rv;
   1404 			}
   1405 		}
   1406 	}
   1407 
   1408 	return false;
   1409 }
   1410 
   1411 /*
   1412  * page in a page from an aobj.  used for swap_off.
   1413  * returns true if pagein was aborted due to lack of memory.
   1414  *
   1415  * => aobj must be locked and is returned locked.
   1416  */
   1417 
   1418 static bool
   1419 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1420 {
   1421 	struct vm_page *pg;
   1422 	int rv, npages;
   1423 
   1424 	pg = NULL;
   1425 	npages = 1;
   1426 	/* locked: aobj */
   1427 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1428 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1429 	/* unlocked: aobj */
   1430 
   1431 	/*
   1432 	 * relock and finish up.
   1433 	 */
   1434 
   1435 	mutex_enter(&aobj->u_obj.vmobjlock);
   1436 	switch (rv) {
   1437 	case 0:
   1438 		break;
   1439 
   1440 	case EIO:
   1441 	case ERESTART:
   1442 
   1443 		/*
   1444 		 * nothing more to do on errors.
   1445 		 * ERESTART can only mean that the anon was freed,
   1446 		 * so again there's nothing to do.
   1447 		 */
   1448 
   1449 		return false;
   1450 
   1451 	default:
   1452 		return true;
   1453 	}
   1454 
   1455 	/*
   1456 	 * ok, we've got the page now.
   1457 	 * mark it as dirty, clear its swslot and un-busy it.
   1458 	 */
   1459 	uao_dropswap(&aobj->u_obj, pageidx);
   1460 
   1461 	/*
   1462 	 * make sure it's on a page queue.
   1463 	 */
   1464 	mutex_enter(&uvm_pageqlock);
   1465 	if (pg->wire_count == 0)
   1466 		uvm_pageenqueue(pg);
   1467 	mutex_exit(&uvm_pageqlock);
   1468 
   1469 	if (pg->flags & PG_WANTED) {
   1470 		wakeup(pg);
   1471 	}
   1472 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1473 	UVM_PAGE_OWN(pg, NULL);
   1474 
   1475 	return false;
   1476 }
   1477 
   1478 /*
   1479  * uao_dropswap_range: drop swapslots in the range.
   1480  *
   1481  * => aobj must be locked and is returned locked.
   1482  * => start is inclusive.  end is exclusive.
   1483  */
   1484 
   1485 void
   1486 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1487 {
   1488 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1489 
   1490 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1491 
   1492 	uao_dropswap_range1(aobj, start, end);
   1493 }
   1494 
   1495 static void
   1496 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1497 {
   1498 	int swpgonlydelta = 0;
   1499 
   1500 	if (end == 0) {
   1501 		end = INT64_MAX;
   1502 	}
   1503 
   1504 	if (UAO_USES_SWHASH(aobj)) {
   1505 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1506 		voff_t taghi;
   1507 		voff_t taglo;
   1508 
   1509 		taglo = UAO_SWHASH_ELT_TAG(start);
   1510 		taghi = UAO_SWHASH_ELT_TAG(end);
   1511 
   1512 		for (i = 0; i < hashbuckets; i++) {
   1513 			struct uao_swhash_elt *elt, *next;
   1514 
   1515 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1516 			     elt != NULL;
   1517 			     elt = next) {
   1518 				int startidx, endidx;
   1519 				int j;
   1520 
   1521 				next = LIST_NEXT(elt, list);
   1522 
   1523 				if (elt->tag < taglo || taghi < elt->tag) {
   1524 					continue;
   1525 				}
   1526 
   1527 				if (elt->tag == taglo) {
   1528 					startidx =
   1529 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1530 				} else {
   1531 					startidx = 0;
   1532 				}
   1533 
   1534 				if (elt->tag == taghi) {
   1535 					endidx =
   1536 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1537 				} else {
   1538 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1539 				}
   1540 
   1541 				for (j = startidx; j < endidx; j++) {
   1542 					int slot = elt->slots[j];
   1543 
   1544 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1545 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1546 					    + j) << PAGE_SHIFT) == NULL);
   1547 					if (slot > 0) {
   1548 						uvm_swap_free(slot, 1);
   1549 						swpgonlydelta++;
   1550 						KASSERT(elt->count > 0);
   1551 						elt->slots[j] = 0;
   1552 						elt->count--;
   1553 					}
   1554 				}
   1555 
   1556 				if (elt->count == 0) {
   1557 					LIST_REMOVE(elt, list);
   1558 					pool_put(&uao_swhash_elt_pool, elt);
   1559 				}
   1560 			}
   1561 		}
   1562 	} else {
   1563 		int i;
   1564 
   1565 		if (aobj->u_pages < end) {
   1566 			end = aobj->u_pages;
   1567 		}
   1568 		for (i = start; i < end; i++) {
   1569 			int slot = aobj->u_swslots[i];
   1570 
   1571 			if (slot > 0) {
   1572 				uvm_swap_free(slot, 1);
   1573 				swpgonlydelta++;
   1574 			}
   1575 		}
   1576 	}
   1577 
   1578 	/*
   1579 	 * adjust the counter of pages only in swap for all
   1580 	 * the swap slots we've freed.
   1581 	 */
   1582 
   1583 	if (swpgonlydelta > 0) {
   1584 		mutex_enter(&uvm_swap_data_lock);
   1585 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1586 		uvmexp.swpgonly -= swpgonlydelta;
   1587 		mutex_exit(&uvm_swap_data_lock);
   1588 	}
   1589 }
   1590 
   1591 #endif /* defined(VMSWAP) */
   1592