uvm_aobj.c revision 1.113 1 /* $NetBSD: uvm_aobj.c,v 1.113 2011/02/11 00:21:18 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.113 2011/02/11 00:21:18 rmind Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/pool.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * an aobj manages anonymous-memory backed uvm_objects. in addition
56 * to keeping the list of resident pages, it also keeps a list of
57 * allocated swap blocks. depending on the size of the aobj this list
58 * of allocated swap blocks is either stored in an array (small objects)
59 * or in a hash table (large objects).
60 */
61
62 /*
63 * local structures
64 */
65
66 /*
67 * for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
69 * be a power of two.
70 */
71
72 #define UAO_SWHASH_CLUSTER_SHIFT 4
73 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
74
75 /* get the "tag" for this page index */
76 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
77 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
78
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
80 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
85
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90 /*
91 * the swhash hash function
92 */
93
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 UAO_SWHASH_MAXBUCKETS))
115
116 /*
117 * uao_swhash_elt: when a hash table is being used, this structure defines
118 * the format of an entry in the bucket list.
119 */
120
121 struct uao_swhash_elt {
122 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
123 voff_t tag; /* our 'tag' */
124 int count; /* our number of active slots */
125 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
126 };
127
128 /*
129 * uao_swhash: the swap hash table structure
130 */
131
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133
134 /*
135 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
136 * Note: pages for this pool must not come from a pageable kernel map.
137 */
138 static struct pool uao_swhash_elt_pool;
139
140 /*
141 * uvm_aobj: the actual anon-backed uvm_object
142 *
143 * => the uvm_object is at the top of the structure, this allows
144 * (struct uvm_aobj *) == (struct uvm_object *)
145 * => only one of u_swslots and u_swhash is used in any given aobj
146 */
147
148 struct uvm_aobj {
149 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 pgoff_t u_pages; /* number of pages in entire object */
151 int u_flags; /* the flags (see uvm_aobj.h) */
152 int *u_swslots; /* array of offset->swapslot mappings */
153 /*
154 * hashtable of offset->swapslot mappings
155 * (u_swhash is an array of bucket heads)
156 */
157 struct uao_swhash *u_swhash;
158 u_long u_swhashmask; /* mask for hashtable */
159 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
160 };
161
162 /*
163 * local functions
164 */
165
166 static void uao_free(struct uvm_aobj *);
167 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
168 int *, int, vm_prot_t, int, int);
169 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
170
171 static void uao_detach_locked(struct uvm_object *);
172 static void uao_reference_locked(struct uvm_object *);
173
174 #if defined(VMSWAP)
175 static struct uao_swhash_elt *uao_find_swhash_elt
176 (struct uvm_aobj *, int, bool);
177
178 static bool uao_pagein(struct uvm_aobj *, int, int);
179 static bool uao_pagein_page(struct uvm_aobj *, int);
180 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
181 #endif /* defined(VMSWAP) */
182
183 /*
184 * aobj_pager
185 *
186 * note that some functions (e.g. put) are handled elsewhere
187 */
188
189 const struct uvm_pagerops aobj_pager = {
190 .pgo_reference = uao_reference,
191 .pgo_detach = uao_detach,
192 .pgo_get = uao_get,
193 .pgo_put = uao_put,
194 };
195
196 /*
197 * uao_list: global list of active aobjs, locked by uao_list_lock
198 */
199
200 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
201 static kmutex_t uao_list_lock;
202
203 /*
204 * functions
205 */
206
207 /*
208 * hash table/array related functions
209 */
210
211 #if defined(VMSWAP)
212
213 /*
214 * uao_find_swhash_elt: find (or create) a hash table entry for a page
215 * offset.
216 *
217 * => the object should be locked by the caller
218 */
219
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
222 {
223 struct uao_swhash *swhash;
224 struct uao_swhash_elt *elt;
225 voff_t page_tag;
226
227 swhash = UAO_SWHASH_HASH(aobj, pageidx);
228 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
229
230 /*
231 * now search the bucket for the requested tag
232 */
233
234 LIST_FOREACH(elt, swhash, list) {
235 if (elt->tag == page_tag) {
236 return elt;
237 }
238 }
239 if (!create) {
240 return NULL;
241 }
242
243 /*
244 * allocate a new entry for the bucket and init/insert it in
245 */
246
247 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
248 if (elt == NULL) {
249 return NULL;
250 }
251 LIST_INSERT_HEAD(swhash, elt, list);
252 elt->tag = page_tag;
253 elt->count = 0;
254 memset(elt->slots, 0, sizeof(elt->slots));
255 return elt;
256 }
257
258 /*
259 * uao_find_swslot: find the swap slot number for an aobj/pageidx
260 *
261 * => object must be locked by caller
262 */
263
264 int
265 uao_find_swslot(struct uvm_object *uobj, int pageidx)
266 {
267 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
268 struct uao_swhash_elt *elt;
269
270 /*
271 * if noswap flag is set, then we never return a slot
272 */
273
274 if (aobj->u_flags & UAO_FLAG_NOSWAP)
275 return(0);
276
277 /*
278 * if hashing, look in hash table.
279 */
280
281 if (UAO_USES_SWHASH(aobj)) {
282 elt = uao_find_swhash_elt(aobj, pageidx, false);
283 if (elt)
284 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
285 else
286 return(0);
287 }
288
289 /*
290 * otherwise, look in the array
291 */
292
293 return(aobj->u_swslots[pageidx]);
294 }
295
296 /*
297 * uao_set_swslot: set the swap slot for a page in an aobj.
298 *
299 * => setting a slot to zero frees the slot
300 * => object must be locked by caller
301 * => we return the old slot number, or -1 if we failed to allocate
302 * memory to record the new slot number
303 */
304
305 int
306 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
307 {
308 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
309 struct uao_swhash_elt *elt;
310 int oldslot;
311 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
312 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
313 aobj, pageidx, slot, 0);
314
315 KASSERT(mutex_owned(&uobj->vmobjlock) || uobj->uo_refs == 0);
316
317 /*
318 * if noswap flag is set, then we can't set a non-zero slot.
319 */
320
321 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
322 if (slot == 0)
323 return(0);
324
325 printf("uao_set_swslot: uobj = %p\n", uobj);
326 panic("uao_set_swslot: NOSWAP object");
327 }
328
329 /*
330 * are we using a hash table? if so, add it in the hash.
331 */
332
333 if (UAO_USES_SWHASH(aobj)) {
334
335 /*
336 * Avoid allocating an entry just to free it again if
337 * the page had not swap slot in the first place, and
338 * we are freeing.
339 */
340
341 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
342 if (elt == NULL) {
343 return slot ? -1 : 0;
344 }
345
346 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
347 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
348
349 /*
350 * now adjust the elt's reference counter and free it if we've
351 * dropped it to zero.
352 */
353
354 if (slot) {
355 if (oldslot == 0)
356 elt->count++;
357 } else {
358 if (oldslot)
359 elt->count--;
360
361 if (elt->count == 0) {
362 LIST_REMOVE(elt, list);
363 pool_put(&uao_swhash_elt_pool, elt);
364 }
365 }
366 } else {
367 /* we are using an array */
368 oldslot = aobj->u_swslots[pageidx];
369 aobj->u_swslots[pageidx] = slot;
370 }
371 return (oldslot);
372 }
373
374 #endif /* defined(VMSWAP) */
375
376 /*
377 * end of hash/array functions
378 */
379
380 /*
381 * uao_free: free all resources held by an aobj, and then free the aobj
382 *
383 * => the aobj should be dead
384 */
385
386 static void
387 uao_free(struct uvm_aobj *aobj)
388 {
389
390 #if defined(VMSWAP)
391 uao_dropswap_range1(aobj, 0, 0);
392 #endif /* defined(VMSWAP) */
393
394 mutex_exit(&aobj->u_obj.vmobjlock);
395
396 #if defined(VMSWAP)
397 if (UAO_USES_SWHASH(aobj)) {
398
399 /*
400 * free the hash table itself.
401 */
402
403 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
404 } else {
405
406 /*
407 * free the array itsself.
408 */
409
410 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
411 }
412 #endif /* defined(VMSWAP) */
413
414 /*
415 * finally free the aobj itself
416 */
417
418 UVM_OBJ_DESTROY(&aobj->u_obj);
419 kmem_free(aobj, sizeof(struct uvm_aobj));
420 }
421
422 /*
423 * pager functions
424 */
425
426 /*
427 * uao_create: create an aobj of the given size and return its uvm_object.
428 *
429 * => for normal use, flags are always zero
430 * => for the kernel object, the flags are:
431 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
432 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
433 */
434
435 struct uvm_object *
436 uao_create(vsize_t size, int flags)
437 {
438 static struct uvm_aobj kernel_object_store;
439 static int kobj_alloced = 0;
440 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
441 struct uvm_aobj *aobj;
442 int refs;
443
444 /*
445 * malloc a new aobj unless we are asked for the kernel object
446 */
447
448 if (flags & UAO_FLAG_KERNOBJ) {
449 KASSERT(!kobj_alloced);
450 aobj = &kernel_object_store;
451 aobj->u_pages = pages;
452 aobj->u_flags = UAO_FLAG_NOSWAP;
453 refs = UVM_OBJ_KERN;
454 kobj_alloced = UAO_FLAG_KERNOBJ;
455 } else if (flags & UAO_FLAG_KERNSWAP) {
456 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
457 aobj = &kernel_object_store;
458 kobj_alloced = UAO_FLAG_KERNSWAP;
459 refs = 0xdeadbeaf; /* XXX: gcc */
460 } else {
461 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
462 aobj->u_pages = pages;
463 aobj->u_flags = 0;
464 refs = 1;
465 }
466
467 /*
468 * allocate hash/array if necessary
469 *
470 * note: in the KERNSWAP case no need to worry about locking since
471 * we are still booting we should be the only thread around.
472 */
473
474 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
475 #if defined(VMSWAP)
476 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
477
478 /* allocate hash table or array depending on object size */
479 if (UAO_USES_SWHASH(aobj)) {
480 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
481 HASH_LIST, kernswap ? false : true,
482 &aobj->u_swhashmask);
483 if (aobj->u_swhash == NULL)
484 panic("uao_create: hashinit swhash failed");
485 } else {
486 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
487 kernswap ? KM_NOSLEEP : KM_SLEEP);
488 if (aobj->u_swslots == NULL)
489 panic("uao_create: malloc swslots failed");
490 }
491 #endif /* defined(VMSWAP) */
492
493 if (flags) {
494 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
495 return(&aobj->u_obj);
496 }
497 }
498
499 /*
500 * init aobj fields
501 */
502
503 UVM_OBJ_INIT(&aobj->u_obj, &aobj_pager, refs);
504
505 /*
506 * now that aobj is ready, add it to the global list
507 */
508
509 mutex_enter(&uao_list_lock);
510 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
511 mutex_exit(&uao_list_lock);
512 return(&aobj->u_obj);
513 }
514
515
516
517 /*
518 * uao_init: set up aobj pager subsystem
519 *
520 * => called at boot time from uvm_pager_init()
521 */
522
523 void
524 uao_init(void)
525 {
526 static int uao_initialized;
527
528 if (uao_initialized)
529 return;
530 uao_initialized = true;
531 LIST_INIT(&uao_list);
532 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
533 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
534 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
535 }
536
537 /*
538 * uao_reference: add a ref to an aobj
539 *
540 * => aobj must be unlocked
541 * => just lock it and call the locked version
542 */
543
544 void
545 uao_reference(struct uvm_object *uobj)
546 {
547
548 /*
549 * kernel_object already has plenty of references, leave it alone.
550 */
551
552 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
553 return;
554
555 mutex_enter(&uobj->vmobjlock);
556 uao_reference_locked(uobj);
557 mutex_exit(&uobj->vmobjlock);
558 }
559
560 /*
561 * uao_reference_locked: add a ref to an aobj that is already locked
562 *
563 * => aobj must be locked
564 * this needs to be separate from the normal routine
565 * since sometimes we need to add a reference to an aobj when
566 * it's already locked.
567 */
568
569 static void
570 uao_reference_locked(struct uvm_object *uobj)
571 {
572 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
573
574 /*
575 * kernel_object already has plenty of references, leave it alone.
576 */
577
578 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
579 return;
580
581 uobj->uo_refs++;
582 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
583 uobj, uobj->uo_refs,0,0);
584 }
585
586 /*
587 * uao_detach: drop a reference to an aobj
588 *
589 * => aobj must be unlocked
590 * => just lock it and call the locked version
591 */
592
593 void
594 uao_detach(struct uvm_object *uobj)
595 {
596
597 /*
598 * detaching from kernel_object is a noop.
599 */
600
601 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
602 return;
603
604 mutex_enter(&uobj->vmobjlock);
605 uao_detach_locked(uobj);
606 }
607
608 /*
609 * uao_detach_locked: drop a reference to an aobj
610 *
611 * => aobj must be locked, and is unlocked (or freed) upon return.
612 * this needs to be separate from the normal routine
613 * since sometimes we need to detach from an aobj when
614 * it's already locked.
615 */
616
617 static void
618 uao_detach_locked(struct uvm_object *uobj)
619 {
620 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
621 struct vm_page *pg;
622 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
623
624 /*
625 * detaching from kernel_object is a noop.
626 */
627
628 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
629 mutex_exit(&uobj->vmobjlock);
630 return;
631 }
632
633 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
634 uobj->uo_refs--;
635 if (uobj->uo_refs) {
636 mutex_exit(&uobj->vmobjlock);
637 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
638 return;
639 }
640
641 /*
642 * remove the aobj from the global list.
643 */
644
645 mutex_enter(&uao_list_lock);
646 LIST_REMOVE(aobj, u_list);
647 mutex_exit(&uao_list_lock);
648
649 /*
650 * free all the pages left in the aobj. for each page,
651 * when the page is no longer busy (and thus after any disk i/o that
652 * it's involved in is complete), release any swap resources and
653 * free the page itself.
654 */
655
656 mutex_enter(&uvm_pageqlock);
657 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
658 pmap_page_protect(pg, VM_PROT_NONE);
659 if (pg->flags & PG_BUSY) {
660 pg->flags |= PG_WANTED;
661 mutex_exit(&uvm_pageqlock);
662 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, false,
663 "uao_det", 0);
664 mutex_enter(&uobj->vmobjlock);
665 mutex_enter(&uvm_pageqlock);
666 continue;
667 }
668 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
669 uvm_pagefree(pg);
670 }
671 mutex_exit(&uvm_pageqlock);
672
673 /*
674 * finally, free the aobj itself.
675 */
676
677 uao_free(aobj);
678 }
679
680 /*
681 * uao_put: flush pages out of a uvm object
682 *
683 * => object should be locked by caller. we may _unlock_ the object
684 * if (and only if) we need to clean a page (PGO_CLEANIT).
685 * XXXJRT Currently, however, we don't. In the case of cleaning
686 * XXXJRT a page, we simply just deactivate it. Should probably
687 * XXXJRT handle this better, in the future (although "flushing"
688 * XXXJRT anonymous memory isn't terribly important).
689 * => if PGO_CLEANIT is not set, then we will neither unlock the object
690 * or block.
691 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
692 * for flushing.
693 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
694 * that new pages are inserted on the tail end of the list. thus,
695 * we can make a complete pass through the object in one go by starting
696 * at the head and working towards the tail (new pages are put in
697 * front of us).
698 * => NOTE: we are allowed to lock the page queues, so the caller
699 * must not be holding the lock on them [e.g. pagedaemon had
700 * better not call us with the queues locked]
701 * => we return 0 unless we encountered some sort of I/O error
702 * XXXJRT currently never happens, as we never directly initiate
703 * XXXJRT I/O
704 *
705 * note on page traversal:
706 * we can traverse the pages in an object either by going down the
707 * linked list in "uobj->memq", or we can go over the address range
708 * by page doing hash table lookups for each address. depending
709 * on how many pages are in the object it may be cheaper to do one
710 * or the other. we set "by_list" to true if we are using memq.
711 * if the cost of a hash lookup was equal to the cost of the list
712 * traversal we could compare the number of pages in the start->stop
713 * range to the total number of pages in the object. however, it
714 * seems that a hash table lookup is more expensive than the linked
715 * list traversal, so we multiply the number of pages in the
716 * start->stop range by a penalty which we define below.
717 */
718
719 static int
720 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
721 {
722 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
723 struct vm_page *pg, *nextpg, curmp, endmp;
724 bool by_list;
725 voff_t curoff;
726 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
727
728 KASSERT(mutex_owned(&uobj->vmobjlock));
729
730 curoff = 0;
731 if (flags & PGO_ALLPAGES) {
732 start = 0;
733 stop = aobj->u_pages << PAGE_SHIFT;
734 by_list = true; /* always go by the list */
735 } else {
736 start = trunc_page(start);
737 if (stop == 0) {
738 stop = aobj->u_pages << PAGE_SHIFT;
739 } else {
740 stop = round_page(stop);
741 }
742 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
743 printf("uao_flush: strange, got an out of range "
744 "flush (fixed)\n");
745 stop = aobj->u_pages << PAGE_SHIFT;
746 }
747 by_list = (uobj->uo_npages <=
748 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
749 }
750 UVMHIST_LOG(maphist,
751 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
752 start, stop, by_list, flags);
753
754 /*
755 * Don't need to do any work here if we're not freeing
756 * or deactivating pages.
757 */
758
759 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
760 mutex_exit(&uobj->vmobjlock);
761 return 0;
762 }
763
764 /*
765 * Initialize the marker pages. See the comment in
766 * genfs_putpages() also.
767 */
768
769 curmp.flags = PG_MARKER;
770 endmp.flags = PG_MARKER;
771
772 /*
773 * now do it. note: we must update nextpg in the body of loop or we
774 * will get stuck. we need to use nextpg if we'll traverse the list
775 * because we may free "pg" before doing the next loop.
776 */
777
778 if (by_list) {
779 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
780 nextpg = TAILQ_FIRST(&uobj->memq);
781 } else {
782 curoff = start;
783 nextpg = NULL; /* Quell compiler warning */
784 }
785
786 /* locked: uobj */
787 for (;;) {
788 if (by_list) {
789 pg = nextpg;
790 if (pg == &endmp)
791 break;
792 nextpg = TAILQ_NEXT(pg, listq.queue);
793 if (pg->flags & PG_MARKER)
794 continue;
795 if (pg->offset < start || pg->offset >= stop)
796 continue;
797 } else {
798 if (curoff < stop) {
799 pg = uvm_pagelookup(uobj, curoff);
800 curoff += PAGE_SIZE;
801 } else
802 break;
803 if (pg == NULL)
804 continue;
805 }
806
807 /*
808 * wait and try again if the page is busy.
809 */
810
811 if (pg->flags & PG_BUSY) {
812 if (by_list) {
813 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
814 }
815 pg->flags |= PG_WANTED;
816 UVM_UNLOCK_AND_WAIT(pg, &uobj->vmobjlock, 0,
817 "uao_put", 0);
818 mutex_enter(&uobj->vmobjlock);
819 if (by_list) {
820 nextpg = TAILQ_NEXT(&curmp, listq.queue);
821 TAILQ_REMOVE(&uobj->memq, &curmp,
822 listq.queue);
823 } else
824 curoff -= PAGE_SIZE;
825 continue;
826 }
827
828 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
829
830 /*
831 * XXX In these first 3 cases, we always just
832 * XXX deactivate the page. We may want to
833 * XXX handle the different cases more specifically
834 * XXX in the future.
835 */
836
837 case PGO_CLEANIT|PGO_FREE:
838 case PGO_CLEANIT|PGO_DEACTIVATE:
839 case PGO_DEACTIVATE:
840 deactivate_it:
841 mutex_enter(&uvm_pageqlock);
842 /* skip the page if it's wired */
843 if (pg->wire_count == 0) {
844 uvm_pagedeactivate(pg);
845 }
846 mutex_exit(&uvm_pageqlock);
847 break;
848
849 case PGO_FREE:
850 /*
851 * If there are multiple references to
852 * the object, just deactivate the page.
853 */
854
855 if (uobj->uo_refs > 1)
856 goto deactivate_it;
857
858 /*
859 * free the swap slot and the page.
860 */
861
862 pmap_page_protect(pg, VM_PROT_NONE);
863
864 /*
865 * freeing swapslot here is not strictly necessary.
866 * however, leaving it here doesn't save much
867 * because we need to update swap accounting anyway.
868 */
869
870 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
871 mutex_enter(&uvm_pageqlock);
872 uvm_pagefree(pg);
873 mutex_exit(&uvm_pageqlock);
874 break;
875
876 default:
877 panic("%s: impossible", __func__);
878 }
879 }
880 if (by_list) {
881 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
882 }
883 mutex_exit(&uobj->vmobjlock);
884 return 0;
885 }
886
887 /*
888 * uao_get: fetch me a page
889 *
890 * we have three cases:
891 * 1: page is resident -> just return the page.
892 * 2: page is zero-fill -> allocate a new page and zero it.
893 * 3: page is swapped out -> fetch the page from swap.
894 *
895 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
896 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
897 * then we will need to return EBUSY.
898 *
899 * => prefer map unlocked (not required)
900 * => object must be locked! we will _unlock_ it before starting any I/O.
901 * => flags: PGO_ALLPAGES: get all of the pages
902 * PGO_LOCKED: fault data structures are locked
903 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
904 * => NOTE: caller must check for released pages!!
905 */
906
907 static int
908 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
909 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
910 {
911 #if defined(VMSWAP)
912 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
913 #endif /* defined(VMSWAP) */
914 voff_t current_offset;
915 struct vm_page *ptmp = NULL; /* Quell compiler warning */
916 int lcv, gotpages, maxpages, swslot, pageidx;
917 bool done;
918 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
919
920 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
921 (struct uvm_aobj *)uobj, offset, flags,0);
922
923 /*
924 * get number of pages
925 */
926
927 maxpages = *npagesp;
928
929 /*
930 * step 1: handled the case where fault data structures are locked.
931 */
932
933 if (flags & PGO_LOCKED) {
934
935 /*
936 * step 1a: get pages that are already resident. only do
937 * this if the data structures are locked (i.e. the first
938 * time through).
939 */
940
941 done = true; /* be optimistic */
942 gotpages = 0; /* # of pages we got so far */
943 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
944 lcv++, current_offset += PAGE_SIZE) {
945 /* do we care about this page? if not, skip it */
946 if (pps[lcv] == PGO_DONTCARE)
947 continue;
948 ptmp = uvm_pagelookup(uobj, current_offset);
949
950 /*
951 * if page is new, attempt to allocate the page,
952 * zero-fill'd.
953 */
954
955 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
956 current_offset >> PAGE_SHIFT) == 0) {
957 ptmp = uvm_pagealloc(uobj, current_offset,
958 NULL, UVM_PGA_ZERO);
959 if (ptmp) {
960 /* new page */
961 ptmp->flags &= ~(PG_FAKE);
962 ptmp->pqflags |= PQ_AOBJ;
963 goto gotpage;
964 }
965 }
966
967 /*
968 * to be useful must get a non-busy page
969 */
970
971 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
972 if (lcv == centeridx ||
973 (flags & PGO_ALLPAGES) != 0)
974 /* need to do a wait or I/O! */
975 done = false;
976 continue;
977 }
978
979 /*
980 * useful page: busy/lock it and plug it in our
981 * result array
982 */
983
984 /* caller must un-busy this page */
985 ptmp->flags |= PG_BUSY;
986 UVM_PAGE_OWN(ptmp, "uao_get1");
987 gotpage:
988 pps[lcv] = ptmp;
989 gotpages++;
990 }
991
992 /*
993 * step 1b: now we've either done everything needed or we
994 * to unlock and do some waiting or I/O.
995 */
996
997 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
998 *npagesp = gotpages;
999 if (done)
1000 return 0;
1001 else
1002 return EBUSY;
1003 }
1004
1005 /*
1006 * step 2: get non-resident or busy pages.
1007 * object is locked. data structures are unlocked.
1008 */
1009
1010 if ((flags & PGO_SYNCIO) == 0) {
1011 goto done;
1012 }
1013
1014 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1015 lcv++, current_offset += PAGE_SIZE) {
1016
1017 /*
1018 * - skip over pages we've already gotten or don't want
1019 * - skip over pages we don't _have_ to get
1020 */
1021
1022 if (pps[lcv] != NULL ||
1023 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1024 continue;
1025
1026 pageidx = current_offset >> PAGE_SHIFT;
1027
1028 /*
1029 * we have yet to locate the current page (pps[lcv]). we
1030 * first look for a page that is already at the current offset.
1031 * if we find a page, we check to see if it is busy or
1032 * released. if that is the case, then we sleep on the page
1033 * until it is no longer busy or released and repeat the lookup.
1034 * if the page we found is neither busy nor released, then we
1035 * busy it (so we own it) and plug it into pps[lcv]. this
1036 * 'break's the following while loop and indicates we are
1037 * ready to move on to the next page in the "lcv" loop above.
1038 *
1039 * if we exit the while loop with pps[lcv] still set to NULL,
1040 * then it means that we allocated a new busy/fake/clean page
1041 * ptmp in the object and we need to do I/O to fill in the data.
1042 */
1043
1044 /* top of "pps" while loop */
1045 while (pps[lcv] == NULL) {
1046 /* look for a resident page */
1047 ptmp = uvm_pagelookup(uobj, current_offset);
1048
1049 /* not resident? allocate one now (if we can) */
1050 if (ptmp == NULL) {
1051
1052 ptmp = uvm_pagealloc(uobj, current_offset,
1053 NULL, 0);
1054
1055 /* out of RAM? */
1056 if (ptmp == NULL) {
1057 mutex_exit(&uobj->vmobjlock);
1058 UVMHIST_LOG(pdhist,
1059 "sleeping, ptmp == NULL\n",0,0,0,0);
1060 uvm_wait("uao_getpage");
1061 mutex_enter(&uobj->vmobjlock);
1062 continue;
1063 }
1064
1065 /*
1066 * safe with PQ's unlocked: because we just
1067 * alloc'd the page
1068 */
1069
1070 ptmp->pqflags |= PQ_AOBJ;
1071
1072 /*
1073 * got new page ready for I/O. break pps while
1074 * loop. pps[lcv] is still NULL.
1075 */
1076
1077 break;
1078 }
1079
1080 /* page is there, see if we need to wait on it */
1081 if ((ptmp->flags & PG_BUSY) != 0) {
1082 ptmp->flags |= PG_WANTED;
1083 UVMHIST_LOG(pdhist,
1084 "sleeping, ptmp->flags 0x%x\n",
1085 ptmp->flags,0,0,0);
1086 UVM_UNLOCK_AND_WAIT(ptmp, &uobj->vmobjlock,
1087 false, "uao_get", 0);
1088 mutex_enter(&uobj->vmobjlock);
1089 continue;
1090 }
1091
1092 /*
1093 * if we get here then the page has become resident and
1094 * unbusy between steps 1 and 2. we busy it now (so we
1095 * own it) and set pps[lcv] (so that we exit the while
1096 * loop).
1097 */
1098
1099 /* we own it, caller must un-busy */
1100 ptmp->flags |= PG_BUSY;
1101 UVM_PAGE_OWN(ptmp, "uao_get2");
1102 pps[lcv] = ptmp;
1103 }
1104
1105 /*
1106 * if we own the valid page at the correct offset, pps[lcv] will
1107 * point to it. nothing more to do except go to the next page.
1108 */
1109
1110 if (pps[lcv])
1111 continue; /* next lcv */
1112
1113 /*
1114 * we have a "fake/busy/clean" page that we just allocated.
1115 * do the needed "i/o", either reading from swap or zeroing.
1116 */
1117
1118 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1119
1120 /*
1121 * just zero the page if there's nothing in swap.
1122 */
1123
1124 if (swslot == 0) {
1125
1126 /*
1127 * page hasn't existed before, just zero it.
1128 */
1129
1130 uvm_pagezero(ptmp);
1131 } else {
1132 #if defined(VMSWAP)
1133 int error;
1134
1135 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1136 swslot, 0,0,0);
1137
1138 /*
1139 * page in the swapped-out page.
1140 * unlock object for i/o, relock when done.
1141 */
1142
1143 mutex_exit(&uobj->vmobjlock);
1144 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1145 mutex_enter(&uobj->vmobjlock);
1146
1147 /*
1148 * I/O done. check for errors.
1149 */
1150
1151 if (error != 0) {
1152 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1153 error,0,0,0);
1154 if (ptmp->flags & PG_WANTED)
1155 wakeup(ptmp);
1156
1157 /*
1158 * remove the swap slot from the aobj
1159 * and mark the aobj as having no real slot.
1160 * don't free the swap slot, thus preventing
1161 * it from being used again.
1162 */
1163
1164 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1165 SWSLOT_BAD);
1166 if (swslot > 0) {
1167 uvm_swap_markbad(swslot, 1);
1168 }
1169
1170 mutex_enter(&uvm_pageqlock);
1171 uvm_pagefree(ptmp);
1172 mutex_exit(&uvm_pageqlock);
1173 mutex_exit(&uobj->vmobjlock);
1174 return error;
1175 }
1176 #else /* defined(VMSWAP) */
1177 panic("%s: pagein", __func__);
1178 #endif /* defined(VMSWAP) */
1179 }
1180
1181 if ((access_type & VM_PROT_WRITE) == 0) {
1182 ptmp->flags |= PG_CLEAN;
1183 pmap_clear_modify(ptmp);
1184 }
1185
1186 /*
1187 * we got the page! clear the fake flag (indicates valid
1188 * data now in page) and plug into our result array. note
1189 * that page is still busy.
1190 *
1191 * it is the callers job to:
1192 * => check if the page is released
1193 * => unbusy the page
1194 * => activate the page
1195 */
1196
1197 ptmp->flags &= ~PG_FAKE;
1198 pps[lcv] = ptmp;
1199 }
1200
1201 /*
1202 * finally, unlock object and return.
1203 */
1204
1205 done:
1206 mutex_exit(&uobj->vmobjlock);
1207 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1208 return 0;
1209 }
1210
1211 #if defined(VMSWAP)
1212
1213 /*
1214 * uao_dropswap: release any swap resources from this aobj page.
1215 *
1216 * => aobj must be locked or have a reference count of 0.
1217 */
1218
1219 void
1220 uao_dropswap(struct uvm_object *uobj, int pageidx)
1221 {
1222 int slot;
1223
1224 slot = uao_set_swslot(uobj, pageidx, 0);
1225 if (slot) {
1226 uvm_swap_free(slot, 1);
1227 }
1228 }
1229
1230 /*
1231 * page in every page in every aobj that is paged-out to a range of swslots.
1232 *
1233 * => nothing should be locked.
1234 * => returns true if pagein was aborted due to lack of memory.
1235 */
1236
1237 bool
1238 uao_swap_off(int startslot, int endslot)
1239 {
1240 struct uvm_aobj *aobj, *nextaobj;
1241 bool rv;
1242
1243 /*
1244 * walk the list of all aobjs.
1245 */
1246
1247 restart:
1248 mutex_enter(&uao_list_lock);
1249 for (aobj = LIST_FIRST(&uao_list);
1250 aobj != NULL;
1251 aobj = nextaobj) {
1252
1253 /*
1254 * try to get the object lock, start all over if we fail.
1255 * most of the time we'll get the aobj lock,
1256 * so this should be a rare case.
1257 */
1258
1259 if (!mutex_tryenter(&aobj->u_obj.vmobjlock)) {
1260 mutex_exit(&uao_list_lock);
1261 /* XXX Better than yielding but inadequate. */
1262 kpause("livelock", false, 1, NULL);
1263 goto restart;
1264 }
1265
1266 /*
1267 * add a ref to the aobj so it doesn't disappear
1268 * while we're working.
1269 */
1270
1271 uao_reference_locked(&aobj->u_obj);
1272
1273 /*
1274 * now it's safe to unlock the uao list.
1275 */
1276
1277 mutex_exit(&uao_list_lock);
1278
1279 /*
1280 * page in any pages in the swslot range.
1281 * if there's an error, abort and return the error.
1282 */
1283
1284 rv = uao_pagein(aobj, startslot, endslot);
1285 if (rv) {
1286 uao_detach_locked(&aobj->u_obj);
1287 return rv;
1288 }
1289
1290 /*
1291 * we're done with this aobj.
1292 * relock the list and drop our ref on the aobj.
1293 */
1294
1295 mutex_enter(&uao_list_lock);
1296 nextaobj = LIST_NEXT(aobj, u_list);
1297 uao_detach_locked(&aobj->u_obj);
1298 }
1299
1300 /*
1301 * done with traversal, unlock the list
1302 */
1303 mutex_exit(&uao_list_lock);
1304 return false;
1305 }
1306
1307
1308 /*
1309 * page in any pages from aobj in the given range.
1310 *
1311 * => aobj must be locked and is returned locked.
1312 * => returns true if pagein was aborted due to lack of memory.
1313 */
1314 static bool
1315 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1316 {
1317 bool rv;
1318
1319 if (UAO_USES_SWHASH(aobj)) {
1320 struct uao_swhash_elt *elt;
1321 int buck;
1322
1323 restart:
1324 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1325 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1326 elt != NULL;
1327 elt = LIST_NEXT(elt, list)) {
1328 int i;
1329
1330 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1331 int slot = elt->slots[i];
1332
1333 /*
1334 * if the slot isn't in range, skip it.
1335 */
1336
1337 if (slot < startslot ||
1338 slot >= endslot) {
1339 continue;
1340 }
1341
1342 /*
1343 * process the page,
1344 * the start over on this object
1345 * since the swhash elt
1346 * may have been freed.
1347 */
1348
1349 rv = uao_pagein_page(aobj,
1350 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1351 if (rv) {
1352 return rv;
1353 }
1354 goto restart;
1355 }
1356 }
1357 }
1358 } else {
1359 int i;
1360
1361 for (i = 0; i < aobj->u_pages; i++) {
1362 int slot = aobj->u_swslots[i];
1363
1364 /*
1365 * if the slot isn't in range, skip it
1366 */
1367
1368 if (slot < startslot || slot >= endslot) {
1369 continue;
1370 }
1371
1372 /*
1373 * process the page.
1374 */
1375
1376 rv = uao_pagein_page(aobj, i);
1377 if (rv) {
1378 return rv;
1379 }
1380 }
1381 }
1382
1383 return false;
1384 }
1385
1386 /*
1387 * page in a page from an aobj. used for swap_off.
1388 * returns true if pagein was aborted due to lack of memory.
1389 *
1390 * => aobj must be locked and is returned locked.
1391 */
1392
1393 static bool
1394 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1395 {
1396 struct vm_page *pg;
1397 int rv, npages;
1398
1399 pg = NULL;
1400 npages = 1;
1401 /* locked: aobj */
1402 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1403 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1404 /* unlocked: aobj */
1405
1406 /*
1407 * relock and finish up.
1408 */
1409
1410 mutex_enter(&aobj->u_obj.vmobjlock);
1411 switch (rv) {
1412 case 0:
1413 break;
1414
1415 case EIO:
1416 case ERESTART:
1417
1418 /*
1419 * nothing more to do on errors.
1420 * ERESTART can only mean that the anon was freed,
1421 * so again there's nothing to do.
1422 */
1423
1424 return false;
1425
1426 default:
1427 return true;
1428 }
1429
1430 /*
1431 * ok, we've got the page now.
1432 * mark it as dirty, clear its swslot and un-busy it.
1433 */
1434 uao_dropswap(&aobj->u_obj, pageidx);
1435
1436 /*
1437 * make sure it's on a page queue.
1438 */
1439 mutex_enter(&uvm_pageqlock);
1440 if (pg->wire_count == 0)
1441 uvm_pageenqueue(pg);
1442 mutex_exit(&uvm_pageqlock);
1443
1444 if (pg->flags & PG_WANTED) {
1445 wakeup(pg);
1446 }
1447 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1448 UVM_PAGE_OWN(pg, NULL);
1449
1450 return false;
1451 }
1452
1453 /*
1454 * uao_dropswap_range: drop swapslots in the range.
1455 *
1456 * => aobj must be locked and is returned locked.
1457 * => start is inclusive. end is exclusive.
1458 */
1459
1460 void
1461 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1462 {
1463 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1464
1465 KASSERT(mutex_owned(&uobj->vmobjlock));
1466
1467 uao_dropswap_range1(aobj, start, end);
1468 }
1469
1470 static void
1471 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1472 {
1473 int swpgonlydelta = 0;
1474
1475 if (end == 0) {
1476 end = INT64_MAX;
1477 }
1478
1479 if (UAO_USES_SWHASH(aobj)) {
1480 int i, hashbuckets = aobj->u_swhashmask + 1;
1481 voff_t taghi;
1482 voff_t taglo;
1483
1484 taglo = UAO_SWHASH_ELT_TAG(start);
1485 taghi = UAO_SWHASH_ELT_TAG(end);
1486
1487 for (i = 0; i < hashbuckets; i++) {
1488 struct uao_swhash_elt *elt, *next;
1489
1490 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1491 elt != NULL;
1492 elt = next) {
1493 int startidx, endidx;
1494 int j;
1495
1496 next = LIST_NEXT(elt, list);
1497
1498 if (elt->tag < taglo || taghi < elt->tag) {
1499 continue;
1500 }
1501
1502 if (elt->tag == taglo) {
1503 startidx =
1504 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1505 } else {
1506 startidx = 0;
1507 }
1508
1509 if (elt->tag == taghi) {
1510 endidx =
1511 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1512 } else {
1513 endidx = UAO_SWHASH_CLUSTER_SIZE;
1514 }
1515
1516 for (j = startidx; j < endidx; j++) {
1517 int slot = elt->slots[j];
1518
1519 KASSERT(uvm_pagelookup(&aobj->u_obj,
1520 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1521 + j) << PAGE_SHIFT) == NULL);
1522 if (slot > 0) {
1523 uvm_swap_free(slot, 1);
1524 swpgonlydelta++;
1525 KASSERT(elt->count > 0);
1526 elt->slots[j] = 0;
1527 elt->count--;
1528 }
1529 }
1530
1531 if (elt->count == 0) {
1532 LIST_REMOVE(elt, list);
1533 pool_put(&uao_swhash_elt_pool, elt);
1534 }
1535 }
1536 }
1537 } else {
1538 int i;
1539
1540 if (aobj->u_pages < end) {
1541 end = aobj->u_pages;
1542 }
1543 for (i = start; i < end; i++) {
1544 int slot = aobj->u_swslots[i];
1545
1546 if (slot > 0) {
1547 uvm_swap_free(slot, 1);
1548 swpgonlydelta++;
1549 }
1550 }
1551 }
1552
1553 /*
1554 * adjust the counter of pages only in swap for all
1555 * the swap slots we've freed.
1556 */
1557
1558 if (swpgonlydelta > 0) {
1559 mutex_enter(&uvm_swap_data_lock);
1560 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1561 uvmexp.swpgonly -= swpgonlydelta;
1562 mutex_exit(&uvm_swap_data_lock);
1563 }
1564 }
1565
1566 #endif /* defined(VMSWAP) */
1567