uvm_aobj.c revision 1.116.2.1 1 /* $NetBSD: uvm_aobj.c,v 1.116.2.1 2011/11/02 21:54:00 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1998 Chuck Silvers, Charles D. Cranor and
5 * Washington University.
6 * All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 *
28 * from: Id: uvm_aobj.c,v 1.1.2.5 1998/02/06 05:14:38 chs Exp
29 */
30
31 /*
32 * uvm_aobj.c: anonymous memory uvm_object pager
33 *
34 * author: Chuck Silvers <chuq (at) chuq.com>
35 * started: Jan-1998
36 *
37 * - design mostly from Chuck Cranor
38 */
39
40 #include <sys/cdefs.h>
41 __KERNEL_RCSID(0, "$NetBSD: uvm_aobj.c,v 1.116.2.1 2011/11/02 21:54:00 yamt Exp $");
42
43 #include "opt_uvmhist.h"
44
45 #include <sys/param.h>
46 #include <sys/systm.h>
47 #include <sys/proc.h>
48 #include <sys/kernel.h>
49 #include <sys/kmem.h>
50 #include <sys/pool.h>
51
52 #include <uvm/uvm.h>
53
54 /*
55 * an aobj manages anonymous-memory backed uvm_objects. in addition
56 * to keeping the list of resident pages, it also keeps a list of
57 * allocated swap blocks. depending on the size of the aobj this list
58 * of allocated swap blocks is either stored in an array (small objects)
59 * or in a hash table (large objects).
60 */
61
62 /*
63 * local structures
64 */
65
66 /*
67 * for hash tables, we break the address space of the aobj into blocks
68 * of UAO_SWHASH_CLUSTER_SIZE pages. we require the cluster size to
69 * be a power of two.
70 */
71
72 #define UAO_SWHASH_CLUSTER_SHIFT 4
73 #define UAO_SWHASH_CLUSTER_SIZE (1 << UAO_SWHASH_CLUSTER_SHIFT)
74
75 /* get the "tag" for this page index */
76 #define UAO_SWHASH_ELT_TAG(PAGEIDX) \
77 ((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT)
78
79 #define UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX) \
80 ((PAGEIDX) & (UAO_SWHASH_CLUSTER_SIZE - 1))
81
82 /* given an ELT and a page index, find the swap slot */
83 #define UAO_SWHASH_ELT_PAGESLOT(ELT, PAGEIDX) \
84 ((ELT)->slots[UAO_SWHASH_ELT_PAGESLOT_IDX(PAGEIDX)])
85
86 /* given an ELT, return its pageidx base */
87 #define UAO_SWHASH_ELT_PAGEIDX_BASE(ELT) \
88 ((ELT)->tag << UAO_SWHASH_CLUSTER_SHIFT)
89
90 /*
91 * the swhash hash function
92 */
93
94 #define UAO_SWHASH_HASH(AOBJ, PAGEIDX) \
95 (&(AOBJ)->u_swhash[(((PAGEIDX) >> UAO_SWHASH_CLUSTER_SHIFT) \
96 & (AOBJ)->u_swhashmask)])
97
98 /*
99 * the swhash threshhold determines if we will use an array or a
100 * hash table to store the list of allocated swap blocks.
101 */
102
103 #define UAO_SWHASH_THRESHOLD (UAO_SWHASH_CLUSTER_SIZE * 4)
104 #define UAO_USES_SWHASH(AOBJ) \
105 ((AOBJ)->u_pages > UAO_SWHASH_THRESHOLD) /* use hash? */
106
107 /*
108 * the number of buckets in a swhash, with an upper bound
109 */
110
111 #define UAO_SWHASH_MAXBUCKETS 256
112 #define UAO_SWHASH_BUCKETS(AOBJ) \
113 (MIN((AOBJ)->u_pages >> UAO_SWHASH_CLUSTER_SHIFT, \
114 UAO_SWHASH_MAXBUCKETS))
115
116 /*
117 * uao_swhash_elt: when a hash table is being used, this structure defines
118 * the format of an entry in the bucket list.
119 */
120
121 struct uao_swhash_elt {
122 LIST_ENTRY(uao_swhash_elt) list; /* the hash list */
123 voff_t tag; /* our 'tag' */
124 int count; /* our number of active slots */
125 int slots[UAO_SWHASH_CLUSTER_SIZE]; /* the slots */
126 };
127
128 /*
129 * uao_swhash: the swap hash table structure
130 */
131
132 LIST_HEAD(uao_swhash, uao_swhash_elt);
133
134 /*
135 * uao_swhash_elt_pool: pool of uao_swhash_elt structures.
136 * Note: pages for this pool must not come from a pageable kernel map.
137 */
138 static struct pool uao_swhash_elt_pool;
139
140 /*
141 * uvm_aobj: the actual anon-backed uvm_object
142 *
143 * => the uvm_object is at the top of the structure, this allows
144 * (struct uvm_aobj *) == (struct uvm_object *)
145 * => only one of u_swslots and u_swhash is used in any given aobj
146 */
147
148 struct uvm_aobj {
149 struct uvm_object u_obj; /* has: lock, pgops, memq, #pages, #refs */
150 pgoff_t u_pages; /* number of pages in entire object */
151 int u_flags; /* the flags (see uvm_aobj.h) */
152 int *u_swslots; /* array of offset->swapslot mappings */
153 /*
154 * hashtable of offset->swapslot mappings
155 * (u_swhash is an array of bucket heads)
156 */
157 struct uao_swhash *u_swhash;
158 u_long u_swhashmask; /* mask for hashtable */
159 LIST_ENTRY(uvm_aobj) u_list; /* global list of aobjs */
160 };
161
162 /*
163 * local functions
164 */
165
166 static void uao_free(struct uvm_aobj *);
167 static int uao_get(struct uvm_object *, voff_t, struct vm_page **,
168 int *, int, vm_prot_t, int, int);
169 static int uao_put(struct uvm_object *, voff_t, voff_t, int);
170
171 static void uao_detach_locked(struct uvm_object *);
172 static void uao_reference_locked(struct uvm_object *);
173
174 #if defined(VMSWAP)
175 static struct uao_swhash_elt *uao_find_swhash_elt
176 (struct uvm_aobj *, int, bool);
177
178 static bool uao_pagein(struct uvm_aobj *, int, int);
179 static bool uao_pagein_page(struct uvm_aobj *, int);
180 static void uao_dropswap_range1(struct uvm_aobj *, voff_t, voff_t);
181 #endif /* defined(VMSWAP) */
182
183 /*
184 * aobj_pager
185 *
186 * note that some functions (e.g. put) are handled elsewhere
187 */
188
189 const struct uvm_pagerops aobj_pager = {
190 .pgo_reference = uao_reference,
191 .pgo_detach = uao_detach,
192 .pgo_get = uao_get,
193 .pgo_put = uao_put,
194 };
195
196 /*
197 * uao_list: global list of active aobjs, locked by uao_list_lock
198 */
199
200 static LIST_HEAD(aobjlist, uvm_aobj) uao_list;
201 static kmutex_t uao_list_lock;
202
203 /*
204 * functions
205 */
206
207 /*
208 * hash table/array related functions
209 */
210
211 #if defined(VMSWAP)
212
213 /*
214 * uao_find_swhash_elt: find (or create) a hash table entry for a page
215 * offset.
216 *
217 * => the object should be locked by the caller
218 */
219
220 static struct uao_swhash_elt *
221 uao_find_swhash_elt(struct uvm_aobj *aobj, int pageidx, bool create)
222 {
223 struct uao_swhash *swhash;
224 struct uao_swhash_elt *elt;
225 voff_t page_tag;
226
227 swhash = UAO_SWHASH_HASH(aobj, pageidx);
228 page_tag = UAO_SWHASH_ELT_TAG(pageidx);
229
230 /*
231 * now search the bucket for the requested tag
232 */
233
234 LIST_FOREACH(elt, swhash, list) {
235 if (elt->tag == page_tag) {
236 return elt;
237 }
238 }
239 if (!create) {
240 return NULL;
241 }
242
243 /*
244 * allocate a new entry for the bucket and init/insert it in
245 */
246
247 elt = pool_get(&uao_swhash_elt_pool, PR_NOWAIT);
248 if (elt == NULL) {
249 return NULL;
250 }
251 LIST_INSERT_HEAD(swhash, elt, list);
252 elt->tag = page_tag;
253 elt->count = 0;
254 memset(elt->slots, 0, sizeof(elt->slots));
255 return elt;
256 }
257
258 /*
259 * uao_find_swslot: find the swap slot number for an aobj/pageidx
260 *
261 * => object must be locked by caller
262 */
263
264 int
265 uao_find_swslot(struct uvm_object *uobj, int pageidx)
266 {
267 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
268 struct uao_swhash_elt *elt;
269
270 /*
271 * if noswap flag is set, then we never return a slot
272 */
273
274 if (aobj->u_flags & UAO_FLAG_NOSWAP)
275 return(0);
276
277 /*
278 * if hashing, look in hash table.
279 */
280
281 if (UAO_USES_SWHASH(aobj)) {
282 elt = uao_find_swhash_elt(aobj, pageidx, false);
283 if (elt)
284 return(UAO_SWHASH_ELT_PAGESLOT(elt, pageidx));
285 else
286 return(0);
287 }
288
289 /*
290 * otherwise, look in the array
291 */
292
293 return(aobj->u_swslots[pageidx]);
294 }
295
296 /*
297 * uao_set_swslot: set the swap slot for a page in an aobj.
298 *
299 * => setting a slot to zero frees the slot
300 * => object must be locked by caller
301 * => we return the old slot number, or -1 if we failed to allocate
302 * memory to record the new slot number
303 */
304
305 int
306 uao_set_swslot(struct uvm_object *uobj, int pageidx, int slot)
307 {
308 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
309 struct uao_swhash_elt *elt;
310 int oldslot;
311 UVMHIST_FUNC("uao_set_swslot"); UVMHIST_CALLED(pdhist);
312 UVMHIST_LOG(pdhist, "aobj %p pageidx %d slot %d",
313 aobj, pageidx, slot, 0);
314
315 KASSERT(mutex_owned(uobj->vmobjlock) || uobj->uo_refs == 0);
316
317 /*
318 * if noswap flag is set, then we can't set a non-zero slot.
319 */
320
321 if (aobj->u_flags & UAO_FLAG_NOSWAP) {
322 if (slot == 0)
323 return(0);
324
325 printf("uao_set_swslot: uobj = %p\n", uobj);
326 panic("uao_set_swslot: NOSWAP object");
327 }
328
329 /*
330 * are we using a hash table? if so, add it in the hash.
331 */
332
333 if (UAO_USES_SWHASH(aobj)) {
334
335 /*
336 * Avoid allocating an entry just to free it again if
337 * the page had not swap slot in the first place, and
338 * we are freeing.
339 */
340
341 elt = uao_find_swhash_elt(aobj, pageidx, slot != 0);
342 if (elt == NULL) {
343 return slot ? -1 : 0;
344 }
345
346 oldslot = UAO_SWHASH_ELT_PAGESLOT(elt, pageidx);
347 UAO_SWHASH_ELT_PAGESLOT(elt, pageidx) = slot;
348
349 /*
350 * now adjust the elt's reference counter and free it if we've
351 * dropped it to zero.
352 */
353
354 if (slot) {
355 if (oldslot == 0)
356 elt->count++;
357 } else {
358 if (oldslot)
359 elt->count--;
360
361 if (elt->count == 0) {
362 LIST_REMOVE(elt, list);
363 pool_put(&uao_swhash_elt_pool, elt);
364 }
365 }
366 } else {
367 /* we are using an array */
368 oldslot = aobj->u_swslots[pageidx];
369 aobj->u_swslots[pageidx] = slot;
370 }
371 return (oldslot);
372 }
373
374 #endif /* defined(VMSWAP) */
375
376 /*
377 * end of hash/array functions
378 */
379
380 /*
381 * uao_free: free all resources held by an aobj, and then free the aobj
382 *
383 * => the aobj should be dead
384 */
385
386 static void
387 uao_free(struct uvm_aobj *aobj)
388 {
389
390 #if defined(VMSWAP)
391 uao_dropswap_range1(aobj, 0, 0);
392 #endif /* defined(VMSWAP) */
393
394 mutex_exit(aobj->u_obj.vmobjlock);
395
396 #if defined(VMSWAP)
397 if (UAO_USES_SWHASH(aobj)) {
398
399 /*
400 * free the hash table itself.
401 */
402
403 hashdone(aobj->u_swhash, HASH_LIST, aobj->u_swhashmask);
404 } else {
405
406 /*
407 * free the array itsself.
408 */
409
410 kmem_free(aobj->u_swslots, aobj->u_pages * sizeof(int));
411 }
412 #endif /* defined(VMSWAP) */
413
414 /*
415 * finally free the aobj itself
416 */
417
418 uvm_obj_destroy(&aobj->u_obj, true);
419 kmem_free(aobj, sizeof(struct uvm_aobj));
420 }
421
422 /*
423 * pager functions
424 */
425
426 /*
427 * uao_create: create an aobj of the given size and return its uvm_object.
428 *
429 * => for normal use, flags are always zero
430 * => for the kernel object, the flags are:
431 * UAO_FLAG_KERNOBJ - allocate the kernel object (can only happen once)
432 * UAO_FLAG_KERNSWAP - enable swapping of kernel object (" ")
433 */
434
435 struct uvm_object *
436 uao_create(vsize_t size, int flags)
437 {
438 static struct uvm_aobj kernel_object_store;
439 static kmutex_t kernel_object_lock;
440 static int kobj_alloced = 0;
441 pgoff_t pages = round_page(size) >> PAGE_SHIFT;
442 struct uvm_aobj *aobj;
443 int refs;
444
445 /*
446 * Allocate a new aobj, unless kernel object is requested.
447 */
448
449 if (flags & UAO_FLAG_KERNOBJ) {
450 KASSERT(!kobj_alloced);
451 aobj = &kernel_object_store;
452 aobj->u_pages = pages;
453 aobj->u_flags = UAO_FLAG_NOSWAP;
454 refs = UVM_OBJ_KERN;
455 kobj_alloced = UAO_FLAG_KERNOBJ;
456 } else if (flags & UAO_FLAG_KERNSWAP) {
457 KASSERT(kobj_alloced == UAO_FLAG_KERNOBJ);
458 aobj = &kernel_object_store;
459 kobj_alloced = UAO_FLAG_KERNSWAP;
460 refs = 0xdeadbeaf; /* XXX: gcc */
461 } else {
462 aobj = kmem_alloc(sizeof(struct uvm_aobj), KM_SLEEP);
463 aobj->u_pages = pages;
464 aobj->u_flags = 0;
465 refs = 1;
466 }
467
468 /*
469 * allocate hash/array if necessary
470 *
471 * note: in the KERNSWAP case no need to worry about locking since
472 * we are still booting we should be the only thread around.
473 */
474
475 if (flags == 0 || (flags & UAO_FLAG_KERNSWAP) != 0) {
476 #if defined(VMSWAP)
477 const int kernswap = (flags & UAO_FLAG_KERNSWAP) != 0;
478
479 /* allocate hash table or array depending on object size */
480 if (UAO_USES_SWHASH(aobj)) {
481 aobj->u_swhash = hashinit(UAO_SWHASH_BUCKETS(aobj),
482 HASH_LIST, kernswap ? false : true,
483 &aobj->u_swhashmask);
484 if (aobj->u_swhash == NULL)
485 panic("uao_create: hashinit swhash failed");
486 } else {
487 aobj->u_swslots = kmem_zalloc(pages * sizeof(int),
488 kernswap ? KM_NOSLEEP : KM_SLEEP);
489 if (aobj->u_swslots == NULL)
490 panic("uao_create: swslots allocation failed");
491 }
492 #endif /* defined(VMSWAP) */
493
494 if (flags) {
495 aobj->u_flags &= ~UAO_FLAG_NOSWAP; /* clear noswap */
496 return(&aobj->u_obj);
497 }
498 }
499
500 /*
501 * Initialise UVM object.
502 */
503
504 const bool kernobj = (flags & UAO_FLAG_KERNOBJ) != 0;
505 uvm_obj_init(&aobj->u_obj, &aobj_pager, !kernobj, refs);
506 if (__predict_false(kernobj)) {
507 /* Initialisation only once, for UAO_FLAG_KERNOBJ. */
508 mutex_init(&kernel_object_lock, MUTEX_DEFAULT, IPL_NONE);
509 uvm_obj_setlock(&aobj->u_obj, &kernel_object_lock);
510 }
511
512 /*
513 * now that aobj is ready, add it to the global list
514 */
515
516 mutex_enter(&uao_list_lock);
517 LIST_INSERT_HEAD(&uao_list, aobj, u_list);
518 mutex_exit(&uao_list_lock);
519 return(&aobj->u_obj);
520 }
521
522
523
524 /*
525 * uao_init: set up aobj pager subsystem
526 *
527 * => called at boot time from uvm_pager_init()
528 */
529
530 void
531 uao_init(void)
532 {
533 static int uao_initialized;
534
535 if (uao_initialized)
536 return;
537 uao_initialized = true;
538 LIST_INIT(&uao_list);
539 mutex_init(&uao_list_lock, MUTEX_DEFAULT, IPL_NONE);
540 pool_init(&uao_swhash_elt_pool, sizeof(struct uao_swhash_elt),
541 0, 0, 0, "uaoeltpl", NULL, IPL_VM);
542 }
543
544 /*
545 * uao_reference: add a ref to an aobj
546 *
547 * => aobj must be unlocked
548 * => just lock it and call the locked version
549 */
550
551 void
552 uao_reference(struct uvm_object *uobj)
553 {
554
555 /*
556 * kernel_object already has plenty of references, leave it alone.
557 */
558
559 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
560 return;
561
562 mutex_enter(uobj->vmobjlock);
563 uao_reference_locked(uobj);
564 mutex_exit(uobj->vmobjlock);
565 }
566
567 /*
568 * uao_reference_locked: add a ref to an aobj that is already locked
569 *
570 * => aobj must be locked
571 * this needs to be separate from the normal routine
572 * since sometimes we need to add a reference to an aobj when
573 * it's already locked.
574 */
575
576 static void
577 uao_reference_locked(struct uvm_object *uobj)
578 {
579 UVMHIST_FUNC("uao_reference"); UVMHIST_CALLED(maphist);
580
581 /*
582 * kernel_object already has plenty of references, leave it alone.
583 */
584
585 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
586 return;
587
588 uobj->uo_refs++;
589 UVMHIST_LOG(maphist, "<- done (uobj=0x%x, ref = %d)",
590 uobj, uobj->uo_refs,0,0);
591 }
592
593 /*
594 * uao_detach: drop a reference to an aobj
595 *
596 * => aobj must be unlocked
597 * => just lock it and call the locked version
598 */
599
600 void
601 uao_detach(struct uvm_object *uobj)
602 {
603
604 /*
605 * detaching from kernel_object is a noop.
606 */
607
608 if (UVM_OBJ_IS_KERN_OBJECT(uobj))
609 return;
610
611 mutex_enter(uobj->vmobjlock);
612 uao_detach_locked(uobj);
613 }
614
615 /*
616 * uao_detach_locked: drop a reference to an aobj
617 *
618 * => aobj must be locked, and is unlocked (or freed) upon return.
619 * this needs to be separate from the normal routine
620 * since sometimes we need to detach from an aobj when
621 * it's already locked.
622 */
623
624 static void
625 uao_detach_locked(struct uvm_object *uobj)
626 {
627 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
628 struct vm_page *pg;
629 UVMHIST_FUNC("uao_detach"); UVMHIST_CALLED(maphist);
630
631 /*
632 * detaching from kernel_object is a noop.
633 */
634
635 if (UVM_OBJ_IS_KERN_OBJECT(uobj)) {
636 mutex_exit(uobj->vmobjlock);
637 return;
638 }
639
640 UVMHIST_LOG(maphist," (uobj=0x%x) ref=%d", uobj,uobj->uo_refs,0,0);
641 uobj->uo_refs--;
642 if (uobj->uo_refs) {
643 mutex_exit(uobj->vmobjlock);
644 UVMHIST_LOG(maphist, "<- done (rc>0)", 0,0,0,0);
645 return;
646 }
647
648 /*
649 * remove the aobj from the global list.
650 */
651
652 mutex_enter(&uao_list_lock);
653 LIST_REMOVE(aobj, u_list);
654 mutex_exit(&uao_list_lock);
655
656 /*
657 * free all the pages left in the aobj. for each page,
658 * when the page is no longer busy (and thus after any disk i/o that
659 * it's involved in is complete), release any swap resources and
660 * free the page itself.
661 */
662
663 mutex_enter(&uvm_pageqlock);
664 while ((pg = TAILQ_FIRST(&uobj->memq)) != NULL) {
665 pmap_page_protect(pg, VM_PROT_NONE);
666 if (pg->flags & PG_BUSY) {
667 pg->flags |= PG_WANTED;
668 mutex_exit(&uvm_pageqlock);
669 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, false,
670 "uao_det", 0);
671 mutex_enter(uobj->vmobjlock);
672 mutex_enter(&uvm_pageqlock);
673 continue;
674 }
675 uao_dropswap(&aobj->u_obj, pg->offset >> PAGE_SHIFT);
676 uvm_pagefree(pg);
677 }
678 mutex_exit(&uvm_pageqlock);
679
680 /*
681 * finally, free the aobj itself.
682 */
683
684 uao_free(aobj);
685 }
686
687 /*
688 * uao_put: flush pages out of a uvm object
689 *
690 * => object should be locked by caller. we may _unlock_ the object
691 * if (and only if) we need to clean a page (PGO_CLEANIT).
692 * XXXJRT Currently, however, we don't. In the case of cleaning
693 * XXXJRT a page, we simply just deactivate it. Should probably
694 * XXXJRT handle this better, in the future (although "flushing"
695 * XXXJRT anonymous memory isn't terribly important).
696 * => if PGO_CLEANIT is not set, then we will neither unlock the object
697 * or block.
698 * => if PGO_ALLPAGE is set, then all pages in the object are valid targets
699 * for flushing.
700 * => NOTE: we rely on the fact that the object's memq is a TAILQ and
701 * that new pages are inserted on the tail end of the list. thus,
702 * we can make a complete pass through the object in one go by starting
703 * at the head and working towards the tail (new pages are put in
704 * front of us).
705 * => NOTE: we are allowed to lock the page queues, so the caller
706 * must not be holding the lock on them [e.g. pagedaemon had
707 * better not call us with the queues locked]
708 * => we return 0 unless we encountered some sort of I/O error
709 * XXXJRT currently never happens, as we never directly initiate
710 * XXXJRT I/O
711 *
712 * note on page traversal:
713 * we can traverse the pages in an object either by going down the
714 * linked list in "uobj->memq", or we can go over the address range
715 * by page doing hash table lookups for each address. depending
716 * on how many pages are in the object it may be cheaper to do one
717 * or the other. we set "by_list" to true if we are using memq.
718 * if the cost of a hash lookup was equal to the cost of the list
719 * traversal we could compare the number of pages in the start->stop
720 * range to the total number of pages in the object. however, it
721 * seems that a hash table lookup is more expensive than the linked
722 * list traversal, so we multiply the number of pages in the
723 * start->stop range by a penalty which we define below.
724 */
725
726 static int
727 uao_put(struct uvm_object *uobj, voff_t start, voff_t stop, int flags)
728 {
729 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
730 struct vm_page *pg, *nextpg, curmp, endmp;
731 bool by_list;
732 voff_t curoff;
733 UVMHIST_FUNC("uao_put"); UVMHIST_CALLED(maphist);
734
735 KASSERT(mutex_owned(uobj->vmobjlock));
736
737 curoff = 0;
738 if (flags & PGO_ALLPAGES) {
739 start = 0;
740 stop = aobj->u_pages << PAGE_SHIFT;
741 by_list = true; /* always go by the list */
742 } else {
743 start = trunc_page(start);
744 if (stop == 0) {
745 stop = aobj->u_pages << PAGE_SHIFT;
746 } else {
747 stop = round_page(stop);
748 }
749 if (stop > (aobj->u_pages << PAGE_SHIFT)) {
750 printf("uao_flush: strange, got an out of range "
751 "flush (fixed) %"PRIu64" -> %"PRIu64"\n",
752 aobj->u_pages << PAGE_SHIFT, stop);
753 stop = aobj->u_pages << PAGE_SHIFT;
754 }
755 by_list = (uobj->uo_npages <=
756 ((stop - start) >> PAGE_SHIFT) * UVM_PAGE_TREE_PENALTY);
757 }
758 UVMHIST_LOG(maphist,
759 " flush start=0x%lx, stop=0x%x, by_list=%d, flags=0x%x",
760 start, stop, by_list, flags);
761
762 /*
763 * Don't need to do any work here if we're not freeing
764 * or deactivating pages.
765 */
766
767 if ((flags & (PGO_DEACTIVATE|PGO_FREE)) == 0) {
768 mutex_exit(uobj->vmobjlock);
769 return 0;
770 }
771
772 /*
773 * Initialize the marker pages. See the comment in
774 * genfs_putpages() also.
775 */
776
777 curmp.flags = PG_MARKER;
778 endmp.flags = PG_MARKER;
779
780 /*
781 * now do it. note: we must update nextpg in the body of loop or we
782 * will get stuck. we need to use nextpg if we'll traverse the list
783 * because we may free "pg" before doing the next loop.
784 */
785
786 if (by_list) {
787 TAILQ_INSERT_TAIL(&uobj->memq, &endmp, listq.queue);
788 nextpg = TAILQ_FIRST(&uobj->memq);
789 } else {
790 curoff = start;
791 nextpg = NULL; /* Quell compiler warning */
792 }
793
794 /* locked: uobj */
795 for (;;) {
796 if (by_list) {
797 pg = nextpg;
798 if (pg == &endmp)
799 break;
800 nextpg = TAILQ_NEXT(pg, listq.queue);
801 if (pg->flags & PG_MARKER)
802 continue;
803 if (pg->offset < start || pg->offset >= stop)
804 continue;
805 } else {
806 if (curoff < stop) {
807 pg = uvm_pagelookup(uobj, curoff);
808 curoff += PAGE_SIZE;
809 } else
810 break;
811 if (pg == NULL)
812 continue;
813 }
814
815 /*
816 * wait and try again if the page is busy.
817 */
818
819 if (pg->flags & PG_BUSY) {
820 if (by_list) {
821 TAILQ_INSERT_BEFORE(pg, &curmp, listq.queue);
822 }
823 pg->flags |= PG_WANTED;
824 UVM_UNLOCK_AND_WAIT(pg, uobj->vmobjlock, 0,
825 "uao_put", 0);
826 mutex_enter(uobj->vmobjlock);
827 if (by_list) {
828 nextpg = TAILQ_NEXT(&curmp, listq.queue);
829 TAILQ_REMOVE(&uobj->memq, &curmp,
830 listq.queue);
831 } else
832 curoff -= PAGE_SIZE;
833 continue;
834 }
835
836 switch (flags & (PGO_CLEANIT|PGO_FREE|PGO_DEACTIVATE)) {
837
838 /*
839 * XXX In these first 3 cases, we always just
840 * XXX deactivate the page. We may want to
841 * XXX handle the different cases more specifically
842 * XXX in the future.
843 */
844
845 case PGO_CLEANIT|PGO_FREE:
846 case PGO_CLEANIT|PGO_DEACTIVATE:
847 case PGO_DEACTIVATE:
848 deactivate_it:
849 mutex_enter(&uvm_pageqlock);
850 /* skip the page if it's wired */
851 if (pg->wire_count == 0) {
852 uvm_pagedeactivate(pg);
853 }
854 mutex_exit(&uvm_pageqlock);
855 break;
856
857 case PGO_FREE:
858 /*
859 * If there are multiple references to
860 * the object, just deactivate the page.
861 */
862
863 if (uobj->uo_refs > 1)
864 goto deactivate_it;
865
866 /*
867 * free the swap slot and the page.
868 */
869
870 pmap_page_protect(pg, VM_PROT_NONE);
871
872 /*
873 * freeing swapslot here is not strictly necessary.
874 * however, leaving it here doesn't save much
875 * because we need to update swap accounting anyway.
876 */
877
878 uao_dropswap(uobj, pg->offset >> PAGE_SHIFT);
879 mutex_enter(&uvm_pageqlock);
880 uvm_pagefree(pg);
881 mutex_exit(&uvm_pageqlock);
882 break;
883
884 default:
885 panic("%s: impossible", __func__);
886 }
887 }
888 if (by_list) {
889 TAILQ_REMOVE(&uobj->memq, &endmp, listq.queue);
890 }
891 mutex_exit(uobj->vmobjlock);
892 return 0;
893 }
894
895 /*
896 * uao_get: fetch me a page
897 *
898 * we have three cases:
899 * 1: page is resident -> just return the page.
900 * 2: page is zero-fill -> allocate a new page and zero it.
901 * 3: page is swapped out -> fetch the page from swap.
902 *
903 * cases 1 and 2 can be handled with PGO_LOCKED, case 3 cannot.
904 * so, if the "center" page hits case 3 (or any page, with PGO_ALLPAGES),
905 * then we will need to return EBUSY.
906 *
907 * => prefer map unlocked (not required)
908 * => object must be locked! we will _unlock_ it before starting any I/O.
909 * => flags: PGO_ALLPAGES: get all of the pages
910 * PGO_LOCKED: fault data structures are locked
911 * => NOTE: offset is the offset of pps[0], _NOT_ pps[centeridx]
912 * => NOTE: caller must check for released pages!!
913 */
914
915 static int
916 uao_get(struct uvm_object *uobj, voff_t offset, struct vm_page **pps,
917 int *npagesp, int centeridx, vm_prot_t access_type, int advice, int flags)
918 {
919 #if defined(VMSWAP)
920 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
921 #endif /* defined(VMSWAP) */
922 voff_t current_offset;
923 struct vm_page *ptmp = NULL; /* Quell compiler warning */
924 int lcv, gotpages, maxpages, swslot, pageidx;
925 bool done;
926 UVMHIST_FUNC("uao_get"); UVMHIST_CALLED(pdhist);
927
928 UVMHIST_LOG(pdhist, "aobj=%p offset=%d, flags=%d",
929 (struct uvm_aobj *)uobj, offset, flags,0);
930
931 /*
932 * get number of pages
933 */
934
935 maxpages = *npagesp;
936
937 /*
938 * step 1: handled the case where fault data structures are locked.
939 */
940
941 if (flags & PGO_LOCKED) {
942
943 /*
944 * step 1a: get pages that are already resident. only do
945 * this if the data structures are locked (i.e. the first
946 * time through).
947 */
948
949 done = true; /* be optimistic */
950 gotpages = 0; /* # of pages we got so far */
951 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
952 lcv++, current_offset += PAGE_SIZE) {
953 /* do we care about this page? if not, skip it */
954 if (pps[lcv] == PGO_DONTCARE)
955 continue;
956 ptmp = uvm_pagelookup(uobj, current_offset);
957
958 /*
959 * if page is new, attempt to allocate the page,
960 * zero-fill'd.
961 */
962
963 if (ptmp == NULL && uao_find_swslot(&aobj->u_obj,
964 current_offset >> PAGE_SHIFT) == 0) {
965 ptmp = uvm_pagealloc(uobj, current_offset,
966 NULL, UVM_FLAG_COLORMATCH|UVM_PGA_ZERO);
967 if (ptmp) {
968 /* new page */
969 ptmp->pqflags |= PQ_AOBJ;
970 ptmp->flags &= ~PG_FAKE;
971 uvm_pagemarkdirty(ptmp,
972 UVM_PAGE_STATUS_UNKNOWN);
973 goto gotpage;
974 }
975 }
976
977 /*
978 * to be useful must get a non-busy page
979 */
980
981 if (ptmp == NULL || (ptmp->flags & PG_BUSY) != 0) {
982 if (lcv == centeridx ||
983 (flags & PGO_ALLPAGES) != 0)
984 /* need to do a wait or I/O! */
985 done = false;
986 continue;
987 }
988
989 /*
990 * useful page: busy/lock it and plug it in our
991 * result array
992 */
993 KASSERT(uvm_pagegetdirty(ptmp) !=
994 UVM_PAGE_STATUS_CLEAN);
995
996 /* caller must un-busy this page */
997 ptmp->flags |= PG_BUSY;
998 UVM_PAGE_OWN(ptmp, "uao_get1");
999 gotpage:
1000 pps[lcv] = ptmp;
1001 gotpages++;
1002 }
1003
1004 /*
1005 * step 1b: now we've either done everything needed or we
1006 * to unlock and do some waiting or I/O.
1007 */
1008
1009 UVMHIST_LOG(pdhist, "<- done (done=%d)", done, 0,0,0);
1010 *npagesp = gotpages;
1011 if (done)
1012 return 0;
1013 else
1014 return EBUSY;
1015 }
1016
1017 /*
1018 * step 2: get non-resident or busy pages.
1019 * object is locked. data structures are unlocked.
1020 */
1021
1022 if ((flags & PGO_SYNCIO) == 0) {
1023 goto done;
1024 }
1025
1026 for (lcv = 0, current_offset = offset ; lcv < maxpages ;
1027 lcv++, current_offset += PAGE_SIZE) {
1028
1029 /*
1030 * - skip over pages we've already gotten or don't want
1031 * - skip over pages we don't _have_ to get
1032 */
1033
1034 if (pps[lcv] != NULL ||
1035 (lcv != centeridx && (flags & PGO_ALLPAGES) == 0))
1036 continue;
1037
1038 pageidx = current_offset >> PAGE_SHIFT;
1039
1040 /*
1041 * we have yet to locate the current page (pps[lcv]). we
1042 * first look for a page that is already at the current offset.
1043 * if we find a page, we check to see if it is busy or
1044 * released. if that is the case, then we sleep on the page
1045 * until it is no longer busy or released and repeat the lookup.
1046 * if the page we found is neither busy nor released, then we
1047 * busy it (so we own it) and plug it into pps[lcv]. this
1048 * 'break's the following while loop and indicates we are
1049 * ready to move on to the next page in the "lcv" loop above.
1050 *
1051 * if we exit the while loop with pps[lcv] still set to NULL,
1052 * then it means that we allocated a new busy/fake/clean page
1053 * ptmp in the object and we need to do I/O to fill in the data.
1054 */
1055
1056 /* top of "pps" while loop */
1057 while (pps[lcv] == NULL) {
1058 /* look for a resident page */
1059 ptmp = uvm_pagelookup(uobj, current_offset);
1060
1061 /* not resident? allocate one now (if we can) */
1062 if (ptmp == NULL) {
1063
1064 ptmp = uvm_pagealloc(uobj, current_offset,
1065 NULL, 0);
1066
1067 /* out of RAM? */
1068 if (ptmp == NULL) {
1069 mutex_exit(uobj->vmobjlock);
1070 UVMHIST_LOG(pdhist,
1071 "sleeping, ptmp == NULL\n",0,0,0,0);
1072 uvm_wait("uao_getpage");
1073 mutex_enter(uobj->vmobjlock);
1074 continue;
1075 }
1076
1077 /*
1078 * safe with PQ's unlocked: because we just
1079 * alloc'd the page
1080 */
1081
1082 ptmp->pqflags |= PQ_AOBJ;
1083
1084 /*
1085 * got new page ready for I/O. break pps while
1086 * loop. pps[lcv] is still NULL.
1087 */
1088
1089 break;
1090 }
1091
1092 /* page is there, see if we need to wait on it */
1093 if ((ptmp->flags & PG_BUSY) != 0) {
1094 ptmp->flags |= PG_WANTED;
1095 UVMHIST_LOG(pdhist,
1096 "sleeping, ptmp->flags 0x%x\n",
1097 ptmp->flags,0,0,0);
1098 UVM_UNLOCK_AND_WAIT(ptmp, uobj->vmobjlock,
1099 false, "uao_get", 0);
1100 mutex_enter(uobj->vmobjlock);
1101 continue;
1102 }
1103
1104 /*
1105 * if we get here then the page has become resident and
1106 * unbusy between steps 1 and 2. we busy it now (so we
1107 * own it) and set pps[lcv] (so that we exit the while
1108 * loop).
1109 */
1110
1111 KASSERT(uvm_pagegetdirty(ptmp) !=
1112 UVM_PAGE_STATUS_CLEAN);
1113 /* we own it, caller must un-busy */
1114 ptmp->flags |= PG_BUSY;
1115 UVM_PAGE_OWN(ptmp, "uao_get2");
1116 pps[lcv] = ptmp;
1117 }
1118
1119 /*
1120 * if we own the valid page at the correct offset, pps[lcv] will
1121 * point to it. nothing more to do except go to the next page.
1122 */
1123
1124 if (pps[lcv])
1125 continue; /* next lcv */
1126
1127 /*
1128 * we have a "fake/busy/clean" page that we just allocated.
1129 * do the needed "i/o", either reading from swap or zeroing.
1130 */
1131
1132 swslot = uao_find_swslot(&aobj->u_obj, pageidx);
1133
1134 /*
1135 * just zero the page if there's nothing in swap.
1136 */
1137
1138 if (swslot == 0) {
1139
1140 /*
1141 * page hasn't existed before, just zero it.
1142 */
1143
1144 uvm_pagezero(ptmp);
1145 } else {
1146 #if defined(VMSWAP)
1147 int error;
1148
1149 UVMHIST_LOG(pdhist, "pagein from swslot %d",
1150 swslot, 0,0,0);
1151
1152 /*
1153 * page in the swapped-out page.
1154 * unlock object for i/o, relock when done.
1155 */
1156
1157 mutex_exit(uobj->vmobjlock);
1158 error = uvm_swap_get(ptmp, swslot, PGO_SYNCIO);
1159 mutex_enter(uobj->vmobjlock);
1160
1161 /*
1162 * I/O done. check for errors.
1163 */
1164
1165 if (error != 0) {
1166 UVMHIST_LOG(pdhist, "<- done (error=%d)",
1167 error,0,0,0);
1168 if (ptmp->flags & PG_WANTED)
1169 wakeup(ptmp);
1170
1171 /*
1172 * remove the swap slot from the aobj
1173 * and mark the aobj as having no real slot.
1174 * don't free the swap slot, thus preventing
1175 * it from being used again.
1176 */
1177
1178 swslot = uao_set_swslot(&aobj->u_obj, pageidx,
1179 SWSLOT_BAD);
1180 if (swslot > 0) {
1181 uvm_swap_markbad(swslot, 1);
1182 }
1183
1184 mutex_enter(&uvm_pageqlock);
1185 uvm_pagefree(ptmp);
1186 mutex_exit(&uvm_pageqlock);
1187 mutex_exit(uobj->vmobjlock);
1188 return error;
1189 }
1190 #else /* defined(VMSWAP) */
1191 panic("%s: pagein", __func__);
1192 #endif /* defined(VMSWAP) */
1193 }
1194
1195 /*
1196 * note that we will allow the page being writably-mapped
1197 * (!PG_RDONLY) regardless of access_type.
1198 */
1199 uvm_pagemarkdirty(ptmp, UVM_PAGE_STATUS_UNKNOWN);
1200
1201 /*
1202 * we got the page! clear the fake flag (indicates valid
1203 * data now in page) and plug into our result array. note
1204 * that page is still busy.
1205 *
1206 * it is the callers job to:
1207 * => check if the page is released
1208 * => unbusy the page
1209 * => activate the page
1210 */
1211 KASSERT(uvm_pagegetdirty(ptmp) != UVM_PAGE_STATUS_CLEAN);
1212 KASSERT((ptmp->flags & PG_FAKE) != 0);
1213 ptmp->flags &= ~PG_FAKE;
1214 pps[lcv] = ptmp;
1215 }
1216
1217 /*
1218 * finally, unlock object and return.
1219 */
1220
1221 done:
1222 mutex_exit(uobj->vmobjlock);
1223 UVMHIST_LOG(pdhist, "<- done (OK)",0,0,0,0);
1224 return 0;
1225 }
1226
1227 #if defined(VMSWAP)
1228
1229 /*
1230 * uao_dropswap: release any swap resources from this aobj page.
1231 *
1232 * => aobj must be locked or have a reference count of 0.
1233 */
1234
1235 void
1236 uao_dropswap(struct uvm_object *uobj, int pageidx)
1237 {
1238 int slot;
1239
1240 slot = uao_set_swslot(uobj, pageidx, 0);
1241 if (slot) {
1242 uvm_swap_free(slot, 1);
1243 }
1244 }
1245
1246 /*
1247 * page in every page in every aobj that is paged-out to a range of swslots.
1248 *
1249 * => nothing should be locked.
1250 * => returns true if pagein was aborted due to lack of memory.
1251 */
1252
1253 bool
1254 uao_swap_off(int startslot, int endslot)
1255 {
1256 struct uvm_aobj *aobj, *nextaobj;
1257 bool rv;
1258
1259 /*
1260 * walk the list of all aobjs.
1261 */
1262
1263 restart:
1264 mutex_enter(&uao_list_lock);
1265 for (aobj = LIST_FIRST(&uao_list);
1266 aobj != NULL;
1267 aobj = nextaobj) {
1268
1269 /*
1270 * try to get the object lock, start all over if we fail.
1271 * most of the time we'll get the aobj lock,
1272 * so this should be a rare case.
1273 */
1274
1275 if (!mutex_tryenter(aobj->u_obj.vmobjlock)) {
1276 mutex_exit(&uao_list_lock);
1277 /* XXX Better than yielding but inadequate. */
1278 kpause("livelock", false, 1, NULL);
1279 goto restart;
1280 }
1281
1282 /*
1283 * add a ref to the aobj so it doesn't disappear
1284 * while we're working.
1285 */
1286
1287 uao_reference_locked(&aobj->u_obj);
1288
1289 /*
1290 * now it's safe to unlock the uao list.
1291 */
1292
1293 mutex_exit(&uao_list_lock);
1294
1295 /*
1296 * page in any pages in the swslot range.
1297 * if there's an error, abort and return the error.
1298 */
1299
1300 rv = uao_pagein(aobj, startslot, endslot);
1301 if (rv) {
1302 uao_detach_locked(&aobj->u_obj);
1303 return rv;
1304 }
1305
1306 /*
1307 * we're done with this aobj.
1308 * relock the list and drop our ref on the aobj.
1309 */
1310
1311 mutex_enter(&uao_list_lock);
1312 nextaobj = LIST_NEXT(aobj, u_list);
1313 uao_detach_locked(&aobj->u_obj);
1314 }
1315
1316 /*
1317 * done with traversal, unlock the list
1318 */
1319 mutex_exit(&uao_list_lock);
1320 return false;
1321 }
1322
1323
1324 /*
1325 * page in any pages from aobj in the given range.
1326 *
1327 * => aobj must be locked and is returned locked.
1328 * => returns true if pagein was aborted due to lack of memory.
1329 */
1330 static bool
1331 uao_pagein(struct uvm_aobj *aobj, int startslot, int endslot)
1332 {
1333 bool rv;
1334
1335 if (UAO_USES_SWHASH(aobj)) {
1336 struct uao_swhash_elt *elt;
1337 int buck;
1338
1339 restart:
1340 for (buck = aobj->u_swhashmask; buck >= 0; buck--) {
1341 for (elt = LIST_FIRST(&aobj->u_swhash[buck]);
1342 elt != NULL;
1343 elt = LIST_NEXT(elt, list)) {
1344 int i;
1345
1346 for (i = 0; i < UAO_SWHASH_CLUSTER_SIZE; i++) {
1347 int slot = elt->slots[i];
1348
1349 /*
1350 * if the slot isn't in range, skip it.
1351 */
1352
1353 if (slot < startslot ||
1354 slot >= endslot) {
1355 continue;
1356 }
1357
1358 /*
1359 * process the page,
1360 * the start over on this object
1361 * since the swhash elt
1362 * may have been freed.
1363 */
1364
1365 rv = uao_pagein_page(aobj,
1366 UAO_SWHASH_ELT_PAGEIDX_BASE(elt) + i);
1367 if (rv) {
1368 return rv;
1369 }
1370 goto restart;
1371 }
1372 }
1373 }
1374 } else {
1375 int i;
1376
1377 for (i = 0; i < aobj->u_pages; i++) {
1378 int slot = aobj->u_swslots[i];
1379
1380 /*
1381 * if the slot isn't in range, skip it
1382 */
1383
1384 if (slot < startslot || slot >= endslot) {
1385 continue;
1386 }
1387
1388 /*
1389 * process the page.
1390 */
1391
1392 rv = uao_pagein_page(aobj, i);
1393 if (rv) {
1394 return rv;
1395 }
1396 }
1397 }
1398
1399 return false;
1400 }
1401
1402 /*
1403 * page in a page from an aobj. used for swap_off.
1404 * returns true if pagein was aborted due to lack of memory.
1405 *
1406 * => aobj must be locked and is returned locked.
1407 */
1408
1409 static bool
1410 uao_pagein_page(struct uvm_aobj *aobj, int pageidx)
1411 {
1412 struct vm_page *pg;
1413 int rv, npages;
1414
1415 pg = NULL;
1416 npages = 1;
1417 /* locked: aobj */
1418 rv = uao_get(&aobj->u_obj, pageidx << PAGE_SHIFT,
1419 &pg, &npages, 0, VM_PROT_READ|VM_PROT_WRITE, 0, PGO_SYNCIO);
1420 /* unlocked: aobj */
1421
1422 /*
1423 * relock and finish up.
1424 */
1425
1426 mutex_enter(aobj->u_obj.vmobjlock);
1427 switch (rv) {
1428 case 0:
1429 break;
1430
1431 case EIO:
1432 case ERESTART:
1433
1434 /*
1435 * nothing more to do on errors.
1436 * ERESTART can only mean that the anon was freed,
1437 * so again there's nothing to do.
1438 */
1439
1440 return false;
1441
1442 default:
1443 return true;
1444 }
1445
1446 /*
1447 * ok, we've got the page now.
1448 * mark it as dirty, clear its swslot and un-busy it.
1449 */
1450 uao_dropswap(&aobj->u_obj, pageidx);
1451
1452 /*
1453 * make sure it's on a page queue.
1454 */
1455 mutex_enter(&uvm_pageqlock);
1456 if (pg->wire_count == 0)
1457 uvm_pageenqueue(pg);
1458 mutex_exit(&uvm_pageqlock);
1459
1460 if (pg->flags & PG_WANTED) {
1461 wakeup(pg);
1462 }
1463 pg->flags &= ~(PG_WANTED|PG_BUSY|PG_FAKE);
1464 uvm_pagemarkdirty(pg, UVM_PAGE_STATUS_DIRTY);
1465 UVM_PAGE_OWN(pg, NULL);
1466
1467 return false;
1468 }
1469
1470 /*
1471 * uao_dropswap_range: drop swapslots in the range.
1472 *
1473 * => aobj must be locked and is returned locked.
1474 * => start is inclusive. end is exclusive.
1475 */
1476
1477 void
1478 uao_dropswap_range(struct uvm_object *uobj, voff_t start, voff_t end)
1479 {
1480 struct uvm_aobj *aobj = (struct uvm_aobj *)uobj;
1481
1482 KASSERT(mutex_owned(uobj->vmobjlock));
1483
1484 uao_dropswap_range1(aobj, start, end);
1485 }
1486
1487 static void
1488 uao_dropswap_range1(struct uvm_aobj *aobj, voff_t start, voff_t end)
1489 {
1490 int swpgonlydelta = 0;
1491
1492 if (end == 0) {
1493 end = INT64_MAX;
1494 }
1495
1496 if (UAO_USES_SWHASH(aobj)) {
1497 int i, hashbuckets = aobj->u_swhashmask + 1;
1498 voff_t taghi;
1499 voff_t taglo;
1500
1501 taglo = UAO_SWHASH_ELT_TAG(start);
1502 taghi = UAO_SWHASH_ELT_TAG(end);
1503
1504 for (i = 0; i < hashbuckets; i++) {
1505 struct uao_swhash_elt *elt, *next;
1506
1507 for (elt = LIST_FIRST(&aobj->u_swhash[i]);
1508 elt != NULL;
1509 elt = next) {
1510 int startidx, endidx;
1511 int j;
1512
1513 next = LIST_NEXT(elt, list);
1514
1515 if (elt->tag < taglo || taghi < elt->tag) {
1516 continue;
1517 }
1518
1519 if (elt->tag == taglo) {
1520 startidx =
1521 UAO_SWHASH_ELT_PAGESLOT_IDX(start);
1522 } else {
1523 startidx = 0;
1524 }
1525
1526 if (elt->tag == taghi) {
1527 endidx =
1528 UAO_SWHASH_ELT_PAGESLOT_IDX(end);
1529 } else {
1530 endidx = UAO_SWHASH_CLUSTER_SIZE;
1531 }
1532
1533 for (j = startidx; j < endidx; j++) {
1534 int slot = elt->slots[j];
1535
1536 KASSERT(uvm_pagelookup(&aobj->u_obj,
1537 (UAO_SWHASH_ELT_PAGEIDX_BASE(elt)
1538 + j) << PAGE_SHIFT) == NULL);
1539 if (slot > 0) {
1540 uvm_swap_free(slot, 1);
1541 swpgonlydelta++;
1542 KASSERT(elt->count > 0);
1543 elt->slots[j] = 0;
1544 elt->count--;
1545 }
1546 }
1547
1548 if (elt->count == 0) {
1549 LIST_REMOVE(elt, list);
1550 pool_put(&uao_swhash_elt_pool, elt);
1551 }
1552 }
1553 }
1554 } else {
1555 int i;
1556
1557 if (aobj->u_pages < end) {
1558 end = aobj->u_pages;
1559 }
1560 for (i = start; i < end; i++) {
1561 int slot = aobj->u_swslots[i];
1562
1563 if (slot > 0) {
1564 uvm_swap_free(slot, 1);
1565 swpgonlydelta++;
1566 }
1567 }
1568 }
1569
1570 /*
1571 * adjust the counter of pages only in swap for all
1572 * the swap slots we've freed.
1573 */
1574
1575 if (swpgonlydelta > 0) {
1576 mutex_enter(&uvm_swap_data_lock);
1577 KASSERT(uvmexp.swpgonly >= swpgonlydelta);
1578 uvmexp.swpgonly -= swpgonlydelta;
1579 mutex_exit(&uvm_swap_data_lock);
1580 }
1581 }
1582
1583 #endif /* defined(VMSWAP) */
1584