uvm_aobj.c revision 1.107 1 /* $NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. All advertising materials mentioning features or use of this software
17 * must display the following acknowledgement:
18 * This product includes software developed by Charles D. Cranor and
19 * Washington University.
20 * 4. The name of the author may not be used to endorse or promote products
21 * derived from this software without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
33 *
34 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
35 */
36 /*
37 * uvm_aobj.c: anonymous memory uvm_object pager
38 *
39 * author: Chuck Silvers <chuq (at) chuq.com>
40 * started: Jan-1998
41 *
42 * - design mostly from Chuck Cranor
43 */
44
45 #include <sys/cdefs.h>
46 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.107 2009/09/13 18:45:12 pooka Exp $");
47
48 #include "opt_uvmhist.h"
49
50 #include <sys/param.h>
51 #include <sys/systm.h>
52 #include <sys/proc.h>
53 #include <sys/kernel.h>
54 #include <sys/kmem.h>
55 #include <sys/pool.h>
56
57 #include <uvm/uvm.h>
58
59 /*
60 * an aobj manages anonymous-memory backed uvm_objects. in addition
61 * to keeping the list of resident pages, it also keeps a list of
62 * allocated swap blocks. depending on the size of the aobj this list
63 * of allocated swap blocks is either stored in an array (small objects)
64 * or in a hash table (large objects).
65 */
66
67 /*
68 * local structures
69 */
70
71 /*
72 * for hash tables, we break the address space of the aobj into blocks
73 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
74 * be a power of two.
75 */
76
77 #define UAO_SWHASH_CLUSTER_SHIFT 4
78 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
79
80 /* get the "tag" for this page index */
81 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
82 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
83
84 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
85 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
86
87 /* given an ELT and a page index, find the swap slot */
88 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
89 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
90
91 /* given an ELT, return its pageidx base */
92 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
93 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
94
95 /*
96 * the swhash hash function
97 */
98
99 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
100 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
101 & (AOBJ)->u_swhashmask)])
102
103 /*
104 * the swhash threshhold determines if we will use an array or a
105 * hash table to store the list of allocated swap blocks.
106 */
107
108 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
109 #define UAO_USES_SWHASH(AOBJ) \
110 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
111
112 /*
113 * the number of buckets in a swhash, with an upper bound
114 */
115
116 #define UAO_SWHASH_MAXBUCKETS 256
117 #define UAO_SWHASH_BUCKETS(AOBJ) \
118 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
119 UAO_SWHASH_MAXBUCKETS))
120
121 /*
122 * uao_swhash_elt: when a hash table is being used, this structure defines
123 * the format of an entry in the bucket list.
124 */
125
126 struct uao_swhash_elt {
127 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
128 voff_t tag; /* our 'tag' */
129 int count; /* our number of active slots */
130 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
131 };
132
133 /*
134 * uao_swhash: the swap hash table structure
135 */
136
137 LIST_HEAD(uao_swhash, uao_swhash_elt);
138
139 /*
140 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
141 * NOTE: Pages for this pool must not come from a pageable kernel map!
142 */
143 static struct pool uao_swhash_elt_pool;
144
145 static struct pool_cache uvm_aobj_cache;
146
147 /*
148 * uvm_aobj: the actual anon-backed uvm_object
149 *
150 * => the uvm_object is at the top of the structure, this allows
151 * (struct uvm_aobj *) == (struct uvm_object *)
152 * => only one of u_swslots and u_swhash is used in any given aobj
153 */
154
155 struct uvm_aobj {
156 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
157 pgoff_t u_pages; /* number of pages in entire object */
158 int u_flags; /* the flags (see uvm_aobj.h) */
159 int *u_swslots; /* array of offset->swapslot mappings */
160 /*
161 * hashtable of offset->swapslot mappings
162 * (u_swhash is an array of bucket heads)
163 */
164 struct uao_swhash *u_swhash;
165 u_long u_swhashmask; /* mask for hashtable */
166 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
167 };
168
169 /*
170 * local functions
171 */
172
173 static void uao_free(struct uvm_aobj *);
174 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
175 int *, int, vm_prot_t, int, int);
176 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
177
178 static void uao_detach_locked(struct uvm_object *);
179 static void uao_reference_locked(struct uvm_object *);
180
181 #if defined(VMSWAP)
182 static struct uao_swhash_elt *uao_find_swhash_elt
183 (struct uvm_aobj *, int, bool);
184
185 static bool uao_pagein(struct uvm_aobj *, int, int);
186 static bool uao_pagein_page(struct uvm_aobj *, int);
187 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
188 #endif /* defined(VMSWAP) */
189
190 /*
191 * aobj_pager
192 *
193 * note that some functions (e.g. put) are handled elsewhere
194 */
195
196 const struct uvm_pagerops aobj_pager = {
197 .pgo_reference = uao_reference,
198 .pgo_detach = uao_detach,
199 .pgo_get = uao_get,
200 .pgo_put = uao_put,
201 };
202
203 /*
204 * uao_list: global list of active aobjs, locked by uao_list_lock
205 */
206
207 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
208 static kmutex_t uao_list_lock;
209
210 /*
211 * functions
212 */
213
214 /*
215 * hash table/array related functions
216 */
217
218 #if defined(VMSWAP)
219
220 /*
221 * uao_find_swhash_elt: find (or create) a hash table entry for a page
222 * offset.
223 *
224 * => the object should be locked by the caller
225 */
226
227 static struct uao_swhash_elt *
228 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
229 {
230 struct uao_swhash *swhash;
231 struct uao_swhash_elt *elt;
232 voff_t page_tag;
233
234 swhash = UAO_SWHASH_HASH(aobj, pageidx);
235 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
236
237 /*
238 * now search the bucket for the requested tag
239 */
240
241 LIST_FOREACH(elt, swhash, list) {
242 if (elt->tag == page_tag) {
243 return elt;
244 }
245 }
246 if (!create) {
247 return NULL;
248 }
249
250 /*
251 * allocate a new entry for the bucket and init/insert it in
252 */
253
254 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
255 if (elt == NULL) {
256 return NULL;
257 }
258 LIST_INSERT_HEAD(swhash, elt, list);
259 elt->tag = page_tag;
260 elt->count = 0;
261 memset(elt->slots, 0, sizeof(elt->slots));
262 return elt;
263 }
264
265 /*
266 * uao_find_swslot: find the swap slot number for an aobj/pageidx
267 *
268 * => object must be locked by caller
269 */
270
271 int
272 uao_find_swslot(struct uvm_object *uobj, int pageidx)
273 {
274 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
275 struct uao_swhash_elt *elt;
276
277 /*
278 * if noswap flag is set, then we never return a slot
279 */
280
281 if (aobj->u_flags & UAO_FLAG_NOSWAP)
282 return(0);
283
284 /*
285 * if hashing, look in hash table.
286 */
287
288 if (UAO_USES_SWHASH(aobj)) {
289 elt = uao_find_swhash_elt(aobj, pageidx, false);
290 if (elt)
291 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
292 else
293 return(0);
294 }
295
296 /*
297 * otherwise, look in the array
298 */
299
300 return(aobj->u_swslots[pageidx]);
301 }
302
303 /*
304 * uao_set_swslot: set the swap slot for a page in an aobj.
305 *
306 * => setting a slot to zero frees the slot
307 * => object must be locked by caller
308 * => we return the old slot number, or -1 if we failed to allocate
309 * memory to record the new slot number
310 */
311
312 int
313 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
314 {
315 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
316 struct uao_swhash_elt *elt;
317 int oldslot;
318 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
319 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
320 aobj, pageidx, slot, 0);
321
322 /*
323 * if noswap flag is set, then we can't set a non-zero slot.
324 */
325
326 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
327 if (slot == 0)
328 return(0);
329
330 printf("uao_set_swslot: uobj = %p\n", uobj);
331 panic("uao_set_swslot: NOSWAP object");
332 }
333
334 /*
335 * are we using a hash table? if so, add it in the hash.
336 */
337
338 if (UAO_USES_SWHASH(aobj)) {
339
340 /*
341 * Avoid allocating an entry just to free it again if
342 * the page had not swap slot in the first place, and
343 * we are freeing.
344 */
345
346 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
347 if (elt == NULL) {
348 return slot ? -1 : 0;
349 }
350
351 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
352 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
353
354 /*
355 * now adjust the elt's reference counter and free it if we've
356 * dropped it to zero.
357 */
358
359 if (slot) {
360 if (oldslot == 0)
361 elt->count++;
362 } else {
363 if (oldslot)
364 elt->count--;
365
366 if (elt->count == 0) {
367 LIST_REMOVE(elt, list);
368 pool_put(&uao_swhash_elt_pool, elt);
369 }
370 }
371 } else {
372 /* we are using an array */
373 oldslot = aobj->u_swslots[pageidx];
374 aobj->u_swslots[pageidx] = slot;
375 }
376 return (oldslot);
377 }
378
379 #endif /* defined(VMSWAP) */
380
381 /*
382 * end of hash/array functions
383 */
384
385 /*
386 * uao_free: free all resources held by an aobj, and then free the aobj
387 *
388 * => the aobj should be dead
389 */
390
391 static void
392 uao_free(struct uvm_aobj *aobj)
393 {
394 int swpgonlydelta = 0;
395
396
397 #if defined(VMSWAP)
398 uao_dropswap_range1(aobj, 0, 0);
399 #endif /* defined(VMSWAP) */
400
401 mutex_exit(&aobj->u_obj.vmobjlock);
402
403 #if defined(VMSWAP)
404 if (UAO_USES_SWHASH(aobj)) {
405
406 /*
407 * free the hash table itself.
408 */
409
410 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
411 } else {
412
413 /*
414 * free the array itsself.
415 */
416
417 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
418 }
419 #endif /* defined(VMSWAP) */
420
421 /*
422 * finally free the aobj itself
423 */
424
425 UVM_OBJ_DESTROY(&aobj->u_obj);
426 pool_cache_put(&uvm_aobj_cache, aobj);
427
428 /*
429 * adjust the counter of pages only in swap for all
430 * the swap slots we've freed.
431 */
432
433 if (swpgonlydelta > 0) {
434 mutex_enter(&uvm_swap_data_lock);
435 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
436 uvmexp.swpgonly -= swpgonlydelta;
437 mutex_exit(&uvm_swap_data_lock);
438 }
439 }
440
441 /*
442 * pager functions
443 */
444
445 /*
446 * uao_create: create an aobj of the given size and return its uvm_object.
447 *
448 * => for normal use, flags are always zero
449 * => for the kernel object, the flags are:
450 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
451 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
452 */
453
454 struct uvm_object *
455 uao_create(vsize_t size, int flags)
456 {
457 static struct uvm_aobj kernel_object_store;
458 static int kobj_alloced = 0;
459 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
460 struct uvm_aobj *aobj;
461 int refs;
462
463 /*
464 * malloc a new aobj unless we are asked for the kernel object
465 */
466
467 if (flags & UAO_FLAG_KERNOBJ) {
468 KASSERT(!kobj_alloced);
469 aobj = &kernel_object_store;
470 aobj->u_pages = pages;
471 aobj->u_flags = UAO_FLAG_NOSWAP;
472 refs = UVM_OBJ_KERN;
473 kobj_alloced = UAO_FLAG_KERNOBJ;
474 } else if (flags & UAO_FLAG_KERNSWAP) {
475 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
476 aobj = &kernel_object_store;
477 kobj_alloced = UAO_FLAG_KERNSWAP;
478 refs = 0xdeadbeaf; /* XXX: gcc */
479 } else {
480 aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
481 aobj->u_pages = pages;
482 aobj->u_flags = 0;
483 refs = 1;
484 }
485
486 /*
487 * allocate hash/array if necessary
488 *
489 * note: in the KERNSWAP case no need to worry about locking since
490 * we are still booting we should be the only thread around.
491 */
492
493 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
494 #if defined(VMSWAP)
495 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
496
497 /* allocate hash table or array depending on object size */
498 if (UAO_USES_SWHASH(aobj)) {
499 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
500 HASH_LIST, kernswap ? false : true,
501 &aobj->u_swhashmask);
502 if (aobj->u_swhash == NULL)
503 panic("uao_create: hashinit swhash failed");
504 } else {
505 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
506 kernswap ? KM_NOSLEEP : KM_SLEEP);
507 if (aobj->u_swslots == NULL)
508 panic("uao_create: malloc swslots failed");
509 }
510 #endif /* defined(VMSWAP) */
511
512 if (flags) {
513 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
514 return(&aobj->u_obj);
515 }
516 }
517
518 /*
519 * init aobj fields
520 */
521
522 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
523
524 /*
525 * now that aobj is ready, add it to the global list
526 */
527
528 mutex_enter(&uao_list_lock);
529 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
530 mutex_exit(&uao_list_lock);
531 return(&aobj->u_obj);
532 }
533
534
535
536 /*
537 * uao_init: set up aobj pager subsystem
538 *
539 * => called at boot time from uvm_pager_init()
540 */
541
542 void
543 uao_init(void)
544 {
545 static int uao_initialized;
546
547 if (uao_initialized)
548 return;
549 uao_initialized = true;
550 LIST_INIT(&uao_list);
551 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
552 pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
553 0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
554 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
555 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
556 }
557
558 /*
559 * uao_reference: add a ref to an aobj
560 *
561 * => aobj must be unlocked
562 * => just lock it and call the locked version
563 */
564
565 void
566 uao_reference(struct uvm_object *uobj)
567 {
568
569 /*
570 * kernel_object already has plenty of references, leave it alone.
571 */
572
573 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
574 return;
575
576 mutex_enter(&uobj->vmobjlock);
577 uao_reference_locked(uobj);
578 mutex_exit(&uobj->vmobjlock);
579 }
580
581 /*
582 * uao_reference_locked: add a ref to an aobj that is already locked
583 *
584 * => aobj must be locked
585 * this needs to be separate from the normal routine
586 * since sometimes we need to add a reference to an aobj when
587 * it's already locked.
588 */
589
590 static void
591 uao_reference_locked(struct uvm_object *uobj)
592 {
593 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
594
595 /*
596 * kernel_object already has plenty of references, leave it alone.
597 */
598
599 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
600 return;
601
602 uobj->uo_refs++;
603 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
604 uobj, uobj->uo_refs,0,0);
605 }
606
607 /*
608 * uao_detach: drop a reference to an aobj
609 *
610 * => aobj must be unlocked
611 * => just lock it and call the locked version
612 */
613
614 void
615 uao_detach(struct uvm_object *uobj)
616 {
617
618 /*
619 * detaching from kernel_object is a noop.
620 */
621
622 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
623 return;
624
625 mutex_enter(&uobj->vmobjlock);
626 uao_detach_locked(uobj);
627 }
628
629 /*
630 * uao_detach_locked: drop a reference to an aobj
631 *
632 * => aobj must be locked, and is unlocked (or freed) upon return.
633 * this needs to be separate from the normal routine
634 * since sometimes we need to detach from an aobj when
635 * it's already locked.
636 */
637
638 static void
639 uao_detach_locked(struct uvm_object *uobj)
640 {
641 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
642 struct vm_page *pg;
643 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
644
645 /*
646 * detaching from kernel_object is a noop.
647 */
648
649 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
650 mutex_exit(&uobj->vmobjlock);
651 return;
652 }
653
654 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
655 uobj->uo_refs--;
656 if (uobj->uo_refs) {
657 mutex_exit(&uobj->vmobjlock);
658 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
659 return;
660 }
661
662 /*
663 * remove the aobj from the global list.
664 */
665
666 mutex_enter(&uao_list_lock);
667 LIST_REMOVE(aobj, u_list);
668 mutex_exit(&uao_list_lock);
669
670 /*
671 * free all the pages left in the aobj. for each page,
672 * when the page is no longer busy (and thus after any disk i/o that
673 * it's involved in is complete), release any swap resources and
674 * free the page itself.
675 */
676
677 mutex_enter(&uvm_pageqlock);
678 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
679 pmap_page_protect(pg, VM_PROT_NONE);
680 if (pg->flags & PG_BUSY) {
681 pg->flags |= PG_WANTED;
682 mutex_exit(&uvm_pageqlock);
683 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
684 "uao_det", 0);
685 mutex_enter(&uobj->vmobjlock);
686 mutex_enter(&uvm_pageqlock);
687 continue;
688 }
689 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
690 uvm_pagefree(pg);
691 }
692 mutex_exit(&uvm_pageqlock);
693
694 /*
695 * finally, free the aobj itself.
696 */
697
698 uao_free(aobj);
699 }
700
701 /*
702 * uao_put: flush pages out of a uvm object
703 *
704 * => object should be locked by caller. we may _unlock_ the object
705 * if (and only if) we need to clean a page (PGO_CLEANIT).
706 * XXXJRT Currently, however, we don't. In the case of cleaning
707 * XXXJRT a page, we simply just deactivate it. Should probably
708 * XXXJRT handle this better, in the future (although "flushing"
709 * XXXJRT anonymous memory isn't terribly important).
710 * => if PGO_CLEANIT is not set, then we will neither unlock the object
711 * or block.
712 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
713 * for flushing.
714 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
715 * that new pages are inserted on the tail end of the list. thus,
716 * we can make a complete pass through the object in one go by starting
717 * at the head and working towards the tail (new pages are put in
718 * front of us).
719 * => NOTE: we are allowed to lock the page queues, so the caller
720 * must not be holding the lock on them [e.g. pagedaemon had
721 * better not call us with the queues locked]
722 * => we return 0 unless we encountered some sort of I/O error
723 * XXXJRT currently never happens, as we never directly initiate
724 * XXXJRT I/O
725 *
726 * note on page traversal:
727 * we can traverse the pages in an object either by going down the
728 * linked list in "uobj->memq", or we can go over the address range
729 * by page doing hash table lookups for each address. depending
730 * on how many pages are in the object it may be cheaper to do one
731 * or the other. we set "by_list" to true if we are using memq.
732 * if the cost of a hash lookup was equal to the cost of the list
733 * traversal we could compare the number of pages in the start->stop
734 * range to the total number of pages in the object. however, it
735 * seems that a hash table lookup is more expensive than the linked
736 * list traversal, so we multiply the number of pages in the
737 * start->stop range by a penalty which we define below.
738 */
739
740 static int
741 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
742 {
743 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
744 struct vm_page *pg, *nextpg, curmp, endmp;
745 bool by_list;
746 voff_t curoff;
747 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
748
749 KASSERT(mutex_owned(&uobj->vmobjlock));
750
751 curoff = 0;
752 if (flags & PGO_ALLPAGES) {
753 start = 0;
754 stop = aobj->u_pages << PAGE_SHIFT;
755 by_list = true; /* always go by the list */
756 } else {
757 start = trunc_page(start);
758 if (stop == 0) {
759 stop = aobj->u_pages << PAGE_SHIFT;
760 } else {
761 stop = round_page(stop);
762 }
763 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
764 printf("uao_flush: strange, got an out of range "
765 "flush (fixed)\n");
766 stop = aobj->u_pages << PAGE_SHIFT;
767 }
768 by_list = (uobj->uo_npages <=
769 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
770 }
771 UVMHIST_LOG(maphist,
772 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
773 start, stop, by_list, flags);
774
775 /*
776 * Don't need to do any work here if we're not freeing
777 * or deactivating pages.
778 */
779
780 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
781 mutex_exit(&uobj->vmobjlock);
782 return 0;
783 }
784
785 /*
786 * Initialize the marker pages. See the comment in
787 * genfs_putpages() also.
788 */
789
790 curmp.uobject = uobj;
791 curmp.offset = (voff_t)-1;
792 curmp.flags = PG_BUSY;
793 endmp.uobject = uobj;
794 endmp.offset = (voff_t)-1;
795 endmp.flags = PG_BUSY;
796
797 /*
798 * now do it. note: we must update nextpg in the body of loop or we
799 * will get stuck. we need to use nextpg if we'll traverse the list
800 * because we may free "pg" before doing the next loop.
801 */
802
803 if (by_list) {
804 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
805 nextpg = TAILQ_FIRST(&uobj->memq);
806 uvm_lwp_hold(curlwp);
807 } else {
808 curoff = start;
809 nextpg = NULL; /* Quell compiler warning */
810 }
811
812 /* locked: uobj */
813 for (;;) {
814 if (by_list) {
815 pg = nextpg;
816 if (pg == &endmp)
817 break;
818 nextpg = TAILQ_NEXT(pg, listq.queue);
819 if (pg->offset < start || pg->offset >= stop)
820 continue;
821 } else {
822 if (curoff < stop) {
823 pg = uvm_pagelookup(uobj, curoff);
824 curoff += PAGE_SIZE;
825 } else
826 break;
827 if (pg == NULL)
828 continue;
829 }
830
831 /*
832 * wait and try again if the page is busy.
833 */
834
835 if (pg->flags & PG_BUSY) {
836 if (by_list) {
837 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
838 }
839 pg->flags |= PG_WANTED;
840 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
841 "uao_put", 0);
842 mutex_enter(&uobj->vmobjlock);
843 if (by_list) {
844 nextpg = TAILQ_NEXT(&curmp, listq.queue);
845 TAILQ_REMOVE(&uobj->memq, &curmp,
846 listq.queue);
847 } else
848 curoff -= PAGE_SIZE;
849 continue;
850 }
851
852 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
853
854 /*
855 * XXX In these first 3 cases, we always just
856 * XXX deactivate the page. We may want to
857 * XXX handle the different cases more specifically
858 * XXX in the future.
859 */
860
861 case PGO_CLEANIT|PGO_FREE:
862 case PGO_CLEANIT|PGO_DEACTIVATE:
863 case PGO_DEACTIVATE:
864 deactivate_it:
865 mutex_enter(&uvm_pageqlock);
866 /* skip the page if it's wired */
867 if (pg->wire_count == 0) {
868 uvm_pagedeactivate(pg);
869 }
870 mutex_exit(&uvm_pageqlock);
871 break;
872
873 case PGO_FREE:
874 /*
875 * If there are multiple references to
876 * the object, just deactivate the page.
877 */
878
879 if (uobj->uo_refs > 1)
880 goto deactivate_it;
881
882 /*
883 * free the swap slot and the page.
884 */
885
886 pmap_page_protect(pg, VM_PROT_NONE);
887
888 /*
889 * freeing swapslot here is not strictly necessary.
890 * however, leaving it here doesn't save much
891 * because we need to update swap accounting anyway.
892 */
893
894 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
895 mutex_enter(&uvm_pageqlock);
896 uvm_pagefree(pg);
897 mutex_exit(&uvm_pageqlock);
898 break;
899
900 default:
901 panic("%s: impossible", __func__);
902 }
903 }
904 if (by_list) {
905 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
906 uvm_lwp_rele(curlwp);
907 }
908 mutex_exit(&uobj->vmobjlock);
909 return 0;
910 }
911
912 /*
913 * uao_get: fetch me a page
914 *
915 * we have three cases:
916 * 1: page is resident -> just return the page.
917 * 2: page is zero-fill -> allocate a new page and zero it.
918 * 3: page is swapped out -> fetch the page from swap.
919 *
920 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
921 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
922 * then we will need to return EBUSY.
923 *
924 * => prefer map unlocked (not required)
925 * => object must be locked! we will _unlock_ it before starting any I/O.
926 * => flags: PGO_ALLPAGES: get all of the pages
927 * PGO_LOCKED: fault data structures are locked
928 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
929 * => NOTE: caller must check for released pages!!
930 */
931
932 static int
933 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
934 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
935 {
936 #if defined(VMSWAP)
937 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
938 #endif /* defined(VMSWAP) */
939 voff_t current_offset;
940 struct vm_page *ptmp = NULL; /* Quell compiler warning */
941 int lcv, gotpages, maxpages, swslot, pageidx;
942 bool done;
943 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
944
945 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
946 (struct uvm_aobj *)uobj, offset, flags,0);
947
948 /*
949 * get number of pages
950 */
951
952 maxpages = *npagesp;
953
954 /*
955 * step 1: handled the case where fault data structures are locked.
956 */
957
958 if (flags & PGO_LOCKED) {
959
960 /*
961 * step 1a: get pages that are already resident. only do
962 * this if the data structures are locked (i.e. the first
963 * time through).
964 */
965
966 done = true; /* be optimistic */
967 gotpages = 0; /* # of pages we got so far */
968 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
969 lcv++, current_offset += PAGE_SIZE) {
970 /* do we care about this page? if not, skip it */
971 if (pps[lcv] == PGO_DONTCARE)
972 continue;
973 ptmp = uvm_pagelookup(uobj, current_offset);
974
975 /*
976 * if page is new, attempt to allocate the page,
977 * zero-fill'd.
978 */
979
980 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
981 current_offset >> PAGE_SHIFT) == 0) {
982 ptmp = uvm_pagealloc(uobj, current_offset,
983 NULL, UVM_PGA_ZERO);
984 if (ptmp) {
985 /* new page */
986 ptmp->flags &= ~(PG_FAKE);
987 ptmp->pqflags |= PQ_AOBJ;
988 goto gotpage;
989 }
990 }
991
992 /*
993 * to be useful must get a non-busy page
994 */
995
996 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
997 if (lcv == centeridx ||
998 (flags & PGO_ALLPAGES) != 0)
999 /* need to do a wait or I/O! */
1000 done = false;
1001 continue;
1002 }
1003
1004 /*
1005 * useful page: busy/lock it and plug it in our
1006 * result array
1007 */
1008
1009 /* caller must un-busy this page */
1010 ptmp->flags |= PG_BUSY;
1011 UVM_PAGE_OWN(ptmp, "uao_get1");
1012 gotpage:
1013 pps[lcv] = ptmp;
1014 gotpages++;
1015 }
1016
1017 /*
1018 * step 1b: now we've either done everything needed or we
1019 * to unlock and do some waiting or I/O.
1020 */
1021
1022 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1023 *npagesp = gotpages;
1024 if (done)
1025 return 0;
1026 else
1027 return EBUSY;
1028 }
1029
1030 /*
1031 * step 2: get non-resident or busy pages.
1032 * object is locked. data structures are unlocked.
1033 */
1034
1035 if ((flags & PGO_SYNCIO) == 0) {
1036 goto done;
1037 }
1038
1039 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1040 lcv++, current_offset += PAGE_SIZE) {
1041
1042 /*
1043 * - skip over pages we've already gotten or don't want
1044 * - skip over pages we don't _have_ to get
1045 */
1046
1047 if (pps[lcv] != NULL ||
1048 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1049 continue;
1050
1051 pageidx = current_offset >> PAGE_SHIFT;
1052
1053 /*
1054 * we have yet to locate the current page (pps[lcv]). we
1055 * first look for a page that is already at the current offset.
1056 * if we find a page, we check to see if it is busy or
1057 * released. if that is the case, then we sleep on the page
1058 * until it is no longer busy or released and repeat the lookup.
1059 * if the page we found is neither busy nor released, then we
1060 * busy it (so we own it) and plug it into pps[lcv]. this
1061 * 'break's the following while loop and indicates we are
1062 * ready to move on to the next page in the "lcv" loop above.
1063 *
1064 * if we exit the while loop with pps[lcv] still set to NULL,
1065 * then it means that we allocated a new busy/fake/clean page
1066 * ptmp in the object and we need to do I/O to fill in the data.
1067 */
1068
1069 /* top of "pps" while loop */
1070 while (pps[lcv] == NULL) {
1071 /* look for a resident page */
1072 ptmp = uvm_pagelookup(uobj, current_offset);
1073
1074 /* not resident? allocate one now (if we can) */
1075 if (ptmp == NULL) {
1076
1077 ptmp = uvm_pagealloc(uobj, current_offset,
1078 NULL, 0);
1079
1080 /* out of RAM? */
1081 if (ptmp == NULL) {
1082 mutex_exit(&uobj->vmobjlock);
1083 UVMHIST_LOG(pdhist,
1084 "sleeping, ptmp == NULL\n",0,0,0,0);
1085 uvm_wait("uao_getpage");
1086 mutex_enter(&uobj->vmobjlock);
1087 continue;
1088 }
1089
1090 /*
1091 * safe with PQ's unlocked: because we just
1092 * alloc'd the page
1093 */
1094
1095 ptmp->pqflags |= PQ_AOBJ;
1096
1097 /*
1098 * got new page ready for I/O. break pps while
1099 * loop. pps[lcv] is still NULL.
1100 */
1101
1102 break;
1103 }
1104
1105 /* page is there, see if we need to wait on it */
1106 if ((ptmp->flags & PG_BUSY) != 0) {
1107 ptmp->flags |= PG_WANTED;
1108 UVMHIST_LOG(pdhist,
1109 "sleeping, ptmp->flags 0x%x\n",
1110 ptmp->flags,0,0,0);
1111 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1112 false, "uao_get", 0);
1113 mutex_enter(&uobj->vmobjlock);
1114 continue;
1115 }
1116
1117 /*
1118 * if we get here then the page has become resident and
1119 * unbusy between steps 1 and 2. we busy it now (so we
1120 * own it) and set pps[lcv] (so that we exit the while
1121 * loop).
1122 */
1123
1124 /* we own it, caller must un-busy */
1125 ptmp->flags |= PG_BUSY;
1126 UVM_PAGE_OWN(ptmp, "uao_get2");
1127 pps[lcv] = ptmp;
1128 }
1129
1130 /*
1131 * if we own the valid page at the correct offset, pps[lcv] will
1132 * point to it. nothing more to do except go to the next page.
1133 */
1134
1135 if (pps[lcv])
1136 continue; /* next lcv */
1137
1138 /*
1139 * we have a "fake/busy/clean" page that we just allocated.
1140 * do the needed "i/o", either reading from swap or zeroing.
1141 */
1142
1143 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1144
1145 /*
1146 * just zero the page if there's nothing in swap.
1147 */
1148
1149 if (swslot == 0) {
1150
1151 /*
1152 * page hasn't existed before, just zero it.
1153 */
1154
1155 uvm_pagezero(ptmp);
1156 } else {
1157 #if defined(VMSWAP)
1158 int error;
1159
1160 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1161 swslot, 0,0,0);
1162
1163 /*
1164 * page in the swapped-out page.
1165 * unlock object for i/o, relock when done.
1166 */
1167
1168 mutex_exit(&uobj->vmobjlock);
1169 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1170 mutex_enter(&uobj->vmobjlock);
1171
1172 /*
1173 * I/O done. check for errors.
1174 */
1175
1176 if (error != 0) {
1177 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1178 error,0,0,0);
1179 if (ptmp->flags & PG_WANTED)
1180 wakeup(ptmp);
1181
1182 /*
1183 * remove the swap slot from the aobj
1184 * and mark the aobj as having no real slot.
1185 * don't free the swap slot, thus preventing
1186 * it from being used again.
1187 */
1188
1189 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1190 SWSLOT_BAD);
1191 if (swslot > 0) {
1192 uvm_swap_markbad(swslot, 1);
1193 }
1194
1195 mutex_enter(&uvm_pageqlock);
1196 uvm_pagefree(ptmp);
1197 mutex_exit(&uvm_pageqlock);
1198 mutex_exit(&uobj->vmobjlock);
1199 return error;
1200 }
1201 #else /* defined(VMSWAP) */
1202 panic("%s: pagein", __func__);
1203 #endif /* defined(VMSWAP) */
1204 }
1205
1206 if ((access_type & VM_PROT_WRITE) == 0) {
1207 ptmp->flags |= PG_CLEAN;
1208 pmap_clear_modify(ptmp);
1209 }
1210
1211 /*
1212 * we got the page! clear the fake flag (indicates valid
1213 * data now in page) and plug into our result array. note
1214 * that page is still busy.
1215 *
1216 * it is the callers job to:
1217 * => check if the page is released
1218 * => unbusy the page
1219 * => activate the page
1220 */
1221
1222 ptmp->flags &= ~PG_FAKE;
1223 pps[lcv] = ptmp;
1224 }
1225
1226 /*
1227 * finally, unlock object and return.
1228 */
1229
1230 done:
1231 mutex_exit(&uobj->vmobjlock);
1232 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1233 return 0;
1234 }
1235
1236 #if defined(VMSWAP)
1237
1238 /*
1239 * uao_dropswap: release any swap resources from this aobj page.
1240 *
1241 * => aobj must be locked or have a reference count of 0.
1242 */
1243
1244 void
1245 uao_dropswap(struct uvm_object *uobj, int pageidx)
1246 {
1247 int slot;
1248
1249 slot = uao_set_swslot(uobj, pageidx, 0);
1250 if (slot) {
1251 uvm_swap_free(slot, 1);
1252 }
1253 }
1254
1255 /*
1256 * page in every page in every aobj that is paged-out to a range of swslots.
1257 *
1258 * => nothing should be locked.
1259 * => returns true if pagein was aborted due to lack of memory.
1260 */
1261
1262 bool
1263 uao_swap_off(int startslot, int endslot)
1264 {
1265 struct uvm_aobj *aobj, *nextaobj;
1266 bool rv;
1267
1268 /*
1269 * walk the list of all aobjs.
1270 */
1271
1272 restart:
1273 mutex_enter(&uao_list_lock);
1274 for (aobj = LIST_FIRST(&uao_list);
1275 aobj != NULL;
1276 aobj = nextaobj) {
1277
1278 /*
1279 * try to get the object lock, start all over if we fail.
1280 * most of the time we'll get the aobj lock,
1281 * so this should be a rare case.
1282 */
1283
1284 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1285 mutex_exit(&uao_list_lock);
1286 /* XXX Better than yielding but inadequate. */
1287 kpause("livelock", false, 1, NULL);
1288 goto restart;
1289 }
1290
1291 /*
1292 * add a ref to the aobj so it doesn't disappear
1293 * while we're working.
1294 */
1295
1296 uao_reference_locked(&aobj->u_obj);
1297
1298 /*
1299 * now it's safe to unlock the uao list.
1300 */
1301
1302 mutex_exit(&uao_list_lock);
1303
1304 /*
1305 * page in any pages in the swslot range.
1306 * if there's an error, abort and return the error.
1307 */
1308
1309 rv = uao_pagein(aobj, startslot, endslot);
1310 if (rv) {
1311 uao_detach_locked(&aobj->u_obj);
1312 return rv;
1313 }
1314
1315 /*
1316 * we're done with this aobj.
1317 * relock the list and drop our ref on the aobj.
1318 */
1319
1320 mutex_enter(&uao_list_lock);
1321 nextaobj = LIST_NEXT(aobj, u_list);
1322 uao_detach_locked(&aobj->u_obj);
1323 }
1324
1325 /*
1326 * done with traversal, unlock the list
1327 */
1328 mutex_exit(&uao_list_lock);
1329 return false;
1330 }
1331
1332
1333 /*
1334 * page in any pages from aobj in the given range.
1335 *
1336 * => aobj must be locked and is returned locked.
1337 * => returns true if pagein was aborted due to lack of memory.
1338 */
1339 static bool
1340 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1341 {
1342 bool rv;
1343
1344 if (UAO_USES_SWHASH(aobj)) {
1345 struct uao_swhash_elt *elt;
1346 int buck;
1347
1348 restart:
1349 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1350 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1351 elt != NULL;
1352 elt = LIST_NEXT(elt, list)) {
1353 int i;
1354
1355 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1356 int slot = elt->slots[i];
1357
1358 /*
1359 * if the slot isn't in range, skip it.
1360 */
1361
1362 if (slot < startslot ||
1363 slot >= endslot) {
1364 continue;
1365 }
1366
1367 /*
1368 * process the page,
1369 * the start over on this object
1370 * since the swhash elt
1371 * may have been freed.
1372 */
1373
1374 rv = uao_pagein_page(aobj,
1375 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1376 if (rv) {
1377 return rv;
1378 }
1379 goto restart;
1380 }
1381 }
1382 }
1383 } else {
1384 int i;
1385
1386 for (i = 0; i < aobj->u_pages; i++) {
1387 int slot = aobj->u_swslots[i];
1388
1389 /*
1390 * if the slot isn't in range, skip it
1391 */
1392
1393 if (slot < startslot || slot >= endslot) {
1394 continue;
1395 }
1396
1397 /*
1398 * process the page.
1399 */
1400
1401 rv = uao_pagein_page(aobj, i);
1402 if (rv) {
1403 return rv;
1404 }
1405 }
1406 }
1407
1408 return false;
1409 }
1410
1411 /*
1412 * page in a page from an aobj. used for swap_off.
1413 * returns true if pagein was aborted due to lack of memory.
1414 *
1415 * => aobj must be locked and is returned locked.
1416 */
1417
1418 static bool
1419 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1420 {
1421 struct vm_page *pg;
1422 int rv, npages;
1423
1424 pg = NULL;
1425 npages = 1;
1426 /* locked: aobj */
1427 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1428 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1429 /* unlocked: aobj */
1430
1431 /*
1432 * relock and finish up.
1433 */
1434
1435 mutex_enter(&aobj->u_obj.vmobjlock);
1436 switch (rv) {
1437 case 0:
1438 break;
1439
1440 case EIO:
1441 case ERESTART:
1442
1443 /*
1444 * nothing more to do on errors.
1445 * ERESTART can only mean that the anon was freed,
1446 * so again there's nothing to do.
1447 */
1448
1449 return false;
1450
1451 default:
1452 return true;
1453 }
1454
1455 /*
1456 * ok, we've got the page now.
1457 * mark it as dirty, clear its swslot and un-busy it.
1458 */
1459 uao_dropswap(&aobj->u_obj, pageidx);
1460
1461 /*
1462 * make sure it's on a page queue.
1463 */
1464 mutex_enter(&uvm_pageqlock);
1465 if (pg->wire_count == 0)
1466 uvm_pageenqueue(pg);
1467 mutex_exit(&uvm_pageqlock);
1468
1469 if (pg->flags & PG_WANTED) {
1470 wakeup(pg);
1471 }
1472 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1473 UVM_PAGE_OWN(pg, NULL);
1474
1475 return false;
1476 }
1477
1478 /*
1479 * uao_dropswap_range: drop swapslots in the range.
1480 *
1481 * => aobj must be locked and is returned locked.
1482 * => start is inclusive. end is exclusive.
1483 */
1484
1485 void
1486 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1487 {
1488 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1489
1490 KASSERT(mutex_owned(&uobj->vmobjlock));
1491
1492 uao_dropswap_range1(aobj, start, end);
1493 }
1494
1495 static void
1496 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1497 {
1498 int swpgonlydelta = 0;
1499
1500 if (end == 0) {
1501 end = INT64_MAX;
1502 }
1503
1504 if (UAO_USES_SWHASH(aobj)) {
1505 int i, hashbuckets = aobj->u_swhashmask + 1;
1506 voff_t taghi;
1507 voff_t taglo;
1508
1509 taglo = UAO_SWHASH_ELT_TAG(start);
1510 taghi = UAO_SWHASH_ELT_TAG(end);
1511
1512 for (i = 0; i < hashbuckets; i++) {
1513 struct uao_swhash_elt *elt, *next;
1514
1515 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1516 elt != NULL;
1517 elt = next) {
1518 int startidx, endidx;
1519 int j;
1520
1521 next = LIST_NEXT(elt, list);
1522
1523 if (elt->tag < taglo || taghi < elt->tag) {
1524 continue;
1525 }
1526
1527 if (elt->tag == taglo) {
1528 startidx =
1529 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1530 } else {
1531 startidx = 0;
1532 }
1533
1534 if (elt->tag == taghi) {
1535 endidx =
1536 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1537 } else {
1538 endidx = UAO_SWHASH_CLUSTER_SIZE;
1539 }
1540
1541 for (j = startidx; j < endidx; j++) {
1542 int slot = elt->slots[j];
1543
1544 KASSERT(uvm_pagelookup(&aobj->u_obj,
1545 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1546 + j) << PAGE_SHIFT) == NULL);
1547 if (slot > 0) {
1548 uvm_swap_free(slot, 1);
1549 swpgonlydelta++;
1550 KASSERT(elt->count > 0);
1551 elt->slots[j] = 0;
1552 elt->count--;
1553 }
1554 }
1555
1556 if (elt->count == 0) {
1557 LIST_REMOVE(elt, list);
1558 pool_put(&uao_swhash_elt_pool, elt);
1559 }
1560 }
1561 }
1562 } else {
1563 int i;
1564
1565 if (aobj->u_pages < end) {
1566 end = aobj->u_pages;
1567 }
1568 for (i = start; i < end; i++) {
1569 int slot = aobj->u_swslots[i];
1570
1571 if (slot > 0) {
1572 uvm_swap_free(slot, 1);
1573 swpgonlydelta++;
1574 }
1575 }
1576 }
1577
1578 /*
1579 * adjust the counter of pages only in swap for all
1580 * the swap slots we've freed.
1581 */
1582
1583 if (swpgonlydelta > 0) {
1584 mutex_enter(&uvm_swap_data_lock);
1585 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1586 uvmexp.swpgonly -= swpgonlydelta;
1587 mutex_exit(&uvm_swap_data_lock);
1588 }
1589 }
1590
1591 #endif /* defined(VMSWAP) */
1592