uvm_aobj.c revision 1.110.4.1 1 /* $NetBSD: uvm_aobj.c,v 1.110.4.1 2011/02/08 16:20:06 bouyer Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30 /*
31 * uvm_aobj.c: anonymous memory uvm_object pager
32 *
33 * author: Chuck Silvers <chuq (at) chuq.com>
34 * started: Jan-1998
35 *
36 * - design mostly from Chuck Cranor
37 */
38
39 #include <sys/cdefs.h>
40 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.110.4.1 2011/02/08 16:20:06 bouyer Exp $");
41
42 #include "opt_uvmhist.h"
43
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/kmem.h>
49 #include <sys/pool.h>
50
51 #include <uvm/uvm.h>
52
53 /*
54 * an aobj manages anonymous-memory backed uvm_objects. in addition
55 * to keeping the list of resident pages, it also keeps a list of
56 * allocated swap blocks. depending on the size of the aobj this list
57 * of allocated swap blocks is either stored in an array (small objects)
58 * or in a hash table (large objects).
59 */
60
61 /*
62 * local structures
63 */
64
65 /*
66 * for hash tables, we break the address space of the aobj into blocks
67 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
68 * be a power of two.
69 */
70
71 #define UAO_SWHASH_CLUSTER_SHIFT 4
72 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
73
74 /* get the "tag" for this page index */
75 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
76 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
77
78 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
79 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
80
81 /* given an ELT and a page index, find the swap slot */
82 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
83 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
84
85 /* given an ELT, return its pageidx base */
86 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
87 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
88
89 /*
90 * the swhash hash function
91 */
92
93 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
94 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
95 & (AOBJ)->u_swhashmask)])
96
97 /*
98 * the swhash threshhold determines if we will use an array or a
99 * hash table to store the list of allocated swap blocks.
100 */
101
102 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
103 #define UAO_USES_SWHASH(AOBJ) \
104 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
105
106 /*
107 * the number of buckets in a swhash, with an upper bound
108 */
109
110 #define UAO_SWHASH_MAXBUCKETS 256
111 #define UAO_SWHASH_BUCKETS(AOBJ) \
112 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
113 UAO_SWHASH_MAXBUCKETS))
114
115 /*
116 * uao_swhash_elt: when a hash table is being used, this structure defines
117 * the format of an entry in the bucket list.
118 */
119
120 struct uao_swhash_elt {
121 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
122 voff_t tag; /* our 'tag' */
123 int count; /* our number of active slots */
124 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
125 };
126
127 /*
128 * uao_swhash: the swap hash table structure
129 */
130
131 LIST_HEAD(uao_swhash, uao_swhash_elt);
132
133 /*
134 * uao_swhash_elt_pool: pool of uao_swhash_elt structures
135 * NOTE: Pages for this pool must not come from a pageable kernel map!
136 */
137 static struct pool uao_swhash_elt_pool;
138
139 static struct pool_cache uvm_aobj_cache;
140
141 /*
142 * uvm_aobj: the actual anon-backed uvm_object
143 *
144 * => the uvm_object is at the top of the structure, this allows
145 * (struct uvm_aobj *) == (struct uvm_object *)
146 * => only one of u_swslots and u_swhash is used in any given aobj
147 */
148
149 struct uvm_aobj {
150 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
151 pgoff_t u_pages; /* number of pages in entire object */
152 int u_flags; /* the flags (see uvm_aobj.h) */
153 int *u_swslots; /* array of offset->swapslot mappings */
154 /*
155 * hashtable of offset->swapslot mappings
156 * (u_swhash is an array of bucket heads)
157 */
158 struct uao_swhash *u_swhash;
159 u_long u_swhashmask; /* mask for hashtable */
160 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
161 };
162
163 /*
164 * local functions
165 */
166
167 static void uao_free(struct uvm_aobj *);
168 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
169 int *, int, vm_prot_t, int, int);
170 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
171
172 static void uao_detach_locked(struct uvm_object *);
173 static void uao_reference_locked(struct uvm_object *);
174
175 #if defined(VMSWAP)
176 static struct uao_swhash_elt *uao_find_swhash_elt
177 (struct uvm_aobj *, int, bool);
178
179 static bool uao_pagein(struct uvm_aobj *, int, int);
180 static bool uao_pagein_page(struct uvm_aobj *, int);
181 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
182 #endif /* defined(VMSWAP) */
183
184 /*
185 * aobj_pager
186 *
187 * note that some functions (e.g. put) are handled elsewhere
188 */
189
190 const struct uvm_pagerops aobj_pager = {
191 .pgo_reference = uao_reference,
192 .pgo_detach = uao_detach,
193 .pgo_get = uao_get,
194 .pgo_put = uao_put,
195 };
196
197 /*
198 * uao_list: global list of active aobjs, locked by uao_list_lock
199 */
200
201 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
202 static kmutex_t uao_list_lock;
203
204 /*
205 * functions
206 */
207
208 /*
209 * hash table/array related functions
210 */
211
212 #if defined(VMSWAP)
213
214 /*
215 * uao_find_swhash_elt: find (or create) a hash table entry for a page
216 * offset.
217 *
218 * => the object should be locked by the caller
219 */
220
221 static struct uao_swhash_elt *
222 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
223 {
224 struct uao_swhash *swhash;
225 struct uao_swhash_elt *elt;
226 voff_t page_tag;
227
228 swhash = UAO_SWHASH_HASH(aobj, pageidx);
229 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
230
231 /*
232 * now search the bucket for the requested tag
233 */
234
235 LIST_FOREACH(elt, swhash, list) {
236 if (elt->tag == page_tag) {
237 return elt;
238 }
239 }
240 if (!create) {
241 return NULL;
242 }
243
244 /*
245 * allocate a new entry for the bucket and init/insert it in
246 */
247
248 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
249 if (elt == NULL) {
250 return NULL;
251 }
252 LIST_INSERT_HEAD(swhash, elt, list);
253 elt->tag = page_tag;
254 elt->count = 0;
255 memset(elt->slots, 0, sizeof(elt->slots));
256 return elt;
257 }
258
259 /*
260 * uao_find_swslot: find the swap slot number for an aobj/pageidx
261 *
262 * => object must be locked by caller
263 */
264
265 int
266 uao_find_swslot(struct uvm_object *uobj, int pageidx)
267 {
268 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
269 struct uao_swhash_elt *elt;
270
271 /*
272 * if noswap flag is set, then we never return a slot
273 */
274
275 if (aobj->u_flags & UAO_FLAG_NOSWAP)
276 return(0);
277
278 /*
279 * if hashing, look in hash table.
280 */
281
282 if (UAO_USES_SWHASH(aobj)) {
283 elt = uao_find_swhash_elt(aobj, pageidx, false);
284 if (elt)
285 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
286 else
287 return(0);
288 }
289
290 /*
291 * otherwise, look in the array
292 */
293
294 return(aobj->u_swslots[pageidx]);
295 }
296
297 /*
298 * uao_set_swslot: set the swap slot for a page in an aobj.
299 *
300 * => setting a slot to zero frees the slot
301 * => object must be locked by caller
302 * => we return the old slot number, or -1 if we failed to allocate
303 * memory to record the new slot number
304 */
305
306 int
307 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
308 {
309 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
310 struct uao_swhash_elt *elt;
311 int oldslot;
312 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
313 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
314 aobj, pageidx, slot, 0);
315
316 KASSERT(mutex_owned(&uobj->vmobjlock) || uobj->uo_refs == 0);
317
318 /*
319 * if noswap flag is set, then we can't set a non-zero slot.
320 */
321
322 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
323 if (slot == 0)
324 return(0);
325
326 printf("uao_set_swslot: uobj = %p\n", uobj);
327 panic("uao_set_swslot: NOSWAP object");
328 }
329
330 /*
331 * are we using a hash table? if so, add it in the hash.
332 */
333
334 if (UAO_USES_SWHASH(aobj)) {
335
336 /*
337 * Avoid allocating an entry just to free it again if
338 * the page had not swap slot in the first place, and
339 * we are freeing.
340 */
341
342 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
343 if (elt == NULL) {
344 return slot ? -1 : 0;
345 }
346
347 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
348 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
349
350 /*
351 * now adjust the elt's reference counter and free it if we've
352 * dropped it to zero.
353 */
354
355 if (slot) {
356 if (oldslot == 0)
357 elt->count++;
358 } else {
359 if (oldslot)
360 elt->count--;
361
362 if (elt->count == 0) {
363 LIST_REMOVE(elt, list);
364 pool_put(&uao_swhash_elt_pool, elt);
365 }
366 }
367 } else {
368 /* we are using an array */
369 oldslot = aobj->u_swslots[pageidx];
370 aobj->u_swslots[pageidx] = slot;
371 }
372 return (oldslot);
373 }
374
375 #endif /* defined(VMSWAP) */
376
377 /*
378 * end of hash/array functions
379 */
380
381 /*
382 * uao_free: free all resources held by an aobj, and then free the aobj
383 *
384 * => the aobj should be dead
385 */
386
387 static void
388 uao_free(struct uvm_aobj *aobj)
389 {
390
391 #if defined(VMSWAP)
392 uao_dropswap_range1(aobj, 0, 0);
393 #endif /* defined(VMSWAP) */
394
395 mutex_exit(&aobj->u_obj.vmobjlock);
396
397 #if defined(VMSWAP)
398 if (UAO_USES_SWHASH(aobj)) {
399
400 /*
401 * free the hash table itself.
402 */
403
404 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
405 } else {
406
407 /*
408 * free the array itsself.
409 */
410
411 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
412 }
413 #endif /* defined(VMSWAP) */
414
415 /*
416 * finally free the aobj itself
417 */
418
419 UVM_OBJ_DESTROY(&aobj->u_obj);
420 pool_cache_put(&uvm_aobj_cache, aobj);
421 }
422
423 /*
424 * pager functions
425 */
426
427 /*
428 * uao_create: create an aobj of the given size and return its uvm_object.
429 *
430 * => for normal use, flags are always zero
431 * => for the kernel object, the flags are:
432 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
433 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
434 */
435
436 struct uvm_object *
437 uao_create(vsize_t size, int flags)
438 {
439 static struct uvm_aobj kernel_object_store;
440 static int kobj_alloced = 0;
441 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
442 struct uvm_aobj *aobj;
443 int refs;
444
445 /*
446 * malloc a new aobj unless we are asked for the kernel object
447 */
448
449 if (flags & UAO_FLAG_KERNOBJ) {
450 KASSERT(!kobj_alloced);
451 aobj = &kernel_object_store;
452 aobj->u_pages = pages;
453 aobj->u_flags = UAO_FLAG_NOSWAP;
454 refs = UVM_OBJ_KERN;
455 kobj_alloced = UAO_FLAG_KERNOBJ;
456 } else if (flags & UAO_FLAG_KERNSWAP) {
457 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
458 aobj = &kernel_object_store;
459 kobj_alloced = UAO_FLAG_KERNSWAP;
460 refs = 0xdeadbeaf; /* XXX: gcc */
461 } else {
462 aobj = pool_cache_get(&uvm_aobj_cache, PR_WAITOK);
463 aobj->u_pages = pages;
464 aobj->u_flags = 0;
465 refs = 1;
466 }
467
468 /*
469 * allocate hash/array if necessary
470 *
471 * note: in the KERNSWAP case no need to worry about locking since
472 * we are still booting we should be the only thread around.
473 */
474
475 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
476 #if defined(VMSWAP)
477 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
478
479 /* allocate hash table or array depending on object size */
480 if (UAO_USES_SWHASH(aobj)) {
481 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
482 HASH_LIST, kernswap ? false : true,
483 &aobj->u_swhashmask);
484 if (aobj->u_swhash == NULL)
485 panic("uao_create: hashinit swhash failed");
486 } else {
487 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
488 kernswap ? KM_NOSLEEP : KM_SLEEP);
489 if (aobj->u_swslots == NULL)
490 panic("uao_create: malloc swslots failed");
491 }
492 #endif /* defined(VMSWAP) */
493
494 if (flags) {
495 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
496 return(&aobj->u_obj);
497 }
498 }
499
500 /*
501 * init aobj fields
502 */
503
504 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
505
506 /*
507 * now that aobj is ready, add it to the global list
508 */
509
510 mutex_enter(&uao_list_lock);
511 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
512 mutex_exit(&uao_list_lock);
513 return(&aobj->u_obj);
514 }
515
516
517
518 /*
519 * uao_init: set up aobj pager subsystem
520 *
521 * => called at boot time from uvm_pager_init()
522 */
523
524 void
525 uao_init(void)
526 {
527 static int uao_initialized;
528
529 if (uao_initialized)
530 return;
531 uao_initialized = true;
532 LIST_INIT(&uao_list);
533 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
534 pool_cache_bootstrap(&uvm_aobj_cache, sizeof(struct uvm_aobj), 0, 0,
535 0, "aobj", NULL, IPL_NONE, NULL, NULL, NULL);
536 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
537 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
538 }
539
540 /*
541 * uao_reference: add a ref to an aobj
542 *
543 * => aobj must be unlocked
544 * => just lock it and call the locked version
545 */
546
547 void
548 uao_reference(struct uvm_object *uobj)
549 {
550
551 /*
552 * kernel_object already has plenty of references, leave it alone.
553 */
554
555 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
556 return;
557
558 mutex_enter(&uobj->vmobjlock);
559 uao_reference_locked(uobj);
560 mutex_exit(&uobj->vmobjlock);
561 }
562
563 /*
564 * uao_reference_locked: add a ref to an aobj that is already locked
565 *
566 * => aobj must be locked
567 * this needs to be separate from the normal routine
568 * since sometimes we need to add a reference to an aobj when
569 * it's already locked.
570 */
571
572 static void
573 uao_reference_locked(struct uvm_object *uobj)
574 {
575 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
576
577 /*
578 * kernel_object already has plenty of references, leave it alone.
579 */
580
581 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
582 return;
583
584 uobj->uo_refs++;
585 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
586 uobj, uobj->uo_refs,0,0);
587 }
588
589 /*
590 * uao_detach: drop a reference to an aobj
591 *
592 * => aobj must be unlocked
593 * => just lock it and call the locked version
594 */
595
596 void
597 uao_detach(struct uvm_object *uobj)
598 {
599
600 /*
601 * detaching from kernel_object is a noop.
602 */
603
604 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
605 return;
606
607 mutex_enter(&uobj->vmobjlock);
608 uao_detach_locked(uobj);
609 }
610
611 /*
612 * uao_detach_locked: drop a reference to an aobj
613 *
614 * => aobj must be locked, and is unlocked (or freed) upon return.
615 * this needs to be separate from the normal routine
616 * since sometimes we need to detach from an aobj when
617 * it's already locked.
618 */
619
620 static void
621 uao_detach_locked(struct uvm_object *uobj)
622 {
623 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
624 struct vm_page *pg;
625 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
626
627 /*
628 * detaching from kernel_object is a noop.
629 */
630
631 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
632 mutex_exit(&uobj->vmobjlock);
633 return;
634 }
635
636 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
637 uobj->uo_refs--;
638 if (uobj->uo_refs) {
639 mutex_exit(&uobj->vmobjlock);
640 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
641 return;
642 }
643
644 /*
645 * remove the aobj from the global list.
646 */
647
648 mutex_enter(&uao_list_lock);
649 LIST_REMOVE(aobj, u_list);
650 mutex_exit(&uao_list_lock);
651
652 /*
653 * free all the pages left in the aobj. for each page,
654 * when the page is no longer busy (and thus after any disk i/o that
655 * it's involved in is complete), release any swap resources and
656 * free the page itself.
657 */
658
659 mutex_enter(&uvm_pageqlock);
660 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
661 pmap_page_protect(pg, VM_PROT_NONE);
662 if (pg->flags & PG_BUSY) {
663 pg->flags |= PG_WANTED;
664 mutex_exit(&uvm_pageqlock);
665 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
666 "uao_det", 0);
667 mutex_enter(&uobj->vmobjlock);
668 mutex_enter(&uvm_pageqlock);
669 continue;
670 }
671 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
672 uvm_pagefree(pg);
673 }
674 mutex_exit(&uvm_pageqlock);
675
676 /*
677 * finally, free the aobj itself.
678 */
679
680 uao_free(aobj);
681 }
682
683 /*
684 * uao_put: flush pages out of a uvm object
685 *
686 * => object should be locked by caller. we may _unlock_ the object
687 * if (and only if) we need to clean a page (PGO_CLEANIT).
688 * XXXJRT Currently, however, we don't. In the case of cleaning
689 * XXXJRT a page, we simply just deactivate it. Should probably
690 * XXXJRT handle this better, in the future (although "flushing"
691 * XXXJRT anonymous memory isn't terribly important).
692 * => if PGO_CLEANIT is not set, then we will neither unlock the object
693 * or block.
694 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
695 * for flushing.
696 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
697 * that new pages are inserted on the tail end of the list. thus,
698 * we can make a complete pass through the object in one go by starting
699 * at the head and working towards the tail (new pages are put in
700 * front of us).
701 * => NOTE: we are allowed to lock the page queues, so the caller
702 * must not be holding the lock on them [e.g. pagedaemon had
703 * better not call us with the queues locked]
704 * => we return 0 unless we encountered some sort of I/O error
705 * XXXJRT currently never happens, as we never directly initiate
706 * XXXJRT I/O
707 *
708 * note on page traversal:
709 * we can traverse the pages in an object either by going down the
710 * linked list in "uobj->memq", or we can go over the address range
711 * by page doing hash table lookups for each address. depending
712 * on how many pages are in the object it may be cheaper to do one
713 * or the other. we set "by_list" to true if we are using memq.
714 * if the cost of a hash lookup was equal to the cost of the list
715 * traversal we could compare the number of pages in the start->stop
716 * range to the total number of pages in the object. however, it
717 * seems that a hash table lookup is more expensive than the linked
718 * list traversal, so we multiply the number of pages in the
719 * start->stop range by a penalty which we define below.
720 */
721
722 static int
723 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
724 {
725 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
726 struct vm_page *pg, *nextpg, curmp, endmp;
727 bool by_list;
728 voff_t curoff;
729 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
730
731 KASSERT(mutex_owned(&uobj->vmobjlock));
732
733 curoff = 0;
734 if (flags & PGO_ALLPAGES) {
735 start = 0;
736 stop = aobj->u_pages << PAGE_SHIFT;
737 by_list = true; /* always go by the list */
738 } else {
739 start = trunc_page(start);
740 if (stop == 0) {
741 stop = aobj->u_pages << PAGE_SHIFT;
742 } else {
743 stop = round_page(stop);
744 }
745 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
746 printf("uao_flush: strange, got an out of range "
747 "flush (fixed)\n");
748 stop = aobj->u_pages << PAGE_SHIFT;
749 }
750 by_list = (uobj->uo_npages <=
751 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
752 }
753 UVMHIST_LOG(maphist,
754 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
755 start, stop, by_list, flags);
756
757 /*
758 * Don't need to do any work here if we're not freeing
759 * or deactivating pages.
760 */
761
762 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
763 mutex_exit(&uobj->vmobjlock);
764 return 0;
765 }
766
767 /*
768 * Initialize the marker pages. See the comment in
769 * genfs_putpages() also.
770 */
771
772 curmp.flags = PG_MARKER;
773 endmp.flags = PG_MARKER;
774
775 /*
776 * now do it. note: we must update nextpg in the body of loop or we
777 * will get stuck. we need to use nextpg if we'll traverse the list
778 * because we may free "pg" before doing the next loop.
779 */
780
781 if (by_list) {
782 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
783 nextpg = TAILQ_FIRST(&uobj->memq);
784 } else {
785 curoff = start;
786 nextpg = NULL; /* Quell compiler warning */
787 }
788
789 /* locked: uobj */
790 for (;;) {
791 if (by_list) {
792 pg = nextpg;
793 if (pg == &endmp)
794 break;
795 nextpg = TAILQ_NEXT(pg, listq.queue);
796 if (pg->flags & PG_MARKER)
797 continue;
798 if (pg->offset < start || pg->offset >= stop)
799 continue;
800 } else {
801 if (curoff < stop) {
802 pg = uvm_pagelookup(uobj, curoff);
803 curoff += PAGE_SIZE;
804 } else
805 break;
806 if (pg == NULL)
807 continue;
808 }
809
810 /*
811 * wait and try again if the page is busy.
812 */
813
814 if (pg->flags & PG_BUSY) {
815 if (by_list) {
816 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
817 }
818 pg->flags |= PG_WANTED;
819 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
820 "uao_put", 0);
821 mutex_enter(&uobj->vmobjlock);
822 if (by_list) {
823 nextpg = TAILQ_NEXT(&curmp, listq.queue);
824 TAILQ_REMOVE(&uobj->memq, &curmp,
825 listq.queue);
826 } else
827 curoff -= PAGE_SIZE;
828 continue;
829 }
830
831 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
832
833 /*
834 * XXX In these first 3 cases, we always just
835 * XXX deactivate the page. We may want to
836 * XXX handle the different cases more specifically
837 * XXX in the future.
838 */
839
840 case PGO_CLEANIT|PGO_FREE:
841 case PGO_CLEANIT|PGO_DEACTIVATE:
842 case PGO_DEACTIVATE:
843 deactivate_it:
844 mutex_enter(&uvm_pageqlock);
845 /* skip the page if it's wired */
846 if (pg->wire_count == 0) {
847 uvm_pagedeactivate(pg);
848 }
849 mutex_exit(&uvm_pageqlock);
850 break;
851
852 case PGO_FREE:
853 /*
854 * If there are multiple references to
855 * the object, just deactivate the page.
856 */
857
858 if (uobj->uo_refs > 1)
859 goto deactivate_it;
860
861 /*
862 * free the swap slot and the page.
863 */
864
865 pmap_page_protect(pg, VM_PROT_NONE);
866
867 /*
868 * freeing swapslot here is not strictly necessary.
869 * however, leaving it here doesn't save much
870 * because we need to update swap accounting anyway.
871 */
872
873 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
874 mutex_enter(&uvm_pageqlock);
875 uvm_pagefree(pg);
876 mutex_exit(&uvm_pageqlock);
877 break;
878
879 default:
880 panic("%s: impossible", __func__);
881 }
882 }
883 if (by_list) {
884 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
885 }
886 mutex_exit(&uobj->vmobjlock);
887 return 0;
888 }
889
890 /*
891 * uao_get: fetch me a page
892 *
893 * we have three cases:
894 * 1: page is resident -> just return the page.
895 * 2: page is zero-fill -> allocate a new page and zero it.
896 * 3: page is swapped out -> fetch the page from swap.
897 *
898 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
899 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
900 * then we will need to return EBUSY.
901 *
902 * => prefer map unlocked (not required)
903 * => object must be locked! we will _unlock_ it before starting any I/O.
904 * => flags: PGO_ALLPAGES: get all of the pages
905 * PGO_LOCKED: fault data structures are locked
906 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
907 * => NOTE: caller must check for released pages!!
908 */
909
910 static int
911 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
912 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
913 {
914 #if defined(VMSWAP)
915 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
916 #endif /* defined(VMSWAP) */
917 voff_t current_offset;
918 struct vm_page *ptmp = NULL; /* Quell compiler warning */
919 int lcv, gotpages, maxpages, swslot, pageidx;
920 bool done;
921 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
922
923 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
924 (struct uvm_aobj *)uobj, offset, flags,0);
925
926 /*
927 * get number of pages
928 */
929
930 maxpages = *npagesp;
931
932 /*
933 * step 1: handled the case where fault data structures are locked.
934 */
935
936 if (flags & PGO_LOCKED) {
937
938 /*
939 * step 1a: get pages that are already resident. only do
940 * this if the data structures are locked (i.e. the first
941 * time through).
942 */
943
944 done = true; /* be optimistic */
945 gotpages = 0; /* # of pages we got so far */
946 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
947 lcv++, current_offset += PAGE_SIZE) {
948 /* do we care about this page? if not, skip it */
949 if (pps[lcv] == PGO_DONTCARE)
950 continue;
951 ptmp = uvm_pagelookup(uobj, current_offset);
952
953 /*
954 * if page is new, attempt to allocate the page,
955 * zero-fill'd.
956 */
957
958 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
959 current_offset >> PAGE_SHIFT) == 0) {
960 ptmp = uvm_pagealloc(uobj, current_offset,
961 NULL, UVM_PGA_ZERO);
962 if (ptmp) {
963 /* new page */
964 ptmp->flags &= ~(PG_FAKE);
965 ptmp->pqflags |= PQ_AOBJ;
966 goto gotpage;
967 }
968 }
969
970 /*
971 * to be useful must get a non-busy page
972 */
973
974 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
975 if (lcv == centeridx ||
976 (flags & PGO_ALLPAGES) != 0)
977 /* need to do a wait or I/O! */
978 done = false;
979 continue;
980 }
981
982 /*
983 * useful page: busy/lock it and plug it in our
984 * result array
985 */
986
987 /* caller must un-busy this page */
988 ptmp->flags |= PG_BUSY;
989 UVM_PAGE_OWN(ptmp, "uao_get1");
990 gotpage:
991 pps[lcv] = ptmp;
992 gotpages++;
993 }
994
995 /*
996 * step 1b: now we've either done everything needed or we
997 * to unlock and do some waiting or I/O.
998 */
999
1000 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1001 *npagesp = gotpages;
1002 if (done)
1003 return 0;
1004 else
1005 return EBUSY;
1006 }
1007
1008 /*
1009 * step 2: get non-resident or busy pages.
1010 * object is locked. data structures are unlocked.
1011 */
1012
1013 if ((flags & PGO_SYNCIO) == 0) {
1014 goto done;
1015 }
1016
1017 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1018 lcv++, current_offset += PAGE_SIZE) {
1019
1020 /*
1021 * - skip over pages we've already gotten or don't want
1022 * - skip over pages we don't _have_ to get
1023 */
1024
1025 if (pps[lcv] != NULL ||
1026 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1027 continue;
1028
1029 pageidx = current_offset >> PAGE_SHIFT;
1030
1031 /*
1032 * we have yet to locate the current page (pps[lcv]). we
1033 * first look for a page that is already at the current offset.
1034 * if we find a page, we check to see if it is busy or
1035 * released. if that is the case, then we sleep on the page
1036 * until it is no longer busy or released and repeat the lookup.
1037 * if the page we found is neither busy nor released, then we
1038 * busy it (so we own it) and plug it into pps[lcv]. this
1039 * 'break's the following while loop and indicates we are
1040 * ready to move on to the next page in the "lcv" loop above.
1041 *
1042 * if we exit the while loop with pps[lcv] still set to NULL,
1043 * then it means that we allocated a new busy/fake/clean page
1044 * ptmp in the object and we need to do I/O to fill in the data.
1045 */
1046
1047 /* top of "pps" while loop */
1048 while (pps[lcv] == NULL) {
1049 /* look for a resident page */
1050 ptmp = uvm_pagelookup(uobj, current_offset);
1051
1052 /* not resident? allocate one now (if we can) */
1053 if (ptmp == NULL) {
1054
1055 ptmp = uvm_pagealloc(uobj, current_offset,
1056 NULL, 0);
1057
1058 /* out of RAM? */
1059 if (ptmp == NULL) {
1060 mutex_exit(&uobj->vmobjlock);
1061 UVMHIST_LOG(pdhist,
1062 "sleeping, ptmp == NULL\n",0,0,0,0);
1063 uvm_wait("uao_getpage");
1064 mutex_enter(&uobj->vmobjlock);
1065 continue;
1066 }
1067
1068 /*
1069 * safe with PQ's unlocked: because we just
1070 * alloc'd the page
1071 */
1072
1073 ptmp->pqflags |= PQ_AOBJ;
1074
1075 /*
1076 * got new page ready for I/O. break pps while
1077 * loop. pps[lcv] is still NULL.
1078 */
1079
1080 break;
1081 }
1082
1083 /* page is there, see if we need to wait on it */
1084 if ((ptmp->flags & PG_BUSY) != 0) {
1085 ptmp->flags |= PG_WANTED;
1086 UVMHIST_LOG(pdhist,
1087 "sleeping, ptmp->flags 0x%x\n",
1088 ptmp->flags,0,0,0);
1089 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1090 false, "uao_get", 0);
1091 mutex_enter(&uobj->vmobjlock);
1092 continue;
1093 }
1094
1095 /*
1096 * if we get here then the page has become resident and
1097 * unbusy between steps 1 and 2. we busy it now (so we
1098 * own it) and set pps[lcv] (so that we exit the while
1099 * loop).
1100 */
1101
1102 /* we own it, caller must un-busy */
1103 ptmp->flags |= PG_BUSY;
1104 UVM_PAGE_OWN(ptmp, "uao_get2");
1105 pps[lcv] = ptmp;
1106 }
1107
1108 /*
1109 * if we own the valid page at the correct offset, pps[lcv] will
1110 * point to it. nothing more to do except go to the next page.
1111 */
1112
1113 if (pps[lcv])
1114 continue; /* next lcv */
1115
1116 /*
1117 * we have a "fake/busy/clean" page that we just allocated.
1118 * do the needed "i/o", either reading from swap or zeroing.
1119 */
1120
1121 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1122
1123 /*
1124 * just zero the page if there's nothing in swap.
1125 */
1126
1127 if (swslot == 0) {
1128
1129 /*
1130 * page hasn't existed before, just zero it.
1131 */
1132
1133 uvm_pagezero(ptmp);
1134 } else {
1135 #if defined(VMSWAP)
1136 int error;
1137
1138 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1139 swslot, 0,0,0);
1140
1141 /*
1142 * page in the swapped-out page.
1143 * unlock object for i/o, relock when done.
1144 */
1145
1146 mutex_exit(&uobj->vmobjlock);
1147 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1148 mutex_enter(&uobj->vmobjlock);
1149
1150 /*
1151 * I/O done. check for errors.
1152 */
1153
1154 if (error != 0) {
1155 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1156 error,0,0,0);
1157 if (ptmp->flags & PG_WANTED)
1158 wakeup(ptmp);
1159
1160 /*
1161 * remove the swap slot from the aobj
1162 * and mark the aobj as having no real slot.
1163 * don't free the swap slot, thus preventing
1164 * it from being used again.
1165 */
1166
1167 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1168 SWSLOT_BAD);
1169 if (swslot > 0) {
1170 uvm_swap_markbad(swslot, 1);
1171 }
1172
1173 mutex_enter(&uvm_pageqlock);
1174 uvm_pagefree(ptmp);
1175 mutex_exit(&uvm_pageqlock);
1176 mutex_exit(&uobj->vmobjlock);
1177 return error;
1178 }
1179 #else /* defined(VMSWAP) */
1180 panic("%s: pagein", __func__);
1181 #endif /* defined(VMSWAP) */
1182 }
1183
1184 if ((access_type & VM_PROT_WRITE) == 0) {
1185 ptmp->flags |= PG_CLEAN;
1186 pmap_clear_modify(ptmp);
1187 }
1188
1189 /*
1190 * we got the page! clear the fake flag (indicates valid
1191 * data now in page) and plug into our result array. note
1192 * that page is still busy.
1193 *
1194 * it is the callers job to:
1195 * => check if the page is released
1196 * => unbusy the page
1197 * => activate the page
1198 */
1199
1200 ptmp->flags &= ~PG_FAKE;
1201 pps[lcv] = ptmp;
1202 }
1203
1204 /*
1205 * finally, unlock object and return.
1206 */
1207
1208 done:
1209 mutex_exit(&uobj->vmobjlock);
1210 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1211 return 0;
1212 }
1213
1214 #if defined(VMSWAP)
1215
1216 /*
1217 * uao_dropswap: release any swap resources from this aobj page.
1218 *
1219 * => aobj must be locked or have a reference count of 0.
1220 */
1221
1222 void
1223 uao_dropswap(struct uvm_object *uobj, int pageidx)
1224 {
1225 int slot;
1226
1227 slot = uao_set_swslot(uobj, pageidx, 0);
1228 if (slot) {
1229 uvm_swap_free(slot, 1);
1230 }
1231 }
1232
1233 /*
1234 * page in every page in every aobj that is paged-out to a range of swslots.
1235 *
1236 * => nothing should be locked.
1237 * => returns true if pagein was aborted due to lack of memory.
1238 */
1239
1240 bool
1241 uao_swap_off(int startslot, int endslot)
1242 {
1243 struct uvm_aobj *aobj, *nextaobj;
1244 bool rv;
1245
1246 /*
1247 * walk the list of all aobjs.
1248 */
1249
1250 restart:
1251 mutex_enter(&uao_list_lock);
1252 for (aobj = LIST_FIRST(&uao_list);
1253 aobj != NULL;
1254 aobj = nextaobj) {
1255
1256 /*
1257 * try to get the object lock, start all over if we fail.
1258 * most of the time we'll get the aobj lock,
1259 * so this should be a rare case.
1260 */
1261
1262 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1263 mutex_exit(&uao_list_lock);
1264 /* XXX Better than yielding but inadequate. */
1265 kpause("livelock", false, 1, NULL);
1266 goto restart;
1267 }
1268
1269 /*
1270 * add a ref to the aobj so it doesn't disappear
1271 * while we're working.
1272 */
1273
1274 uao_reference_locked(&aobj->u_obj);
1275
1276 /*
1277 * now it's safe to unlock the uao list.
1278 */
1279
1280 mutex_exit(&uao_list_lock);
1281
1282 /*
1283 * page in any pages in the swslot range.
1284 * if there's an error, abort and return the error.
1285 */
1286
1287 rv = uao_pagein(aobj, startslot, endslot);
1288 if (rv) {
1289 uao_detach_locked(&aobj->u_obj);
1290 return rv;
1291 }
1292
1293 /*
1294 * we're done with this aobj.
1295 * relock the list and drop our ref on the aobj.
1296 */
1297
1298 mutex_enter(&uao_list_lock);
1299 nextaobj = LIST_NEXT(aobj, u_list);
1300 uao_detach_locked(&aobj->u_obj);
1301 }
1302
1303 /*
1304 * done with traversal, unlock the list
1305 */
1306 mutex_exit(&uao_list_lock);
1307 return false;
1308 }
1309
1310
1311 /*
1312 * page in any pages from aobj in the given range.
1313 *
1314 * => aobj must be locked and is returned locked.
1315 * => returns true if pagein was aborted due to lack of memory.
1316 */
1317 static bool
1318 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1319 {
1320 bool rv;
1321
1322 if (UAO_USES_SWHASH(aobj)) {
1323 struct uao_swhash_elt *elt;
1324 int buck;
1325
1326 restart:
1327 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1328 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1329 elt != NULL;
1330 elt = LIST_NEXT(elt, list)) {
1331 int i;
1332
1333 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1334 int slot = elt->slots[i];
1335
1336 /*
1337 * if the slot isn't in range, skip it.
1338 */
1339
1340 if (slot < startslot ||
1341 slot >= endslot) {
1342 continue;
1343 }
1344
1345 /*
1346 * process the page,
1347 * the start over on this object
1348 * since the swhash elt
1349 * may have been freed.
1350 */
1351
1352 rv = uao_pagein_page(aobj,
1353 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1354 if (rv) {
1355 return rv;
1356 }
1357 goto restart;
1358 }
1359 }
1360 }
1361 } else {
1362 int i;
1363
1364 for (i = 0; i < aobj->u_pages; i++) {
1365 int slot = aobj->u_swslots[i];
1366
1367 /*
1368 * if the slot isn't in range, skip it
1369 */
1370
1371 if (slot < startslot || slot >= endslot) {
1372 continue;
1373 }
1374
1375 /*
1376 * process the page.
1377 */
1378
1379 rv = uao_pagein_page(aobj, i);
1380 if (rv) {
1381 return rv;
1382 }
1383 }
1384 }
1385
1386 return false;
1387 }
1388
1389 /*
1390 * page in a page from an aobj. used for swap_off.
1391 * returns true if pagein was aborted due to lack of memory.
1392 *
1393 * => aobj must be locked and is returned locked.
1394 */
1395
1396 static bool
1397 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1398 {
1399 struct vm_page *pg;
1400 int rv, npages;
1401
1402 pg = NULL;
1403 npages = 1;
1404 /* locked: aobj */
1405 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1406 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1407 /* unlocked: aobj */
1408
1409 /*
1410 * relock and finish up.
1411 */
1412
1413 mutex_enter(&aobj->u_obj.vmobjlock);
1414 switch (rv) {
1415 case 0:
1416 break;
1417
1418 case EIO:
1419 case ERESTART:
1420
1421 /*
1422 * nothing more to do on errors.
1423 * ERESTART can only mean that the anon was freed,
1424 * so again there's nothing to do.
1425 */
1426
1427 return false;
1428
1429 default:
1430 return true;
1431 }
1432
1433 /*
1434 * ok, we've got the page now.
1435 * mark it as dirty, clear its swslot and un-busy it.
1436 */
1437 uao_dropswap(&aobj->u_obj, pageidx);
1438
1439 /*
1440 * make sure it's on a page queue.
1441 */
1442 mutex_enter(&uvm_pageqlock);
1443 if (pg->wire_count == 0)
1444 uvm_pageenqueue(pg);
1445 mutex_exit(&uvm_pageqlock);
1446
1447 if (pg->flags & PG_WANTED) {
1448 wakeup(pg);
1449 }
1450 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1451 UVM_PAGE_OWN(pg, NULL);
1452
1453 return false;
1454 }
1455
1456 /*
1457 * uao_dropswap_range: drop swapslots in the range.
1458 *
1459 * => aobj must be locked and is returned locked.
1460 * => start is inclusive. end is exclusive.
1461 */
1462
1463 void
1464 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1465 {
1466 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1467
1468 KASSERT(mutex_owned(&uobj->vmobjlock));
1469
1470 uao_dropswap_range1(aobj, start, end);
1471 }
1472
1473 static void
1474 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1475 {
1476 int swpgonlydelta = 0;
1477
1478 if (end == 0) {
1479 end = INT64_MAX;
1480 }
1481
1482 if (UAO_USES_SWHASH(aobj)) {
1483 int i, hashbuckets = aobj->u_swhashmask + 1;
1484 voff_t taghi;
1485 voff_t taglo;
1486
1487 taglo = UAO_SWHASH_ELT_TAG(start);
1488 taghi = UAO_SWHASH_ELT_TAG(end);
1489
1490 for (i = 0; i < hashbuckets; i++) {
1491 struct uao_swhash_elt *elt, *next;
1492
1493 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1494 elt != NULL;
1495 elt = next) {
1496 int startidx, endidx;
1497 int j;
1498
1499 next = LIST_NEXT(elt, list);
1500
1501 if (elt->tag < taglo || taghi < elt->tag) {
1502 continue;
1503 }
1504
1505 if (elt->tag == taglo) {
1506 startidx =
1507 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1508 } else {
1509 startidx = 0;
1510 }
1511
1512 if (elt->tag == taghi) {
1513 endidx =
1514 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1515 } else {
1516 endidx = UAO_SWHASH_CLUSTER_SIZE;
1517 }
1518
1519 for (j = startidx; j < endidx; j++) {
1520 int slot = elt->slots[j];
1521
1522 KASSERT(uvm_pagelookup(&aobj->u_obj,
1523 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1524 + j) << PAGE_SHIFT) == NULL);
1525 if (slot > 0) {
1526 uvm_swap_free(slot, 1);
1527 swpgonlydelta++;
1528 KASSERT(elt->count > 0);
1529 elt->slots[j] = 0;
1530 elt->count--;
1531 }
1532 }
1533
1534 if (elt->count == 0) {
1535 LIST_REMOVE(elt, list);
1536 pool_put(&uao_swhash_elt_pool, elt);
1537 }
1538 }
1539 }
1540 } else {
1541 int i;
1542
1543 if (aobj->u_pages < end) {
1544 end = aobj->u_pages;
1545 }
1546 for (i = start; i < end; i++) {
1547 int slot = aobj->u_swslots[i];
1548
1549 if (slot > 0) {
1550 uvm_swap_free(slot, 1);
1551 swpgonlydelta++;
1552 }
1553 }
1554 }
1555
1556 /*
1557 * adjust the counter of pages only in swap for all
1558 * the swap slots we've freed.
1559 */
1560
1561 if (swpgonlydelta > 0) {
1562 mutex_enter(&uvm_swap_data_lock);
1563 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1564 uvmexp.swpgonly -= swpgonlydelta;
1565 mutex_exit(&uvm_swap_data_lock);
1566 }
1567 }
1568
1569 #endif /* defined(VMSWAP) */
1570