uvm_aobj.c revision 1.116 1 /* $NetBSD: uvm_aobj.c,v 1.116 2011/09/06 16:41:55 matt Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.116 2011/09/06 16:41:55 matt Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/pool.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * an aobj manages anonymous-memory backed uvm_objects. in addition
56 * to keeping the list of resident pages, it also keeps a list of
57 * allocated swap blocks. depending on the size of the aobj this list
58 * of allocated swap blocks is either stored in an array (small objects)
59 * or in a hash table (large objects).
60 */
61
62 /*
63 * local structures
64 */
65
66 /*
67 * for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
69 * be a power of two.
70 */
71
72 #define UAO_SWHASH_CLUSTER_SHIFT 4
73 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
74
75 /* get the "tag" for this page index */
76 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
77 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
78
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
80 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
85
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90 /*
91 * the swhash hash function
92 */
93
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 UAO_SWHASH_MAXBUCKETS))
115
116 /*
117 * uao_swhash_elt: when a hash table is being used, this structure defines
118 * the format of an entry in the bucket list.
119 */
120
121 struct uao_swhash_elt {
122 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
123 voff_t tag; /* our 'tag' */
124 int count; /* our number of active slots */
125 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
126 };
127
128 /*
129 * uao_swhash: the swap hash table structure
130 */
131
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133
134 /*
135 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
136 * Note: pages for this pool must not come from a pageable kernel map.
137 */
138 static struct pool uao_swhash_elt_pool;
139
140 /*
141 * uvm_aobj: the actual anon-backed uvm_object
142 *
143 * => the uvm_object is at the top of the structure, this allows
144 * (struct uvm_aobj *) == (struct uvm_object *)
145 * => only one of u_swslots and u_swhash is used in any given aobj
146 */
147
148 struct uvm_aobj {
149 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 pgoff_t u_pages; /* number of pages in entire object */
151 int u_flags; /* the flags (see uvm_aobj.h) */
152 int *u_swslots; /* array of offset->swapslot mappings */
153 /*
154 * hashtable of offset->swapslot mappings
155 * (u_swhash is an array of bucket heads)
156 */
157 struct uao_swhash *u_swhash;
158 u_long u_swhashmask; /* mask for hashtable */
159 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
160 };
161
162 /*
163 * local functions
164 */
165
166 static void uao_free(struct uvm_aobj *);
167 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
168 int *, int, vm_prot_t, int, int);
169 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
170
171 static void uao_detach_locked(struct uvm_object *);
172 static void uao_reference_locked(struct uvm_object *);
173
174 #if defined(VMSWAP)
175 static struct uao_swhash_elt *uao_find_swhash_elt
176 (struct uvm_aobj *, int, bool);
177
178 static bool uao_pagein(struct uvm_aobj *, int, int);
179 static bool uao_pagein_page(struct uvm_aobj *, int);
180 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
181 #endif /* defined(VMSWAP) */
182
183 /*
184 * aobj_pager
185 *
186 * note that some functions (e.g. put) are handled elsewhere
187 */
188
189 const struct uvm_pagerops aobj_pager = {
190 .pgo_reference = uao_reference,
191 .pgo_detach = uao_detach,
192 .pgo_get = uao_get,
193 .pgo_put = uao_put,
194 };
195
196 /*
197 * uao_list: global list of active aobjs, locked by uao_list_lock
198 */
199
200 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
201 static kmutex_t uao_list_lock;
202
203 /*
204 * functions
205 */
206
207 /*
208 * hash table/array related functions
209 */
210
211 #if defined(VMSWAP)
212
213 /*
214 * uao_find_swhash_elt: find (or create) a hash table entry for a page
215 * offset.
216 *
217 * => the object should be locked by the caller
218 */
219
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
222 {
223 struct uao_swhash *swhash;
224 struct uao_swhash_elt *elt;
225 voff_t page_tag;
226
227 swhash = UAO_SWHASH_HASH(aobj, pageidx);
228 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
229
230 /*
231 * now search the bucket for the requested tag
232 */
233
234 LIST_FOREACH(elt, swhash, list) {
235 if (elt->tag == page_tag) {
236 return elt;
237 }
238 }
239 if (!create) {
240 return NULL;
241 }
242
243 /*
244 * allocate a new entry for the bucket and init/insert it in
245 */
246
247 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
248 if (elt == NULL) {
249 return NULL;
250 }
251 LIST_INSERT_HEAD(swhash, elt, list);
252 elt->tag = page_tag;
253 elt->count = 0;
254 memset(elt->slots, 0, sizeof(elt->slots));
255 return elt;
256 }
257
258 /*
259 * uao_find_swslot: find the swap slot number for an aobj/pageidx
260 *
261 * => object must be locked by caller
262 */
263
264 int
265 uao_find_swslot(struct uvm_object *uobj, int pageidx)
266 {
267 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
268 struct uao_swhash_elt *elt;
269
270 /*
271 * if noswap flag is set, then we never return a slot
272 */
273
274 if (aobj->u_flags & UAO_FLAG_NOSWAP)
275 return(0);
276
277 /*
278 * if hashing, look in hash table.
279 */
280
281 if (UAO_USES_SWHASH(aobj)) {
282 elt = uao_find_swhash_elt(aobj, pageidx, false);
283 if (elt)
284 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
285 else
286 return(0);
287 }
288
289 /*
290 * otherwise, look in the array
291 */
292
293 return(aobj->u_swslots[pageidx]);
294 }
295
296 /*
297 * uao_set_swslot: set the swap slot for a page in an aobj.
298 *
299 * => setting a slot to zero frees the slot
300 * => object must be locked by caller
301 * => we return the old slot number, or -1 if we failed to allocate
302 * memory to record the new slot number
303 */
304
305 int
306 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
307 {
308 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
309 struct uao_swhash_elt *elt;
310 int oldslot;
311 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
312 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
313 aobj, pageidx, slot, 0);
314
315 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
316
317 /*
318 * if noswap flag is set, then we can't set a non-zero slot.
319 */
320
321 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
322 if (slot == 0)
323 return(0);
324
325 printf("uao_set_swslot: uobj = %p\n", uobj);
326 panic("uao_set_swslot: NOSWAP object");
327 }
328
329 /*
330 * are we using a hash table? if so, add it in the hash.
331 */
332
333 if (UAO_USES_SWHASH(aobj)) {
334
335 /*
336 * Avoid allocating an entry just to free it again if
337 * the page had not swap slot in the first place, and
338 * we are freeing.
339 */
340
341 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
342 if (elt == NULL) {
343 return slot ? -1 : 0;
344 }
345
346 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
347 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
348
349 /*
350 * now adjust the elt's reference counter and free it if we've
351 * dropped it to zero.
352 */
353
354 if (slot) {
355 if (oldslot == 0)
356 elt->count++;
357 } else {
358 if (oldslot)
359 elt->count--;
360
361 if (elt->count == 0) {
362 LIST_REMOVE(elt, list);
363 pool_put(&uao_swhash_elt_pool, elt);
364 }
365 }
366 } else {
367 /* we are using an array */
368 oldslot = aobj->u_swslots[pageidx];
369 aobj->u_swslots[pageidx] = slot;
370 }
371 return (oldslot);
372 }
373
374 #endif /* defined(VMSWAP) */
375
376 /*
377 * end of hash/array functions
378 */
379
380 /*
381 * uao_free: free all resources held by an aobj, and then free the aobj
382 *
383 * => the aobj should be dead
384 */
385
386 static void
387 uao_free(struct uvm_aobj *aobj)
388 {
389
390 #if defined(VMSWAP)
391 uao_dropswap_range1(aobj, 0, 0);
392 #endif /* defined(VMSWAP) */
393
394 mutex_exit(aobj->u_obj.vmobjlock);
395
396 #if defined(VMSWAP)
397 if (UAO_USES_SWHASH(aobj)) {
398
399 /*
400 * free the hash table itself.
401 */
402
403 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
404 } else {
405
406 /*
407 * free the array itsself.
408 */
409
410 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
411 }
412 #endif /* defined(VMSWAP) */
413
414 /*
415 * finally free the aobj itself
416 */
417
418 uvm_obj_destroy(&aobj->u_obj, true);
419 kmem_free(aobj, sizeof(struct uvm_aobj));
420 }
421
422 /*
423 * pager functions
424 */
425
426 /*
427 * uao_create: create an aobj of the given size and return its uvm_object.
428 *
429 * => for normal use, flags are always zero
430 * => for the kernel object, the flags are:
431 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
432 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
433 */
434
435 struct uvm_object *
436 uao_create(vsize_t size, int flags)
437 {
438 static struct uvm_aobj kernel_object_store;
439 static kmutex_t kernel_object_lock;
440 static int kobj_alloced = 0;
441 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
442 struct uvm_aobj *aobj;
443 int refs;
444
445 /*
446 * Allocate a new aobj, unless kernel object is requested.
447 */
448
449 if (flags & UAO_FLAG_KERNOBJ) {
450 KASSERT(!kobj_alloced);
451 aobj = &kernel_object_store;
452 aobj->u_pages = pages;
453 aobj->u_flags = UAO_FLAG_NOSWAP;
454 refs = UVM_OBJ_KERN;
455 kobj_alloced = UAO_FLAG_KERNOBJ;
456 } else if (flags & UAO_FLAG_KERNSWAP) {
457 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
458 aobj = &kernel_object_store;
459 kobj_alloced = UAO_FLAG_KERNSWAP;
460 refs = 0xdeadbeaf; /* XXX: gcc */
461 } else {
462 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
463 aobj->u_pages = pages;
464 aobj->u_flags = 0;
465 refs = 1;
466 }
467
468 /*
469 * allocate hash/array if necessary
470 *
471 * note: in the KERNSWAP case no need to worry about locking since
472 * we are still booting we should be the only thread around.
473 */
474
475 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
476 #if defined(VMSWAP)
477 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
478
479 /* allocate hash table or array depending on object size */
480 if (UAO_USES_SWHASH(aobj)) {
481 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
482 HASH_LIST, kernswap ? false : true,
483 &aobj->u_swhashmask);
484 if (aobj->u_swhash == NULL)
485 panic("uao_create: hashinit swhash failed");
486 } else {
487 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
488 kernswap ? KM_NOSLEEP : KM_SLEEP);
489 if (aobj->u_swslots == NULL)
490 panic("uao_create: swslots allocation failed");
491 }
492 #endif /* defined(VMSWAP) */
493
494 if (flags) {
495 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
496 return(&aobj->u_obj);
497 }
498 }
499
500 /*
501 * Initialise UVM object.
502 */
503
504 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
505 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
506 if (__predict_false(kernobj)) {
507 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
508 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
509 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
510 }
511
512 /*
513 * now that aobj is ready, add it to the global list
514 */
515
516 mutex_enter(&uao_list_lock);
517 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
518 mutex_exit(&uao_list_lock);
519 return(&aobj->u_obj);
520 }
521
522
523
524 /*
525 * uao_init: set up aobj pager subsystem
526 *
527 * => called at boot time from uvm_pager_init()
528 */
529
530 void
531 uao_init(void)
532 {
533 static int uao_initialized;
534
535 if (uao_initialized)
536 return;
537 uao_initialized = true;
538 LIST_INIT(&uao_list);
539 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
540 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
541 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
542 }
543
544 /*
545 * uao_reference: add a ref to an aobj
546 *
547 * => aobj must be unlocked
548 * => just lock it and call the locked version
549 */
550
551 void
552 uao_reference(struct uvm_object *uobj)
553 {
554
555 /*
556 * kernel_object already has plenty of references, leave it alone.
557 */
558
559 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
560 return;
561
562 mutex_enter(uobj->vmobjlock);
563 uao_reference_locked(uobj);
564 mutex_exit(uobj->vmobjlock);
565 }
566
567 /*
568 * uao_reference_locked: add a ref to an aobj that is already locked
569 *
570 * => aobj must be locked
571 * this needs to be separate from the normal routine
572 * since sometimes we need to add a reference to an aobj when
573 * it's already locked.
574 */
575
576 static void
577 uao_reference_locked(struct uvm_object *uobj)
578 {
579 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
580
581 /*
582 * kernel_object already has plenty of references, leave it alone.
583 */
584
585 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
586 return;
587
588 uobj->uo_refs++;
589 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
590 uobj, uobj->uo_refs,0,0);
591 }
592
593 /*
594 * uao_detach: drop a reference to an aobj
595 *
596 * => aobj must be unlocked
597 * => just lock it and call the locked version
598 */
599
600 void
601 uao_detach(struct uvm_object *uobj)
602 {
603
604 /*
605 * detaching from kernel_object is a noop.
606 */
607
608 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
609 return;
610
611 mutex_enter(uobj->vmobjlock);
612 uao_detach_locked(uobj);
613 }
614
615 /*
616 * uao_detach_locked: drop a reference to an aobj
617 *
618 * => aobj must be locked, and is unlocked (or freed) upon return.
619 * this needs to be separate from the normal routine
620 * since sometimes we need to detach from an aobj when
621 * it's already locked.
622 */
623
624 static void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 struct vm_page *pg;
629 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630
631 /*
632 * detaching from kernel_object is a noop.
633 */
634
635 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 mutex_exit(uobj->vmobjlock);
637 return;
638 }
639
640 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
641 uobj->uo_refs--;
642 if (uobj->uo_refs) {
643 mutex_exit(uobj->vmobjlock);
644 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 return;
646 }
647
648 /*
649 * remove the aobj from the global list.
650 */
651
652 mutex_enter(&uao_list_lock);
653 LIST_REMOVE(aobj, u_list);
654 mutex_exit(&uao_list_lock);
655
656 /*
657 * free all the pages left in the aobj. for each page,
658 * when the page is no longer busy (and thus after any disk i/o that
659 * it's involved in is complete), release any swap resources and
660 * free the page itself.
661 */
662
663 mutex_enter(&uvm_pageqlock);
664 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 pmap_page_protect(pg, VM_PROT_NONE);
666 if (pg->flags & PG_BUSY) {
667 pg->flags |= PG_WANTED;
668 mutex_exit(&uvm_pageqlock);
669 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
670 "uao_det", 0);
671 mutex_enter(uobj->vmobjlock);
672 mutex_enter(&uvm_pageqlock);
673 continue;
674 }
675 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 uvm_pagefree(pg);
677 }
678 mutex_exit(&uvm_pageqlock);
679
680 /*
681 * finally, free the aobj itself.
682 */
683
684 uao_free(aobj);
685 }
686
687 /*
688 * uao_put: flush pages out of a uvm object
689 *
690 * => object should be locked by caller. we may _unlock_ the object
691 * if (and only if) we need to clean a page (PGO_CLEANIT).
692 * XXXJRT Currently, however, we don't. In the case of cleaning
693 * XXXJRT a page, we simply just deactivate it. Should probably
694 * XXXJRT handle this better, in the future (although "flushing"
695 * XXXJRT anonymous memory isn't terribly important).
696 * => if PGO_CLEANIT is not set, then we will neither unlock the object
697 * or block.
698 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699 * for flushing.
700 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701 * that new pages are inserted on the tail end of the list. thus,
702 * we can make a complete pass through the object in one go by starting
703 * at the head and working towards the tail (new pages are put in
704 * front of us).
705 * => NOTE: we are allowed to lock the page queues, so the caller
706 * must not be holding the lock on them [e.g. pagedaemon had
707 * better not call us with the queues locked]
708 * => we return 0 unless we encountered some sort of I/O error
709 * XXXJRT currently never happens, as we never directly initiate
710 * XXXJRT I/O
711 *
712 * note on page traversal:
713 * we can traverse the pages in an object either by going down the
714 * linked list in "uobj->memq", or we can go over the address range
715 * by page doing hash table lookups for each address. depending
716 * on how many pages are in the object it may be cheaper to do one
717 * or the other. we set "by_list" to true if we are using memq.
718 * if the cost of a hash lookup was equal to the cost of the list
719 * traversal we could compare the number of pages in the start->stop
720 * range to the total number of pages in the object. however, it
721 * seems that a hash table lookup is more expensive than the linked
722 * list traversal, so we multiply the number of pages in the
723 * start->stop range by a penalty which we define below.
724 */
725
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 struct vm_page *pg, *nextpg, curmp, endmp;
731 bool by_list;
732 voff_t curoff;
733 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734
735 KASSERT(mutex_owned(uobj->vmobjlock));
736
737 curoff = 0;
738 if (flags & PGO_ALLPAGES) {
739 start = 0;
740 stop = aobj->u_pages << PAGE_SHIFT;
741 by_list = true; /* always go by the list */
742 } else {
743 start = trunc_page(start);
744 if (stop == 0) {
745 stop = aobj->u_pages << PAGE_SHIFT;
746 } else {
747 stop = round_page(stop);
748 }
749 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 printf("uao_flush: strange, got an out of range "
751 "flush (fixed)\n");
752 stop = aobj->u_pages << PAGE_SHIFT;
753 }
754 by_list = (uobj->uo_npages <=
755 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
756 }
757 UVMHIST_LOG(maphist,
758 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
759 start, stop, by_list, flags);
760
761 /*
762 * Don't need to do any work here if we're not freeing
763 * or deactivating pages.
764 */
765
766 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
767 mutex_exit(uobj->vmobjlock);
768 return 0;
769 }
770
771 /*
772 * Initialize the marker pages. See the comment in
773 * genfs_putpages() also.
774 */
775
776 curmp.flags = PG_MARKER;
777 endmp.flags = PG_MARKER;
778
779 /*
780 * now do it. note: we must update nextpg in the body of loop or we
781 * will get stuck. we need to use nextpg if we'll traverse the list
782 * because we may free "pg" before doing the next loop.
783 */
784
785 if (by_list) {
786 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
787 nextpg = TAILQ_FIRST(&uobj->memq);
788 } else {
789 curoff = start;
790 nextpg = NULL; /* Quell compiler warning */
791 }
792
793 /* locked: uobj */
794 for (;;) {
795 if (by_list) {
796 pg = nextpg;
797 if (pg == &endmp)
798 break;
799 nextpg = TAILQ_NEXT(pg, listq.queue);
800 if (pg->flags & PG_MARKER)
801 continue;
802 if (pg->offset < start || pg->offset >= stop)
803 continue;
804 } else {
805 if (curoff < stop) {
806 pg = uvm_pagelookup(uobj, curoff);
807 curoff += PAGE_SIZE;
808 } else
809 break;
810 if (pg == NULL)
811 continue;
812 }
813
814 /*
815 * wait and try again if the page is busy.
816 */
817
818 if (pg->flags & PG_BUSY) {
819 if (by_list) {
820 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
821 }
822 pg->flags |= PG_WANTED;
823 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
824 "uao_put", 0);
825 mutex_enter(uobj->vmobjlock);
826 if (by_list) {
827 nextpg = TAILQ_NEXT(&curmp, listq.queue);
828 TAILQ_REMOVE(&uobj->memq, &curmp,
829 listq.queue);
830 } else
831 curoff -= PAGE_SIZE;
832 continue;
833 }
834
835 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
836
837 /*
838 * XXX In these first 3 cases, we always just
839 * XXX deactivate the page. We may want to
840 * XXX handle the different cases more specifically
841 * XXX in the future.
842 */
843
844 case PGO_CLEANIT|PGO_FREE:
845 case PGO_CLEANIT|PGO_DEACTIVATE:
846 case PGO_DEACTIVATE:
847 deactivate_it:
848 mutex_enter(&uvm_pageqlock);
849 /* skip the page if it's wired */
850 if (pg->wire_count == 0) {
851 uvm_pagedeactivate(pg);
852 }
853 mutex_exit(&uvm_pageqlock);
854 break;
855
856 case PGO_FREE:
857 /*
858 * If there are multiple references to
859 * the object, just deactivate the page.
860 */
861
862 if (uobj->uo_refs > 1)
863 goto deactivate_it;
864
865 /*
866 * free the swap slot and the page.
867 */
868
869 pmap_page_protect(pg, VM_PROT_NONE);
870
871 /*
872 * freeing swapslot here is not strictly necessary.
873 * however, leaving it here doesn't save much
874 * because we need to update swap accounting anyway.
875 */
876
877 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
878 mutex_enter(&uvm_pageqlock);
879 uvm_pagefree(pg);
880 mutex_exit(&uvm_pageqlock);
881 break;
882
883 default:
884 panic("%s: impossible", __func__);
885 }
886 }
887 if (by_list) {
888 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
889 }
890 mutex_exit(uobj->vmobjlock);
891 return 0;
892 }
893
894 /*
895 * uao_get: fetch me a page
896 *
897 * we have three cases:
898 * 1: page is resident -> just return the page.
899 * 2: page is zero-fill -> allocate a new page and zero it.
900 * 3: page is swapped out -> fetch the page from swap.
901 *
902 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
903 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
904 * then we will need to return EBUSY.
905 *
906 * => prefer map unlocked (not required)
907 * => object must be locked! we will _unlock_ it before starting any I/O.
908 * => flags: PGO_ALLPAGES: get all of the pages
909 * PGO_LOCKED: fault data structures are locked
910 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
911 * => NOTE: caller must check for released pages!!
912 */
913
914 static int
915 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
916 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
917 {
918 #if defined(VMSWAP)
919 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
920 #endif /* defined(VMSWAP) */
921 voff_t current_offset;
922 struct vm_page *ptmp = NULL; /* Quell compiler warning */
923 int lcv, gotpages, maxpages, swslot, pageidx;
924 bool done;
925 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
926
927 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
928 (struct uvm_aobj *)uobj, offset, flags,0);
929
930 /*
931 * get number of pages
932 */
933
934 maxpages = *npagesp;
935
936 /*
937 * step 1: handled the case where fault data structures are locked.
938 */
939
940 if (flags & PGO_LOCKED) {
941
942 /*
943 * step 1a: get pages that are already resident. only do
944 * this if the data structures are locked (i.e. the first
945 * time through).
946 */
947
948 done = true; /* be optimistic */
949 gotpages = 0; /* # of pages we got so far */
950 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
951 lcv++, current_offset += PAGE_SIZE) {
952 /* do we care about this page? if not, skip it */
953 if (pps[lcv] == PGO_DONTCARE)
954 continue;
955 ptmp = uvm_pagelookup(uobj, current_offset);
956
957 /*
958 * if page is new, attempt to allocate the page,
959 * zero-fill'd.
960 */
961
962 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
963 current_offset >> PAGE_SHIFT) == 0) {
964 ptmp = uvm_pagealloc(uobj, current_offset,
965 NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
966 if (ptmp) {
967 /* new page */
968 ptmp->flags &= ~(PG_FAKE);
969 ptmp->pqflags |= PQ_AOBJ;
970 goto gotpage;
971 }
972 }
973
974 /*
975 * to be useful must get a non-busy page
976 */
977
978 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
979 if (lcv == centeridx ||
980 (flags & PGO_ALLPAGES) != 0)
981 /* need to do a wait or I/O! */
982 done = false;
983 continue;
984 }
985
986 /*
987 * useful page: busy/lock it and plug it in our
988 * result array
989 */
990
991 /* caller must un-busy this page */
992 ptmp->flags |= PG_BUSY;
993 UVM_PAGE_OWN(ptmp, "uao_get1");
994 gotpage:
995 pps[lcv] = ptmp;
996 gotpages++;
997 }
998
999 /*
1000 * step 1b: now we've either done everything needed or we
1001 * to unlock and do some waiting or I/O.
1002 */
1003
1004 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1005 *npagesp = gotpages;
1006 if (done)
1007 return 0;
1008 else
1009 return EBUSY;
1010 }
1011
1012 /*
1013 * step 2: get non-resident or busy pages.
1014 * object is locked. data structures are unlocked.
1015 */
1016
1017 if ((flags & PGO_SYNCIO) == 0) {
1018 goto done;
1019 }
1020
1021 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1022 lcv++, current_offset += PAGE_SIZE) {
1023
1024 /*
1025 * - skip over pages we've already gotten or don't want
1026 * - skip over pages we don't _have_ to get
1027 */
1028
1029 if (pps[lcv] != NULL ||
1030 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1031 continue;
1032
1033 pageidx = current_offset >> PAGE_SHIFT;
1034
1035 /*
1036 * we have yet to locate the current page (pps[lcv]). we
1037 * first look for a page that is already at the current offset.
1038 * if we find a page, we check to see if it is busy or
1039 * released. if that is the case, then we sleep on the page
1040 * until it is no longer busy or released and repeat the lookup.
1041 * if the page we found is neither busy nor released, then we
1042 * busy it (so we own it) and plug it into pps[lcv]. this
1043 * 'break's the following while loop and indicates we are
1044 * ready to move on to the next page in the "lcv" loop above.
1045 *
1046 * if we exit the while loop with pps[lcv] still set to NULL,
1047 * then it means that we allocated a new busy/fake/clean page
1048 * ptmp in the object and we need to do I/O to fill in the data.
1049 */
1050
1051 /* top of "pps" while loop */
1052 while (pps[lcv] == NULL) {
1053 /* look for a resident page */
1054 ptmp = uvm_pagelookup(uobj, current_offset);
1055
1056 /* not resident? allocate one now (if we can) */
1057 if (ptmp == NULL) {
1058
1059 ptmp = uvm_pagealloc(uobj, current_offset,
1060 NULL, 0);
1061
1062 /* out of RAM? */
1063 if (ptmp == NULL) {
1064 mutex_exit(uobj->vmobjlock);
1065 UVMHIST_LOG(pdhist,
1066 "sleeping, ptmp == NULL\n",0,0,0,0);
1067 uvm_wait("uao_getpage");
1068 mutex_enter(uobj->vmobjlock);
1069 continue;
1070 }
1071
1072 /*
1073 * safe with PQ's unlocked: because we just
1074 * alloc'd the page
1075 */
1076
1077 ptmp->pqflags |= PQ_AOBJ;
1078
1079 /*
1080 * got new page ready for I/O. break pps while
1081 * loop. pps[lcv] is still NULL.
1082 */
1083
1084 break;
1085 }
1086
1087 /* page is there, see if we need to wait on it */
1088 if ((ptmp->flags & PG_BUSY) != 0) {
1089 ptmp->flags |= PG_WANTED;
1090 UVMHIST_LOG(pdhist,
1091 "sleeping, ptmp->flags 0x%x\n",
1092 ptmp->flags,0,0,0);
1093 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1094 false, "uao_get", 0);
1095 mutex_enter(uobj->vmobjlock);
1096 continue;
1097 }
1098
1099 /*
1100 * if we get here then the page has become resident and
1101 * unbusy between steps 1 and 2. we busy it now (so we
1102 * own it) and set pps[lcv] (so that we exit the while
1103 * loop).
1104 */
1105
1106 /* we own it, caller must un-busy */
1107 ptmp->flags |= PG_BUSY;
1108 UVM_PAGE_OWN(ptmp, "uao_get2");
1109 pps[lcv] = ptmp;
1110 }
1111
1112 /*
1113 * if we own the valid page at the correct offset, pps[lcv] will
1114 * point to it. nothing more to do except go to the next page.
1115 */
1116
1117 if (pps[lcv])
1118 continue; /* next lcv */
1119
1120 /*
1121 * we have a "fake/busy/clean" page that we just allocated.
1122 * do the needed "i/o", either reading from swap or zeroing.
1123 */
1124
1125 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1126
1127 /*
1128 * just zero the page if there's nothing in swap.
1129 */
1130
1131 if (swslot == 0) {
1132
1133 /*
1134 * page hasn't existed before, just zero it.
1135 */
1136
1137 uvm_pagezero(ptmp);
1138 } else {
1139 #if defined(VMSWAP)
1140 int error;
1141
1142 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1143 swslot, 0,0,0);
1144
1145 /*
1146 * page in the swapped-out page.
1147 * unlock object for i/o, relock when done.
1148 */
1149
1150 mutex_exit(uobj->vmobjlock);
1151 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1152 mutex_enter(uobj->vmobjlock);
1153
1154 /*
1155 * I/O done. check for errors.
1156 */
1157
1158 if (error != 0) {
1159 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1160 error,0,0,0);
1161 if (ptmp->flags & PG_WANTED)
1162 wakeup(ptmp);
1163
1164 /*
1165 * remove the swap slot from the aobj
1166 * and mark the aobj as having no real slot.
1167 * don't free the swap slot, thus preventing
1168 * it from being used again.
1169 */
1170
1171 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1172 SWSLOT_BAD);
1173 if (swslot > 0) {
1174 uvm_swap_markbad(swslot, 1);
1175 }
1176
1177 mutex_enter(&uvm_pageqlock);
1178 uvm_pagefree(ptmp);
1179 mutex_exit(&uvm_pageqlock);
1180 mutex_exit(uobj->vmobjlock);
1181 return error;
1182 }
1183 #else /* defined(VMSWAP) */
1184 panic("%s: pagein", __func__);
1185 #endif /* defined(VMSWAP) */
1186 }
1187
1188 if ((access_type & VM_PROT_WRITE) == 0) {
1189 ptmp->flags |= PG_CLEAN;
1190 pmap_clear_modify(ptmp);
1191 }
1192
1193 /*
1194 * we got the page! clear the fake flag (indicates valid
1195 * data now in page) and plug into our result array. note
1196 * that page is still busy.
1197 *
1198 * it is the callers job to:
1199 * => check if the page is released
1200 * => unbusy the page
1201 * => activate the page
1202 */
1203
1204 ptmp->flags &= ~PG_FAKE;
1205 pps[lcv] = ptmp;
1206 }
1207
1208 /*
1209 * finally, unlock object and return.
1210 */
1211
1212 done:
1213 mutex_exit(uobj->vmobjlock);
1214 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1215 return 0;
1216 }
1217
1218 #if defined(VMSWAP)
1219
1220 /*
1221 * uao_dropswap: release any swap resources from this aobj page.
1222 *
1223 * => aobj must be locked or have a reference count of 0.
1224 */
1225
1226 void
1227 uao_dropswap(struct uvm_object *uobj, int pageidx)
1228 {
1229 int slot;
1230
1231 slot = uao_set_swslot(uobj, pageidx, 0);
1232 if (slot) {
1233 uvm_swap_free(slot, 1);
1234 }
1235 }
1236
1237 /*
1238 * page in every page in every aobj that is paged-out to a range of swslots.
1239 *
1240 * => nothing should be locked.
1241 * => returns true if pagein was aborted due to lack of memory.
1242 */
1243
1244 bool
1245 uao_swap_off(int startslot, int endslot)
1246 {
1247 struct uvm_aobj *aobj, *nextaobj;
1248 bool rv;
1249
1250 /*
1251 * walk the list of all aobjs.
1252 */
1253
1254 restart:
1255 mutex_enter(&uao_list_lock);
1256 for (aobj = LIST_FIRST(&uao_list);
1257 aobj != NULL;
1258 aobj = nextaobj) {
1259
1260 /*
1261 * try to get the object lock, start all over if we fail.
1262 * most of the time we'll get the aobj lock,
1263 * so this should be a rare case.
1264 */
1265
1266 if (!mutex_tryenter(aobj->u_obj.vmobjlock)) {
1267 mutex_exit(&uao_list_lock);
1268 /* XXX Better than yielding but inadequate. */
1269 kpause("livelock", false, 1, NULL);
1270 goto restart;
1271 }
1272
1273 /*
1274 * add a ref to the aobj so it doesn't disappear
1275 * while we're working.
1276 */
1277
1278 uao_reference_locked(&aobj->u_obj);
1279
1280 /*
1281 * now it's safe to unlock the uao list.
1282 */
1283
1284 mutex_exit(&uao_list_lock);
1285
1286 /*
1287 * page in any pages in the swslot range.
1288 * if there's an error, abort and return the error.
1289 */
1290
1291 rv = uao_pagein(aobj, startslot, endslot);
1292 if (rv) {
1293 uao_detach_locked(&aobj->u_obj);
1294 return rv;
1295 }
1296
1297 /*
1298 * we're done with this aobj.
1299 * relock the list and drop our ref on the aobj.
1300 */
1301
1302 mutex_enter(&uao_list_lock);
1303 nextaobj = LIST_NEXT(aobj, u_list);
1304 uao_detach_locked(&aobj->u_obj);
1305 }
1306
1307 /*
1308 * done with traversal, unlock the list
1309 */
1310 mutex_exit(&uao_list_lock);
1311 return false;
1312 }
1313
1314
1315 /*
1316 * page in any pages from aobj in the given range.
1317 *
1318 * => aobj must be locked and is returned locked.
1319 * => returns true if pagein was aborted due to lack of memory.
1320 */
1321 static bool
1322 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1323 {
1324 bool rv;
1325
1326 if (UAO_USES_SWHASH(aobj)) {
1327 struct uao_swhash_elt *elt;
1328 int buck;
1329
1330 restart:
1331 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1332 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1333 elt != NULL;
1334 elt = LIST_NEXT(elt, list)) {
1335 int i;
1336
1337 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1338 int slot = elt->slots[i];
1339
1340 /*
1341 * if the slot isn't in range, skip it.
1342 */
1343
1344 if (slot < startslot ||
1345 slot >= endslot) {
1346 continue;
1347 }
1348
1349 /*
1350 * process the page,
1351 * the start over on this object
1352 * since the swhash elt
1353 * may have been freed.
1354 */
1355
1356 rv = uao_pagein_page(aobj,
1357 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1358 if (rv) {
1359 return rv;
1360 }
1361 goto restart;
1362 }
1363 }
1364 }
1365 } else {
1366 int i;
1367
1368 for (i = 0; i < aobj->u_pages; i++) {
1369 int slot = aobj->u_swslots[i];
1370
1371 /*
1372 * if the slot isn't in range, skip it
1373 */
1374
1375 if (slot < startslot || slot >= endslot) {
1376 continue;
1377 }
1378
1379 /*
1380 * process the page.
1381 */
1382
1383 rv = uao_pagein_page(aobj, i);
1384 if (rv) {
1385 return rv;
1386 }
1387 }
1388 }
1389
1390 return false;
1391 }
1392
1393 /*
1394 * page in a page from an aobj. used for swap_off.
1395 * returns true if pagein was aborted due to lack of memory.
1396 *
1397 * => aobj must be locked and is returned locked.
1398 */
1399
1400 static bool
1401 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1402 {
1403 struct vm_page *pg;
1404 int rv, npages;
1405
1406 pg = NULL;
1407 npages = 1;
1408 /* locked: aobj */
1409 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1410 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1411 /* unlocked: aobj */
1412
1413 /*
1414 * relock and finish up.
1415 */
1416
1417 mutex_enter(aobj->u_obj.vmobjlock);
1418 switch (rv) {
1419 case 0:
1420 break;
1421
1422 case EIO:
1423 case ERESTART:
1424
1425 /*
1426 * nothing more to do on errors.
1427 * ERESTART can only mean that the anon was freed,
1428 * so again there's nothing to do.
1429 */
1430
1431 return false;
1432
1433 default:
1434 return true;
1435 }
1436
1437 /*
1438 * ok, we've got the page now.
1439 * mark it as dirty, clear its swslot and un-busy it.
1440 */
1441 uao_dropswap(&aobj->u_obj, pageidx);
1442
1443 /*
1444 * make sure it's on a page queue.
1445 */
1446 mutex_enter(&uvm_pageqlock);
1447 if (pg->wire_count == 0)
1448 uvm_pageenqueue(pg);
1449 mutex_exit(&uvm_pageqlock);
1450
1451 if (pg->flags & PG_WANTED) {
1452 wakeup(pg);
1453 }
1454 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_CLEAN|PG_FAKE);
1455 UVM_PAGE_OWN(pg, NULL);
1456
1457 return false;
1458 }
1459
1460 /*
1461 * uao_dropswap_range: drop swapslots in the range.
1462 *
1463 * => aobj must be locked and is returned locked.
1464 * => start is inclusive. end is exclusive.
1465 */
1466
1467 void
1468 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1469 {
1470 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1471
1472 KASSERT(mutex_owned(uobj->vmobjlock));
1473
1474 uao_dropswap_range1(aobj, start, end);
1475 }
1476
1477 static void
1478 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1479 {
1480 int swpgonlydelta = 0;
1481
1482 if (end == 0) {
1483 end = INT64_MAX;
1484 }
1485
1486 if (UAO_USES_SWHASH(aobj)) {
1487 int i, hashbuckets = aobj->u_swhashmask + 1;
1488 voff_t taghi;
1489 voff_t taglo;
1490
1491 taglo = UAO_SWHASH_ELT_TAG(start);
1492 taghi = UAO_SWHASH_ELT_TAG(end);
1493
1494 for (i = 0; i < hashbuckets; i++) {
1495 struct uao_swhash_elt *elt, *next;
1496
1497 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1498 elt != NULL;
1499 elt = next) {
1500 int startidx, endidx;
1501 int j;
1502
1503 next = LIST_NEXT(elt, list);
1504
1505 if (elt->tag < taglo || taghi < elt->tag) {
1506 continue;
1507 }
1508
1509 if (elt->tag == taglo) {
1510 startidx =
1511 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1512 } else {
1513 startidx = 0;
1514 }
1515
1516 if (elt->tag == taghi) {
1517 endidx =
1518 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1519 } else {
1520 endidx = UAO_SWHASH_CLUSTER_SIZE;
1521 }
1522
1523 for (j = startidx; j < endidx; j++) {
1524 int slot = elt->slots[j];
1525
1526 KASSERT(uvm_pagelookup(&aobj->u_obj,
1527 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1528 + j) << PAGE_SHIFT) == NULL);
1529 if (slot > 0) {
1530 uvm_swap_free(slot, 1);
1531 swpgonlydelta++;
1532 KASSERT(elt->count > 0);
1533 elt->slots[j] = 0;
1534 elt->count--;
1535 }
1536 }
1537
1538 if (elt->count == 0) {
1539 LIST_REMOVE(elt, list);
1540 pool_put(&uao_swhash_elt_pool, elt);
1541 }
1542 }
1543 }
1544 } else {
1545 int i;
1546
1547 if (aobj->u_pages < end) {
1548 end = aobj->u_pages;
1549 }
1550 for (i = start; i < end; i++) {
1551 int slot = aobj->u_swslots[i];
1552
1553 if (slot > 0) {
1554 uvm_swap_free(slot, 1);
1555 swpgonlydelta++;
1556 }
1557 }
1558 }
1559
1560 /*
1561 * adjust the counter of pages only in swap for all
1562 * the swap slots we've freed.
1563 */
1564
1565 if (swpgonlydelta > 0) {
1566 mutex_enter(&uvm_swap_data_lock);
1567 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1568 uvmexp.swpgonly -= swpgonlydelta;
1569 mutex_exit(&uvm_swap_data_lock);
1570 }
1571 }
1572
1573 #endif /* defined(VMSWAP) */
1574