Home | History | Annotate | Line # | Download | only in uvm
uvm_aobj.c revision 1.113
      1 /*	$NetBSD: uvm_aobj.c,v 1.113 2011/02/11 00:21:18 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
      5  *                    Washington University.
      6  * All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  * 1. Redistributions of source code must retain the above copyright
     12  *    notice, this list of conditions and the following disclaimer.
     13  * 2. Redistributions in binary form must reproduce the above copyright
     14  *    notice, this list of conditions and the following disclaimer in the
     15  *    documentation and/or other materials provided with the distribution.
     16  *
     17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
     22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
     23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
     24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
     25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
     26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     27  *
     28  * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
     29  */
     30 
     31 /*
     32  * uvm_aobj.c: anonymous memory uvm_object pager
     33  *
     34  * author: Chuck Silvers <chuq (at) chuq.com>
     35  * started: Jan-1998
     36  *
     37  * - design mostly from Chuck Cranor
     38  */
     39 
     40 #include <sys/cdefs.h>
     41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.113 2011/02/11 00:21:18 rmind Exp $");
     42 
     43 #include "opt_uvmhist.h"
     44 
     45 #include <sys/param.h>
     46 #include <sys/systm.h>
     47 #include <sys/proc.h>
     48 #include <sys/kernel.h>
     49 #include <sys/kmem.h>
     50 #include <sys/pool.h>
     51 
     52 #include <uvm/uvm.h>
     53 
     54 /*
     55  * an aobj manages anonymous-memory backed uvm_objects.   in addition
     56  * to keeping the list of resident pages, it also keeps a list of
     57  * allocated swap blocks.  depending on the size of the aobj this list
     58  * of allocated swap blocks is either stored in an array (small objects)
     59  * or in a hash table (large objects).
     60  */
     61 
     62 /*
     63  * local structures
     64  */
     65 
     66 /*
     67  * for hash tables, we break the address space of the aobj into blocks
     68  * of UAO_SWHASH_CLUSTER_SIZE pages.   we require the cluster size to
     69  * be a power of two.
     70  */
     71 
     72 #define UAO_SWHASH_CLUSTER_SHIFT 4
     73 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
     74 
     75 /* get the "tag" for this page index */
     76 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
     77 	((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
     78 
     79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
     80 	((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
     81 
     82 /* given an ELT and a page index, find the swap slot */
     83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
     84 	((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
     85 
     86 /* given an ELT, return its pageidx base */
     87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
     88 	((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
     89 
     90 /*
     91  * the swhash hash function
     92  */
     93 
     94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
     95 	(&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
     96 			    & (AOBJ)->u_swhashmask)])
     97 
     98 /*
     99  * the swhash threshhold determines if we will use an array or a
    100  * hash table to store the list of allocated swap blocks.
    101  */
    102 
    103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
    104 #define UAO_USES_SWHASH(AOBJ) \
    105 	((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD)	/* use hash? */
    106 
    107 /*
    108  * the number of buckets in a swhash, with an upper bound
    109  */
    110 
    111 #define UAO_SWHASH_MAXBUCKETS 256
    112 #define UAO_SWHASH_BUCKETS(AOBJ) \
    113 	(MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
    114 	     UAO_SWHASH_MAXBUCKETS))
    115 
    116 /*
    117  * uao_swhash_elt: when a hash table is being used, this structure defines
    118  * the format of an entry in the bucket list.
    119  */
    120 
    121 struct uao_swhash_elt {
    122 	LIST_ENTRY(uao_swhash_elt) list;	/* the hash list */
    123 	voff_t tag;				/* our 'tag' */
    124 	int count;				/* our number of active slots */
    125 	int slots[UAO_SWHASH_CLUSTER_SIZE];	/* the slots */
    126 };
    127 
    128 /*
    129  * uao_swhash: the swap hash table structure
    130  */
    131 
    132 LIST_HEAD(uao_swhash, uao_swhash_elt);
    133 
    134 /*
    135  * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
    136  * Note: pages for this pool must not come from a pageable kernel map.
    137  */
    138 static struct pool uao_swhash_elt_pool;
    139 
    140 /*
    141  * uvm_aobj: the actual anon-backed uvm_object
    142  *
    143  * => the uvm_object is at the top of the structure, this allows
    144  *   (struct uvm_aobj *) == (struct uvm_object *)
    145  * => only one of u_swslots and u_swhash is used in any given aobj
    146  */
    147 
    148 struct uvm_aobj {
    149 	struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
    150 	pgoff_t u_pages;	 /* number of pages in entire object */
    151 	int u_flags;		 /* the flags (see uvm_aobj.h) */
    152 	int *u_swslots;		 /* array of offset->swapslot mappings */
    153 				 /*
    154 				  * hashtable of offset->swapslot mappings
    155 				  * (u_swhash is an array of bucket heads)
    156 				  */
    157 	struct uao_swhash *u_swhash;
    158 	u_long u_swhashmask;		/* mask for hashtable */
    159 	LIST_ENTRY(uvm_aobj) u_list;	/* global list of aobjs */
    160 };
    161 
    162 /*
    163  * local functions
    164  */
    165 
    166 static void	uao_free(struct uvm_aobj *);
    167 static int	uao_get(struct uvm_object *, voff_t, struct vm_page **,
    168 		    int *, int, vm_prot_t, int, int);
    169 static int	uao_put(struct uvm_object *, voff_t, voff_t, int);
    170 
    171 static void uao_detach_locked(struct uvm_object *);
    172 static void uao_reference_locked(struct uvm_object *);
    173 
    174 #if defined(VMSWAP)
    175 static struct uao_swhash_elt *uao_find_swhash_elt
    176     (struct uvm_aobj *, int, bool);
    177 
    178 static bool uao_pagein(struct uvm_aobj *, int, int);
    179 static bool uao_pagein_page(struct uvm_aobj *, int);
    180 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
    181 #endif /* defined(VMSWAP) */
    182 
    183 /*
    184  * aobj_pager
    185  *
    186  * note that some functions (e.g. put) are handled elsewhere
    187  */
    188 
    189 const struct uvm_pagerops aobj_pager = {
    190 	.pgo_reference = uao_reference,
    191 	.pgo_detach = uao_detach,
    192 	.pgo_get = uao_get,
    193 	.pgo_put = uao_put,
    194 };
    195 
    196 /*
    197  * uao_list: global list of active aobjs, locked by uao_list_lock
    198  */
    199 
    200 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
    201 static kmutex_t uao_list_lock;
    202 
    203 /*
    204  * functions
    205  */
    206 
    207 /*
    208  * hash table/array related functions
    209  */
    210 
    211 #if defined(VMSWAP)
    212 
    213 /*
    214  * uao_find_swhash_elt: find (or create) a hash table entry for a page
    215  * offset.
    216  *
    217  * => the object should be locked by the caller
    218  */
    219 
    220 static struct uao_swhash_elt *
    221 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
    222 {
    223 	struct uao_swhash *swhash;
    224 	struct uao_swhash_elt *elt;
    225 	voff_t page_tag;
    226 
    227 	swhash = UAO_SWHASH_HASH(aobj, pageidx);
    228 	page_tag = UAO_SWHASH_ELT_TAG(pageidx);
    229 
    230 	/*
    231 	 * now search the bucket for the requested tag
    232 	 */
    233 
    234 	LIST_FOREACH(elt, swhash, list) {
    235 		if (elt->tag == page_tag) {
    236 			return elt;
    237 		}
    238 	}
    239 	if (!create) {
    240 		return NULL;
    241 	}
    242 
    243 	/*
    244 	 * allocate a new entry for the bucket and init/insert it in
    245 	 */
    246 
    247 	elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
    248 	if (elt == NULL) {
    249 		return NULL;
    250 	}
    251 	LIST_INSERT_HEAD(swhash, elt, list);
    252 	elt->tag = page_tag;
    253 	elt->count = 0;
    254 	memset(elt->slots, 0, sizeof(elt->slots));
    255 	return elt;
    256 }
    257 
    258 /*
    259  * uao_find_swslot: find the swap slot number for an aobj/pageidx
    260  *
    261  * => object must be locked by caller
    262  */
    263 
    264 int
    265 uao_find_swslot(struct uvm_object *uobj, int pageidx)
    266 {
    267 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    268 	struct uao_swhash_elt *elt;
    269 
    270 	/*
    271 	 * if noswap flag is set, then we never return a slot
    272 	 */
    273 
    274 	if (aobj->u_flags & UAO_FLAG_NOSWAP)
    275 		return(0);
    276 
    277 	/*
    278 	 * if hashing, look in hash table.
    279 	 */
    280 
    281 	if (UAO_USES_SWHASH(aobj)) {
    282 		elt = uao_find_swhash_elt(aobj, pageidx, false);
    283 		if (elt)
    284 			return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
    285 		else
    286 			return(0);
    287 	}
    288 
    289 	/*
    290 	 * otherwise, look in the array
    291 	 */
    292 
    293 	return(aobj->u_swslots[pageidx]);
    294 }
    295 
    296 /*
    297  * uao_set_swslot: set the swap slot for a page in an aobj.
    298  *
    299  * => setting a slot to zero frees the slot
    300  * => object must be locked by caller
    301  * => we return the old slot number, or -1 if we failed to allocate
    302  *    memory to record the new slot number
    303  */
    304 
    305 int
    306 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
    307 {
    308 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    309 	struct uao_swhash_elt *elt;
    310 	int oldslot;
    311 	UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
    312 	UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
    313 	    aobj, pageidx, slot, 0);
    314 
    315 	KASSERT(mutex_owned(&uobj->vmobjlock) || uobj->uo_refs == 0);
    316 
    317 	/*
    318 	 * if noswap flag is set, then we can't set a non-zero slot.
    319 	 */
    320 
    321 	if (aobj->u_flags & UAO_FLAG_NOSWAP) {
    322 		if (slot == 0)
    323 			return(0);
    324 
    325 		printf("uao_set_swslot: uobj = %p\n", uobj);
    326 		panic("uao_set_swslot: NOSWAP object");
    327 	}
    328 
    329 	/*
    330 	 * are we using a hash table?  if so, add it in the hash.
    331 	 */
    332 
    333 	if (UAO_USES_SWHASH(aobj)) {
    334 
    335 		/*
    336 		 * Avoid allocating an entry just to free it again if
    337 		 * the page had not swap slot in the first place, and
    338 		 * we are freeing.
    339 		 */
    340 
    341 		elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
    342 		if (elt == NULL) {
    343 			return slot ? -1 : 0;
    344 		}
    345 
    346 		oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
    347 		UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
    348 
    349 		/*
    350 		 * now adjust the elt's reference counter and free it if we've
    351 		 * dropped it to zero.
    352 		 */
    353 
    354 		if (slot) {
    355 			if (oldslot == 0)
    356 				elt->count++;
    357 		} else {
    358 			if (oldslot)
    359 				elt->count--;
    360 
    361 			if (elt->count == 0) {
    362 				LIST_REMOVE(elt, list);
    363 				pool_put(&uao_swhash_elt_pool, elt);
    364 			}
    365 		}
    366 	} else {
    367 		/* we are using an array */
    368 		oldslot = aobj->u_swslots[pageidx];
    369 		aobj->u_swslots[pageidx] = slot;
    370 	}
    371 	return (oldslot);
    372 }
    373 
    374 #endif /* defined(VMSWAP) */
    375 
    376 /*
    377  * end of hash/array functions
    378  */
    379 
    380 /*
    381  * uao_free: free all resources held by an aobj, and then free the aobj
    382  *
    383  * => the aobj should be dead
    384  */
    385 
    386 static void
    387 uao_free(struct uvm_aobj *aobj)
    388 {
    389 
    390 #if defined(VMSWAP)
    391 	uao_dropswap_range1(aobj, 0, 0);
    392 #endif /* defined(VMSWAP) */
    393 
    394 	mutex_exit(&aobj->u_obj.vmobjlock);
    395 
    396 #if defined(VMSWAP)
    397 	if (UAO_USES_SWHASH(aobj)) {
    398 
    399 		/*
    400 		 * free the hash table itself.
    401 		 */
    402 
    403 		hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
    404 	} else {
    405 
    406 		/*
    407 		 * free the array itsself.
    408 		 */
    409 
    410 		kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
    411 	}
    412 #endif /* defined(VMSWAP) */
    413 
    414 	/*
    415 	 * finally free the aobj itself
    416 	 */
    417 
    418 	UVM_OBJ_DESTROY(&aobj->u_obj);
    419 	kmem_free(aobj, sizeof(struct uvm_aobj));
    420 }
    421 
    422 /*
    423  * pager functions
    424  */
    425 
    426 /*
    427  * uao_create: create an aobj of the given size and return its uvm_object.
    428  *
    429  * => for normal use, flags are always zero
    430  * => for the kernel object, the flags are:
    431  *	UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
    432  *	UAO_FLAG_KERNSWAP - enable swapping of kernel object ("           ")
    433  */
    434 
    435 struct uvm_object *
    436 uao_create(vsize_t size, int flags)
    437 {
    438 	static struct uvm_aobj kernel_object_store;
    439 	static int kobj_alloced = 0;
    440 	pgoff_t pages = round_page(size) >> PAGE_SHIFT;
    441 	struct uvm_aobj *aobj;
    442 	int refs;
    443 
    444 	/*
    445 	 * malloc a new aobj unless we are asked for the kernel object
    446 	 */
    447 
    448 	if (flags & UAO_FLAG_KERNOBJ) {
    449 		KASSERT(!kobj_alloced);
    450 		aobj = &kernel_object_store;
    451 		aobj->u_pages = pages;
    452 		aobj->u_flags = UAO_FLAG_NOSWAP;
    453 		refs = UVM_OBJ_KERN;
    454 		kobj_alloced = UAO_FLAG_KERNOBJ;
    455 	} else if (flags & UAO_FLAG_KERNSWAP) {
    456 		KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
    457 		aobj = &kernel_object_store;
    458 		kobj_alloced = UAO_FLAG_KERNSWAP;
    459 		refs = 0xdeadbeaf; /* XXX: gcc */
    460 	} else {
    461 		aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
    462 		aobj->u_pages = pages;
    463 		aobj->u_flags = 0;
    464 		refs = 1;
    465 	}
    466 
    467 	/*
    468  	 * allocate hash/array if necessary
    469  	 *
    470  	 * note: in the KERNSWAP case no need to worry about locking since
    471  	 * we are still booting we should be the only thread around.
    472  	 */
    473 
    474 	if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
    475 #if defined(VMSWAP)
    476 		const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
    477 
    478 		/* allocate hash table or array depending on object size */
    479 		if (UAO_USES_SWHASH(aobj)) {
    480 			aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
    481 			    HASH_LIST, kernswap ? false : true,
    482 			    &aobj->u_swhashmask);
    483 			if (aobj->u_swhash == NULL)
    484 				panic("uao_create: hashinit swhash failed");
    485 		} else {
    486 			aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
    487 			    kernswap ? KM_NOSLEEP : KM_SLEEP);
    488 			if (aobj->u_swslots == NULL)
    489 				panic("uao_create: malloc swslots failed");
    490 		}
    491 #endif /* defined(VMSWAP) */
    492 
    493 		if (flags) {
    494 			aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
    495 			return(&aobj->u_obj);
    496 		}
    497 	}
    498 
    499 	/*
    500  	 * init aobj fields
    501  	 */
    502 
    503 	UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
    504 
    505 	/*
    506  	 * now that aobj is ready, add it to the global list
    507  	 */
    508 
    509 	mutex_enter(&uao_list_lock);
    510 	LIST_INSERT_HEAD(&uao_list, aobj, u_list);
    511 	mutex_exit(&uao_list_lock);
    512 	return(&aobj->u_obj);
    513 }
    514 
    515 
    516 
    517 /*
    518  * uao_init: set up aobj pager subsystem
    519  *
    520  * => called at boot time from uvm_pager_init()
    521  */
    522 
    523 void
    524 uao_init(void)
    525 {
    526 	static int uao_initialized;
    527 
    528 	if (uao_initialized)
    529 		return;
    530 	uao_initialized = true;
    531 	LIST_INIT(&uao_list);
    532 	mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
    533 	pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
    534 	    0, 0, 0, "uaoeltpl", NULL, IPL_VM);
    535 }
    536 
    537 /*
    538  * uao_reference: add a ref to an aobj
    539  *
    540  * => aobj must be unlocked
    541  * => just lock it and call the locked version
    542  */
    543 
    544 void
    545 uao_reference(struct uvm_object *uobj)
    546 {
    547 
    548 	/*
    549  	 * kernel_object already has plenty of references, leave it alone.
    550  	 */
    551 
    552 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    553 		return;
    554 
    555 	mutex_enter(&uobj->vmobjlock);
    556 	uao_reference_locked(uobj);
    557 	mutex_exit(&uobj->vmobjlock);
    558 }
    559 
    560 /*
    561  * uao_reference_locked: add a ref to an aobj that is already locked
    562  *
    563  * => aobj must be locked
    564  * this needs to be separate from the normal routine
    565  * since sometimes we need to add a reference to an aobj when
    566  * it's already locked.
    567  */
    568 
    569 static void
    570 uao_reference_locked(struct uvm_object *uobj)
    571 {
    572 	UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
    573 
    574 	/*
    575  	 * kernel_object already has plenty of references, leave it alone.
    576  	 */
    577 
    578 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    579 		return;
    580 
    581 	uobj->uo_refs++;
    582 	UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
    583 		    uobj, uobj->uo_refs,0,0);
    584 }
    585 
    586 /*
    587  * uao_detach: drop a reference to an aobj
    588  *
    589  * => aobj must be unlocked
    590  * => just lock it and call the locked version
    591  */
    592 
    593 void
    594 uao_detach(struct uvm_object *uobj)
    595 {
    596 
    597 	/*
    598  	 * detaching from kernel_object is a noop.
    599  	 */
    600 
    601 	if (UVM_OBJ_IS_KERN_OBJECT(uobj))
    602 		return;
    603 
    604 	mutex_enter(&uobj->vmobjlock);
    605 	uao_detach_locked(uobj);
    606 }
    607 
    608 /*
    609  * uao_detach_locked: drop a reference to an aobj
    610  *
    611  * => aobj must be locked, and is unlocked (or freed) upon return.
    612  * this needs to be separate from the normal routine
    613  * since sometimes we need to detach from an aobj when
    614  * it's already locked.
    615  */
    616 
    617 static void
    618 uao_detach_locked(struct uvm_object *uobj)
    619 {
    620 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    621 	struct vm_page *pg;
    622 	UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
    623 
    624 	/*
    625  	 * detaching from kernel_object is a noop.
    626  	 */
    627 
    628 	if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
    629 		mutex_exit(&uobj->vmobjlock);
    630 		return;
    631 	}
    632 
    633 	UVMHIST_LOG(maphist,"  (uobj=0x%x)  ref=%d", uobj,uobj->uo_refs,0,0);
    634 	uobj->uo_refs--;
    635 	if (uobj->uo_refs) {
    636 		mutex_exit(&uobj->vmobjlock);
    637 		UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
    638 		return;
    639 	}
    640 
    641 	/*
    642  	 * remove the aobj from the global list.
    643  	 */
    644 
    645 	mutex_enter(&uao_list_lock);
    646 	LIST_REMOVE(aobj, u_list);
    647 	mutex_exit(&uao_list_lock);
    648 
    649 	/*
    650  	 * free all the pages left in the aobj.  for each page,
    651 	 * when the page is no longer busy (and thus after any disk i/o that
    652 	 * it's involved in is complete), release any swap resources and
    653 	 * free the page itself.
    654  	 */
    655 
    656 	mutex_enter(&uvm_pageqlock);
    657 	while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
    658 		pmap_page_protect(pg, VM_PROT_NONE);
    659 		if (pg->flags & PG_BUSY) {
    660 			pg->flags |= PG_WANTED;
    661 			mutex_exit(&uvm_pageqlock);
    662 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
    663 			    "uao_det", 0);
    664 			mutex_enter(&uobj->vmobjlock);
    665 			mutex_enter(&uvm_pageqlock);
    666 			continue;
    667 		}
    668 		uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
    669 		uvm_pagefree(pg);
    670 	}
    671 	mutex_exit(&uvm_pageqlock);
    672 
    673 	/*
    674  	 * finally, free the aobj itself.
    675  	 */
    676 
    677 	uao_free(aobj);
    678 }
    679 
    680 /*
    681  * uao_put: flush pages out of a uvm object
    682  *
    683  * => object should be locked by caller.  we may _unlock_ the object
    684  *	if (and only if) we need to clean a page (PGO_CLEANIT).
    685  *	XXXJRT Currently, however, we don't.  In the case of cleaning
    686  *	XXXJRT a page, we simply just deactivate it.  Should probably
    687  *	XXXJRT handle this better, in the future (although "flushing"
    688  *	XXXJRT anonymous memory isn't terribly important).
    689  * => if PGO_CLEANIT is not set, then we will neither unlock the object
    690  *	or block.
    691  * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
    692  *	for flushing.
    693  * => NOTE: we rely on the fact that the object's memq is a TAILQ and
    694  *	that new pages are inserted on the tail end of the list.  thus,
    695  *	we can make a complete pass through the object in one go by starting
    696  *	at the head and working towards the tail (new pages are put in
    697  *	front of us).
    698  * => NOTE: we are allowed to lock the page queues, so the caller
    699  *	must not be holding the lock on them [e.g. pagedaemon had
    700  *	better not call us with the queues locked]
    701  * => we return 0 unless we encountered some sort of I/O error
    702  *	XXXJRT currently never happens, as we never directly initiate
    703  *	XXXJRT I/O
    704  *
    705  * note on page traversal:
    706  *	we can traverse the pages in an object either by going down the
    707  *	linked list in "uobj->memq", or we can go over the address range
    708  *	by page doing hash table lookups for each address.  depending
    709  *	on how many pages are in the object it may be cheaper to do one
    710  *	or the other.  we set "by_list" to true if we are using memq.
    711  *	if the cost of a hash lookup was equal to the cost of the list
    712  *	traversal we could compare the number of pages in the start->stop
    713  *	range to the total number of pages in the object.  however, it
    714  *	seems that a hash table lookup is more expensive than the linked
    715  *	list traversal, so we multiply the number of pages in the
    716  *	start->stop range by a penalty which we define below.
    717  */
    718 
    719 static int
    720 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
    721 {
    722 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    723 	struct vm_page *pg, *nextpg, curmp, endmp;
    724 	bool by_list;
    725 	voff_t curoff;
    726 	UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
    727 
    728 	KASSERT(mutex_owned(&uobj->vmobjlock));
    729 
    730 	curoff = 0;
    731 	if (flags & PGO_ALLPAGES) {
    732 		start = 0;
    733 		stop = aobj->u_pages << PAGE_SHIFT;
    734 		by_list = true;		/* always go by the list */
    735 	} else {
    736 		start = trunc_page(start);
    737 		if (stop == 0) {
    738 			stop = aobj->u_pages << PAGE_SHIFT;
    739 		} else {
    740 			stop = round_page(stop);
    741 		}
    742 		if (stop > (aobj->u_pages << PAGE_SHIFT)) {
    743 			printf("uao_flush: strange, got an out of range "
    744 			    "flush (fixed)\n");
    745 			stop = aobj->u_pages << PAGE_SHIFT;
    746 		}
    747 		by_list = (uobj->uo_npages <=
    748 		    ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
    749 	}
    750 	UVMHIST_LOG(maphist,
    751 	    " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
    752 	    start, stop, by_list, flags);
    753 
    754 	/*
    755 	 * Don't need to do any work here if we're not freeing
    756 	 * or deactivating pages.
    757 	 */
    758 
    759 	if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
    760 		mutex_exit(&uobj->vmobjlock);
    761 		return 0;
    762 	}
    763 
    764 	/*
    765 	 * Initialize the marker pages.  See the comment in
    766 	 * genfs_putpages() also.
    767 	 */
    768 
    769 	curmp.flags = PG_MARKER;
    770 	endmp.flags = PG_MARKER;
    771 
    772 	/*
    773 	 * now do it.  note: we must update nextpg in the body of loop or we
    774 	 * will get stuck.  we need to use nextpg if we'll traverse the list
    775 	 * because we may free "pg" before doing the next loop.
    776 	 */
    777 
    778 	if (by_list) {
    779 		TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
    780 		nextpg = TAILQ_FIRST(&uobj->memq);
    781 	} else {
    782 		curoff = start;
    783 		nextpg = NULL;	/* Quell compiler warning */
    784 	}
    785 
    786 	/* locked: uobj */
    787 	for (;;) {
    788 		if (by_list) {
    789 			pg = nextpg;
    790 			if (pg == &endmp)
    791 				break;
    792 			nextpg = TAILQ_NEXT(pg, listq.queue);
    793 			if (pg->flags & PG_MARKER)
    794 				continue;
    795 			if (pg->offset < start || pg->offset >= stop)
    796 				continue;
    797 		} else {
    798 			if (curoff < stop) {
    799 				pg = uvm_pagelookup(uobj, curoff);
    800 				curoff += PAGE_SIZE;
    801 			} else
    802 				break;
    803 			if (pg == NULL)
    804 				continue;
    805 		}
    806 
    807 		/*
    808 		 * wait and try again if the page is busy.
    809 		 */
    810 
    811 		if (pg->flags & PG_BUSY) {
    812 			if (by_list) {
    813 				TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
    814 			}
    815 			pg->flags |= PG_WANTED;
    816 			UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
    817 			    "uao_put", 0);
    818 			mutex_enter(&uobj->vmobjlock);
    819 			if (by_list) {
    820 				nextpg = TAILQ_NEXT(&curmp, listq.queue);
    821 				TAILQ_REMOVE(&uobj->memq, &curmp,
    822 				    listq.queue);
    823 			} else
    824 				curoff -= PAGE_SIZE;
    825 			continue;
    826 		}
    827 
    828 		switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
    829 
    830 		/*
    831 		 * XXX In these first 3 cases, we always just
    832 		 * XXX deactivate the page.  We may want to
    833 		 * XXX handle the different cases more specifically
    834 		 * XXX in the future.
    835 		 */
    836 
    837 		case PGO_CLEANIT|PGO_FREE:
    838 		case PGO_CLEANIT|PGO_DEACTIVATE:
    839 		case PGO_DEACTIVATE:
    840  deactivate_it:
    841 			mutex_enter(&uvm_pageqlock);
    842 			/* skip the page if it's wired */
    843 			if (pg->wire_count == 0) {
    844 				uvm_pagedeactivate(pg);
    845 			}
    846 			mutex_exit(&uvm_pageqlock);
    847 			break;
    848 
    849 		case PGO_FREE:
    850 			/*
    851 			 * If there are multiple references to
    852 			 * the object, just deactivate the page.
    853 			 */
    854 
    855 			if (uobj->uo_refs > 1)
    856 				goto deactivate_it;
    857 
    858 			/*
    859 			 * free the swap slot and the page.
    860 			 */
    861 
    862 			pmap_page_protect(pg, VM_PROT_NONE);
    863 
    864 			/*
    865 			 * freeing swapslot here is not strictly necessary.
    866 			 * however, leaving it here doesn't save much
    867 			 * because we need to update swap accounting anyway.
    868 			 */
    869 
    870 			uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
    871 			mutex_enter(&uvm_pageqlock);
    872 			uvm_pagefree(pg);
    873 			mutex_exit(&uvm_pageqlock);
    874 			break;
    875 
    876 		default:
    877 			panic("%s: impossible", __func__);
    878 		}
    879 	}
    880 	if (by_list) {
    881 		TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
    882 	}
    883 	mutex_exit(&uobj->vmobjlock);
    884 	return 0;
    885 }
    886 
    887 /*
    888  * uao_get: fetch me a page
    889  *
    890  * we have three cases:
    891  * 1: page is resident     -> just return the page.
    892  * 2: page is zero-fill    -> allocate a new page and zero it.
    893  * 3: page is swapped out  -> fetch the page from swap.
    894  *
    895  * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
    896  * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
    897  * then we will need to return EBUSY.
    898  *
    899  * => prefer map unlocked (not required)
    900  * => object must be locked!  we will _unlock_ it before starting any I/O.
    901  * => flags: PGO_ALLPAGES: get all of the pages
    902  *           PGO_LOCKED: fault data structures are locked
    903  * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
    904  * => NOTE: caller must check for released pages!!
    905  */
    906 
    907 static int
    908 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
    909     int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
    910 {
    911 #if defined(VMSWAP)
    912 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
    913 #endif /* defined(VMSWAP) */
    914 	voff_t current_offset;
    915 	struct vm_page *ptmp = NULL;	/* Quell compiler warning */
    916 	int lcv, gotpages, maxpages, swslot, pageidx;
    917 	bool done;
    918 	UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
    919 
    920 	UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
    921 		    (struct uvm_aobj *)uobj, offset, flags,0);
    922 
    923 	/*
    924  	 * get number of pages
    925  	 */
    926 
    927 	maxpages = *npagesp;
    928 
    929 	/*
    930  	 * step 1: handled the case where fault data structures are locked.
    931  	 */
    932 
    933 	if (flags & PGO_LOCKED) {
    934 
    935 		/*
    936  		 * step 1a: get pages that are already resident.   only do
    937 		 * this if the data structures are locked (i.e. the first
    938 		 * time through).
    939  		 */
    940 
    941 		done = true;	/* be optimistic */
    942 		gotpages = 0;	/* # of pages we got so far */
    943 		for (lcv = 0, current_offset = offset ; lcv < maxpages ;
    944 		    lcv++, current_offset += PAGE_SIZE) {
    945 			/* do we care about this page?  if not, skip it */
    946 			if (pps[lcv] == PGO_DONTCARE)
    947 				continue;
    948 			ptmp = uvm_pagelookup(uobj, current_offset);
    949 
    950 			/*
    951  			 * if page is new, attempt to allocate the page,
    952 			 * zero-fill'd.
    953  			 */
    954 
    955 			if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
    956 			    current_offset >> PAGE_SHIFT) == 0) {
    957 				ptmp = uvm_pagealloc(uobj, current_offset,
    958 				    NULL, UVM_PGA_ZERO);
    959 				if (ptmp) {
    960 					/* new page */
    961 					ptmp->flags &= ~(PG_FAKE);
    962 					ptmp->pqflags |= PQ_AOBJ;
    963 					goto gotpage;
    964 				}
    965 			}
    966 
    967 			/*
    968 			 * to be useful must get a non-busy page
    969 			 */
    970 
    971 			if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
    972 				if (lcv == centeridx ||
    973 				    (flags & PGO_ALLPAGES) != 0)
    974 					/* need to do a wait or I/O! */
    975 					done = false;
    976 					continue;
    977 			}
    978 
    979 			/*
    980 			 * useful page: busy/lock it and plug it in our
    981 			 * result array
    982 			 */
    983 
    984 			/* caller must un-busy this page */
    985 			ptmp->flags |= PG_BUSY;
    986 			UVM_PAGE_OWN(ptmp, "uao_get1");
    987 gotpage:
    988 			pps[lcv] = ptmp;
    989 			gotpages++;
    990 		}
    991 
    992 		/*
    993  		 * step 1b: now we've either done everything needed or we
    994 		 * to unlock and do some waiting or I/O.
    995  		 */
    996 
    997 		UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
    998 		*npagesp = gotpages;
    999 		if (done)
   1000 			return 0;
   1001 		else
   1002 			return EBUSY;
   1003 	}
   1004 
   1005 	/*
   1006  	 * step 2: get non-resident or busy pages.
   1007  	 * object is locked.   data structures are unlocked.
   1008  	 */
   1009 
   1010 	if ((flags & PGO_SYNCIO) == 0) {
   1011 		goto done;
   1012 	}
   1013 
   1014 	for (lcv = 0, current_offset = offset ; lcv < maxpages ;
   1015 	    lcv++, current_offset += PAGE_SIZE) {
   1016 
   1017 		/*
   1018 		 * - skip over pages we've already gotten or don't want
   1019 		 * - skip over pages we don't _have_ to get
   1020 		 */
   1021 
   1022 		if (pps[lcv] != NULL ||
   1023 		    (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
   1024 			continue;
   1025 
   1026 		pageidx = current_offset >> PAGE_SHIFT;
   1027 
   1028 		/*
   1029  		 * we have yet to locate the current page (pps[lcv]).   we
   1030 		 * first look for a page that is already at the current offset.
   1031 		 * if we find a page, we check to see if it is busy or
   1032 		 * released.  if that is the case, then we sleep on the page
   1033 		 * until it is no longer busy or released and repeat the lookup.
   1034 		 * if the page we found is neither busy nor released, then we
   1035 		 * busy it (so we own it) and plug it into pps[lcv].   this
   1036 		 * 'break's the following while loop and indicates we are
   1037 		 * ready to move on to the next page in the "lcv" loop above.
   1038  		 *
   1039  		 * if we exit the while loop with pps[lcv] still set to NULL,
   1040 		 * then it means that we allocated a new busy/fake/clean page
   1041 		 * ptmp in the object and we need to do I/O to fill in the data.
   1042  		 */
   1043 
   1044 		/* top of "pps" while loop */
   1045 		while (pps[lcv] == NULL) {
   1046 			/* look for a resident page */
   1047 			ptmp = uvm_pagelookup(uobj, current_offset);
   1048 
   1049 			/* not resident?   allocate one now (if we can) */
   1050 			if (ptmp == NULL) {
   1051 
   1052 				ptmp = uvm_pagealloc(uobj, current_offset,
   1053 				    NULL, 0);
   1054 
   1055 				/* out of RAM? */
   1056 				if (ptmp == NULL) {
   1057 					mutex_exit(&uobj->vmobjlock);
   1058 					UVMHIST_LOG(pdhist,
   1059 					    "sleeping, ptmp == NULL\n",0,0,0,0);
   1060 					uvm_wait("uao_getpage");
   1061 					mutex_enter(&uobj->vmobjlock);
   1062 					continue;
   1063 				}
   1064 
   1065 				/*
   1066 				 * safe with PQ's unlocked: because we just
   1067 				 * alloc'd the page
   1068 				 */
   1069 
   1070 				ptmp->pqflags |= PQ_AOBJ;
   1071 
   1072 				/*
   1073 				 * got new page ready for I/O.  break pps while
   1074 				 * loop.  pps[lcv] is still NULL.
   1075 				 */
   1076 
   1077 				break;
   1078 			}
   1079 
   1080 			/* page is there, see if we need to wait on it */
   1081 			if ((ptmp->flags & PG_BUSY) != 0) {
   1082 				ptmp->flags |= PG_WANTED;
   1083 				UVMHIST_LOG(pdhist,
   1084 				    "sleeping, ptmp->flags 0x%x\n",
   1085 				    ptmp->flags,0,0,0);
   1086 				UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
   1087 				    false, "uao_get", 0);
   1088 				mutex_enter(&uobj->vmobjlock);
   1089 				continue;
   1090 			}
   1091 
   1092 			/*
   1093  			 * if we get here then the page has become resident and
   1094 			 * unbusy between steps 1 and 2.  we busy it now (so we
   1095 			 * own it) and set pps[lcv] (so that we exit the while
   1096 			 * loop).
   1097  			 */
   1098 
   1099 			/* we own it, caller must un-busy */
   1100 			ptmp->flags |= PG_BUSY;
   1101 			UVM_PAGE_OWN(ptmp, "uao_get2");
   1102 			pps[lcv] = ptmp;
   1103 		}
   1104 
   1105 		/*
   1106  		 * if we own the valid page at the correct offset, pps[lcv] will
   1107  		 * point to it.   nothing more to do except go to the next page.
   1108  		 */
   1109 
   1110 		if (pps[lcv])
   1111 			continue;			/* next lcv */
   1112 
   1113 		/*
   1114  		 * we have a "fake/busy/clean" page that we just allocated.
   1115  		 * do the needed "i/o", either reading from swap or zeroing.
   1116  		 */
   1117 
   1118 		swslot = uao_find_swslot(&aobj->u_obj, pageidx);
   1119 
   1120 		/*
   1121  		 * just zero the page if there's nothing in swap.
   1122  		 */
   1123 
   1124 		if (swslot == 0) {
   1125 
   1126 			/*
   1127 			 * page hasn't existed before, just zero it.
   1128 			 */
   1129 
   1130 			uvm_pagezero(ptmp);
   1131 		} else {
   1132 #if defined(VMSWAP)
   1133 			int error;
   1134 
   1135 			UVMHIST_LOG(pdhist, "pagein from swslot %d",
   1136 			     swslot, 0,0,0);
   1137 
   1138 			/*
   1139 			 * page in the swapped-out page.
   1140 			 * unlock object for i/o, relock when done.
   1141 			 */
   1142 
   1143 			mutex_exit(&uobj->vmobjlock);
   1144 			error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
   1145 			mutex_enter(&uobj->vmobjlock);
   1146 
   1147 			/*
   1148 			 * I/O done.  check for errors.
   1149 			 */
   1150 
   1151 			if (error != 0) {
   1152 				UVMHIST_LOG(pdhist, "<- done (error=%d)",
   1153 				    error,0,0,0);
   1154 				if (ptmp->flags & PG_WANTED)
   1155 					wakeup(ptmp);
   1156 
   1157 				/*
   1158 				 * remove the swap slot from the aobj
   1159 				 * and mark the aobj as having no real slot.
   1160 				 * don't free the swap slot, thus preventing
   1161 				 * it from being used again.
   1162 				 */
   1163 
   1164 				swslot = uao_set_swslot(&aobj->u_obj, pageidx,
   1165 							SWSLOT_BAD);
   1166 				if (swslot > 0) {
   1167 					uvm_swap_markbad(swslot, 1);
   1168 				}
   1169 
   1170 				mutex_enter(&uvm_pageqlock);
   1171 				uvm_pagefree(ptmp);
   1172 				mutex_exit(&uvm_pageqlock);
   1173 				mutex_exit(&uobj->vmobjlock);
   1174 				return error;
   1175 			}
   1176 #else /* defined(VMSWAP) */
   1177 			panic("%s: pagein", __func__);
   1178 #endif /* defined(VMSWAP) */
   1179 		}
   1180 
   1181 		if ((access_type & VM_PROT_WRITE) == 0) {
   1182 			ptmp->flags |= PG_CLEAN;
   1183 			pmap_clear_modify(ptmp);
   1184 		}
   1185 
   1186 		/*
   1187  		 * we got the page!   clear the fake flag (indicates valid
   1188 		 * data now in page) and plug into our result array.   note
   1189 		 * that page is still busy.
   1190  		 *
   1191  		 * it is the callers job to:
   1192  		 * => check if the page is released
   1193  		 * => unbusy the page
   1194  		 * => activate the page
   1195  		 */
   1196 
   1197 		ptmp->flags &= ~PG_FAKE;
   1198 		pps[lcv] = ptmp;
   1199 	}
   1200 
   1201 	/*
   1202  	 * finally, unlock object and return.
   1203  	 */
   1204 
   1205 done:
   1206 	mutex_exit(&uobj->vmobjlock);
   1207 	UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
   1208 	return 0;
   1209 }
   1210 
   1211 #if defined(VMSWAP)
   1212 
   1213 /*
   1214  * uao_dropswap:  release any swap resources from this aobj page.
   1215  *
   1216  * => aobj must be locked or have a reference count of 0.
   1217  */
   1218 
   1219 void
   1220 uao_dropswap(struct uvm_object *uobj, int pageidx)
   1221 {
   1222 	int slot;
   1223 
   1224 	slot = uao_set_swslot(uobj, pageidx, 0);
   1225 	if (slot) {
   1226 		uvm_swap_free(slot, 1);
   1227 	}
   1228 }
   1229 
   1230 /*
   1231  * page in every page in every aobj that is paged-out to a range of swslots.
   1232  *
   1233  * => nothing should be locked.
   1234  * => returns true if pagein was aborted due to lack of memory.
   1235  */
   1236 
   1237 bool
   1238 uao_swap_off(int startslot, int endslot)
   1239 {
   1240 	struct uvm_aobj *aobj, *nextaobj;
   1241 	bool rv;
   1242 
   1243 	/*
   1244 	 * walk the list of all aobjs.
   1245 	 */
   1246 
   1247 restart:
   1248 	mutex_enter(&uao_list_lock);
   1249 	for (aobj = LIST_FIRST(&uao_list);
   1250 	     aobj != NULL;
   1251 	     aobj = nextaobj) {
   1252 
   1253 		/*
   1254 		 * try to get the object lock, start all over if we fail.
   1255 		 * most of the time we'll get the aobj lock,
   1256 		 * so this should be a rare case.
   1257 		 */
   1258 
   1259 		if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
   1260 			mutex_exit(&uao_list_lock);
   1261 			/* XXX Better than yielding but inadequate. */
   1262 			kpause("livelock", false, 1, NULL);
   1263 			goto restart;
   1264 		}
   1265 
   1266 		/*
   1267 		 * add a ref to the aobj so it doesn't disappear
   1268 		 * while we're working.
   1269 		 */
   1270 
   1271 		uao_reference_locked(&aobj->u_obj);
   1272 
   1273 		/*
   1274 		 * now it's safe to unlock the uao list.
   1275 		 */
   1276 
   1277 		mutex_exit(&uao_list_lock);
   1278 
   1279 		/*
   1280 		 * page in any pages in the swslot range.
   1281 		 * if there's an error, abort and return the error.
   1282 		 */
   1283 
   1284 		rv = uao_pagein(aobj, startslot, endslot);
   1285 		if (rv) {
   1286 			uao_detach_locked(&aobj->u_obj);
   1287 			return rv;
   1288 		}
   1289 
   1290 		/*
   1291 		 * we're done with this aobj.
   1292 		 * relock the list and drop our ref on the aobj.
   1293 		 */
   1294 
   1295 		mutex_enter(&uao_list_lock);
   1296 		nextaobj = LIST_NEXT(aobj, u_list);
   1297 		uao_detach_locked(&aobj->u_obj);
   1298 	}
   1299 
   1300 	/*
   1301 	 * done with traversal, unlock the list
   1302 	 */
   1303 	mutex_exit(&uao_list_lock);
   1304 	return false;
   1305 }
   1306 
   1307 
   1308 /*
   1309  * page in any pages from aobj in the given range.
   1310  *
   1311  * => aobj must be locked and is returned locked.
   1312  * => returns true if pagein was aborted due to lack of memory.
   1313  */
   1314 static bool
   1315 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
   1316 {
   1317 	bool rv;
   1318 
   1319 	if (UAO_USES_SWHASH(aobj)) {
   1320 		struct uao_swhash_elt *elt;
   1321 		int buck;
   1322 
   1323 restart:
   1324 		for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
   1325 			for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
   1326 			     elt != NULL;
   1327 			     elt = LIST_NEXT(elt, list)) {
   1328 				int i;
   1329 
   1330 				for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
   1331 					int slot = elt->slots[i];
   1332 
   1333 					/*
   1334 					 * if the slot isn't in range, skip it.
   1335 					 */
   1336 
   1337 					if (slot < startslot ||
   1338 					    slot >= endslot) {
   1339 						continue;
   1340 					}
   1341 
   1342 					/*
   1343 					 * process the page,
   1344 					 * the start over on this object
   1345 					 * since the swhash elt
   1346 					 * may have been freed.
   1347 					 */
   1348 
   1349 					rv = uao_pagein_page(aobj,
   1350 					  UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
   1351 					if (rv) {
   1352 						return rv;
   1353 					}
   1354 					goto restart;
   1355 				}
   1356 			}
   1357 		}
   1358 	} else {
   1359 		int i;
   1360 
   1361 		for (i = 0; i < aobj->u_pages; i++) {
   1362 			int slot = aobj->u_swslots[i];
   1363 
   1364 			/*
   1365 			 * if the slot isn't in range, skip it
   1366 			 */
   1367 
   1368 			if (slot < startslot || slot >= endslot) {
   1369 				continue;
   1370 			}
   1371 
   1372 			/*
   1373 			 * process the page.
   1374 			 */
   1375 
   1376 			rv = uao_pagein_page(aobj, i);
   1377 			if (rv) {
   1378 				return rv;
   1379 			}
   1380 		}
   1381 	}
   1382 
   1383 	return false;
   1384 }
   1385 
   1386 /*
   1387  * page in a page from an aobj.  used for swap_off.
   1388  * returns true if pagein was aborted due to lack of memory.
   1389  *
   1390  * => aobj must be locked and is returned locked.
   1391  */
   1392 
   1393 static bool
   1394 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
   1395 {
   1396 	struct vm_page *pg;
   1397 	int rv, npages;
   1398 
   1399 	pg = NULL;
   1400 	npages = 1;
   1401 	/* locked: aobj */
   1402 	rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
   1403 	    &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
   1404 	/* unlocked: aobj */
   1405 
   1406 	/*
   1407 	 * relock and finish up.
   1408 	 */
   1409 
   1410 	mutex_enter(&aobj->u_obj.vmobjlock);
   1411 	switch (rv) {
   1412 	case 0:
   1413 		break;
   1414 
   1415 	case EIO:
   1416 	case ERESTART:
   1417 
   1418 		/*
   1419 		 * nothing more to do on errors.
   1420 		 * ERESTART can only mean that the anon was freed,
   1421 		 * so again there's nothing to do.
   1422 		 */
   1423 
   1424 		return false;
   1425 
   1426 	default:
   1427 		return true;
   1428 	}
   1429 
   1430 	/*
   1431 	 * ok, we've got the page now.
   1432 	 * mark it as dirty, clear its swslot and un-busy it.
   1433 	 */
   1434 	uao_dropswap(&aobj->u_obj, pageidx);
   1435 
   1436 	/*
   1437 	 * make sure it's on a page queue.
   1438 	 */
   1439 	mutex_enter(&uvm_pageqlock);
   1440 	if (pg->wire_count == 0)
   1441 		uvm_pageenqueue(pg);
   1442 	mutex_exit(&uvm_pageqlock);
   1443 
   1444 	if (pg->flags & PG_WANTED) {
   1445 		wakeup(pg);
   1446 	}
   1447 	pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
   1448 	UVM_PAGE_OWN(pg, NULL);
   1449 
   1450 	return false;
   1451 }
   1452 
   1453 /*
   1454  * uao_dropswap_range: drop swapslots in the range.
   1455  *
   1456  * => aobj must be locked and is returned locked.
   1457  * => start is inclusive.  end is exclusive.
   1458  */
   1459 
   1460 void
   1461 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
   1462 {
   1463 	struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
   1464 
   1465 	KASSERT(mutex_owned(&uobj->vmobjlock));
   1466 
   1467 	uao_dropswap_range1(aobj, start, end);
   1468 }
   1469 
   1470 static void
   1471 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
   1472 {
   1473 	int swpgonlydelta = 0;
   1474 
   1475 	if (end == 0) {
   1476 		end = INT64_MAX;
   1477 	}
   1478 
   1479 	if (UAO_USES_SWHASH(aobj)) {
   1480 		int i, hashbuckets = aobj->u_swhashmask + 1;
   1481 		voff_t taghi;
   1482 		voff_t taglo;
   1483 
   1484 		taglo = UAO_SWHASH_ELT_TAG(start);
   1485 		taghi = UAO_SWHASH_ELT_TAG(end);
   1486 
   1487 		for (i = 0; i < hashbuckets; i++) {
   1488 			struct uao_swhash_elt *elt, *next;
   1489 
   1490 			for (elt = LIST_FIRST(&aobj->u_swhash[i]);
   1491 			     elt != NULL;
   1492 			     elt = next) {
   1493 				int startidx, endidx;
   1494 				int j;
   1495 
   1496 				next = LIST_NEXT(elt, list);
   1497 
   1498 				if (elt->tag < taglo || taghi < elt->tag) {
   1499 					continue;
   1500 				}
   1501 
   1502 				if (elt->tag == taglo) {
   1503 					startidx =
   1504 					    UAO_SWHASH_ELT_PAGESLOT_IDX(start);
   1505 				} else {
   1506 					startidx = 0;
   1507 				}
   1508 
   1509 				if (elt->tag == taghi) {
   1510 					endidx =
   1511 					    UAO_SWHASH_ELT_PAGESLOT_IDX(end);
   1512 				} else {
   1513 					endidx = UAO_SWHASH_CLUSTER_SIZE;
   1514 				}
   1515 
   1516 				for (j = startidx; j < endidx; j++) {
   1517 					int slot = elt->slots[j];
   1518 
   1519 					KASSERT(uvm_pagelookup(&aobj->u_obj,
   1520 					    (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
   1521 					    + j) << PAGE_SHIFT) == NULL);
   1522 					if (slot > 0) {
   1523 						uvm_swap_free(slot, 1);
   1524 						swpgonlydelta++;
   1525 						KASSERT(elt->count > 0);
   1526 						elt->slots[j] = 0;
   1527 						elt->count--;
   1528 					}
   1529 				}
   1530 
   1531 				if (elt->count == 0) {
   1532 					LIST_REMOVE(elt, list);
   1533 					pool_put(&uao_swhash_elt_pool, elt);
   1534 				}
   1535 			}
   1536 		}
   1537 	} else {
   1538 		int i;
   1539 
   1540 		if (aobj->u_pages < end) {
   1541 			end = aobj->u_pages;
   1542 		}
   1543 		for (i = start; i < end; i++) {
   1544 			int slot = aobj->u_swslots[i];
   1545 
   1546 			if (slot > 0) {
   1547 				uvm_swap_free(slot, 1);
   1548 				swpgonlydelta++;
   1549 			}
   1550 		}
   1551 	}
   1552 
   1553 	/*
   1554 	 * adjust the counter of pages only in swap for all
   1555 	 * the swap slots we've freed.
   1556 	 */
   1557 
   1558 	if (swpgonlydelta > 0) {
   1559 		mutex_enter(&uvm_swap_data_lock);
   1560 		KASSERT(uvmexp.swpgonly >= swpgonlydelta);
   1561 		uvmexp.swpgonly -= swpgonlydelta;
   1562 		mutex_exit(&uvm_swap_data_lock);
   1563 	}
   1564 }
   1565 
   1566 #endif /* defined(VMSWAP) */
   1567